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Abstract
The performance of hypersonic vehicles in the take-off stage considerably influences their capability of accomplish-
ing the flight tasks. This study is aimed at enhancing the take-off performance of a cruise aircraft using the improved
chimp optimisation algorithm. The proposed algorithm, which uses the Sobol sequence for initial population gen-
eration and a function of the weight factors, can effectively overcome the problems of premature convergence and
low accuracy of the original algorithm. In particular, the Sobol sequence aims to obtain a better fitness value in
the first iteration, and the weight factor aims to accelerate the convergence speed and avoid the local optimal solu-
tion. The take-off mass model of the hypersonic vehicle is constructed considering the flight data obtained using
the pseudo-spectral method in the climb phase. Simulations are performed to evaluate the algorithm performance,
and the results show that the algorithm can rapidly and stably optimise the benchmark function. Compared to the
original algorithm, the proposed algorithm requires 28.89% less optimisation time and yields an optimised take-off
mass that is 1.72kg smaller.

Nomenclature
x lateral range [m]
y longitudinal range [m]
qd dynamic pressure [Pa]
h0 atmospheric density elevation [m]
Isp impulse [s]
Sr reference area [m2]
L lift force [N]
D drag force [N]
mass1 fuel consumption in the climb phase [kg]
mass2 initial mass of the aircraft in the cruise phase [kg]
CD lift coefficient
CL drag coefficient
PLA throttle value

Greek Symbols

α angle-of-attack [◦]
γ flight path angle [◦]
ρ atmospheric density at sea level [kg/m3]
μ random number ranging from 0 to 1
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1.0 Introduction
The increasing maturity of scramjet technologies [1] has enabled hypersonic vehicles to fly at a speed
of more than Mach 5 in the near space [2, 3]. Owing to such high velocities, high lift-to-drag ratio,
long range, and strong manoeuvrability [4, 5, 6], hypersonic vehicles are being increasingly applied in
military and civilian fields. The mass of hypersonic vehicles during take-off considerably influences
their overall performance. Accurately estimating the take-off mass in the initial stages of the launch
mission can help decrease the launch cost and evaluate the effectiveness of various schemes. The result-
ing enhancement in the overall performance of the aircraft in the take-off stage can facilitate the launch
mission [7, 8].

Various take-off performance problems associated with aircraft have been studied considering differ-
ent application requirements. Dalle et al. [9] proposed a general strategy to determine the minimum
take-off mass during the ascent of a generic hypersonic vehicle propelled by a dual-mode ramjet–-
scramjet engine with hydrogen fuel. Franco et al. [10] analysed the problem of minimum-fuel cruise
at a constant altitude with a fixed arrival time as a singular optimal control problem and attempted to
optimise the take-off performance. Ng et al. [11] determined the optimal cruise altitude for an aircraft
operating under wind action to minimise the take-off mass. Zhang et al. used a multidisciplinary design
optimisation approach to optimise the design of a waverider [12]. However, there remains considerable
scope for improvement in solving such optimisation problems.

Swarm intelligence algorithms, as a robust and an adaptable optimisation solution, have attracted
considerable research attention [13]. These algorithms are random search algorithms based on biolog-
ical intelligence or natural phenomena. The core concept is to simulate the foraging and reproduction
behaviours of certain social species, abstract these behaviours into quantifiable key indicators, and
establish a mathematical model to solve various problems. Duan and Li proposed an artificial-bee-
colony-based direct collocation method for the re-entry trajectory optimisation of hypersonic vehicles
[14]. The pigeon-inspired optimisation method was used to address the terminal and path constraints
[15]. The adaptive grasshopper optimisation algorithm was used [16] to solve the target tracking problem
of multiple solar-powered unmanned aerial vehicles (UAVs) in urban environments. Liu and Yan pro-
posed an adaptive simulated annealing particle swarm optimisation (SA-PSO) algorithm to optimise the
design parameters of multi-missile formations based on the concept of missile cooperative engagement
to maximise the attack effectiveness [17, 18]. Moreover [19], a grey wolf optimisation (GWO)-based
algorithm was adopted to determine the optimal UAV trajectory in the presence of moving obstacles.
Zhou et al. [20] proposed a parallel genetic algorithm and obtained the global optimisation solution
of spacecraft re-entry trajectory. Jiang and Li [21] proposed a hybrid optimisation strategy, in which
the PSO and Gauss pseudo-spectral method was used to generate the optimal entry trajectory for Mars
pinpoint landing missions.

Overall, several optimisation methods based on the swarm intelligence algorithms and their enhanced
variants have been developed, which exhibit certain strengths and limitations in different applications.
For example, the stochastic search mechanism in PSO exhibits weak global and local search abilities in
early and later iterations, respectively [22]; the GWO exhibits a low population diversity [23]; and the
ant colony optimisation involves a large number of parameters [24]. Moreover, all swarm intelligence
algorithms typically fall into the local optima, leading to a high computational burden and low accuracy
[25, 26].

Khishe et al. [27] recently proposed the chimp optimisation algorithm (ChOA), which is a meta-
heuristic optimisation algorithm based on the simulation of chimpanzees’ individual intelligence, sexual
motivation, and predation behaviours observed in the processes of driving, chasing, and attacking.
The ChOA has a simple principle, can be easily implemented, and requires only a few parame-
ters to be adjusted. Consequently, this algorithm has been applied in many fields, such as hybrid
energy distribution [28, 29] and medical image recognition [30, 31]. Nevertheless, similar to other
swarm intelligence optimisation algorithms, the convergence accuracy and speed of the ChOA must be
enhanced.
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The advantages of the ChOA make it a promising candidate for optimising the hypersonic vehicle
take-off performance. In this study, to explore the applicability of this approach, the ChOA was enhanced
and applied to optimise the take-off performance of a hypersonic vehicle. The key contributions of this
study can be summarised as follows:

(1) The ChOA tends to easily fall into the local extrema when solving optimisation problems. To
address this problem, the Sobol initialisation sequence and weight factor are introduced in the
ChOA to increase the convergence rate and facilitate its implementation in engineering practice.

(2) Using the segmented thrust model and aircraft mass model, the take-off performance optimisa-
tion problem is converted to a multi-parameter optimisation problem by parameterising the state
variables such as the cruise altitude and speed.

(3) To evaluate the performance and accuracy of the improved algorithm, it is applied to optimise ten
benchmark functions, and the obtained optimisation results are compared with those of the orig-
inal ChOA. Considering its validity, rapidity, optimality, and adaptability, the improved ChOA
(iwChOA) is applied to optimise the take-off performance of a hypersonic vehicle.

The remaining paper is organised as follows. Section 2 presents the basic theory of the ChOA and
improvement strategies. Section 3 describes the modelling of the hypersonic vehicle and its dynamics.
Section 4 describes the take-off performance optimisation scheme of the cruise vehicle, aimed at min-
imising the take-off mass. Section 5 presents the results of the optimisation and comparative analyses.
Section 6 presents the concluding remarks.

2.0 Proposed algorithm: iwChOA
2.1 Overview of ChOA
The ChOA is a swarm-based optimisation algorithm inspired by the intelligence and sexual motivation of
chimps in their crowd hunting behaviours. A chimp swarm includes four types of chimps: driver, barrier,
chaser and attacker, with different skills necessary for a successful hunt. The attacker is the leader of
the swarm. The other three types of chimps assist in hunting, and their social status decreases in the
order of barrier, chaser and driver. The hunting process can be divided into diversification (exploration)
and intensification (exploitation) stages. The exploration stage includes driving, blocking, and chasing,
and the exploitation process is focused on attacking the prey. The prey is hunted in both stages. The
processes of hunting and chasing the prey can be modelled using Eqs. (1) and (2).

d = ∣∣c · xprey(t) − m · xchimp(t)
∣∣, (1)

xchimp(t + 1) = xprey(t) − a · d, (2)

where t is the number of the current iteration; a, m, and c are the coefficient vectors; xprey represents the
prey position; and xchimp represents the chimp position vector. a, m, and c can be calculated as

a = 2 · f · r1 − f , (3)

c = 2 · r2, (4)

m = Chaotic_value, (5)

where r1 and r2 are random vectors in the range [0,1]. f is a convergence factor whose value decreases
nonlinearly from 2.5 to 0 through the iteration process (in both the exploration and exploitation phases).
a is a random vector that determines the distance between the chimps and prey in the range

[−f , f
]
. m is

a chaotic vector calculated based on various chaotic maps to represent the effect of the sexual motivation
of chimps in the hunting process. c is the control coefficient used to describe the chimps’ expulsion and
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pursuit of prey, defined as a random vector in the range [0,2]. The process of chimps attacking the prey
can be modelled using Eqs. (6)–(8).

dAttacker = |c1xAttacker − m1x| , dBarrier = |c2xBarrier − m2x|
dChaser = |c3xChaser − m3x| , dDriver = |c4xDriver − m4x| ,

(6)

x1 = xAttacker − a1(dAttacker), x2 = xBarrier − a2(dBarrier)

x3 = xChaser − a3(dChaser), x4 = xDriver − a4(dDriver),
(7)

x(t + 1) = x1 + x2 + x3 + x4

4
. (8)

As indicated in Eqs. (6)–(8), after population initialisation, four optimal solutions are selected to
define the positions of the attackers, barriers, chasers, and drivers. The positions of other chimps in the
population are updated considering these positions. In other words, the position of the prey is estimated
by those of the four best individuals, and the locations of other chimps are randomly updated in the
vicinity.

In the last stage of hunting, the individuals achieve food satisfaction and exhibit natural wild behaviour
in the presence of social opportunities. Specifically, the chimps attempt to obtain food by force and chaos.
The chaotic behaviour of chimps in the final stage helps alleviate the problems of local optimum trapping
and low convergence speed, and chaotic maps can be used to enhance the ChOA performance. The
updating process is modelled using Eq. (9), whereμ is a random number in [0,1]. Because certain chimps
may not have any sexual motivation in the hunting process, a probability of 50% is set to determine
whether the position update strategy of the chimps is normal (Eq. (2)) or chaotic (Eq. (9)). The process
flow of the ChOA is illustrated in Fig. 1.

xchimp(t + 1) =
{

xprey(t) − a · d if μ< 0.5

Chaotic_value if μ> 0.5
. (9)

2.2 Improved ChOA
Although the ChOA has many advantages and has been applied in many fields, it has a few limitations.
Specifically, the population initialisation is based on random distribution, which leads to a low popula-
tion diversity, aimlessness in the individual early search, and low convergence speed of the algorithm.
In addition, because the positions of the other chimps are updated based on those of the attackers, these
chimps may be trapped in the local optimum, which limits their exploration of new areas in the search
space owing to their solution space being concentrated around the attackers’ solutions.

Consequently, the original approach is not suitable for solving highly complex optimisation problems
owing to limitations such as low diversity, vulnerability to local optimum trapping, and low conver-
gence speed. To address these limitations, the population initialisation and location update methods are
enhanced in this study. To enhance the exploitation phase of the standard ChOA, the search process
equations are modified, as described in the following subsections.

2.2.1 Sobol sequence for population initialisation
For all algorithms involving sampling, a superior sample distribution can be obtained using evenly dis-
tributed random numbers. In the original ChOA, the population initialisation process is based on random
distribution, which leads to a low diversity and aimlessness of individual optimisation. In the improved
algorithm, the Sobol sequence is used to initialise the population. The dimensions of the Sobol sequence
are based on radical inversion with a factor of 2; however, each dimension has a specific generation
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Figure 1. Process flow of ChOA.

matrix. Notably, the Sobol sequence is a low discrepancy sequence, in which a deterministic pseudo-
random number sequence is used to replace the pseudo-random number sequence to fill the sample space
as evenly as possible. Therefore, the Sobol sequence is associated with a high computational efficiency
and wide coverage of sampling points in solving the initial sampling problems.

Considering the optimisation problem of interest, the upper and lower limits of the two-dimensional
space are set as lb = [5 25,000] and ub = [6 30,000] to describe the cruise state. The random number in
the sampling space is generated using Eq. (10), and the population size is set as 30. Si is the ith random
number generated by the Sobol sequence in the range [0,1].

Xn = lb + Si · (ub-lb). (10)

2.2.2 Weight factor
To alleviate the problem of the other chimps falling into the local optimum, the iwChOA incorporates
a position-weighted relationship based on a weight factor that can be mathematically formulated as
follows:

β1 = |x|1

|x|1 + |x|2 + |x|3 + |x|4

, (11)

β2 = |x|2

|x|1 + |x|2 + |x|3 + |x|4

, (12)
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β3 = |x|3

|x|1 + |x|2 + |x|3 + |x|4

, (13)

β4 = |x|4

|x|1 + |x|2 + |x|3 + |x|4

, (14)

x(t + 1) = 1

β1 + β2 + β3 + β4

× β1|x|1 + β2|x|2 + β3|x|3 + β4|x|4

4
. (15)

The learning rate is introduced in Eq. (8) to obtain Eq. (15). β1, β2, β3, and β4 are the learning
rates of other chimps with respect to the attacker, barrier, chaser and driver, respectively, in terms of the
Euclidean distances. The dynamic learning rate in Eq. (15) varies across iterations, which helps increase
the convergence speed and ensure the avoidance of the local optima in scenarios in which the attackers,
barriers, chasers and drivers are less likely to know the position of the prey.

2.2.3 iwChOA implementation
The implementation of the iwChOA involves the following steps:

Step 1: Initialise the chimp colony, including the number of individuals in the population, N, max-
imum number of iterations, T, dimension d, and limits of the search space, lb and ub, using the Sobol
sequence and set the relevant parameters;

Step 2: Calculate the fitness value of each chimp individual. Identify the first four individual positions
with the lowest fitness and define them as xAttacker, xBarrier, xChaster and xDriver.

Step 3: Update the parameters a and c according to Eqs. (3) and (4).
Step 4: Update xAttacker, xBarrier, xChaster and xDriver according to Eqs. (6),(7), and(9), and update the

locations of the chimp population according to Eqs. (11)–(15).
Step 5: Establish the chaotic maps based on Eq. (5).
Step 6: Repeat Steps 3 to 5 until the maximum number of iterations is reached or the algorithm

converges to the required accuracy.
Step 7: Output the global optimal position xAttacker.

3.0 Vehicle model
A hypersonic cruise vehicle must be able to cruise in hypersonic flow for a reasonable duration [32]. The
hypersonic cruise vehicle considered in this study is assumed to be propelled by a scramjet and operate
in a still atmosphere. This section describes the modelling of the hypersonic cruise vehicle, including
the equations of motion and thrust and aerodynamic expressions.

A six-degree-of-freedom (DOF) winged-cone hypersonic vehicle model, shown in Fig. 2, is selected
to demonstrate the reliability of the proposed optimisation scheme. The body and propulsion system are
integrated, and the vehicle consists of four control surfaces: right elevon, left elevon, rudder and canard.
The influence of the rudder and canard is ignored. The model parameters can be found in a previous
report [33].

3.1 Dynamics model
For simplicity, the following assumptions are implemented:

(1) The curvature of the earth is ignored, and the ground coordinate system is the inertial coordinate
system.

(2) The instantaneous equilibrium hypothesis is applied.
(3) Only longitudinal motion is considered.
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Figure 2. Winged-cone configuration.

Equations (16)–(21) represent a typical dynamic model of a hypersonic vehicle:
dV

dt
= T cos α − D

m
− g sin γ , (16)

dγ

dt
= L + T sin α

m
− g

V
cos γ , (17)

dα

dt
= qd − dγ

dt
, (18)

dx

dt
= V cos γ , (19)

dy

dt
= V sin γ , (20)

dm

dt
= −T/(g · isp), (21)

where g = g0(
Re

r
)

2

is the acceleration due to gravity, g0 is the acceleration due to gravity on the ground,
and Re is the radius of the Earth. D and L are the drag and lift forces, respectively, calculated as

D = qdSrCD, (22)

L = qdSrCL. (23)

The dynamic pressure qd can be defined as

qd = 1

2
ρv2, (24)

ρ is the atmospheric density, which can be calculated as

ρ = ρ0e((r−Re)/h0), (25)

where ρ0 is the atmospheric density at sea level (1.225570827014494), and h0 is the elevation at which
the density is being evaluated (7254.24).
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Table 1. Engine specific impulse values

ψ Mach 4 Mach 6 Mach 8 Mach 10 Mach 15 Mach 20 Mach 25
0 3, 600 2, 800 2, 200 1, 800 1, 300 1, 300 900
0.5 3, 600 2, 800 2, 200 1, 800 1, 300 1, 300 900
1 3, 400 2, 800 2, 200 1, 800 1, 300 1, 300 900
3 3, 000 2, 700 1, 300 800 620 700 600
5 800 1, 900 1, 000 600 470 540 520
10 100 100 100 100 100 100 100

3.2 Hypersonic cruise vehicle model
The considered model adopts three engines in hypersonic cruise flight, which operate in a combined
cycle propulsion system. Such power plants can cover the mission requirements in different speed ranges
such as low speed, supersonic and hypersonic regimes [33]. The ratio of the engine thrust to the Mach
number can be calculated using the following analytical formulas.⎧⎪⎨

⎪⎩
0.0 ≤ Mach ≤ 2.0

T = PLA ∗ (2.99 ∗ 105 − 32.8 ∗ (h) + 1.43 ∗ 10−3 ∗ (h)2 − 2.29 ∗ 10−8 ∗ (h)3

+ 3.75 ∗ 103 ∗ (Mach)3)

, (26)

⎧⎪⎨
⎪⎩

2.0 ≤ Mach ≤ 5.0

T = PLA ∗ (396.103 ∗ Mach − 703.1 ∗ Mach2 + 816.19 ∗ Mach3 − 442.48 ∗ Mach4

+ 118.28 ∗ Mach5 − 15.34 ∗ Mach6 + 0.772 ∗ Mach7) ∗ 5 ∗ 103;

, (27)

⎧⎪⎨
⎪⎩

5.0 ≤ Mach ≤ 6.0

T = PLA ∗ (396.103 ∗ Mach − 703.1 ∗ Mach2 + 816.19 ∗ Mach3 − 442.48 ∗ Mach4

+ 118.28 ∗ Mach5 − 15.34 ∗ Mach6 + 0.772 ∗ Mach7) ∗ 5 ∗ 103;

. (28)

The change in the hypersonic vehicle mass during flight, which depends on the thrust, gravitational
acceleration and specific impulse, can be obtained using Eq. (21). The specific impulse can be obtained
via interpolation of the data in Table 1.

The aerodynamics parameters are obtained via piecewise calculation [33]:

CD = fD(Mach, α), (29)

CL = fL(Mach, α), (30)

where fD and fL are piecewise interpolation functions to analyse the drag and lift coefficients, respectively.

4.0 Take-off mass optimisation problem
4.1 Objective function
As a key phase of the trajectory, the cruise phase has its own objectives. The take-off performance opti-
misation problem of a hypersonic vehicle pertains to determining the optimal cruise speed and altitude,
S∗(t) = [M∗(t), A∗(t)], to minimise the take-off mass subject to range requirements and other constraints.
Typically, the objective function is required to be maximised. Therefore, the negative take-off mass is
set as the performance index:

J(s) = − |mass1 + mass2| , (31)

where mass1 is the weight of the fuel consumed in the climb phase, and mass2 is the initial mass of the
vehicle in the cruise phase. The optimisation objective is to determine the best cruise state to maximise
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Figure 3. Optimisation of the take-off mass.

the objective function specified in Eq. (31), subject to the 3-DOF dynamics presented in Eqs. (16)–(21)
and constraint conditions.

4.2 Constraints
The trajectory optimisation of a hypersonic vehicle in the climb phase is a typical nonlinear optimal
control problem with state and control constraints. The Gaussian pseudo-spectral method can obtain a
superior solution with a lower computational cost. Therefore, the flight process in the climb phase is
modelled using the Gauss pseudo-spectral method [34]. In the optimisation process, the initial speed
and altitude in the climb phase are set as v0 = 100m/s and h0 = 50m, respectively. The end of the climb
phase marks the start of the cruise phase, which is the search space in this study. In this phase, the
Mach number is M = [5, 6] and altitude is A = [25, 000, 30, 000]. The search space is divided equally,
and certain points are selected as the end points of the climb phase. The Gauss pseudo-spectral method
is used to determine the changes in the flight state variables in the climb process, with the variable of
interest being the vehicle mass.

As mentioned earlier, the objective of the considered problem is to determine the optimal cruise
speed and altitude to minimise the aircraft take-off mass. The main requirement for aircraft control in
the cruise phase is to maintain stable flight and satisfy the range requirements. Because the state variables
in the cruise phase change gradually, flight control can be realised in a facile manner. The stability of
the trajectory in the cruise phase must be ensured through guidance control, which mainly involves
altitude and speed control, the control variables of which are the angle-of-attack and throttle equivalent,
respectively. In this study, the classic proportional integral–derivative (PID) control is adopted for cruise
control, although the details are not presented in this paper.

The cruise flight process contains four control constraints and two path constraints, as indicated in
Eq. (32). All constraints except for one are inequality constraints. The equality constraint ensures that
the vehicle attains the cruise range. The inequality constraints ensure that the change in the angle-of-
attack and throttle equivalent do not exceed the pre-programmed boundaries, and the rate of change of
the attack angle does not exceed the limits. The range, angle-of-attack and rate of change of the angle-
of-attack are expressed in units of m, deg and deg/s, respectively, and the fuel equivalent is expressed
as a percent point. The path constraint ensures that the dynamic pressure and heat flux density of the
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Table 2. Benchmark functions used in the experiments

Name Function Range fmin

Sphere F1(x) = ∑n
i=1 x2

i [–100,100] 0
Schwefel.2.21 F2(x) = maxi{|xi| , 1 ≤ i ≤ n} [–100,100] 0
Rosenbrock F3(x) = ∑n−1

i=1 [100(xi−1 − x2
i )2 + (xi − 1)2] [–30,30] 0

QuarticWN F4(x) = ∑n
i=1 ix4 + random [0, 1) [–1.28,1.28]

Griewank F5(x) = 1
4000

∑n
i=1 xn

i − ∏n
i=1 cos ( xi√

i
) + 1 [–600,600] 0

Penalised1 F6(x) = π

n
{10 sin (πy1) + ∑n−1

i=1 (yi − 1)
2
[1 +

10sin2(πyi+1)] + (yn − 1)2}
+ ∑n

i=1 u(xi, 10, 100, 4), yi = 1 + 1
4
(xi + 1)

u(xi, a, k, m) =
⎧⎨
⎩

k(xi − a)m xi > a
0 -a< xi < a
k( − xi − a)m xi <−a

[–50,50] 0

Penalised2 F7(x) = 1
10

{sin2(3πx1) + ∑n−1
i=1 (xi − 1)

2
[1 + sin2(3πxi+1)]

+(xn − 1)2[1 + sin2(2πxi+1)]} + ∑n
i=1 u(xi, 5, 100, 4)

[–50,50] 0

Rastrigin F8(x) = ∑n
i=1 [x2

i − 10 cos (2πxi) + 10] [–5.12,5.12] 0

Shekel’s Foxholes
Function

F9(x) =
(

1
500

+ ∑25
j=1

1
j+∑2

i=1 (xi−aij)6

)−1

[–65,65] 1

Hatman’s
Function1

F10(x) = − ∑4
i=1 ci exp

(
−∑3

j=1 aij(xj − pij)
2
)

[0,1] –3.86

vehicle do not exceed the maximum limits.⎧⎨
⎩

Range = 1.3 ∗ 107

0 ≤ α ≤ 10, −3 ≤ α̇ ≤ 3, 0 ≤ PLA ≤ 100%
q = 1

2
ρV2 ≤ qmax, q̇s = kpρ

0.5V3.08 ≤ q̇s max

. (32)

4.3 Optimisation based on iwChOA
The take-off performance optimisation process based on the iwChOA is illustrated in Fig. 3. First, the
parameters of the aircraft and proposed algorithm are initialised, and the fitness of the initial population
is calculated. The iwChOA continuously updates the position according to the process described in
Section 2.2.3 until the optimisation result satisfies the iteration termination conditions. The fitness value
is obtained by calculating the flight state of the aircraft, which is the take-off mass when the flight range
is attained.

5.0 Results and discussion
Unless specified otherwise, all the numerical results presented in this paper have been generated using
a computer with an Intel i7-11800H processor (2.3 GHz, eight cores, 16 threads), a 16.0 GB memory,
and Windows operating system.

5.1 Benchmark function test
The performance and accuracy of the iwChOA are evaluated by using it to optimise ten benchmark
functions, listed in Table 2, and comparing the obtained results with those of the original ChOA.

The benchmark functions used in the experiment have different properties. Specifically, F1(x) to F4(x)
are unimodal functions, F5(x) to F8(x) are complex multimodal functions, and F9(x) and F10(x) are fixed-
dimension multimodal function.

https://doi.org/10.1017/aer.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.70


The Aeronautical Journal 747

100 200 300 400 500
Iteration

0

2

4

6

B
es

t s
co

re
 

104

iwChoA
ChoA

Sphere

100 200 300 400 500
Iteration

20

40

60

80

100

B
es

t s
co

re
 

iwChoA
ChoA

Schwefel.2.21

100 200 300 400 500
Iteration

0.5

1

1.5

2

2.5

B
es

t s
co

re
 

108

iwChoA
ChoA

Rosenbrock

100 200 300 400 500
Iteration

0

20

40

60

80

100

B
es

t s
co

re
 

iwChoA
ChoA

QuarticWN

100 200 300 400 500
Iteration

0

100

200

300

400

500

B
es

t s
co

re

iwChoA
ChoA

Griewank

100 200 300 400 500
Iteration

0

200

400

600

800

B
es

t s
co

re
 

iwChoA
ChoA

Penalized1

100 200 300 400 500
Iteration

0

1

2

3

4

B
es

t s
co

re

108

iwChoA
ChoA

Penalized2

0 100 200 300 400
Iteration

0

2

4

6

8

10

B
es

t s
co

re
 

108

iwChoA
ChoA

Rastrigin

100 200 300 400 500
Iteration

0

10

20

30

40

50

B
es

t s
co

re

ChoA
iwChoA

274 275

0.998

0.9985

0.999

Shekel´s Foxholes Function

100 200 300 400 500
Iteration

–3.8

–3.6

–3.4

–3.2

–3

–2.8

B
es

t s
co

re

iwChoA
ChoA

480 490

–3.856

–3.854

–3.852

–3.85

Hatman´s Function1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4. Benchmark function optimisation results.

https://doi.org/10.1017/aer.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.70


748 Zhang et al.

Table 3. Benchmark function optimisation results

Function Algorithm Optimal value Average value Standard deviation
F1(x) ChOA 1.47 × 10−23 3.31 × 10−13 5.62 × 10−13

iwChOA 0 0 0
F2(x) ChOA 3.41 × 10−7 4.85 × 10−3 3.61 × 10−3

iwChOA 6.53 × 10−17 3.53 × 10−11 5.28 × 10−12

F3(x) ChOA 2.78 × 101 2.82 × 101 2.19 × 10−1

iwChOA 2.23 × 101 2.47 × 101 7.39 × 10−2

F4(x) ChOA 4.83 × 10−5 3.67 × 10−4 2.32 × 10−4

iwChOA 1.45 × 10−5 1.73 × 10−5 1.62 × 10−5

F5(x) ChOA 2.54 × 10−11 1.62 × 10−2 1.73 × 10−2

iwChOA 0 0 0
F6(x) ChOA 2.98 × 10−2 3.65 × 10−1 5.57 × 10−9

iwChOA 4.36 × 10−7 5.49 × 10−4 3.72 × 10−11

F7(x) ChOA 3.34 × 10−2 5.57 × 10−1 2.73 × 10−1

iwChOA 1.83 × 10−9 2.84 × 10−6 1.70 × 10−5

F8(x) ChOA 3.72 × 10−13 2.25 × 100 3.64 × 100

iwChOA 0 0 0
F9(x) ChOA 9.98 × 10−1 9.98 × 10−1 1.83 × 10−5

iwChOA 9.99 × 10−1 9.99 × 10−1 1.70 × 10−5

F10(x) ChOA −3.85 × 100 −3.85 × 100 3.53 × 10−6

iwChOA −3.86 × 100 −3.86 × 100 2.59 × 10−9

The parameters of the original and proposed algorithms are set as follows: The population size, N,
is 30, and the maximum number of iterations, T, is 500. Each function is implemented thirty times
independently, and the average and standard deviation are obtained. Figure 4 and Table 3 present the
optimisation results of the two algorithms for different benchmark functions. In Table 3, the optimal
values indicate the optimisation ability of the algorithm, the average values reflect the convergence
accuracy, and the standard deviation reflects the robustness and stability of the algorithm.

The experimental results demonstrate that the iwChoa outperforms the original algorithm in terms
of the optimisation ability for unimodal and multimodal functions. For F1(x), F5(x), and F8(x), iwChOA
exhibits a superior optimisation performance; it can directly find the optimal value of zero. In addition
to a high convergence accuracy, the iwChOA exhibits an enhanced convergence speed, attributable to
the better initial value determined using the Sobol sequence and enhancement in the position update
speed owing to the use of the weight factor.

5.2 Analysis of vehicle mass in the climb phase
The Gaussian pseudo-spectrum method is used to perform the optimisation in the climb phase.
Figure 5 shows the changes in several state quantities, including the altitude, speed, mass and angle-of-
attack when the winged-cone hypersonic vehicle climbs to three example points. The end of the climb
phase marks the starting point of the cruise trajectory. mass1 in the objective function can be obtained
through a simulation analysis of the climb phase. At the end of one iteration, the initial mass of the
vehicle in the cruise phase, mass2, is calculated. The objective function is the sum of mass1 and mass2.

5.3 Analysis of optimisation results based on iwChOA
The ChOA in which only the Sobol sequence is introduced is denoted as iChOA. The performances of the
proposed iwChOA and conventional ChOA in solving the problem described in Section 4 are compared.
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Figure 5. Analysis of vehicle mass in the climb phase.

The comparative analysis involves three evaluation indexes: population initialisation, objective function
accuracy, and calculation time. For both the algorithms, the swarm size is 30, and the maximum number
of iterations is 100. First, the position distributions of the first-generation population initialised using
the Sobol sequence are compared with those calculated using the original algorithm. As shown in Fig. 6,
the position distribution attained using the Sobol sequence is more uniform, which helps obtain a better
position of the attackers after the first iteration. Figure 7 shows the relationship between the fitness and
number of iterations in the optimisation process for the original ChOA, iChOA, and iwChOA, with the
fitness corresponding to the take-off mass. All three algorithms can solve the take-off mass optimisation
problem. The iChOA and iwChOA exhibit the same initial fitness owing to the use of the Sobol sequence;
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Initialization with the original method

(a) (b)

Initialization with the Sobol sequence

Figure 6. Population initialisation results.

Figure 7. Comparison of optimisation process.

however, the convergence accuracy of the iChOA is lower. The lower accuracy is attributable to the fact
that the smaller initial fitness decreases the population diversity, which causes the iterative process to
fall into the local optima and remain in this state for a considerable period. Moreover, the iwChOA
considerably outperforms the ChOA because the weight factor guides the population to determine the
global optimal solution in a stable manner, thereby enhancing the convergence accuracy and speed of
the iwChOA.

The optimal cruise Mach numbers determined by the ChOA and iwChOA are approximately 5.87
and 5.85, respectively. Because of this difference in the Mach numbers, the optimisation curves of the
two algorithms in Fig. 6 do not coincide, and the optimal take-off mass determined by the iwChOA is
1.72kg smaller than that obtained using the ChOA. Both algorithms yield the best cruising altitude as
30 km.

Figure 8 shows the runtime of the ChOA and iwChOA. The optimisation process is repeated 100
times, and the runtime of the two algorithms in each iteration is obtained. The positions of thirty chimps
are updated after every iteration. The ChOA and iwChOA require, on average, 216.1 and 230.5s to

https://doi.org/10.1017/aer.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.70


The Aeronautical Journal 751

Figure 8. Comparison of the algorithm runtime.

Altitude change
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Speed change

Figure 9. Optimal trajectory for winged-cone hypersonic vehicle.

complete each iteration, respectively. Notably, the iwChOA requires fewer iterations to solve the cruise
trajectory optimisation problem of the winged-cone hypersonic vehicle and thus, consumes 28.89% less
time than the original algorithm.

5.4 Take-off performance optimisation
Figure 9 shows the trajectory of the hypersonic vehicle corresponding to the optimal take-off perfor-
mance. The flight altitude and speed when the flight phase changes from climb to cruise at the best
cruise point are shown in Figs. 9(a) and (b), respectively.

6.0 Conclusions
The ChOA is improved by incorporating the Sobol sequence and weight factor to enhance the take-off
performance of a hypersonic cruise vehicle. The flight states in the climb and cruise phases are con-
sidered to determine the optimal take-off mass of the vehicle. The simulation results demonstrate that
the proposed algorithm can better optimise ten benchmark functions compared to the original algo-
rithm. Moreover, the iwChOA outperforms the original algorithm in solving the take-off performance
optimisation problem, owing to its rapid convergence, high accuracy and adaptability. The take-off
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mass determined using the proposed algorithm is 1.72kg smaller than that obtained using the original
algorithm, and the runtime is 28.89% lower.

Future studies can be aimed at considering the attitude dynamics, which were not considered in this
study.
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