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Segregation–rheology feedback in bidisperse
granular flows: a coupled Stokes’ problem
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The feedback between particle-size segregation and rheology in bidisperse granular
flows is studied using the Stokes’ problem configuration. A method of lines scheme is
implemented to solve the coupled momentum and segregation equations for a normally
graded particle size distributed bulk at constant solids volume fraction. The velocity
profiles develop quickly into a transient state, decoupled from segregation yet determined
by the particle size. From this transient state, the velocity profile changes due to
the particles’ relative movement, which redistributes the frictional response, hence
its rheology. Additionally, the particles’ relative friction is modified via a frictional
coefficient ratio, by analogy with the particles’ size ratio. While positive values of this
coefficient exacerbate the nonlinearity of the velocity profiles induced by size differences,
negative values dampen this behaviour. The numerical solutions reproduce well the
analytical solutions for the velocity profile, which can be obtained from the steady-state
conditions of the momentum and segregation equations for the transient and steady states,
respectively. Segregation–momentum balances and four characteristic time scales can be
established to propose two non-dimensional quantities, including specific Schmidt and
Péclet numbers that describe broadly the segregation–rheology feedback. The proposed
scheme, theoretical solutions and non-dimensional numbers offer a combined approach to
understand segregation and flow dynamics within a granular bulk, extensible across many
flow configurations.

Key words: granular materials, particle/fluid flow

1. Introduction

Size segregation is responsible for important mobility feedback in granular flows (Barker
et al. 2017; Gray 2018; Umbanhowar, Lueptow & Ottino 2019; Edwards et al. 2023).
Since particle size d is a defining parameter for most rheological models of dry granular
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materials (GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006; Kamrin & Koval 2012;
Henann & Kamrin 2013; Kim & Kamrin 2020), segregation-induced grain movement
alters the very same mechanical response that generates segregation in the first place.
Such feedback determines the flow’s runout, the formation of levees, fingers, and blunt or
bulbous fronts in debris flows, all tied to coarse grains segregating towards the flow’s free
surface (Woodhouse et al. 2012; Denissen et al. 2019; Edwards et al. 2023).

Numerical simulations and experiments have been pivotal to shed light on the
rich segregation–rheology coupling in granular flows. Recent experiments in two- and
three-dimensional shear boxes unravelled a scaling law for bidisperse particle-size
segregation; asymmetric segregation fluxes depend on shear rate γ̇ , particle sizes, their
size ratio Rd and pressure p (i.e. the inertial number I, implicitly), and local particle
concentrations (Trewhela, Ancey & Gray 2021a; Trewhela, Gray & Ancey 2021b). These
experimental results are consistent with previous observations on pressure-dependent
segregation (Golick & Daniels 2009) and the intrinsic asymmetric nature of segregation
fluxes (van der Vaart et al. 2015; Jones et al. 2018). Similar results, in terms of an
inertial number I dependence, were obtained in discrete element method simulations, by
modelling a bedload transport flow (Chassagne et al. 2020) and a shear flow (Bancroft &
Johnson 2021). Based on the empirical scaling law of Trewhela et al. (2021a), Barker
et al. (2017) performed simulations of fully coupled granular flows down a slope and
in a square rotating drum. They discussed the intricate segregation–rheology feedback,
concluding that it is not clear how subtle changes in flow properties influenced the coupling
mechanisms and their impact on the flows’ overall dynamics.

In 1850, G.G. Stokes proposed a problem concerning a semi-infinite layer of fluid in
contact with a horizontal and infinitely long plate. The plate suddenly slides horizontally
at t = 0 with finite speed, therefore transferring shear to the fluid (Stokes 1850). This
problem, known as Stokes’ first problem (or Rayleigh’s problem), offers an idealized,
yet practical configuration for the study of sheared flows (Rayleigh 1911). Besides the
historical and theoretical interest that this problem has had for fluid mechanics (Stewartson
1951; Tokuda 1968; Preziosi & Joseph 1987; Jordan & Puri 2005; Jerome & Di Pierro
2018), its flow configuration has various applications for experimental and industrial
facilities using granular materials, e.g. shear cells or conveyor belts (Golick & Daniels
2009; van der Vaart et al. 2018; Trewhela & Ancey 2021). Using the μ(I)-rheology
(GDR-MiDi 2004; Jop et al. 2006), Jerome & Di Pierro (2018) studied Stokes’ problem
for granular flows, developing numerical and analytical solutions for momentum transfer
and velocity profiles within a semi-infinite granular medium. Their analysis focused on
a sheared layer h, which developed when applying shear τw at the upper boundary,
and depended on a kinematic granular viscosity νg ∼ d, an observation also recovered
with kinetic theory in gravitational granular currents (e.g. Larcher & Jenkins 2019) and
discrete element method simulations (Jing et al. 2022). Intuitively, changes in particle-size
distribution and subsequent segregation will significantly alter momentum diffusion
within the bulk, so coupling this process with segregation is not straightforward.

This work investigates the segregation–rheology feedback, its coupling and impact on
the overall dynamics of dense granular flows. Stokes’ first problem configuration, with the
theoretical and numerical framework for the segregation–rheology feedback, is introduced
in § 2. The numerical and steady-state solutions are presented in § 3, where emphasis is put
on the crucial role of size ratio and frictional coefficient differences in the flow dynamics.
Analytical solutions and characteristic time scales are sought, so that non-dimensional
numbers are proposed to describe the segregation–rheology feedback. The conclusions in
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Figure 1. Stokes’ problem for a dense bidisperse granular flow: an infinite plate shears a granular bulk made
of small (ν = s) and large (ν = l) particles (each particle species is characterized by its diameter dν and
partial volume concentration φν ). The plate suddenly moves with constant velocity uw at t = 0, imposing
pressure pw with a frictional coefficient μw at contact with the granular media. (a) An inversely graded
initial condition (segregated, but unstable) for the granular bulk, with partial concentrations φs = 1 on top and
φs = 0 (φl = 1 − φs = 1) at the bottom. (b) Initially mixed granular bulk (unstable) condition, with uniform
small particle concentration φ0

s and an equivalent concentration-averaged diameter d̄ = φsds + φldl through
the bulk’s sheared layer h.

§ 4 put focus on the found numerical and analytical solutions, the description provided by
the non-dimensional balances and their applicability in general flow configurations.

2. Governing equations and numerical solutions

2.1. Stokes’ problem for a dense bidisperse granular flow
Consider a semi-infinite granular material formed by a dense bidisperse mixture of grains
that share the same density ρ∗ but differ in size (figure 1). The particle sizes ds and dl > ds
define grain species ν = {s, l} of small and large particles, respectively. The contribution
of each species to the solids volume fraction Φ is set by its partial volume concentration
φν per unit volume of grains, so that φs + φl = 1. A plate of infinite length lies initially at
rest over the bulk and is set to slide horizontally with velocity uw at t = 0, and a frictional
coefficient μw. Under these conditions and at constant Φ, such that ρ = Φρ∗, the mass
and momentum conservation equations for the whole granular material (small and large
particles) in the x–z directions reduce to

∂u
∂x

= 0, ρ∗Φ
∂u
∂t

= −∂τxz

∂z
,

∂p
∂z

= ρ∗Φg, (2.1a–c)

where g is the gravitational acceleration in the z-direction, u is the component of the
velocity field u in the x-direction, and τxz is the x–z component of the deviatoric shear
stress tensor τ . In dense granular flows, pressure p and shear stress τ relate through a
Coulombic frictional coefficient μ so that τ = μp. From (2.1c), pressure p = pw + ρ∗gz
can be considered lithostatic with pw imposed at the plate above. For various flow
configurations, GDR-MiDi (2004) showed that μ depends on the dimensionless inertial
number I = γ̇ d/

√
p/ρ∗, with d the particle diameter and γ̇ = 2 ‖D‖ = |du/dz| the shear

rate. Barker & Gray (2017) introduced a partial regularization for the μ(I)-rheology (Jop
et al. 2006), so that its well-posedness range could be extended. This regularization can be
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ρ∗ = 2500 kg m−3, Φ = 0.6, μ1 = 0.342, μ2 = 0.557, I0 = 0.069,
μ∞ = 0.05, α = 1.9, I1 = 0.005, A = 1.5647 × 104

Table 1. Intrinsic density ρ∗, solids volume fraction Φ, and frictional parameters μ1, μ2 and I0 for the
μ(I)-rheology (Jop et al. 2006). Frictional coefficient μ∞ with the parameters α, I1 and A (computed) for
the partial regularization of the μ(I)-rheology were proposed and measured by Barker & Gray (2017) for
dl = 143 µm glass beads.

introduced by considering the extended function

μ(I) =
⎧⎨
⎩
√

α/ log(A/I), for I ≤ I1,

μ1I0 + μ2I + μ∞I2

I + I0
, for I > I1,

(2.2)

where μ1 is the static friction coefficient, μ2 is the dynamic friction coefficient, and I0 are
the original parameters employed by Jop et al. (2006), corresponding to particle-dependent
or material constants. The remaining parameters μ∞, I1 and α are also material-dependent
and were introduced by Barker & Gray (2017). While μ∞ holds physical meaning in
the context of rapid granular flows beyond μ2 (Holyoake & McElwaine 2012; Barker
& Gray 2017), α and I1 are just mathematical fitting constants. Finally, A is a constant
that guarantees continuity of the regularized function and is calculated using the latter
parameters. All the frictional coefficients and material constants used for this work follow
those in Barker et al. (2017) and are detailed in table 1.

The bidisperse nature of the considered granular material can be included via (i) a
concentration-averaged diameter d̄ in I (Tripathi & Khakhar 2011; Chassagne et al. 2020;
Bancroft & Johnson 2021), and (ii) a concentration-averaged frictional coefficient μ̄ in
(2.2). Similarly to the concentration-averaged diameter d̄ = φsds + φldl (Rognon et al.
2007; Tripathi & Khakhar 2011), a concentration-averaged μ̄ definition can be proposed
in the form μ̄ = μsφs + μlφl, where μν is the frictional coefficient for the ν species.
Arranging the terms, this μ̄ definition can be expressed as a function of the ratio between
the species’ frictional coefficients Rμ = μl/μs, resulting in

μ̄ = (1 − χμφs)Rμμs, (2.3)

which prompts the definition χμ = (Rμ − 1)/Rμ ∈ (−∞, 1]. This expression assumes
that I0 is invariant with size, and only the frictional coefficients μi (i = {1, 2, ∞}) in
table 1 are size-dependent.

As expected, the inclusion of the μ(I)-rheology poses several difficulties for numerical
schemes, particularly when the bulk is at rest or in steady state (Cawthorn 2011; Barker &
Gray 2017; Jerome & Di Pierro 2018). To overcome this issue, the analysis can be focused
on a sheared layer h, defined as

h =
(

μw

μ1
− 1

)
pw

ρgΦ
, (2.4)

where μw and pw are the frictional coefficient and pressure applied at the upper plate,
respectively. This shear layer h definition was already employed in the solution of the
monodisperse granular Stokes’ problem, but still poses difficulties for numerical schemes
and solutions (Cawthorn 2011; Jerome & Di Pierro 2018).
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2.2. Bidisperse particle-size segregation
Particle-size segregation in sheared dense granular flows is driven primarily by gravity
and friction. This gravity-driven segregation is the result of two mechanisms: small
particles fall through gaps via kinetic sieving (Middleton 1970), and large particles are
squeezed by surrounding particles, expulsed from their position (Savage & Lun 1988).
There are, however, other segregation mechanisms, many of which appear in different
configurations and can be described employing kinetic theory and quantities such as
granular temperature (e.g. Larcher & Jenkins 2019; Neveu et al. 2022). In this work
however, segregation mechanisms are not discussed, and focus is put on the shear
and gravity-driven particle-size segregation problem for dense granular flows under a
frictional regime (Ancey & Evesque 2000; GDR-MiDi 2004). The segregation dynamics
to be studied with the Stokes’ problem is well described by the mentioned shear-driven
mechanisms and well documented in theoretical, numerical and experimental work (e.g.
May et al. 2010; van der Vaart et al. 2015; Guillard, Forterre & Pouliquen 2016; Trewhela
& Ancey 2021; Edwards et al. 2023), and has a determinant role for various geophysical
granular flows (Delannay et al. 2017; Gray 2018).

For the Stokes’ problem in figure 1(a), the bidisperse segregation equations for φs and
φl are
∂φs

∂t
+ ∇ ·

(
fslφsφl

g
|g|
)

= ∇ · (Dsl ∇φs),
∂φl

∂t
− ∇ ·

(
fslφsφl

g
|g|
)

= ∇ · (Dsl ∇φl),

(2.5a,b)

where fsl is the segregation velocity magnitude, and Dsl = Aγ̇ d̄2 is the particles’
diffusivity, with A = 0.108 and d̄ a mean diameter (Utter & Behringer 2004). Note
that the inclusion of the gravitational acceleration considers the fact that segregation
in dense granular flows is a shear and gravity-driven process due mainly to the kinetic
sieving mechanism (Middleton 1970). Recently, Trewhela et al. (2021a) presented an
experimentally based scaling law for fsl, obtaining

fsl =
(

ρ̂B̂ρ∗gγ̇ d̄2

Cρ∗gd̄ + p

)
[(Rd − 1) + E(1 − φs)(Rd − 1)2], (2.6)

where Rd = dl/ds is the particles’ size ratio, and ρ̂ = (ρ∗ − ρ
f
∗ )/ρ∗ is the relative

density difference between grains and interstitial fluid of density ρ
f
∗ . The constants

B̂ = B/ρ̂ ≈ 0.713, C = 0.271, E = 2.096 were obtained from a least squares fit of their
experimental data (Trewhela et al. 2021a). The concentration-averaged particle diameter
d̄ gives the segregation velocity fsl its asymmetric behaviour (van der Vaart et al. 2015),
since after rearranging and introducing the size ratio Rd in its definition,

d̄ = (1 − χdφs)dl, (2.7)

where χd = (Rd − 1)/Rd ∈ [0, 1] is the asymmetry parameter that shifts the maximum
segregation velocities for small and large particles (Gray 2018). The definition for d̄ is
replaced in (2.6) to obtain

fsl =
(

ρ∗gBγ̇ (Rd − 1)

pw + ρ∗Φgz

)
[1 + E(1 − φs)(Rd − 1)](1 − χdφs)

2d2
l , (2.8)

where p = pw + ρ∗Φgz replaced the pressure p in (2.6). The term Cρ∗gd̄ was replaced
by pw, since it was introduced by Trewhela et al. (2021a) to avoid numerical singularities
when p = 0 at the free surface, a purpose that pw serves as well by definition.
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From these definitions, the theoretical appearance of the segregation–rheology feedback
is clear. The shear rate γ̇ and pressure p are decisive for the segregation velocity
fsl magnitude, and reciprocally, the particle concentrations φν determine the frictional
coefficient μ, explicitly and implicitly via the averaged frictional coefficient μ̄ and the
inertial number I, respectively (Golick & Daniels 2009; Chassagne et al. 2020; Bancroft
& Johnson 2021; Trewhela et al. 2021a).

2.3. Non-dimensional coupled system of equations
Equation (2.8) synthesizes the interdependence between flow and particle distribution,
hence a rheology and particle-size segregation feedback. By replacing the definitions made
in §§ 2.1 and 2.2, and introducing the non-dimensional variables t̂ = uwt/h, ẑ = z/h, û =
u/uw, p̂ = p/pw, f̂sl = fsl/uw and D̂ = Dsl/(huw) into (2.1a–c) and (2.5a,b), the coupled
partial differential equation (PDE) system for û and φs, hence for φl = 1 − φs, can be
obtained:

∂ û
∂ t̂

+ ∂

∂ ẑ

(
(1 − χμφs)Rμμsp̂

) = 0,
∂φs

∂ t̂
+ ∂

∂ ẑ

(
f̂slφs(1 − φs) − D̂ ∂φs

∂ ẑ

)
= 0,

(2.9a,b)
where the coupling with the velocity û in (2.9a) comes from the non-dimensional
segregation velocity f̂sl (see (2.8)) and particle diffusivity D̂, which are both shear
rate γ̇ -dependent (Utter & Behringer 2004; Trewhela et al. 2021a). A non-dimensional
segregation equation for φl is not included in the PDE system due to φl being the reciprocal
of φs = 1 − φl. Because of their nonlinear nature, (2.9a,b) do not admit analytical
solutions, but they can be solved separately numerically for the uncoupled cases (Cawthorn
2011; Jerome & Di Pierro 2018; Trewhela et al. 2021a).

2.4. Numerical method
The coupled PDE system in (2.9a,b) is solved using the method of lines (MOL) (Schiesser
& Griffiths 2009). Schaeffer et al. (2019) used a similar numerical approach as a proof
of concept to study compressibility in granular flows. In this work, the robustness of
MOL was first tested for the uncoupled segregation equation in (2.5a,b), as validated
by Trewhela et al. (2021a, figure 13) against the experimental results of van der Vaart
et al. (2015). Second, the uncoupled monodisperse granular flow equation in (2.9a) was
solved and compared to the solution presented by Cawthorn (2011, figure 2.10) and
Jerome & Di Pierro (2018) (figure 2a) for pw = 100 Pa, uw = 1 m s−1 and μw = 0.5,
with the parameters in table 1. The plotted profiles for û in figure 2(b) also resemble
those of Guillard et al. (2016, figures 2c,e), which were obtained using discrete numerical
simulations for g = 0 and g = 9.81 m s−2 and for a similar flow configuration. This
resemblance validates the presented theoretical framework and numerical scheme.

In this work, a particular pressure p = pw condition is used for the numerical solutions.
A linear pressure (lithostatic) distribution adds further complexity to the numerical
scheme with no relevant insights into the segregation–rheology feedback. Velocity
profiles û for both pressure distributions are compared in figures 2(b,c) to see the
influence of these distributions in the computations. Despite the fact that there are slight
differences when comparing the solutions, these are not important compared to the cost
of compromising the method’s robustness. Pressure is still relevant for segregation (as
seen in (2.8) and discussed briefly in Appendix A), but overall segregation dynamics
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0 0.5

pw
pw + ρΦgz

1.0

10–2

100

102

102

104

106

0 0.5 1.0

0.1

0

0.1

0
(a) (b) (c)

Figure 2. (a) Velocity profile û solutions (2.9a) at different times t̂ for the monodisperse case (φs = 0) and
lithostatic pressure distribution with pw = 100 Pa, uw = 1 m s−1 and μw = 0.5, similarly to the solutions found
by Cawthorn (2011) and Jerome & Di Pierro (2018). (b,c) Comparison of the velocity profiles û and small
particle concentration φs solutions for different times t̂ for linear (lithostatic) p = pw + ρgΦz (continuous line)
and constant pressure p = pw (dashed line) distributions under the same values for the wall parameters uw, pw
and μw with those of (a).

does not change substantially when a constant pressure distribution is imposed over the
lithostatic distribution. The latter assumption is particularly justified when considering
a highly confined granular bulk, in which case pw 
 ρ∗gΦh. In contrast, the condition
where pw is neglected in comparison to ρ∗gΦz poses difficulties to the numerical schemes
since segregation velocity fsl → ∞ as z → 0.

Figures 2(b,c) give a first glance at the different time scales at which the
segregation–rheology feedback operates. A first time scale is that of momentum diffusion
within the granular bulk, related to the granular flow rheology, and visible in the fast
development of the velocity profile in figure 2(b). The other two time scales are longer than
the former and are related to particle segregation and diffusion processes. These processes
are visible in the slow changes of particle concentration profiles φs in figure 2(c).

3. Results

3.1. Effect of size ratio in the segregation and velocity profiles
To demonstrate the crucial role of particle sizes and segregation in the shear flow
dynamics, the vertical distributions of small particles φs and horizontal velocity û are
computed as functions of time t̂ for three particles size ratios Rd = {1.25, 2, 3.33}, keeping
pw = 100 Pa, μw = 0.5 and uw = 0.2 m s−1 constant (figure 3). The initially unstable
arrangement of small particles over large ones influences the velocity û profiles; all reach
a transient state at t̂ ≈ 102, only to be then altered by segregation. From t̂ > 102, the
linear velocity profiles û for both species, and featuring a slope change at the small–large
particle interface, changes into a nonlinear smooth distribution for the final steady-state
condition. At initial times, segregation does not influence the velocity profile û or the
time scale to attain the transient linear state. Therefore, momentum transfer is uncoupled
from segregation, with the latter acting at longer time scales, an observation made in
various experiments and flow configurations (Golick & Daniels 2009; Tripathi & Khakhar
2011; van der Vaart et al. 2015; Trewhela & Ancey 2021). Nonetheless, size ratio Rd
influences the transient linear state, determining the velocity vertical gradient, a result
also observed by Tripathi & Khakhar (2011) and corroborated by Barker et al. (2017).

983 A45-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

16
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.168


T. Trewhela

Rd = dl/ds = {1.25, 2, 3.33}, χd = (Rd − 1)/Rd = {0.2, 0.5, 0.7},
Rμ = μl/μs, χμ = (Rμ − 1)/Rμ = {−0.03, −0.02, −0.01, 0, 0.01},

pw = {100, 300, 1000, 10 000} Pa, uw = {0.1, 0.2, 1, 10} m s−1, μw = {0.4, 0.5, 0.8, 1.2},
h = (μw/μ1 − 1)pw/(ρ∗gΦ) = [0.003, 0.911] m,

A = 0.108, B = 0.3744, E = 2.0957

Table 2. Definition of the parameters used to set the presented numerical simulations in this work. The
numerical values for the size asymmetry coefficient χd (hence particle-size ratio Rd) and the frictional
asymmetry coefficient χμ are used to set the particle parameters. The numerical values for pressure pw, velocity
uw and frictional coefficient μw at the upper plate or wall (see figure 1) resulted in a range of values for h (see
(2.4)) and set the granular rheology, together with the values of table 1. Finally, the empirical parameters A,
B, E proposed by Trewhela et al. (2021a) and Utter & Behringer (2004) control the segregation dynamics in
the numerical solutions.

102 104 106

0

0.5

1.0

1.0

0.5

0

106

104
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100

0 1 0 1

0

0.5

1.0
Rd = 1.25

Rd = 2

Rd = 3.33
χd = 0.7

χd = 0.5

χd = 0.2

0

0.5

1.0
102 104 106 0 1 0 1

102 104 106 0 1 0 1

t̂

φs

φs ût̂

ẑ

ẑ

ẑ

(a) (d ) (g)

(b) (e) (h)

(c) ( f ) (i)

Figure 3. (a–c) Vertical and temporal distributions of small particle concentrations φs for uw = 0.2 m s−1,
pw = 100 Pa, μw = 0.5 and Rd = {1.25, 2, 3.33} values. (d– f ) Small particle concentration profiles φs at
different t̂ times for the corresponding Rd values. (g–i) Velocity profiles û at different t̂ instants for the
corresponding Rd values, reflected in its asymmetrical coefficient χd = (Rd − 1)/Rd value. The thicker line
in each of (d–i) highlights the final solution of each profile. Animated solutions of (d–i) are in supplementary
movie 1, available at https://doi.org/10.1017/jfm.2024.168.

The asymmetric nature of segregation is captured clearly in figures 3(a–c). As the size
ratio Rd increases, small particles segregate faster to the bottom compared to large particles
arriving at the top. As a result, when asymmetry χd is increased, segregation fluxes are
fast and dynamic, achieving the nonlinear steady-state swiftly (as observed for Rd = 3.33,
χd = 0.7 in figures 3c, f ).

Other striking differences appear when comparing the final small particle concentrations
φs. Larger Rd values produce sharper profiles with strongly segregated φs profiles and
a marked small–large interface. Subsequently, this segregated and nonlinear distribution
is imprinted into the shape of the steady-state velocity profile û, thus a direct result
of particle-size segregation effectiveness. For size ratios Rd → 1, apparent mixing (i.e.
diffusive remixing) is observed. Controlled by diffusion, mild segregation produces
quasi-linear û profiles, as shown in figure 3(d). In contrast to these quasi-linear profiles, û
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Figure 4. (a–c) Vertical and temporal distributions of small particle concentrations φs for uw = 0.2 m s−1,
pw = 100 Pa, μw = 0.5 and Rd = 3.33 for initially-mixed conditions of small and large particles, φ0

s =
{0.25, 0.5, 0.75}. (d– f ) Small particle concentration φs and (g–i) velocity û profiles at different t̂ instants for
the corresponding φ0

s and the same wall parameters and Rd value. The thicker line in each of (d–i) highlights
the final solution of each profile. Animated solutions of (d–i) are available in supplementary movie 2.

solutions for large Rd show a sharp break in the velocity profile, drawing a rhomboid or
lens geometry. The rhomboid is defined graphically by the linear responses expected for
the normally graded and inversely graded conditions for particle-size distribution.

3.2. Initially mixed conditions and resulting profiles
The normally graded condition shown in figure 1(a) is a widely explored initial condition
for segregation in experiments and numerical simulations (e.g. van der Vaart et al. 2015;
Gray 2018; Chassagne et al. 2020). However, in the context of mixed bidisperse granular
flows, the initially mixed condition illustrated in figure 1(b) also provides a valuable
assessment on how segregation affects the rheology of granular mixtures. Figure 4
shows the resulting small particle concentration φs and velocity û profiles for three
different initially mixed conditions of small and large particles at φ0

s = 25, 50 and 75 %
homogeneously mixed concentrations. To compare with the results shown previously in
figures 3(c, f,i), an Rd = 3.33 value is used. The steady state φs distribution and the û
profile observed in figures 4(b,e,h) are identical to those observed in figures 3(c, f,i). This
agreement proves that steady-state solutions are independent of the normally graded or
mixed initial conditions. Such independence is just about the particles’ initial arrangement,
and it is not extended to the average particle concentration φ0

s , a condition that results in
differing profiles for φs and û (figure 4).

As expected, there are important differences in the intermediate solutions for both
φs and û due to the change in the initial conditions. Homogeneously mixed initial
φ0

s concentrations produce not only different velocity û and skewed – but similar –
φs profiles, but also delay segregation. The delayed steady-state solutions observed in
figures 4(a–c) for larger φ0

s concentrations are tied inherently to the asymmetric nature
of size segregation, i.e. the segregation flux F s = fslφsφlg/|g| ∼ (1 − χdφs)

2φs(1 − φs).
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Small particles at low φs concentrations segregate at a faster rate than large particles at
low φl concentrations (Gajjar & Gray 2014; van der Vaart et al. 2015; Trewhela et al.
2021a). If segregation fluxes were to be symmetric F s = φsφlg/|g|, then segregation
rate would be maximum at φ0

s = 0.5, and at identical rates for φ0
s = {0.25, 0.75} (Gray

2018). Therefore, figure 4 reproduce the expected asymmetry. For φ0
s = 0.25, segregation

alters the velocity profile solution swiftly from the mixed condition (at t̂ ≈ 102) into the
steady-state condition at almost t̂ ≈ 104. In the case of φ0

s = 0.75, segregation also initiates
at t̂ ≈ 102, but steady-state solutions are reached at a slower pace, i.e. at t̂ ≈ 105. These
differences hint at a φs-dependent time scale for segregation that controls the final duration
of the segregation–rheology feedback.

3.3. Influence of differences in the particles’ frictional coefficients
An additional effect in the Stokes’ problem is explored by changing the small particles’
frictional coefficient μs while keeping the size ratio Rd = 2 fixed, along with pw = 300 Pa,
μw = 0.5 and uw = 0.2 m s−1. Differences in μs, relative to μl via Rμ, introduce a
non-zero χμ value in (2.9a), which is null when small and large particles share the
same μ(I)-rheology parameters (table 1). Changes in χμ lead to velocity differences
at the small–large particles interface, compromising the numerical scheme due to û
discontinuity. Numerical solutions are found only for slight changes in χμ, within the
interval χμ = [−0.033, 0.013] for Rd = 2. This interval depends on the size ratio as well;
as the size ratio Rd increases, the χμ interval for the solutions narrows.

In figure 5, φs and û solutions are plotted for various χμ values. While the small particle
concentration φs solutions do not show significant differences between the different χμ

cases, the velocity profiles û display interesting behaviour. For negative χμ values, μs
is larger than μl, resulting in the transient solution having inverted slopes compared to
the case with positive χμ values; see figures 5( f, j) for comparison. Intermediate negative
values for χμ seem to counteract the û profile nonlinearity generated by the size difference
in Rd (figures 5g,h). This finding is consistent with the proposed theoretical framework
and could illustrate a way to obtain linear velocity profiles in granular flows with particles
of varying sizes and frictional properties. Therefore, to control the particles’ frictional
properties is to partially control the segregation–rheology feedback, despite having a
segregated bulk with different grain sizes.

3.4. Steady-state analytical solutions and comparison with numerical solutions
A solution for the transient velocity profiles û can be determined analytically from the
steady-state condition in (2.9a), i.e. μ̄ = μw. This condition is replaced in the quadratic
expression for I, obtained from the regularized μ(I)-rheology in (2.2):

μ∞I2 + (μ2 − μw)I + (μ1 − μw)I0 = 0. (3.1)

The positive solution for I is then balanced with the inertial number I definition to yield
a differential equation for the velocity û. This ODE is solved by separating variables and
using the no-slip boundary condition û|ẑ=1 = 0 to yield

û = h
uwd̄

√
pw

ρ∗
I(μw) (1 − ẑ), (3.2)

where I(μw) = ((μw − μ2) +
√

(μw − μ2)2 + 4μ∞(μw − μ1)I0)/2μ∞ is the
aforementioned positive solution of (3.1), i.e. the inertial number I. Equation (3.2)
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Figure 5. Numerical solutions for (a–e) small particle concentrations φs, and ( f – j) velocity profiles
û with constant wall parameters uw = 0.2 m s−1, pw = 300 Pa, μw = 0.5, Rd = 2, and variable χμ =
{−0.03, −0.02, −0.01, 0, 0.01} for (a, f ), (b,g), (c,h), (d,i) and (e, j), respectively. The thicker line in each
plot highlights the final solution of each variable. Solutions plotted in (d, f – j) are shown as animations in
supplementary movie 3.

results in the rhomboid formation, already described and discussed in § 3.1. If the
concentration-averaged diameter d̄ is evaluated with the normally-graded size distribution,
φs
∣∣ẑ=1/2
ẑ=0 = 1 and φs

∣∣ẑ=1
ẑ=1/2 = 0, and the inversely-graded size distribution, φs

∣∣ẑ=1/2
ẑ=0 = 0

and φs
∣∣ẑ=1
ẑ=1/2 = 1, then the rhomboid can be diagrammed. The solution captured by

(3.2) provides a good approximation of the transient velocity profile without considering
segregation in its development. When segregation determines the velocity profile, a
steady-state solution for the small particle concentration φs can be obtained. For that, the
procedure used by Trewhela et al. (2021a) is followed, yet their solution is implicit for φs.
Here, a simpler differential equation is developed from E = 0 (a first-order approximation
in Rd − 1), resulting in the explicit solution

φs = e(ẑ+K)/λ

1 + e(ẑ+K)/λ
, (3.3)

where K = −1/2 is the constant of integration, which can be calculated using the
depth-averaged condition φ̄s = ∫ 1

0 φs dẑ = 0.5, and λ = Apw/(Bρgh(Rd − 1)). This small
particle concentration φs profile serves as input for the generalized ODE:

dû
dẑ

= − h
uwd̄

√
pw

ρ∗
I(μ̂w), (3.4)

where μ̂w = μw(1 − 2.7(1 − φs)χμ)/(1 − χμφs) is a φs- and χμ-dependent frictional
coefficient, with d̄ a function of the former as well. Due to this dependence, the ODE’s
solution is computed using a Runge–Kutta fourth-order method.

Figure 6 summarizes the core behaviour of the segregation–rheology feedback. The
transient-state solution of (3.2) and its reciprocal stable state (red and blue toned
rhomboids) are shown in figure 6(a). These rhomboids emphasize the slope change in û as
Rd increases, with the fully linear case Rd = 1 as reference. In figure 6(b), the generalized
solution in (3.4) is drawn for the Rd = 2 case and various χμ values, with the reference
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Figure 6. (a) Velocity profiles û for the steady-state condition in (3.2) for various Rd = [1, 4] values,
represented in blue and red tones for ds and dl, respectively. (b) Velocity profiles û of the numerically
solved (3.4) for variable χμ = [−0.05, 0.05] and constant Rd = 2, with its corresponding rhomboid from
(a). (c) Temporal evolution of the velocity profile û for the Rd = 2 and χμ = 0.01 case compared with the
corresponding steady-state solutions from (a) ((3.2), plotted as a rhomboid) and (b) ((3.4), plotted with a
dot-dashed line). Note how the velocity profiles û first collapse around the rhomboid solution, and then converge
to the steady-state solution (red dot-dashed line). Fully animated solutions (for χμ = {−0.03, −0.01, 0.01} and
constant Rd = 2), compared to the steady-state solutions of (3.2) and (3.4), are shown in supplementary movies
4–6.

curve χμ = 0 at the middle. Negative χμ values tend to displace the steady-state velocity
profile û towards the linear reference, acting as a counterpart for the deviation generated
by the size ratio Rd. Conversely, positive χμ values exacerbate the nonlinear behaviour
of the velocity profiles û, displacing the curves beyond the reciprocal stable-state curve
(with large particles over small ones). Moreover, solutions attempting to pass beyond
the stable state could explain the difficulties in obtaining solutions when the frictional
asymmetric coefficient is χμ > 0.013 for Rd = 2. A detailed evolution of the velocity
profile û solutions is shown in figure 6(c). The velocity profile û develops from the
initial condition to the transient state t̂ ∼ 102, adjusting well to the analytical solution
of (3.2) (left rhomboid linear curves in figure 6(c), taken from Rd = 2 in figures 6a,b).
Then segregation alters this state, rearranging particles according to their size, achieving a
steady state at t̂ ≈ 105 that fits well the ODE solution in (3.4) (dot-dashed line in figure 6c).
In figure 6(c) the segregation–rheology feedback ends up being described graphically by
the changes in û from the transient to the steady state, hence analytically bounded within
the Rd-dependent rhomboid region.

3.5. Granular kinematic viscosity, time scales and segregation–momentum balances

From the ODE for the non-dimensional shear rate ˆ̇γ = |dû/dẑ| in (3.4), a general
definition for the granular kinematic viscosity νg can be formulated. Using the theoretical
constitutive relation for a granular dynamic viscosity τ = μp = ηgγ̇ (Jing et al. 2022), the
dimensional kinematic viscosity can be defined as

νg = μ̂wd̄
I(μ̂w)

√
pw

ρ∗
. (3.5)

Compared to the granular viscosity definition of Jerome & Di Pierro (2018), in (3.5) this
bidisperse granular viscosity is Rd-, χμ- and φs-dependent (via d̄ and μ̂w), and is still
determined by the wall conditions and the μ(I)-rheology parameters (table 1). It is worth
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Segregation–rheology feedback in bidisperse granular flows

recalling that the I function is in fact the inertial number I, but for the Stokes’ problem
analysed in this work, it is left as the function defined in (3.2).

The definition of νg allows the analysis of the different time scales at which the
segregation–rheology feedback develops. Evidently, a first time scale appears from the
non-dimensional time t̂ definition, where tγ̇ ∼ h/uw can be defined as a convective or
shear rate time scale, inferred from 1/γ̇ = (du/dz)−1 ≈ h/uw (as in the definition of
I; GDR-MiDi 2004). A second time scale can be associated with momentum diffusing
through the granular bulk and derived directly from (3.5), yielding

tνg ∼ h2

νg
= h2 I(μ̂w)

μ̂wd̄

√
ρ∗
pw

. (3.6)

Then two more time scales appear from the particle-segregation-related processes.
A segregation time scale is drawn by the time it takes particles of diameter d̄ to segregate
through the sheared layer h with velocity fsl:

tfsl ∼ h
fsl

= nd̄PF(Rd, φs)
−1 tγ̇ , (3.7)

where nd̄ = h/d̄ is the number of particle layers through the sheared layer
depth, F(Rd, φs) = B(Rd − 1)[1 + E(Rd − 1)(1 − φs)] is a function defined from the
segregation velocity fsl function, and P = pw/(ρ∗gd̄) corresponds to a non-dimensional
pressure (Trewhela et al. 2021a). The segregation time scale is proportional to tγ̇ and pw,
in agreement with the clear segregation dependence on shear rate and pressure (Golick &
Daniels 2009; Trewhela et al. 2021b). Thus the segregation time scale tfsl is the shear rate
time scale tγ̇ modulated by pressure conditions at the wall, segregation, and the number of
layers that particles must segregate through. Finally, the particle diffusion time scale can
be defined as

tDsl ∼ h2

Dsl
=

n2
d̄
A tγ̇ , (3.8)

which again is proportional to tγ̇ . Although these time scales do not provide the actual
time that the velocity û and small particle concentration φs profiles take to reach their
corresponding steady-state solutions, which is out of the scope of this work, they serve to
describe the progression of the segregation–rheology feedback.

For the numerical solutions computed in § 3.1, tγ̇ = 0.0157 s and the momentum
diffusion time scale share similar values tνg ≈ 0.15 s, yielding a non-dimensional time
t̂ = tνg/tγ̇ ≈ 10 for the û profiles to develop into the transient solution. This value is close
to what is shown in figure 3, with t̂ ≈ 102 being the time at which the transient solution is
achieved in the computations. In terms of segregation, there are larger differences in tfsl ≈
{100, 20, 7} s and tDsl = {80, 120, 170} s for Rd = {1.25, 2, 3.33}, respectively. These tfsl

values capture well the faster set in of segregation at t̂ = tfsl/tγ̇ ≈ {6 × 103, 103, 5 × 102}
for the same Rd values. However, these tfsl are balanced out by shorter or larger
diffusive time scales tDsl , which finally settle the concentration profiles into their
steady-state solution. Consistent results are observed when analysing these time scales
in the case of the initially mixed condition solutions at fixed Rd = 3.33. These
yield the same tγ̇ and tνg values for all solutions, but tfsl ≈ {3, 7, 20} s and tDsl ≈
{100, 170, 310} s increase with φ0

s = {0.25, 0.5, 0.75}, resulting in the monotonic increase
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of t̂ = tDsl/tγ̇ ≈ {7 × 103, 104, 2 × 104}. These values are also similar to the times found
in the numerical solutions (figure 4). In the case of the varying χμ solutions, there are only
slight differences in tνg . Values decrease from approximately 0.9 s to 0.7 s as χμ goes from
−0.03 to 0.01.

From these results and the analysed time scales, it is thus natural to compare the two
diffusion processes acting in the bidisperse granular Stokes’ problem. With the definition
of the granular momentum diffusivity time scale, or its diffusivity coefficient in νg, the
Schmidt number or the ratio of the momentum and particle diffusivity time scales is
obtained directly as

Sc = tνg

tDsl

= νg

Dsl
= μ̂w

AI2 , (3.9)

where the inertial number is reintroduced for simplicity and generalization; for that matter,
I can be considered equal to dγ̇ /

√
p/ρ∗ or equal to the definition of I made after (3.2). It is

worth noting that the I2 term corresponds to the Savage or Coulomb number (Savage 1984;
Ancey, Coussot & Evesque 2000). Low Sc values indicate an important particle diffusivity
(diffusive remixing), dominating over momentum diffusion, which at first glance can be
achieved with low μw, high A or high inertial numbers I. Conversely, a large Sc points
towards a more viscous response from the granular material, with a lesser role played by
particle diffusion in the overall flow dynamics. Interestingly, this definition of the Schmidt
number depends implicitly not only on the particles’ concentration-averaged diameter d̄
(via I), hence their size ratio Rd and size asymmetry coefficient, but also on the frictional
asymmetry coefficient χμ and the particles’ frictional parameters.

To illustrate these dependencies, figure 7(a) shows the Schmidt number Sc as a function
of both μw and an overall small particle concentration, which can be interpreted as the
initial small particle concentration φ0

s or the depth-averaged small particle concentration
φs = ∫ 1

0 φs dẑ. In figure 7(a), the contours’ slope is determined by χμ: positive χμ yields a
negative slope (dashed contours), and vice versa (filled contours). For the computed values
in the domain μw = [0.4, 1.2] and φs = [0, 1], Sc varies from 103 to 10−1, decreasing
linearly in two regions marked approximately by μw ≶ μ2 = 0.557. This is a direct result
of the partially regularized μ(I)-rheology, which allows μw > μ2, therefore extending the
range for Sc. Overall, Sc decreases with μw, and increases slightly with higher φ0

s , when
χμ < 0. The former observation contradicts the linear dependence of Sc on μw, but is
consistent with the fact that high μw values result in high I values as well, since Sc ∼ I−2.
(For more results shedding light on the role of μw, see Appendix A.) While particle
diffusivity scales with the shear rate Dsl ∼ γ̇ (Utter & Behringer 2004), the granular
viscosity scales inversely with the latter νg ∼ γ̇ −1; so larger friction at the wall produce
high shear rates and will result in low Sc. But as stated before, the segregation–rheology
feedback is not a purely momentum- or particle-diffusion-dominated process; segregation
also controls the flow dynamics.

To understand better at which extent segregation controls the segregation–rheology
feedback, a particle segregation–diffusion balance is borrowed from previous work.
Following the definitions made by Gray (2018) and Trewhela et al. (2021a), a Péclet
number for segregation Pe can be defined as the ratio between the segregation velocity
fsl and particles’ diffusivity Dsl, i.e. Pe = hfsl/Dsl, or alternatively, tfsl/tDsl . With this
definition, a specific Péclet number for the segregation–rheology feedback can be
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Figure 7. (a) Filled contours for the Schmidt number Sc = tνg/tDsl = νg/Dsl as a function of both μw and
the overall small particle concentration φ0

s , in the case χμ = −0.03. Dashed contours show the change
of slope in the case χμ = 0.03 for the same Sc values of the filled contours. (b) Filled contours for the
segregation–rheology Péclet number Pesr = tfsl/tνg = hfsl/νg as a function of μw and the size ratio Rd , in
the case χμ = 0.01. (c) Variation of the segregation–rheology Péclet number Pesr as a function of the wall
friction μw and the frictional asymmetry parameter χμ. For comparison, the constant frictional parameter
μ2 = 0.557 is plotted alongside the same Pesr, but using the non-regularized inertial number definition
Inr = I0(μw − μ1)/(μ2 − μw), which is independent of χμ (dot-dashed thick line).

introduced as

Pesr = Pe
Sc

= hfsl

νg
= tfsl

tνg

= I2

Φpμ̂w
F(Rd, φs), (3.10)

where Φp = pw/(ρgh) is a non-dimensional pressure, which can be interpreted as
an equivalent solids volume fraction. Again, this second non-dimensional quantity
depends on I2 (or the Savage number). Compared to the previous Sc definition, the
segregation–rheology Péclet number Pesr depends on the size ratio Rd and the empirical
constants determined by Trewhela et al. (2021a). The proposed Pesr somehow confirms
the results discussed previously in §§ 3.1 and 3.3, where segregation profiles were sharper
for large Rd (figure 3) and positive χμ values (figure 5).

Figures 7(b,c) show the variation of the segregation–rheology Péclet number Pesr as
a function of μ̂w, μw and Rd. Broadly, the Pesr dependence on Rd is well captured
in figure 7(b). As expected, Pesr is minimum for Rd → 1, and interestingly, larger size
differences do not necessarily result in predominant segregation effects over momentum
diffusion, since Pesr = 0.01 for Rd = 4 and μw = 0.4. Therefore, the results presented
in the previous subsections are summarized conceptually in the Pesr definition; the
segregation–rheology feedback is relevant when a combination of both high friction
and large size differences is in place. Nonetheless, high μw is still enough to promote
segregation, even accompanied by low Rd. All this, as long as there is sufficient pressure pw
or the bulk is compressed (Φp) enough at the wall to transfer shear without restraining both
momentum and segregation. The latter opens the possibility of including compressibility
effects in the proposed system and solutions. In figure 7(c), the Pesr curves are plotted for
various χμ values, all of which show similar behaviour. However, when Pesr is calculated
using the non-regularized μ(I)-rheology, i.e. Inr = I0(μw − μ1)/(μ1 − μw), the Pesr
value diverges as μw → μ2 (thick dashed line in figure 7c). This shows the importance of
having a well-posed extended formulation for the μ(I)-rheology. When using the partially
regularized μ(I)-rheology, Pesr continues to increase monotonically with μw > μ2, but at
a lower rate than for μw < μ2, and without a clear cutoff value.
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4. Conclusions

The segregation–rheology feedback in dense granular flows was explored numerically
and theoretically via Stokes’ first problem for a bidisperse granular bulk at constant
solids volume fraction. Using this paradigmatic problem for such a nonlinear and coupled
system required the implementation of the method of lines, which proved to be a practical
numerical scheme despite the issues inherited from the μ(I)-rheology implementation.
The solved PDE system incorporated the partially regularized μ(I)-rheology of Barker &
Gray (2017) and the scaling law for bidisperse size segregation of Trewhela et al. (2021a).
The results focused on the role of size ratio Rd in the development of velocity profiles,
and included the effect of frictional differences or a frictional ratio Rμ between particle
species via the introduced parameter χμ = (Rμ − 1)/Rμ, in analogy with the segregation
asymmetry coefficient χd = (Rd − 1)/Rd. Under a constant pressure pw condition, the
numerical solutions showed a transient state, decoupled from the segregation process,
achieving linear velocity profiles û. Then segregation-induced feedback alters particle
concentrations, thus changing the linear û state into a φs- and Rd-dependent nonlinear
solution for û. The transient and steady-state solutions encompass a rhomboid region
that expands as Rd increases, and reduces to a single linear profile when Rd → 1 (with
no segregation). The steady-state solution is determined not only by Rd but also by the
particles’ frictional coefficient ratio Rμ. While positive χμ values exacerbate the solutions’
nonlinearity, negative values of χd dampen the effect of Rd and favour a linear behaviour,
counteracting the segregation-induced feedback. The numerical solutions converge well
around the analytical expressions (3.2) and (3.4), which bound the feedback’s solution
range.

The kinematic granular viscosity νg was redefined based on the partially regularized
μ(I)-rheology and the concentration-averaged diameter d̄, hence determined locally
by particle concentrations φν . Four characteristic time scales arising from shear rate
tγ̇ , granular momentum diffusion tνg , segregation tfsl and particle diffusion tDsl were
introduced to describe the progression of the segregation–rheology feedback. These time
scales did not provide precise expressions for the time at which the variables attained the
transient and steady states, but explained well the observed temporal differences in the
presented numerical results. From νg and these four time scales, two non-dimensional
numbers appeared naturally as a result of segregation–momentum balances: a Schmidt
number Sc = νg/Dsl, and a specific segregation–rheology Péclet number Pesr = hfsl/νg.
These two quantities not only showed consistency with the numerical and theoretical
results, but also provided a broad description for the segregation–rheology feedback and
its dependence on the plethora of parameters addressed here.

Although the coupled Stokes’ problem is an idealized case study, the developed analyses
provide a robust numerical scheme for particle-size segregation in granular flows that
is easy to compare with experimental results and applicable to the rheometry of dense
granular flows (e.g. Golick & Daniels 2009; Trewhela & Ancey 2021). Particle-size
segregation and local friction redistribution, as discussed in this work, may have
consequences for the scales associated with shear bands (May et al. 2010), or other
processes like jamming (Rietz & Stannarius 2008). Further research is required to extend
this feedback analysis towards an extended range of size ratios and flow characteristics –
compressibility, reverse segregation or other segregation mechanisms – that are still not
considered but could complement or fit well in the presented approach (Schaeffer et al.
2019; Neveu et al. 2022).
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Figure 8. Influence of wall parameters in small particle concentrations φs (top row) and velocity profiles û
(bottom row) for: (a–d) variable wall pressure pw = {100, 10 000} Pa and constant wall velocity uw = 1 m s−1

and frictional coefficient μw = 0.8; (e–h) variable wall velocity uw = {0.1, 10} m s−1 and constant wall
pressure pw = 1000 Pa and frictional coefficient μw = 0.8; and (i–l) variable wall frictional coefficient μw =
{0.4, 1.2} and constant wall pressure pw = 1000 Pa and velocity uw = 1 m s−1. In these solutions, χd = 0,
with the empirical parameters in tables 1 and 2. The thicker line in each plot highlights the final profile of each
variable.
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Appendix A. Role of wall parameters pw, uw and μw

The segregation–rheology feedback is dominated primarily by the particles’ size ratio
Rd and the frictional asymmetry coefficient χμ. The pressure pw, velocity uw and
frictional coefficient μw at the wall also influence and control both the segregation
and rheology, through shear and pressure, hence the inertial number I. Roughly, in the
numerical solutions, the combination of these three wall parameters tunes the rate at which
momentum is transferred into the bulk. To address the role of each of these parameters,
a set of solutions is obtained for variable pw, uw and μw values while keeping the rest
of the parameters constant, including Rd and χμ, which were set to 2 and 0, respectively.
Figure 8 shows the results of varying these parameters, and the effect they have on the
resulting profiles for the explored Stokes’ problem. The results can be separated into three
subsets of solutions, one for each varying parameter.

A direct comparison between figures 8(a,b) and 8(c,d) indicates that larger pw values
enhance the transfer of momentum, while restraining segregation, hence stretching the
duration of the segregation–rheology feedback. Some of these observations made for pw

are inverted in the case of uw. In the case uw = 0.1 m s−1 in figure 8(e), the transient û
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profile is achieved swiftly with the resulting shear rate γ̇ . Yet this has little effect on the
segregation velocity. Since fsl ∼ γ̇ , segregation takes longer for low γ̇ , hence delaying
the segregation–rheology feedback, as observed in figure 8( f ). Conversely, as figure 8(g)
shows, larger uw values take longer times to diffuse through the bulk, but once shear is well
transferred, segregation comes along fast. The associated time scales tγ̇ ∼ h/uw for the
large pw = 10 000 Pa case is equal to that case where uw = 0.1 m s−1, i.e. tγ̇ = 0.9101 s.
This result is derived from the height h dependence on pw. It is worth noting that all the
resulting φs and û profiles for the mentioned cases are the same, with changes observed
only in the associated time scales for the momentum and segregation transfer processes
and their feedback.

When μw is changed, the resulting φs and û profiles change accordingly. A decrease
in μw = 0.4 towards μ1 = 0.342 results in a diffused φs profile (see figure 8 j), which
translates into a linear response in û, as shown in figure 8(i). We have the opposite case
for μw = 1.2, which produces a sharply segregated φs profile with its corresponding
rhomboid solution for û. This observation emphasizes the role of friction on the
segregation–rheology feedback and is a result of the nonlinear and local dependence of
both processes on the μ(I)-rheology.
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