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Water particle orbits are key elements in the Lagrange wave formulation. The stochastic
Miche implementation of the Lagrange model is a linear Gaussian two-dimensional or
three-dimensional space—time model which exhibits typical nonlinear wave characteristics
when transformed to Eulerian coordinates. This paper investigates the statistical relation
between the degree of front—back asymmetry of individual waves and the orbit orientation
for the particle located at the wave maximum at the point of observation. It is shown
that, in the Lagrangian model with statistical front-back symmetry, for individual waves
there is a clear connexion between the degree of individual wave asymmetry and the
orientation of the randomly deformed elliptic orbit: a steep front correlates with upward
tilt, a steep back is correlated with a downward tilt. This holds both for waves observed
in time and in space, and the dependence is stronger for large amplitude waves than for
smaller ones. The dependence is strongly dependent on the depth and on the significant
steepness and spectral width. Inclusion of the average Stokes drift has a moderate
effect on the dependence. For models with forced front—back asymmetry there is both
a systematic dependence and a statistical correlation between asymmetry and tilt; for
large amplitude waves the systematic relation dominates. The conclusions are based on
Fourier simulations of Gauss—Lagrange waves of first and second order with a wind—sea
Pierson—-Moskowitz spectrum and a narrow swell JONSWAP spectrum.
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1. Introduction

The Gerstner (1809) waves, with circular particle orbits, and the Miche (1944)
modification to finite depth and elliptic orbits, were extended to irregular, random
Lagrange waves by Pierson (1961). The works by Cieslikiewicz & Gudmestad (1995) and
Gjgsund (2003) are early examples of systematic studies of the kinematics of such waves.

The particle orbits, and their mathematical equivalents, their velocities, have been
studied intensely in recent years. Ehrnstrom & Villari (2009) give an overview of some
of the mathematical aspects from a deterministic viewpoint. Pure empirical studies on
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orbits in ocean waves are scarce owing to the difficulty and cost of obtaining accurate
data, even with modern techniques (Romero & Melville 2010; Fedele er al. 2013;
Benetazzo et al. 2018). Most orbital studies are therefore performed in combination with
experiments in a physical or numerical wave tank.

The following studies are of high relevance for the present work. Chen, Hsu & Chen
(2010) and Chen et al. (2012) analyse theoretical Lagrangian models for monochromatic
waves over uniform and sloping bottoms and compare particle orbits with experimental
results. Grue & Jensen (2012) and Grue & Kolaas (2017) report particle velocities for both
laboratory waves and directional ocean waves based on Romero & Melville (2010) and
reconstruct the orbits with respect to different phases and vertical positions. Starting with
the ‘Choppy wave’ model Nouguier, Guérin & Chapron (2009), Nouguier, Chapron &
Guérin (2015) and Guérin et al. (2019) improve on the Lagrange model for semi-regular
and irregular waves with consequences for particle orbit studies. Creamer et al. (1989)
give an alternative to the second-order technique in the cited works. Experimental studies
by van den Bremer et al. (2019) on monochromatic waves focus on mass transport and
particle orbits at different depths near wave crests and wave troughs, respectively.

We shall investigate systematic and statistical relations between the degree of front—back
asymmetry of individual waves in space and time and the geometry of particle orbits. From
a statistical viewpoint one may call the former property an apparent (Euler) characteristic,
and the latter an intrinsic (Lagrangian) characteristic. The dominant way to empirically
describe a sea state is by its energy spectrum, a typical Eulerian concept. The stochastic
connection with a Lagrangian description goes via hydrodynamic equations of varying
complexity. In this work we will use Gaussian stochastic models for the Lagrangian
vertical and horizontal movements and numerically transform them to an Euler description
of the water surface. The link between the two descriptions is described, e.g. in Lindgren
& Lindgren (2011) and Guérin et al. (2019). We study unidirectional irregular waves
developing in time and space along a straight line over constant depth 4.

To finish this introduction we make a comment on the photographs taken by Wallet
& Ruellan (1950) on particle trajectories in plane water waves reflected by a partially
absorbing barrier, reproduced in Hutter, Wang & Chubarenko (2011, figure 7.8). For a
monochromatic wave without reflection the trajectories are very regular in intermediate
water, nearly circles at the surface and elliptical near the bottom. With increasing moderate
reflection the reflected wave will interfere with the forward travelling wave with increased
irregularity and orientation as the result. In the present work the irregularity will come
from a continuum of frequencies resulting in a statistical distribution for the trajectories
including a statistical relation with the wave asymmetry.

2. The Gauss-Lagrange models

The theme in this paper is the relation between individual wave front-back asymmetry
and the shape and orientation of water particle orbits. The idea is that the relation is
an inherent relation, appearing in all theoretical models for irregular waves. The model
chosen is the first-order Gauss—Lagrange model, and its second-order extension.

2.1. The free and forced first-order models

The first-order Gauss—Lagrange two-dimensional wave model is defined by two correlated
Gaussian space—time random fields, describing the vertical and horizontal particle
positions as functions of time ¢ and original horizontal position u along the horizontal axis.
Together, these fields define the orbital movements of the water particles. We consider here
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only particles at the free surface but the model extends to general depth. Following Pierson
(1961), the energy spectrum S(w) of the vertical field is called the orbital spectrum. It is
not identical to the Euler spectrum, obtained from observations of the ocean surface, but
the difference is of no relevance in the present work.

Representing the continuous energy spectrum by a spectrum over discrete frequencies
w; = jAw and wavenumbers k;, we write the models for particles on the free surface as

vertical position : W(u, 1) = » " A;cos(kju — wjit — ¢y), 2.1)
J
horizontal position : X(u, t) = u + ZAihj cos(kju — wit — ¢; + m/2). (2.2)
J

Here, h; = cosh(k;h)/ sinh(k;h) is the depth dependent amplitude factor, with dispersion
relation w; = ,/gk;tanh(k;h). The amplitudes A; can be taken as deterministic, A; =
V/2S(w;) Aw, but to obtain correct variability in the simulations we must let them be
random, A; = /a_f + bjz, with independent normal variables a;, b;, with mean zero and

equal variance such that AJ? has expected value 25(w;) Aw. The relative phases ¢, shall be
independent and uniformly distributed in [0, 27], and the phase shift between vertical and
horizontal movement is /2 as in (2.2), independent of frequency.

As was shown in Lindgren & Aberg (2009) and Lindgren (2010) the Lagrange model
with constant phase shift (2.2) will produce waves which are statistically symmetric with
respect to wave front and wave back slopes. To get statistically asymmetric waves one can
modify (2.2) and introduce a frequency dependent phase shift p;,

horizontal position : X,,,q(u, t) = u + ZAfhj cos(kiu — wit — ¢; + p)). (2.3)
J

A heuristic choice, inspired by the filtering equation
02X 000/ 08> = 32X /08> + aW (2.4)
and not underpinned by hydrodynamic theory, leads to
hjexp(ip;) = icosh(k;h)/ sinh(k;h) — a/a)?, (2.5)

where the a-value determines the degree of statistical wave asymmetry. The model can be
used to reproduce statistical asymmetry that can be observed in real ocean waves.
From the pair W(u, t), X(u, t) one can implicitly define a Lagrange wave L(x, t) by

L(X(u,1),t) = W(u, t), (2.6)

that is, its surface height at time 7 at location X (u, t) is W (u, t). We call the Lagrange model
defined by (2.2) and constant phase shift the free Lagrange model and the one defined by
(2.3) the model with forced asymmetry, which will be dealt with in § 4.3.

2.2. The second-order model

In the second-order Lagrange model the independent frequency components in (2.1) and
(2.2) are combined over pairs of frequencies to give second-order terms, added to the
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first-order terms. This model exists in many different versions and we present here only
the simplest form for the vertical process as an example

W20, 1) =Re Y ZZ Hy exp(i(w; + wp)t) + Re Y ZZ; Hy exp(i(w; — w)1).  (2.7)

Here, Z; = a; + ib; are the complex representations of the first-order amplitudes and
H;,: H; are complex depth and frequency dependent transfer factors; for examples see
Marthinsen & Winterstein (1992), Fouques, Krogstad & Myhaug (2006), Nouguier et al.
(2015) and Herbers & Janssen (2016).

When the sum of first- and second-order terms are combined in (2.6) we get the
second-order Lagrange model. That model has recently been studied by Guérin et al.
(2019), whose theoretical results have bearing also on the particle orbits. To complement
their theoretical studies we will simulate the relation between wave asymmetry and orbits
in the second-order model and then use the formulation by Biésel (1952) to generate the
second-order corrections W, (u, t), X>(u, t). The routine is implemented in the MATLAB
package WAFO and is described in Lindgren & Prevosto (2017). The routine also gives
the stochastic local Stokes drift X5 4.4 (u, t). In the simulations we will use the average

Stokes drift from the integral formula, f koS (w) dw.

2.3. Wave asymmetry and particle orbits

The themes in this paper are the systematic and statistical relations between the degree
of front-back asymmetry of irregular random waves, and the shape and orientation of
the associated particle orbits. For that reason we make the following definitions of the
asymmetry of individual waves, different from those used by, among others, Stansell,
Wolfram & Zachary (2003).

For time waves we record the free surface height variation at a fixed location, and
identify the sequence of local maxima and minima in the recording. By an individual
time wave we mean the part of the signal that lies between two successive local minima.
Its front and back slopes are defined as the rate of increase from the initial minimum
to the maximum and the rate of decrease from the maximum to the terminal minimum,
respectively. As measure of asymmetry we take the logarithm of the ratio between the two.
A positive skewness measure means a fast increase and slow decrease.

For space waves we record the surface variation along a straight line at a fixed time.
Identifying local minima and maxima we compute front and back slopes, with the front
facing the direction towards which waves are travelling. A positive logarithmic skewness
measure means a steep front.

For orbit shape and orientation we will study the particle that is located at the maximum
of each individual wave in time or space, at the time of observation. This means that we
follow that particle in a time interval before and after the time point when the maximum
was registered. The orbit is approximated by an ellipse and the direction of its major axis
identified. We choose clockwise orientation for both time and space wave orbits, which is
consistent with the assumed main wave direction.

Figure 1 illustrates the skewness—orbit relation. Figure 1(a) shows individual time waves
with positive skewness and figure 1(b) shows the orbits for the particles at the wave
maxima; the orbits were observed over the time interval between the two nearest local
minima. Figures 1(c) and 1(d) show the relation for negatively skewed waves. The orbit
tilt/skewness probability density function (p.d.f.) is based on almost 100 000 pairs with
observed wave skewness measure and orbit tilt measure. Only waves with a maximum
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FIGURE 1. Illustration of the results of the study. Panels (a,c) show the shape of individual
time waves during a 200 s observation period, with positive (@) and negative (c) skewness.
Panels (b,d) show the orbits of the top particle for the respective waves. The black dots indicate
the orbit maximum value. The blue circles and red crosses represent the particle locations at
the local orbit minima before and after the maximum. Only waves with maximum height at
least H;/8 and at least H;/4 front and back amplitudes are represented in the figures. (e) Orbit
tilt/skewness scatter plot shows the bivariate distribution of orbit tilt and wave skewness observed
in 1000 independent replicates of two hour observation periods. The black level curves enclose
areas that contain 10 %, 30 %, 50 %, 70 %, 90 %, 95 %, 99 % of data. The empirical distribution
(p.d.f.) to the right illustrates the relation between orbit tilt and wave asymmetry in time waves
with Pierson-Moskowitz (PM) orbital spectrum with Hy = 4.5 m and 7}, = 10 s at infinite depth.

exceeding half the standard deviation and sufficient amplitudes are represented in the
figures. The wave model is a first-order model with a Pierson—-Moskowitz (PM) orbital
spectrum with H; = 4.5 m and 7, = 10 s at infinite depth.

Figure 2 illustrates the wave shape/orbit relation for space wave in the same sea state as
in figure 1. We will compare time and space waves systematically in § 4.1.

3. Method

It will be shown by simulation that there exist strong relations between wave skewness
and orbital orientation, both for models with statistically symmetric first-order waves,
(2.2), and for models with different types of wave asymmetry, including second-order
waves with and without a Stokes drift, and waves with forced statistical asymmetry, (2.3).

For a pre-defined orbital spectrum S(w),® > 0, we shall generate independent
realizations of the vertical W(u,t) and horizontal X(u,t) components in the
Gauss—Lagrange model along a line 0 < u < U for a time span 0 < ¢ < T, in a discrete
space and time grid, u, = nAu, t,, = mAt. In the simulation experiments we will use the
routine spec2ldat3DM (Lindgren & Prevosto 2017) in the module lagrange in the MATLAB
toolbox WAFO (WAFO-group 2017).

If X(u, 1) is a strictly increasing function of u then (2.6) has a unique solution L(x, t)
for t € [0, T and x in some common (random) interval, X € [X,,i,, Xnax]. Keeping t =


https://doi.org/10.1017/jfm.2020.738

https://doi.org/10.1017/jfm.2020.738 Published online by Cambridge University Press

905 A27-6 G. Lindgren and M. Prevosto
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FIGURE 2. Wave shapes and orbits from a 3 km space wave sampled at 0.5 m distance, with

positive skewness in (a,b) and negative in (c,d), and joint p.d.f. from nearly 24 000 pairs of tilt
and skewness from PM space waves at infinite depth.

fixed we obtain a Lagrange space wave L(u, fy) and keeping x = x, fixed we obtain a time
wave L(xg, t). As noted already by Pierson (1961) it can happen that X (u, t) is not strictly
increasing but for the sea states and water depths we consider in the paper these events are
very rare.

For each wave realization we identify all local maxima and minima and the
corresponding front and back steepnesses. Simultaneously computing the particle orbits
from the model, we can find a pair ‘before—after asymmetry — orbit shape and orientation’
for each local maximum. The procedure is repeated with independent realizations, and
it will give an estimate of the statistical relation between wave asymmetry and orbit
orientation. Details on the sampling procedure to obtain individual waves and on the
different measures will be given in §§ 3.1 and 3.2.

As an alternative to the min/max definition one can take the trough/crest definition,
where the wave is defined by the maximum and minimum between successive zero
crossings. This will lead to more chaotic orbits with extra twists and less characteristic
skewness measures. The link between tilt and skewness will be weaker but still significant.

3.1. Space waves

For space waves we fix a time point #; and observe maxima and minima, M, m, in L(x, t)
as a function of x. We denote their locations by x;", x; with the wave front facing the
positive x-direction and define the front and back steepnesses by

sp = My — my)/(xF —x5,) <0,

3.1
s = My —mp) /(x;7 — x7) > 0.

The front-back asymmetry is recorded in logarithmic scale as A; = log(—s; /s;) and
waves with positive A, have a steep front and less steep back; see figure 3 for an illustration.
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(a) A wave with positive skewness (b) Particle orbit and fitted ellipse
4 . ; T 4
Tilt: 55.9°
2 2
—_
g
< 0 0
R3}
T
2 -2
4 . ! I
-50 0 50 -4 -2 0 2 4
Space (m) Time (s)

FIGURE 3. A space wave moving from left to right and its top particle orbit (blue) with the fitted
ellipse (red). (a) A space wave with positive skewness; dot marks the maximum of the wave.
(b) Orbit of the particle at the wave maximum; dot marks the maximum of the orbit. Note that
the orbit maximum comes approximately 0.3 s after the registration of the wave. Circles and
cross indicate the starting and final minima of the wave and the orbit, respectively.

To find the trajectory of the particle that is located at the maximum M, we observe that,
when X(u, 1) is strictly increasing, which is the case in all the examples, for each k there
is a unique origin i such that X (i, ) = x;, and hence W(ii, ty) = M,. The centred
trajectory of the top particle therefore has coordinates, as a function of t,

Or(v) = {X (i, to + ) — g, Wiy, to + 1)}, —dy <t <dj. (3.2)

The time interval for the orbit of the top particle will be defined by its movement before
and after the observation time point f,, as follows. For the maximum at x;", originating
from position u, we define d,f so that W (i, tp + t) has local minima for #, — d;, and
to + d;f, these minima being the closest to #y. This definition works well if the maximum
M, is sufficiently high. It is less suitable for very low maxima for which other methods are
needed for an analysis of the orbit-asymmetry relation.

3.2. Time waves
For time waves we fix an observation point Xy € [Xn, Xmax], and observe the surface
variation L(xy, t) at that point, identifying all local maxima and minima in that time series,
and the corresponding front and back steepnesses.
In each realization, we denote the height of local maximain L(xg, 1) by M, k=1,...,n
and their time of occurrence by 7. We denote the height of the preceding and following
local minima by my, m;, and let their time of occurrence be 7, 7, ;. The wave front and

wave back steepness measures of the time wave are then defined as
st =Wy —my)/@t — 1) >0, 3.3)
sp = My — mypr)/ (6F — i) <0, ‘

and the front-back asymmetry recorded in logarithmic scale as A; = log(—s; /s, ). Waves
with positive A, have steep rise and less steep fall, and vice versa.
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To find the trajectory of the particle at the maximum M, we identify, when X(u, t) is
strictly increasing, the unique origin i, such that X (i, £;) = xo and hence W(iy, ;) =
L(xo, ;). The particle trajectory near 7, therefore has coordinates, as a function of ,

Ok(‘f) = {X(ﬁk, l‘]zL + ‘L') — X0, W(itk, l‘: + 'L')} (34)

In the simulation, the orbit Oy (7) is sampled at 7; = jAt, to give O(7;).

3.3. Orbit characteristics

As can be expected, trajectories will be quite irregular for both space and time waves
and never exactly elliptical, as is the idealized shape, and they have no unique orientation.
The deviation from elliptic shape can be large for small waves, for example with a negative
maximum or with a small front or back amplitude, and the meaning of orbit orientation can
be questionable. Therefore, the present study will be restricted to waves whose maximum
exceeds H/8, i.e. half the standard deviation of the Gaussian waves, and significant
amplitudes, min(M; — my, My — my1) > H,/4. We call these major waves.

As a proxy for orbit orientation, we will fit an ellipse to the sampled trajectory in a finite
time interval, —d,, <1 < d;}, around the maximum, and use its orientation as a measure
of orbit tilt. A natural choice for the time interval, used in the simulations, is the interval
between the two vertical minima closest to the maximum, i.e. di =6 — 1, df =1, —
£}, but that is by no means the only possibility. As can be seen, e.g. in figure 10, our choice
results in approximately full round orbits for first-order waves, with more irregularity for
second order, and with natural gaps for waves with Stokes drift.

For the fit of the proxy ellipse we will use the MATLAB routine fit_ellipse which makes
a least-squares fit of data to a conic representation of an ellipse. This algorithm may fail to
find an approximating ellipse, in particular for minor waves. For the major waves analysed
in this study it may also in a few cases (less than 0.5 %) report exactly horizontal orbits.
These cases are removed in the figures. From the fitted ellipse we extract the tilt of the
major axis, counted anticlockwise relative to the horizontal axis, i.e. a positive value means
upward tilt. The orbit in figure 3 is an example of the approximation procedure.

REMARK 3.1. We have used the orientation of the fitted ellipse as a measure of orbit tilt. It
is obviously a statistical measure whose distribution can only be obtained by a simulation
experiment. As a possible alternative one could take the orientation of the velocity vector
at the point/time of the maximum, a quantity whose distribution can be derived explicitly
in the Gauss—Lagrange model. Preliminary studies have indicated that there is indeed a
correlation between these two measures of orbit tilt. How it relates to the wave steepness
remains to be studied.

3.4. Sampling the space and time waves and the influence of Stokes drift

The wave definition (3.1) is unnecessarily complicated for simulation of surface wave
asymmetry. When X (u, 1) is strictly increasing there is no need to compute the Lagrange
wave L(x, tp) to find its maxima and minima. It suffices to identify maxima and minima in
the Gaussian wave W (u, t;) and transform the steepness by the process X (u, fy). Further,
an average Stokes drift only affects the particle orbits, not the wave shapes. The time
wave simulation sampling of individual waves is more complicated, in particular if Stokes
drift is involved. The sampling technique without Stokes drift amounts to finding the local
maxima of the Gaussian field W (u, r) along a curve u(t) defined by X (iu(t), t) = xo, varying
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FIGURE 4. Illustration of time wave sampling from the W- and X-fields without and with Stokes
drift included. The red dash-dotted curve indicates the original location # of the particle that at
each time is located at the observation point 125, i.e. X (i, f) = 125. The vertical lines indicate the
time points when the vertical process at point 125 is zero, W(125, #;) = 0. Due to the 90° phase
shift between the vertical and horizontal fields the vertical zeros are close in time to the maximum
horizontal deflection. Without Stokes drift the Lagrange time wave observed at location 125 is
equal to W(u, r) observed along the red dash-dotted curve. With Stokes drift the time wave at
location 125 is an observation along the dashed blue line of the translated field, equal to the
untranslated field along the solid blue line.

around a horizontal time axis. That curve is easily found for example by the contour routine
in MATLAB. The time wave is r — W (u(¢), t) and the local extremes are easily identified.
The dash-dotted red curve in figure 4 is the u-curve for observation of a time wave at
location 125.

With Stokes drift included the Gaussian fields W (u, f) and X (u, ) will move upwards
with time. The time wave observed at location 125, with the observation curve indicated by
the dashed blue curve in figure 4, would have been generated by the W- and X-fields along
the solid blue curve in the figure. Instead of sampling maxima along the red dash-dotted
curve we would have sampled maxima along the solid curve.

Thus, inclusion of Stokes drift means that we change the sampling procedure when
we collect time wave maxima. No change is made in the generating Gaussian fields.
Clearly, the two sampling procedures pick different maxima with different wave shape,
but they come from the same generating fields which are stationary in time and space. The
gentle slope of the Stokes drifted curve may have a very small systematic effect on wave
asymmetry distribution, and a special simulation study has shown that there is no visible
difference in the joint skewness/orbit tilt distribution.

It should be mentioned that the discussion in Guérin et al. (2019) about the drifting
particle origin deals with a more complicated model, but the principle is the same.

4. Examples

We illustrate the technique on two spectra with very different wave characteristics
described in table 1, a Pierson—-Moskowitz (PM) spectrum and a JONSWAP
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PM: Pierson—-Moskowitz wind—sea spectrum with nominal significant wave height H; = 4.5 m,
spectrum peak period 7,, = 10 s, mean zero crossing period T2 = 7.5 s and mean zero
crossing wavelength 71 m. The Benjamin—Feir index BFI at infinite depth is 0.23 and it is 0.29
at 20 m depth.

J20: an extreme and narrow JONSWAP spectrum with H; = 4.5 m and T, = 10 s and a peak
enhancement factor y = 20, mean zero crossing period 9.2 s and mean zero crossing
wavelength 112 m. BFI = (.87 at infinite depth, 0.92 and 1.12 at depths 40 m and 20 m.

TABLE 1. Specification of the example spectra. Note that the simulation algorithm truncates the
spectra to wy,ax = 2 which leads to a minor increase in the BFI value. The mean crossing data
refer to the truncated spectra.

spectrum (J20). Both have H; = 4.5 m and peak period 7, = 10 s. The PM spectrum
is representative of a wind—sea spectrum close to saturation. Its Benjamin—Feir index
BFI = 0.23 at infinite depth. The J20 spectrum is a narrow-band one, representative of
a strong steep swell situation. Its BFI is 0.87 at infinite depth. In the simulation some
truncation of the spectra will take place with a minor increase in the BFI values.

We will now illustrate the difference between time and space waves, the effect of varying
depth, the influence of wave steepness and spectral peakedness, forced asymmetry and the
inclusion of second-order terms and average Stokes drift.

4.1. Time waves versus space waves

The waves and orbits shown in figure 1(a—d) are based on a 200 s simulation sampled at
10 Hz. The orbital spectrum is the PM spectrum at infinite depth. From the simulation the
major time waves with front and back amplitudes and maximum height exceeding H;/4
and H,/8, respectively, were extracted. That resulted in 9 time waves with positive orbit
tilt (figure 1a,b) and 8 with negative tilt (figure 1c¢,d). The orbits shown in the right column
extend over the time period from the preceding minimum to the following minimum with
blue circle and red cross indicating the beginning and the end of the orbit. The black dots
indicate the maximum of the orbit of the top particle.

The p.d.f. of tilt and skewness in figure 1(e) is based on almost 100 000 pairs of waves
and orbits in simulated Lagrange time waves. The corresponding space wave figure 2, is
based on 25000 wave/orbit pairs from the same model and it shows a similar, but not
identical, dependence pattern at infinite depth.

The conclusion is clear. There is a statistically significant dependence between time
wave front-back asymmetry and the orientation of the involved orbits, as measured by
the orientation of the ‘best fit’ ellipses. Since the orbits are not closed, the term ‘ellipse’
shall not be taken literally but as a proxy for the irregular shape and the orientation of
its greater axis as statistical measure of orbit orientation. Also for space waves there is a
clear dependence for this unidirectional wave model. For a model with directional orbital
spectrum the relations might be different.

4.2. Influence of water depth, wave steepness and spectral peakedness

A question of great interest is how the tilt/skewness dependence depends on water depth.
We will study the dependence for time and for space waves for the PM spectrum at depths
h = 40, 30, 20 m and for the JONSWAP spectrum at depths z = Inf, 40, 20 m.
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(a) Tilt/skew p.d.f., PM space waves, (b) Tilt/skew p.d.f., PM space waves, ©) Tilt/skew p.d.f., PM space waves,
2.0

h=40 h=30 h=20

Wave skewness

. -80 —40 0 40 80 .—80 —40 0 40 80 T80 —40 0 40 80
Orbit tilt (deg.) Orbit tilt (deg.) Orbit tilt (deg.)

FIGURE 5. Illustration of tilt/skewness depth dependence transition in PM space waves from
near deep water 1 = 40 m to near shallow water &~ = 20 m. The BFI values are 0.23, 0.27 and
0.29, respectively. Each figure is based on approximately 37 000 individual waves.

Tilt/skew p.d.f., PM time waves, b Tilt/skew p.d.f., PM time waves, Tilt/skew p.d.f., PM time waves,
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FIGURE 6. Illustration of tilt/skewness depth dependence transition in PM time waves from
near deep water 7 = 40 m to near shallow water 7 = 20 m. The BFI values are 0.23, 0.27 and
0.29, respectively. Each figure is based on approximately 75 000 individual waves.

We compare the depth dependence for the two spectra, in figures 5 and 6 for PM waves
and in figures 7 and 8 for J20 waves. As shown in the leftmost diagrams in all four figures,
at large depths both spectra give a bi-modal tilt/skewness p.d.f. for the major waves we
study. Both spectra show a gradual change over intermediate depths towards a unimodal
diamond shaped distribution. The distribution change for the J20 space waves is more
distinct than that for the PM time waves.

One should have in mind that the distributions are based on major waves with large
amplitudes and maximum height. The orbit examples in figure 1 show why the proxy
ellipse orientation is so strongly coupled to the asymmetry. It is a geometric fact, not
related to the stochastic wave model that we use. The change from a bi-modal distribution
at deep water to a unimodal one at shallow water is probably an effect of the increase in
orbit eccentricity with decreasing depth, which forces the two modes to collapse.
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(a) h=inf h=40 h=20

Tilt/skew p.d.f., J20 space waves, (b) Tilt/skew p.d.f., J20 space waves, © Tilt/skew p.d.f., J20 space waves,
2
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FIGURE 7. Illustration of tilt/skewness depth dependence in JONSWAP J20 space waves from
deep water & = oo to shallow water 4 =20 m. The BFI values are 0.87, 0.92 and 1.12,
respectively. Each figure is based on more than 50 000 individual waves.

( ) Tilt/skew p.d.f., J20 time waves, b) Tilt/skew p.d.f., J20 time waves, ( ) Tilt/skew p.d.f., J20 time waves,
a h=inf ( h=40 ¢ h=20

2.0
L5,
1.0

0.5

Wave skewness
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Orbit tilt (deg.) Orbit tilt (deg.) Orbit tilt (deg.)
FIGURE 8. Illustration of tilt/skewness depth dependence in JONSWAP J20 time waves from

deep water h = oo to shallow water 4~ =20 m. The BFI values are 0.87, 0.92 and 1.12,
respectively. Each figure is based on almost 70 000 individual waves.

4.3. Lagrange models with forced asymmetry

The tilt/skewness dependence illustrated so far is a statistical measure caused by
the geometric constraints of the waves. The Lagrange model (2.3) with non-negative
a-parameter and frequency dependent phase shift imposes a systematic shift in the particle
orbit distribution. .

The a-values used in the examples in Lindgren & Aberg (2009), Lindgren (2010) and
Lindgren & Lindgren (2011) represent large asymmetries in wave shape and a strong
average tilt. We choose a small value, a = 0.1, at depth 2~ =30 m, and illustrate the
tilt/skewness distribution for time waves with a PM spectrum in figure 9. As seen, the
orientations of the proxy ellipses have been shifted towards positive, upward tilt, an effect
also seen in the joint tilt/skewness density.
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Skewness and orbits, forced PM time waves Tilt/skew p.d.f, forced PM time waves, = 30
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FIGURE 9. (a—d) Tilt/skewness relation in mildly forced asymmetric PM waves observed over
200 s, positive skewness in (a,b) and negative in (c¢,d). (e) Joint p.d.f. of tilt and skewness based
on 150 000 time waves. PM spectrum, 7 = 30 m, a = 0.1.

4.4. The second-order Lagrange model and the influence of Stokes drift

We now show how the second-order correction terms affect the Lagrange trajectories from
(2.6) and then also include the Stokes drift from the second-order theory.

For the PM model the average Stokes drift at depth 7 =20 m is [kwS(w)dw =
0.11 m s~!. Figure 10 shows typical tilted space waves and corresponding orbits for
first- and second-order models, without and with an added Stokes drift. There is no big
difference between first and second order but the effect of the Stokes drift is clearly seen
in the rightmost panels, (e.f,k,[). The gap between orbit start and end is compatible with
the size of the Stokes drift and the peak period 7, = 10 s. Figure 11 illustrates how the
second-order orbits are translated and opened by the Stokes drift while they retain a
somewhat elliptic shape. One can also note that, due to a smaller frequency bandwidth,
the J20 orbits are more regular than the PM orbits.

Figure 12 shows the tilt/skewness p.d.f. for the three PM space models. It confirms the
similarity between first- and second-order models. It also illustrates the effect on the joint
distribution of the introduction of the Stokes drift in space, which makes the orbits look
more horizontally elongated, increasing the chance that the proxy ellipse is identified as
nearly horizontal with near zero tilt. The remaining dependence between tilt and wave
skewness in the right plot is therefore the best illustration of the stochastic covariation
between these two characteristics of the wave dynamics. For the time waves in figure 13
the Stokes drift has no effect on the joint distribution, in agreement with the argument in
§3.4.

Finally we study the J20 swell spectrum and show, in figures 14 and 15, the results
for time and space waves at infinite depth where the average Stokes drift is 5.5 cm s™!.
The first-order model delivers a bi-modal tilt/skewness distribution both in space and in
time while the second-order models both give different more uniform tilt distributions.
The small Stokes drift has almost no effect for the time waves in figure 15. The strong
tilt/skewness correlation is clear here as for the PM model.
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FIGURE 10. Illustration of the difference between first- and second-order models and the effect
of the Stokes drift. PM space waves at depth 20 m with positive (a,c,e) and negative (g,i,k)
skewness and orbits of the particles at maximum, (b,d,f) and (h,j,[). The BFI value at the depth
is 0.29 and the average surface Stokes drift is 0.11 m s~1.
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FIGURE 11. Illustration of irregular orbits and the effect of Stokes drift.

5. Summary and conclusions

In a simulation study we have illustrated and discussed the statistical relation between
the front—back asymmetry of irregular ocean waves in the Gauss—Lagrange wave model.
We used two different orbital spectra, one Pierson—-Moskowitz (PM) spectrum for wind
driven sea states and one narrow-band JONSWAP (J20) for a strong steep swell situation.
Both spectra have H; = 4.5 m and peak period 7, = 10 s. Their Benjamin—Feir values on
infinite depth are 0.23 and 0.87, respectively.

We simulated the vertical and horizontal Gaussian components of the Lagrange model
and generated observable wave trains in time and in space in which we identified individual
waves by the local min—max—min definition. The log ratio between the slopes before and
after the local maxima was used to give a measure of wave skewness, front—back for space
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PM space waves, i = 20, PM space waves, & = 20, PM space waves, i = 20,
(a) first order (b) second order (c second order + drift
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FIGURE 12. Tilt/skewness relation in PM space waves of first and second order without and

with Stokes drift = 0.11 m s~!. Depth 20 m, BFI = 0.29. Each p.d.f. is based on approximately
57000 waves.

(a) PM time waves, & = 20, ( b) PM time waves, & = 20, © PM time waves, & = 20,
first order second order second order + drift

Wave skewness

= 1.0
—1.5[%

. : 2.0 .
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Orbit tilt (deg.) Orbit tilt (deg.) Orbit tilt (deg.)
FIGURE 13. Tilt/skewness relation in PM time waves of first and second order without and

with Stokes drift = 0.11 m s~!. Depth 20 m, BFI = 0.29. Each p.d.f. is based on approximately
77 000 waves.

waves and ‘before—after’ for time waves. Only major waves with sufficient maximum
height and amplitude were considered.

For each wave we identified the water particle located at the maximum at the
time/location of observation and reconstructed its orbit as a function of time between the
preceding and following local minima. To cope with the great variability in the shape of
the orbits a standardized procedure was adopted to give a measure of orbit orientation. We
did choose a least-squares fit of an ellipse to the orbits and used the inclination of its main
axis as a measure of orbit tilt. This measure is sensitive to the geometry of the waves and
it also reflects the increasing orbit eccentricity with decreasing depth.

The covariation between the degree of asymmetry of individual waves, as measured
by the front—back skewness, and the estimated tilt of the associated particle orbits have
been summarized in their bivariate p.d.f., based on between 24 000 and 150 000 pairs of
waves/orbits.
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FIGURE 14. Tilt/skewness relation in J20 swell in space of first and second order without
and with Stokes drift = 0.055 m s~! at infinite depth, BFI = 0.87. Each p.d.f. is based on
approximately 25 000 waves. (The first-order figure is based on part of the data behind the plot
in figure 7).

(a) J20 time waves, A = inf, (b) J20 time waves, & = inf, © J20 time waves,
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FIGURE 15. Tilt/skewness relation in J20 swell in time of first and second order without
and with Stokes drift = 0.055 m s~! at infinite depth, BFI = 0.87. Each p.d.f. is based on
approximately 65 000 waves.

The purpose of this paper has been to introduce a statistical technique to find
intrinsic patterns in irregular ocean waves and test it in one common wave model,
thereby complementing the model based and experimental measures mentioned in the
introduction. The general conclusion of the study is that, in the Lagrange model, there is
a systematic positive relation between the wave skewness and the main orientation of the
orbits as estimated in the proposed method. Many factors determine the details of the joint
distribution and we discuss the main findings.

5.1. The difference between time waves and space waves

Orbit tilt and wave skewness are clearly positively dependent, in both time and space,
figures 1 and 2. The dependence can be seen as a summary of the wave and orbit geometry
and is not coupled to the specific mathematical model that describes them. One difference
between the two types of observation is how one can handle the presence or absence
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of Stokes drift. We have included examples of its effect on the space waves from the
PM spectrum on shallow water, figure 12 and on space waves from the J20 spectrum on
infinite depth in figure 14. The technique used in the study allows inclusion of a Stokes drift
also in time waves, with some modification of sampling mechanism. The modification is
different from that suggested in Guérin et al. (2019). We have not investigated its effect on
the distribution but it can be expected to be small.

5.2. Depth dependence

For both spectral types there is a typical shift in dependence with decreasing water depth,
from a bi-modal p.d.f. in deep water to a unimodal p.d.f. in shallow water. Both spectra
show the accompanying increase in BFI values, but further studies are needed to quantify
its influence. The change is present in time waves as well as in space waves (figures 6—8)
in accordance with increasing eccentricity of the orbits, cf. Wallet & Ruellan (1950). The
orientation of more eccentric ellipses will also be more exactly identified by the fitting
algorithm than the more irregular orbits at great depth.

5.3. Second-order effect and the effect of Stokes drift

Inclusion of a second-order term in the model has a clear but small effect on the shape
and extent of tilt/skewness dependence, as shown for PM waves in figures 12(a,b) and
13(a,b). The average Stokes drift, when added to the local model, makes a difference
(figure 12¢). The effect is explained in figure 10(e, f,k,/) and it is due to the elongation of
orbits, that concentrates the orientation towards horizontal. For the JONSWAP spectrum
the higher-order models make a bigger change, as illustrated in figures 14 and 15 except
for the Stokes drift in time waves.

5.4. The dependence of the model

The observed statistical dependence is a consequence of the general wave geometry and it
should be rather robust for change of spectrum. Experiments, not illustrated in the paper,
with other type of spectra and characteristics confirm the general pattern for the Lagrange
model. It might also be insensitive to the specific stochastic wave elevation model used,
for example a second-order Eulerian model or that of Creamer ef al. (1989). A systematic
study of alternative models and of the random variation of the orbits around the typical
shape is outside the scope of the present paper. An interesting theme for a future study
would be a comparison with a similar experiment in a physical wave tank.
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