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1. Introduction. This paper is an extension of the ideas discussed in 
(3, §§ 14-16); the extension consisting of the use of the third and fourth sym­
metric Riemann derivative instead of the Schwarz or second symmetric 
Riemann derivative. 

The JVintegral, due to James (1), is defined in (3) as follows. Let f(x) be 
measurable on [a, b] and finite at each point; if there exists a continuous func­
tion F(x) such that D2F = f everywhere on (a, b), 

D*F = lim
 f (* + *) - 2 / ? ( f ) + p(* - f e ) 

a-*o h 

then 

(1.1) \X f{t)d4 = F{x) - ^-~ F(a) - j ^ ~ F(b) = H,{F: a, b, x). 

The definition is unique since if F(x) and G(x) are continuous and D2F = 
D2G everywhere then 

H2(F: a, b, x) = FI2(G: a, b, x). 

This integral has application to convergent trigonometric series, (3). 
Using the third and fourth symmetric Riemann derivatives / 3 - and J4-

integrals are defined and applied to (C, 1) and (C, 2) summable trigonometric 
series. 

2. Definitions. With the notation of Kassimatis, (4), we write for any 
function F(x) defined at the points Xi, x2, x3, x4, 

(x4 — Xi)(x4 — x2) (2.1) Hd(F: xi, x2l x3, x4) = F(xt) — F(xz) (x3 — xi) (x3 — x2) 

j?, N (X4 ~ Xz) (x4 — Xi) „, v (x4 — X2) (x4 — Xz) 
— r[X2) 7 r- r — P(Xi) 7 —; , 

(x2 — xz)(x2 — Xi) (xi — x2){xi — xz) 

/o o\ T7 / v \ Hz{F\ xi, x2, xz, x4) 
(2.2) F3(/<:xi, x2, x3, x4) = — (x4 — Xi ) (x 4 — X 2 ) (x 4 — Xz) 
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PRIMITIVES OF GENERALIZED DERIVATIVES 49 

F3 is then the third divided difference of F(x). In particular if ft > k > 0 we 
write 

(2.3) Wz(F: x\ ft, k) = Wz(x\ ft, k) = 3!F3(^: x + ft, x + k, x — k, x — ft) 

4P{ 
F(x + ft) - F{x - ft) F(x + k) - F(x - k) 

~ h2 - kz ( ft 

(2.4) wz(F:x;3h,h) 

A3ÇF:2ft) F(x + 3ft) - SF(x + ft) + SF(x - ft) - F(x - 3ft) 
(2ft)3 (2ft)3 

From (2.3) and (2.4) we define 

(2.5) A'"F(x) = hm ws(x;h,k), Ô'"F(x) = Urn wz(x:h,k), 

(2.6) DzF(x) = ï]m w3(x: 3ft, ft), P8^(x) = hm w3(x: 3ft, ft), 
ft-»0 &->o 

and if D*F(x) = DzF(x) we say that ^(x) has a third symmetric Riemann 
derivative at x and write it DzF(x). 

Clearly 

(2.7) b'"F < Z>3 F <D* F < A'"F. 

The following lemma, which generalizes Theorem 19, (3), is needed later. 

LEMMA 2.1. If F" exists in an interval containing x and if Ai(5x) is the greater 
{smaller) of the first dérivâtes of F" then 

(2.8) Ô! < <5'" < A'" < Ax. 

All points will be assumed to be interior to the interval mentioned in the 
statement of the lemma. It is sufficient to prove h\ < 5 as a similar argument 
will complete (2.8). Further we may obviously assume <$i > — œ. The proof 
is in two parts. 

(a) Assume <5i < °o. From the definition of ôi, if e > 0 is given, there exists 
fx > 0 such that if 0 < rj, £ < /x then 

F"(x+V) - F'(x) > 7,(0!- 6), 

F"(x - £) - *"(*) < £(5: - e). 

Consider the function X(u) defined by 

X(u) = F(x + u) - F(*) - uF'(x) - §y *"'(*) - ff («i - *)• 

The following properties of X(u) are immediate, 

X'(u) = F\x + u) - F\x) - uF"(x) - | j (Ô! - e), 

X " ( M ) = f " (* + u) - *"'(*) - «(«i - e), 

X(0) = X'(0) = X"(0) = 0, 

https://doi.org/10.4153/CJM-1961-004-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-004-6


50 P. S. BULLEN 

X"(u) >OiiO<u<n, 
{ ' X"{u) < 0 if - M < » < 0, 
(2.10) w3(X: 0; h, k) = wz(F: x; h, k) - (^ - e). 

It follows, from (2.10), that it is sufficient to show that, for all h, k small 
enough, w3(X: 0; h, k) > 0. To do this define, for 0 < u < fi, 

Y{u) _ TO -^(-») . 

Then by (2.3) 

w3(X:0;h, k) = p -4-p (F(A) - Y{k)). 

If, therefore, F(w) is monotonie increasing for all u small enough, then 
w,(X:0; h,k) > 0. Now 

Y'(u) = - A [ | I W - ttX'W) - {X{-u) - (-u)X'(-u)}] 

= — ~2 [Z(u) — Z( — u)] 
u 

where Z(u) = X(u) — uX'(u). Z(u) is clearly defined wherever X(u) and 
X'(u) are defined and 

Z'(u) = - «*" («) < 0 

by (2.9). Hence Z( — u) < Z(u) and hence F'(«) > 0 wherever Y'(u) is 
defined. 

Thus we have shown that Y(u) is monotonie increasing and the result 
follows. 

(b) Assume 5X = °°. Then in the above argument replace <5i — e by an 
arbitrary positive number A to arrive at bf" = <5i = oo. 

The following lemma due to Saks, (5), will be required later. 

LEMMA 2.2. If Ff(x) exists everywhere in [a, b] and DSF > 0 in (a, b) then 
Ff(x) is continuous, convex, and 

(2.11) A*F(x:2h) > 0 

for every x, h > 0 (a < x — 3h < x + 3h < b). 

3. We now wish to define a class of funtions for which DSF = DSG every­
where in an interval implies Hs(F: Xi, X2, x3, #4) = Hz(g: Xi, X2, x%, x4) for all 
sets of four points in that interval. As has been pointed out by Kassimatis, 
(4), continuity of F and G is not enough. 

LEMMA 3.1. If Ff(x) exists and is continuous in [a, b] then 

J.l) min D_*F(x) 
a<x<b 

for all Xi, X<L, Xz, x4 in [a, b]. 

(3.1) min D_F(x) < 3! VZ{F: xh x2, xz, x4) < max D*F(x) 
a<x<b a<x<b 
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The argument is that of Verblunsky, (6). Define 

(3.2) f(x) = F{x) - (ax3 + bx2 + ex + d) 

where a, b, c, d are determined by the conditions 

f(Xl) = f(x2) = /(* 8) = /(*4) = 0 

for some xly x2} x3, %\ in (a, b). Simple calculations then show that 

a = VZ(F\ xi, x2} Xz, Xi). 

Since/(x) has four zeros, f'(x) has three zeros and a maximum at some point 
£, say. Then we must have 

(3.3) w3(f:£i3ht,ht) < 0 

for a sequence of hu /z* —> 0. For if not, then for all h small enough 

A,tf:£:2A) 

that is, 

(2hf > ° 

/({ + 3ft) - /(£ - 3ft) /({ + ft) - /({ - A) 
6ft 2ft 

>...>/m 
which contradicts the fact tha t / ' (x ) has a maximum at £. As we have (3.3) 
it follows that 

£'/({) < 0 
that is, 

58F(f) < 3 ! a = 3! V,(F: xly x2j x3, x,). 

This proves the left-hand inequality of (3.1). The right-hand inequality 
comes from applying the above result to — F. Finally the result holds for 
Xi, x2j Xzy Xi, in [a, b] by continuity of F(x). 

An immediate corollary of Lemma 3.1 is 

LEMMA 3.2. If the relation (3.1) holds for F(x) — G(x), in particular if 
(F — G)' is continuous, then Dz {F — G) = 0 implies 

(3.4) Hz(F\ Xi, x2, x3, x4) = Hz(G: xu x2, xdj x4) 

for all x\y x2j x3, x^ in [a, b]. 

Let 

Fi(x) = H3(F: xi, x2l x3, x) 

G\(x) = Hz(G: xu x2, x3, x). 

Then Z ) 3 ^ - Gi) = 0 and hence, by (3.1), 

V3(Fi - Gi: yu y 2, y*, y4) = 0 
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for all yi, y2, 3>3, y4. Fi(x) — Gi(x) is therefore a polynomial of degree at most 
2 but it is zero at Xi, Xi, x3 and hence is identically zero. 

The following lemma, due to Kassimatis, (4), obtains (3.4) under weaker 
conditions than the continuity of (F — G)r but it is quite possible that (3.1) 
holds under less restrictive conditions which would then generalize Lemma 
3.2. 

LEMMA 3.3. If F(x) and G{x) are defined in [a, b] and (i) F — G is continuous 
in [a, b], (ii) (F — G)' exists in (a, b) then D*(F — G) = 0 implies (3.4). 

4. The /3-integraL Let fix) be defined and measurable on [a, b] and finite 
at each point. If there exists a function F(x), continuous on [a, b] and differen­
t i a t e on (a, b) such that DZF = f then we define the J"3-integral of/ to be 

(4.1) I f(t)dzt = HZ(F: xi, x2, *3, x) 

where Xi, x2, x3, x are any four points of [a, b] and a < x\ < x2 < x3 < b. 
Lemma 3.3 ensures that this definition is unique. 

If f(x) is complex valued and f{x) = u{x) + iv(x) then we define the Js-
integral oif(x), if it is defined for both u(x) and v(x), by 

J *X f*X f*X 

f(t)dzt= u(t)dz + i \ v(t)d,(t). 
X\,X2,XZ *J Xl,X2,XZ *J X1,X2,X3 

The following elementary properties of this integral are immediate. 
(a) If f(x) and g(x) are /3-integrable on [a, b] so is af(x) + fig{x) for any 

numbers a, (3 and 

P {af(t) + Pg(t)}dJ = a f f{t)dzt + fi f g(0drf. 
•^2:1,3:2,3:3 *J XI, X2, X3 *JX\,X2,XZ 

(b) Uf(x) is J3-integrable on [a, b] it is also 73-integrable on any subinterval 
[aj /3] and if 

F(x) = I f{t)dzt then if a < 5 < /3 and a < x < p 
Ja,y,b 

f f(t)dzt =Hz(F:a,b,f$1x), 

5. Application to trigonometric series. 

THEOREM 1. Letf(t) be the (C, 1) sum of the series 
00 

E int r\ 

cne , Co = U, 
—00 

00 iwf 

(5.1) ^>"5^)" 
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then 

(5.2) f{t)d3t = HZ(F: Xl, 3^2) &3> X). 

To obtain this result we need the following lemma (6, II, p. 69). 

LEMMA 5.1. "If 

oo 

22 cne
mx, Co = 0, 

—oo 

is summable (C, a), a > — 1 at Xo to s then it is summable Rr at x0 to s provided 
r > 1 + a. By this we mean that 

l i m f cne
in{S^Ar = s." 

h^o ^ \ tnh / 
The result as stated in (8) requires a > — 1 but it is in fact true when 

a = — 1 when it is the result of (8, I, p. 322). 
Simple calculations give 

F(x + ft) — F(x — h) _ Y* _Çn_ inx(sin nh\ 
2h r ^ in2 \ ink / 

F{x + 2ft) - 2F(x) + F(x - 2ft) f* Cn_ inx(sin nh\ 
(2ft)2 h izne \ inh I 

F{x + 3ft) - 3F(x + ft) + 3F(x - ft) - 3F(x + 3ft) f, CjL inx(sm nh\ 3 

(2ft)3 h i 6 \ inh ) ' 

By hypothesis the series £ cne
int is summable (C, 1) and hence the series 

"n i £ ~enx and 2] %-** 
« n 

are summable (C, 0) and (C, —1) respectively. 
Hence by Lemma 5.1 DZF = f everywhere and D2F and D F exist and this 

implies the existence of F'(x), (4). This then proves that fis 73-integrable and 
gives (5.2). 

THEOREM 2. / / 

oo 

Z int cne 
—oo 

is summable (C, 1) to f(t) then 

(5.3) cn=-~s( fit)e-int dst. 

We first calculate c0. In Theorem 1 we assumed for simplicity that c0 = 0 
but this clearly involves no loss in generality. 

Hence we know that 
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X 

where 

o 

f{t)d4 = H3(F: - 4 x , - 2 X , 2T, 0) 
4 T T , — 2TT, 2TT 

= F(0) + | F( -4x) - F ( -2x ) - | F(2x), 

3 oo W I 

77/ \ CoX , \ ^ / Cn£ 

3 ~ (in) 
Since the last term on the right-hand side is periodic its contribution to the 
integral is zero. Therefore, 

1 C o / A N , 3 C o / r> \ 3 1 C o / 0 N 3 

8ir3 

- - - 3 - Co. 

To calculate cw, ^ > 0, requires f(x)einx to be expressed as the (C, 1) sum 
of a trigonometric series with constant term cn. This has been done by James, 
(2), and then a similar calculation to the one above completes the proof of 
(5.3). 

6. Construction of the ^-integral . The J3-integral can be constructed 
by methods used in Jeffery, (3), to construct the JVintegral. 

THEOREM 3. Let f{x) Ç L(a, b) and let fix) be the finite third symmetric 
Riemann derivative of a function continuous in fa, b] and differentiate in (a, b). 
Further let 

J
*x pu nv 

fit) dt dv du, 
a J a J a 

then 

(6.2) I f(t)dzt = Hz($: xu *8f x3, x). 
*J X\,X2,XZ 

Since the construction follows the lines of (3) it is only sketched here to 
point out certain differences. 

We first determine a sequence of continuous functions Un(x) such that 
D?Un(x) > fix) and which converges uniformly to $(#). 

As in (1) define An(x) such that, with the notation of Lemma 2.1, b\An(x) > 
(x) and An{x) converges uniformly to J x fit) dt as n —> <». 

Then the required Un(x) is 

J tx pu 

du An(t) dt, 
a "a 

which clearly converges uniformly to 4>(x) and, from the continuity of An(x), 

U'n{x) = (XAn(t) dt, U'n'{x) = An{x). 
«/o 
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By Lemma 2.1 

à'"Un(x) > 5iJ7w = «lA* > / ( * ) = DzF{x) 

where F(x) is some function continuous on [a, b] and differentiable on (a, b). 
Hence 

E*(Un(x) - F{x)) > 0 

and so, by Lemma 2.2, 

A » ( t f B - / ) ( * : 2 A ) > 0 

for all x, A > 0, a < x — Sh < x + 3h < b 
Hence lett ing n G °° 

A 3 ( $ _ F)(x2h) > 0 

which implies 

£>3($ - /?) > 0. 

In a similar manner it can be shown t h a t 

S3($ - F) < 0 

which together with the previous inequali ty implies 

Z>8($ - F) = 0. 

From Lemma 3.2 this gives 

i73(.F: Xi, X2, Xs, x4) = i 7 3 ( $ : #i, #2, *3, #4), 

completing the proof of the theorem. 
A function is said to be Lebesgue integrable a t a point x0 if it is Lebesgue 

integrable in every sufficiently small neighbourhood of Xo. 
As in (3) the above result can be extended to functions f(x) which have a 

finite number of points a t which they are not Lebesgue integrable. This can 
be done provided only t h a t if 0 is such a point, then 

I f(t) dt du 
a «/a 

is Denjoy integrable in some interval (a, 7) containing ft. 

7. T h e f o u r t h s y m m e t r i c derivat ive . W e now indicate the definitions 
and results in the case of the fourth symmetr ic Riemann derivative. As in 
§ 2 we define 

(x5 — xi) (x5 — x2) (x5 — x3) 
(7.1) H^iF: xi, x2, xz, x4, xi) = F(x&) — F(XA) 

- Fixz) 

(x4 — Xi)(x4 — X2)(x4 — X%) 

(x5 — X4) (x5 — Xi) (x5 — X2) 

ixz — XA) ixz — Xi) ixz — x2) 

pr \ (^5 — Xz) jxs — XA) (X5 — Xi) _ „ , v (x5 — x2) (x5 — Xz) jXh — XA) 

(x2 — x3)(x2 — x4)(x2 — Xi) x (xi — x2)(xi — x3)(xi — x4) ' 
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(7.2) V^{I : xh X2, Xz, x4, x5) = 7 77 TT 77 r . 
(x5 — xi ) (x 5 — x 2 ) (x 5 — x 3 ) (x 5 — x4) 

I t may be noted in passing t h a t the function f(x) in (3.2) is equal to 
H±(F: Xi, #2, #3, #4, #). 

In particular if ft > ft > 0 we write 

(7.3) wA{F: x\ ft, ft) = 4! V4(F: x + ft, x + ft, x - ft, x - ft) 

12 
ft2-ft 

JF(x + ft) - 2F(x) + F(x - ft) F(x + ft) - 2F(x) + F(x - k)\ 
l\ "ft2 " ft2 )> 

(7.4) ^ j ^ - = w,(F:x;2hyh) 

F(x + 2ft) - ±F(x + ft) + 6F(s) - 4F(x - ft) + FQ» - 2ft) _ _4 

Using (7.3) and (7.4) we define 

(7.5) A{iv)F = ïîïn w4(ft, ft), à
(iv)F = lim w4(ft, ft) 

ft'*-»0 ft,fc->0 

(7.6) ï ) 4 ^ = îïm"ze;4(2ft, ft), JD4F = lim w,(2ft, ft), 

and if D4F = DAF we say that F has a fourth symmetric Riemann derivative 
and write it D4F. Clearly 

(7.7) ^iv)F < D^F < D*F < A^F, 

and we have the following lemmas. 

LEMMA 7.1. If F'" (x) exists in an interval containing x and if Ai(<5i) is the 
greater {smaller) of the first dérivâtes of F then 

(7.8) <5i < <5<^ < A ^ < Ai. 

LEMMA 7.2. If F" (x) exists everywhere in [a, b] and D4F > 0 in (a, b) then 
F" (x) is continuous, convex, and 

(7.9) A*F(x:h) > 0 

for every x, ft > 0 (a < x — 4:h < x + 4ft < b). 

The proof of Lemma 7.1 is very similar to that of Lemma 2.1. Making all 
the obvious changes define 

X(u) = F(x + u)~ F{x) - uF'(x) - f | F"(x) - ~ F"\x) - J (81 - e). 

As in the previous proof it is sufficient to show that w^{X: 0; ft, ft) > 0 for 
all ft, ft small enough. 

Defining 

T„ , X(u) - 2X(0) + X ( - « ) X(u) +X(-u) 
Y\u) — 2 = 2 
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it is sufficient to prove Y(u) to be monotonie for u small enough, u > 0. 
Then if we define 

Z(u) = 2X(u) - uX'(u) 

it is sufficient to show that Z{u) has a local maximum at u — 0. This follows 
since Z'(#) is monotonie decreasing, Z"(u) being —uX'"(u) which by a result 
similar to (2.9) is always negative. 

The proof of Lemma 7.2 is exactly similar to that of Lemma 2.2 owing to the 
reasons given by Verblunsky in (7). 

LEMMA 7.3. If F"(x) exists and is continuous in [a, b] then 

(7.10) min D_F{x) < 4' VA(F: Xi, x2, x3, x4, X5) < max D F(x) 
a<x<b a<x<b 

for all xu x2, x3, x4, x*> in [a, b]. 

LEMMA 7.4. / / (7.10) holds for F(x) — G(x), in particular if (F — G)" is 
continuous, then DA(F — G) = 0 implies 

(7.11) Hi(F: Xi, x2, x3, x4, x5) = H±(G\ Xi, x2, x3, x4, x5). 

LEMMA 7.5. If F{x) and G{x) are defined in [a, b] and (i) (F — G) is continuous 
in [a, b], (ii) (F - G)" exists in (a, b) then D*(F - G) = 0 implies (7.11). 

As the proofs of the corresponding lemmas 3.1, 3.2, and 2.3 depend on (6) 
the proof of these are exactly the same but are based on (7). 

Now let f(x) be defined at each point and measurable. If there exists a 
function ^(x), continuous on [a, b] and with a second derivative on (a, b) such 
that D*F = f, we define the J4-integral of / to be 

(7.12) I f(i)dd = HA(F: xh x2, x3, x4, x) 
*J X1,X2,XZ,X4 

where Xi, x2, x3, x4, x are any five points of [a, b] and a < Xi < x2 < x3 < x4 < 
b. The discussion of § 4 applies with obvious changes to this definition. Further, 
the following theorems can be proved. 

THEOREM 4. If 

00 

Z-/ Cue™*, Co = 0, 
—co 

is (C, 2) summable everywhere to f{t) and cn = o(n) and if 

pint 

(7.13) ™-£^ . 
then 

(7.14) I f(t)d±t = Ht(F; Xi, x2, x3, x4, x) 
*SX1,X2,XZ,X4 

where Xi < x2 < x3 < x4, x are any five numbers. 
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THEOREM 5. / / 

£ mx 

has cn = o(n) and is (C, 2) summable to f{t) then 
*o 

— int - JL C 
C " ~ 8 x 4 J _ 

j{i)e-mld4. 
4TT,—27r,2x,47r 

THEOREM 6. Let f[x) be the finite fourth Riemann symmetric derivative of a 
function continuous on [a, b] and with a second derivative on (a, b). Let f(x) 
be Lebesgue integrable except at a finite number of points fix, . . . , ($n. Further 
suppose that 

J
-»x ç*y s*u 

fit) dtdudy i = 1,2, . . . , « 
ai «/ai Jai 

is Denjoy integrable in some interval (ait yx) containing /31. Then if we define 
nx s*y /»« s*v 

$0) = f{t)dtdvdudy 
•Ja *Ja *Ja *J a 

then 

I f{i)d4 = H±($: Xi, x2, x3, x4, x). 
Xl,X2,X$,XA 
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