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We conducted a series of pore-scale numerical simulations on convective flow in porous
media, with a fixed Schmidt number of 400 and a wide range of Rayleigh numbers.
The porous media are modeled using regularly arranged square obstacles in a Rayleigh–
Bénard (RB) system. As the Rayleigh number increases, the flow transitions from a
Darcy-type regime to an RB-type regime, with the corresponding Sh–RaD relationship
shifting from sublinear scaling to the classical 0.3 scaling of RB convection. Here, Sh
and RaD represent the Sherwood number and the Rayleigh–Darcy number, respectively.
For different porosities, the transition begins at approximately RaD = 4000, at which
point the characteristic horizontal scale of the flow field is comparable to the size of a
single obstacle unit. When the thickness of the concentration boundary layer is less than
approximately one-sixth of the pore spacing, the flow finally enters the RB regime. In the
Darcy regime, the scaling exponent of Sh and RaD decreases as porosity increases. Based
on the Grossman–Lohse theory (J. Fluid Mech. vol. 407, 2000, pp. 27–56; Phys. Rev. Lett.
vol. 86, 2001, p. 3316), we provide an explanation for the scaling laws in each regime and
highlight the significant impact of mechanical dispersion effects during the development
of the plumes. Our findings provide some new insights into the validity range of the Darcy
model.
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1. Introduction
Porous media refer to materials composed of numerous frameworks that create many
tiny voids. When a fluid fills these voids, convection may occur under the influence of
gravity due to density differences. This density-driven convection in porous media exhibits
properties that differ from those of free fluid convection and is widely present in nature
and engineering applications, such as the formation of sea ice and the oil recovery from
geological formations (Farajzadeh et al. 2012; Miah et al. 2018; Anderson et al. 2022). In
recent years, due to the rise of carbon dioxide (CO2) geological sequestration, convection
in porous media has become a research hotspot (Huppert & Neufeld 2014; Bachu 2015; De
Paoli 2021). This technology involves capturing CO2 generated from industrial processes
and burying it underground to reduce carbon emissions. When CO2 is injected into deep
saline aquifers, it enters a supercritical state similar to a fluid and initially rises to an
impermeable layer due to its lower density. Subsequently, CO2 diffuses horizontally and
gradually dissolves in the underlying saline water. This dissolved liquid is denser than
the surrounding fluid, thus driving convection. The dissolution and convection process of
CO2 in saline aquifers is crucial for preventing leakage and ensuring its long-term storage.
Therefore, understanding the mass transport efficiency in porous media convection has
become a key focus of research (Hewitt 2020; De Paoli 2023).

The commonly used model for convective flow in porous media is based on Darcy’s
law (hereafter referred to as the Darcy model) (Nield & Bejan 2017). The smallest
analytical flow domain in the Darcy model includes multiple pores and is known as the
representative elementary volume (REV). The REV scale is generally much larger than the
pore scale, but much smaller than the characteristic flow scale. Consequently, the Darcy
model solves for macroscopic variables that are volume-averaged, neglecting information
at the pore scale. In this model, the most important governing parameter is the Rayleigh–
Darcy number RaD . Early theoretical studies suggest that for asymptotically large RaD ,
the Sherwood number Sh, which represents the efficiency of mass transport, scales
linearly with RaD (Malkus 1954; Howard 1966). With the improvement of computational
capabilities in recent years, numerous numerical simulations for the high-RaD Darcy
model have emerged (Hewitt et al. 2012, 2013, 2014; Pirozzoli et al. 2021; De Paoli et al.
2022). The results of two-dimensional (2-D) simulations confirm the linear scaling of Sh
versus RaD . However, three-dimensional (3-D) simulations have revealed an additional
sublinear term. This discrepancy is primarily due to the fact that in 3-D simulations,
RaD has not reached a sufficiently high value for the flow to enter the ultimate regime
(De Paoli 2023). Recently, Zhu et al. (2024) successfully used the Grossman–Lohse (GL)
theory (Grossmann & Lohse 2000, 2001) to explain the differences between 2-D and 3-D
results.

Although numerical simulations align with the theory, numerous laboratory
experiments have consistently found that the scaling exponent of Sh versus RaD is always
less than 1 (Neufeld et al. 2010; Backhaus et al. 2011; Wang et al. 2016; Liang et al.
2018). This indicates that pore-scale effects cannot be neglected when considering mass
transport in convective flows through actual porous media. To incorporate these effects
into simulations, there are generally two approaches. One is to introduce additional terms
into the Darcy model to account for the interactions between solid structures and the

1009 A10-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.213


Journal of Fluid Mechanics

fluids. For example, when the flow velocity within the pores is relatively high, the drag
exerted by solid obstacles on the flow becomes non-negligible, requiring consideration of
the Forchheimer term (Joseph et al. 1982; Nield & Bejan 2017; Jin & Kuznetsov 2024).
In recent years, there has been increased attention to mechanical dispersion, which refers
to the alteration of flow direction and further mixing of solutes due to pore structures
(Saffman 1959; Dentz et al. 2023). This dispersion effect produces results similar to those
caused by molecular diffusion; therefore, the two are often considered together under the
term hydrodynamic dispersion (De Paoli 2023). In the Darcy simulations, to account for
the effects of dispersion, the molecular diffusion coefficient is typically replaced by the
Fickian dispersion tensor (Bear 1961; Hidalgo & Carrera 2009; Ghesmat et al. 2011).
Recent simulation (Wen et al. 2018) reported a fan-flow structure caused by dispersion
effects, which indeed influence mass transport. However, because these models introduce
numerous parameters, extensive experiments and numerical simulations are still required
to calibrate and validate them.

Another approach involves conducting pore-scale simulations, which solve the original
Navier–Stokes (NS) equations within the pores, rather than using the Darcy model. This
places extremely high demands on computational capabilities, particularly for cases with
low porosity. In our previous work (Liu et al. 2020, 2021), we conducted 2-D pore-
scale simulations on thermal convection with relatively high porosities and found that
heat transfer first increases and then decreases as porosity decreases. This is due to the
fact that obstacles simultaneously hinder convective flow and improve the continuity of
the flow structure. Xu et al.’s (2023) simulations using impermeable obstacles also led
to similar conclusions, although the plume dynamics were less coherent compared with
those within permeable obstacles. Recently, Gasow et al.’s (2020, 2021, 2022) conducted
a series of 2-D pore-scale simulations at large Schmidt numbers with porosities as low as
0.09, discovering that the scaling exponent of Sh versus RaD decreases with increasing
porosity, which aligns with experimental results. Moreover, they pointed out that the
discrepancy between pore-scale simulations and Darcy simulations might be due to the
latter’s omission of the momentum dispersion term.

One concern about pore-scale simulations is that as the control parameter, i.e. the
Rayleigh number Ra, increases, the characteristic scale of the flow field gradually
decreases and the flow may eventually transition into a state similar to Rayleigh–Bénard
(RB) convection that is no longer influenced by the porous media. Both simulations (Liu
et al. 2020; Xu et al. 2023) and experiments (Ataei–Dadavi et al. 2019) have shown that
under extremely high Ra, the heat transport efficiency follows the classical 0.3 scaling of
RB convection (Grossmann & Lohse 2000, 2001). For solutes with much lower diffusivity,
would the flow eventually transition to an RB state as well? Gasow et al.’s (2020, 2021,
2022) simulations did not reveal any clear indications of this, possibly because the control
parameter was not large enough. In this paper, we conduct systematic 2-D pore-scale
simulations over a wide range of Ra to investigate this issue, aiming to illustrate when the
flow transitions from a Darcy-type to an RB-type regime and to thoroughly examine the
characteristics of the transitional phase. We also aim to use the GL theory to analyse the
transport scaling laws in different regimes. It should be noted that our pore-scale analysis
fundamentally differs from the work of Zhu et al. (2024), as their study was conducted on
the macroscopic (Darcy) scale.

This paper is organised as follows. In § 2, we introduce the governing equations and
the numerical settings. Then, in §§ 3 and 4, we present the numerical results, including the
variations of flow structures and mass transfer, respectively. In § 5, we provide a theoretical
analysis based on the GL theory. Finally, we give the conclusions in § 6.
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u∗ = 0 c∗ = Δ
∗
c

u∗ = 0

H∗

g

z
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Basic unit

d∗
l∗
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D∗

Figure 1. Schematic illustration of the two-dimensional flow domain. The regular porous media is
represented by the grey obstacles. The size of a basic unit is D∗ = d∗ + l∗.

2. Problem formulation

2.1. Governing equations
We consider a 2-D RB system filled with regular square obstacles, as shown in figure 1.
Constant species concentrations are kept on the two horizontal plates with a separation of
H∗. Hereafter, the asterisk ∗ represents the dimensional forms of the variables; c∗ is the
relative species concentration, which is equal to zero at the bottom plate and Δ∗

c at the top
plate. The fluid density is then determined by c∗ as ρ∗ = ρ∗

0 (1 + βc∗), in which ρ∗
0 is the

density of a reference state and β is the expansion coefficient of the concentration. The
periodic boundary condition is used in the horizontal direction of the flow domain. The
no-slip boundary condition is applied to all solid surfaces, including the two plates and
the fluid–obstacle interfaces. In addition, the obstacles are assumed to be non-penetrated
by the species. Within the Oberbeck–Boussinesq approximation, the incompressible flow
in the pores is governed by

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇ p∗ + ν∇2u∗ − gβc∗ez, (2.1a)

∂c∗

∂t∗
+ u∗ · ∇c∗ = κ∇2c∗, (2.1b)

∇ · u∗ = 0. (2.1c)

Here, u∗ is the velocity vector, p∗ is pressure, ν is viscosity, g is the gravitational
acceleration, ez is the vertical unit vector and κ is the mass diffusivity of the species.
We use the domain height H∗, the free-fall velocity

√
gH∗βΔ∗

c and the concentration
difference Δ∗

c to non-dimensionalise the governing equations (2.1). Dimensionless control
parameters include the aspect ratio, the Schmidt number and the Rayleigh number, which
are defined respectively as

Γ = L∗

H∗ , Sc = ν

κ
, Ra = gβΔ∗

c H∗3

κν
. (2.2)

Here, L∗ is the domain width. Then, the dimensionless governing equations read

∂u
∂t

+ u · ∇u = −∇ p +
√

Sc
Ra

∇2u − cez, (2.3a)

∂c

∂t
+ u · ∇c = 1√

ScRa
∇2c, (2.3b)

∇ · u = 0, (2.3c)
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and the boundary conditions at two plates read

u = 0, c = 0, at z = 0; (2.4a)

u = 0, c = 1, at z = 1. (2.4b)

The key response parameters include the Sherwood number and the Reynolds number,
which are defined respectively as

Sh =
κ

〈
∂c∗
∂z∗

〉
z∗=0

κΔ∗
c H∗−1 =

〈
∂c

∂z

〉
z=0

, Re = u∗
rms H∗

ν
=

√
Ra
Sc

urms . (2.5)

Hereafter, the bracket 〈·〉 denotes the average over a specific horizontal plane. The
subscript ‘rms’ stands for the root-mean-square value over the entire domain except for
obstacles. Note that the Sherwood number Sh represents the ratio of the total mass transfer
rate to the rate of diffusive mass transport. In the statistically steady state, Sh should be
the same at the two plates.

2.2. Porous media
The porous medium structures set in this study are all regularly arranged squares, as shown
in figure 1. The side length of each square is d∗(= d H∗) and the spacing between them
is l∗(= l H∗). In traditional macroscopic simulations of convection in porous media, the
REV which contains several pores is generally defined as the basic research unit (Nield &
Bejan 2017). In our pore-scale simulations, the basic unit consists of an obstacle and its
surrounding void space, whose side length is D∗ = d∗ + l∗, as shown in figure 1. Under
this definition, the whole domain is filled with the basic units. The additional control
parameters related to the porous medium structure include the porosity, the Darcy number
and the Rayleigh–Darcy number, which are defined as follows:

φ = 1 −
(

d∗

D∗

)2

, Da = K ∗

H∗2 , RaD = gβΔ∗
c H∗K ∗

κν
= RaDa. (2.6)

Here, K ∗ is the permeability, which can be calculated by Darcy’s law (Nield & Bejan
2017):

K ∗ = −ν
u∗

m

∇ p∗ . (2.7)

Here, u∗
m is the mean velocity of the flow induced by the pressure gradient ∇ p∗. Note

that ν represents the kinematic viscosity and p∗ includes the density. Table 1 summarises
the three sets of porous medium configurations that we have defined, with porosity of
0.64, 0.36 and 0.15, respectively. In these configurations, we keep the size of the obstacles
constant and vary their number to change the porosity. Accordingly, the spacing between
the obstacles and the size of the basic unit also change.

To calculate the permeability, we conducted additional numerical simulations for each
porosity. In these simulations, the effect of the concentration field is neglected and a
uniform horizontal pressure gradient is applied throughout the domain. The horizontal
mean velocity is then calculated after the flow stabilises. During the averaging process,
we exclude regions within five basic unit distances near the upper and lower boundaries
to minimise boundary effects. Note that the current porous media structure consists of
obstacles arranged in a regular pattern. Therefore, the permeability in both the horizontal
and vertical directions should be the same, and it is sufficient to calculate only one of them.
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φ Γ Npx Npz d l D Da DaK

0.64 2 30 15 0.04 0.0267 0.0667 2.6 × 10−5 2.6 × 10−5

0.36 2 40 20 0.04 0.0100 0.0500 1.7 × 10−6 1.5 × 10−6

0.15 1 23 23 0.04 0.0035 0.0435 9.1 × 10−8 6.5 × 10−8

Table 1. Details for the porous media. Columns from left to right are: the porosity, the aspect ratio, the number
of obstacles in the horizontal direction and the vertical direction, the size and the spacing of the obstacles,
the size of the basic unit, the two Darcy numbers calculated by the Darcy’s law, and Kozeny’s equation with
η = 125.

5000 1000 1500 2000

–∇x p

Daum

0

0.02

0.04

0.06

0.1 0.2 0.3 0.4

φ

φ = 0.15

φ = 0.64

φ = 0.36

0.5 0.6 0.7

0

1

2

3

×10–5

Kozeny’s equation

(η = 125)

(a) (b)

Figure 2. Flow driven solely by pressure gradient. (a) Horizontal mean velocity um versus the horizontal
pressure gradient −∇x p. (b) Darcy number Da versus the porosity φ. In panel (b), the values represented by
the symbols are calculated from the slope of the corresponding fitted line in panel (a), and the dashed line is
derived from Kozeny’s equation (2.10) with η = 125.

Additionally, we ensure that the pore-scale Reynolds number, i.e.

Rep = |u∗|l∗
ν

= l

√
Ra
Sc

|u|, (2.8)

for these cases is much less than 1, so the flow remains in the Darcy regime (Hewitt 2020).
Figure 2(a) illustrates the relationship between the horizontal mean velocity um and

pressure gradient ∇x p for different porosities. It is evident that as −∇x p increases, um
increases linearly. By substituting (2.7) into (2.6), we can derive the formula for calculating
the Darcy number:

Da = −
√

Sc
Ra

um

∇x p
. (2.9)

In the above cases, we set Sc = 400 and Ra = 106. By performing a linear fit on the data
points in figure 2(a), we obtain the slopes, which can then be used to calculate the Darcy
number using (2.9). The results are presented in figure 2(b). It can be observed that the
Darcy number increases nonlinearly with porosity. It should be noted that the permeability
can also be estimated by Kozeny’s equation (Nield & Bejan 2017):

K ∗ = d∗2φ3

η(1 − φ)2 , (2.10)
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in which η is an empirical coefficient. The classical Carman–Kozeny equation provides
η = 180, which applies to media composed of regularly packed spherical particles. The
Blake–Kozeny equation gives η = 150, suitable for more complex configurations (Dullien
2012). In the current study, η = 125 aligns well with the simulation data, as indicated
by the dashed line in figure 2(b). This value is nearly identical to η = 126 obtained in
the simulations of Gasow et al. (2020), where their porous medium configuration also
consisted of regularly arranged squares. The specific values of the Darcy number are also
summarised in table 1. It should be noted that in actual CO2 sequestration, the Darcy
number is very small, typically reaching the order of 10−13 (Jin & Kuznetsov 2024). For
pore-scale simulations, achieving such small pore sizes would require very high resolution,
which is computationally infeasible with current capabilities. In the series of works by
Gasow et al. (2020, 2021, 2022), the lowest Darcy number achieved was of the order of
10−8, the same as in this study. Nevertheless, the flow behaviours observed at larger Darcy
numbers show a certain consistency, allowing for reasonable extrapolation to cases with
smaller Darcy numbers.

In the numerical simulations of this study, the boundary conditions of the obstacles are
implemented using the direct-forcing immersed boundary method (IBM) (Uhlmann 2005).
Specifically, an additional body force f is introduced in the momentum equation (2.3a)
and the convection–diffusion equation (2.3b) to ensure zero velocity and zero normal
gradient of concentration at the obstacle boundaries. Particularly, at the corners of the
square, the sum of the fluxes of the concentration field along the x and z directions is
set to zero. Under such settings, the flow state inside the obstacles does not affect the
external flow field. This method has been widely used in various complex geometries
and deformable interfaces (Spandan et al. 2017; Vanella & Balaras 2020), and was also
employed in our previous simulations involving circular obstacles (Liu et al. 2020). For
the current square obstacles, their boundaries are directly defined on the Eulerian grid,
thus avoiding additional errors due to interpolation. To ensure accuracy, we extend two
grid layers inward from the obstacle boundaries, enforcing both no-slip and no-penetration
boundary conditions. Additionally, we have conducted some a posteriori validations, with
details provided in the next section.

In the current simulations, the obstacles are arranged in a regular pattern, which differs
from the real irregular porous structures found in geological formations. However, it is
extremely challenging to set up randomly distributed obstacles in pore-scale simulations,
especially in cases with very low porosity. The difficulty mainly lies in the narrow spacing
between obstacles caused by randomness and the complex structures formed by the
combination of multiple obstacles. These require highly refined grids for resolution, which
poses a significant challenge given the current computational capabilities. Therefore,
we continue to focus on cases with regularly arranged obstacles. We believe that
the conclusions drawn from this basic configuration can provide us with a deeper
understanding of the physical mechanisms of convection in porous media. Additionally, we
conducted a separate simulation with randomly distributed obstacles for a porosity of 0.64,
and the results are summarised in Appendix A. It can be observed that the qualitative trend
of mass transport is consistent between the regular and random distributions of obstacles,
although there are some minor quantitative differences. A systematic study on this aspect
is still needed in future research.

2.3. Numerical settings
We conduct direct numerical simulation (DNS) by solving the governing equations (2.3),
together with the additional body force f mentioned above. The code used in this study is
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an improved version based on our in-house code, which has been widely used in research
on double-diffusive convection (Yang et al. 2015, 2022; Li & Yang 2023). Basically, the
finite difference method and the fractional time-step method are employed (Ostilla-Mónico
et al. 2015). One advantage of this code is the use of a dual-resolution technique, where
a more refined grid is employed for the scalar field with a high Schmidt number Sc. In
our previous studies, Sc reached as high as 1000 (Yang et al. 2022). In the current study,
we fix Sc = 400, a value close to the practical conditions of CO2 sequestration (Huppert
& Neufeld 2014). For the three types of porous medium configurations shown in table 1,
we have set a wide range of Rayleigh number Ra, with the corresponding Rayleigh–Darcy
number RaD ranging from 102 to 106. In the classical Darcy model, RaD � 1300 signifies
the high Rayleigh regime (Nield & Bejan 2017). Therefore, our parameter range extends
far beyond this regime to study the transition from the Darcy regime to the non-Darcy
regime. The details of the simulations are summarised in table 2.

It should be noted that the aspect ratio Γ of the domain can also influence flow structures
and mass transport, especially when the aspect ratio is very small, as the boundaries may
constrain the development of convection. This phenomenon has been extensively studied
in classical RB convection (van der Poel et al. 2012; Wagner & Shishkina 2013; Shishkina
2021). In the current study, since our focus is not on investigating the effects of aspect
ratio, we aim to set a sufficiently large Γ within the limits of available computational
resources to minimise its impact on the flow. For most cases with φ = 0.64 and 0.36, we
set the aspect ratio Γ = 2; for cases with φ = 0.36 and Ra = 1012, as well as all cases with
φ = 0.15, we set Γ = 1 to save computational resources. In the present configuration, the
cases with the lowest Ra for each porosity include at least two pairs of convection cells
in the flow field. Furthermore, as we will demonstrate later, the results across cases with
different aspect ratios exhibit consistency. Therefore, we consider the current aspect ratios
to be acceptable.

The grid resolution meets the following three criteria: first, the gap between two
obstacles must be at least five grid cells, which implies that the base grid scale is less than
0.2l; second, the base grid scale is smaller than the Kolmogorov scale ηK = (ν3/ε)1/4

(Grötzbach 1983), in which ε is the mean viscous dissipation rate; third, the refined grid
scale is smaller than the Batchelor scale ηB = (νκ2/ε)1/4 (Silano et al. 2010). For all cases,
we simulated for a sufficiently long time td to ensure that the flow reached a statistically
steady state. Then, we continued the simulation for a period ts for statistical analysis. The
relative difference between the time-averaged Sherwood number Sh in the first and second
halves of this period did not exceed 1 %. Hereafter, the overline denotes time-averaged
values. Additionally, we calculated the relative difference of Sh at the upper and lower
plates, which was less than 4 % for all cases. This indicates that no additional mass flux
entered or exited the obstacles.

3. Flow structure

3.1. Transition of the flow field
In this section, we examine the characteristic structures of the flow field under varying
Ra or RaD . Based on the Darcy model, convection in 2-D porous media can be broadly
classified into three regimes (Hewitt et al. 2014; Nield & Bejan 2017; Gasow et al. 2020):
the conducting regime (0 � RaD � 4π2), where no flow occurs; the quasi-steady regime
(4π2 � RaD � 1300), characterised by periodically distributed large-scale convection
rolls; and the high Rayleigh regime (RaD � 1300), where the large-scale convection rolls
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φ Ra RaD Γ Nx (mx ) Nz(mz) td ts Sh Re ΔSh (%)

0.64 1 × 107 2.6 × 102 2 512(2) 256(2) 20 000 5000 2.307 0.119 0.4
0.64 4 × 107 1.0 × 103 2 512(2) 256(2) 10 000 5000 8.344 0.470 0.7
0.64 6 × 107 1.6 × 103 2 512(2) 256(2) 10 000 5000 11.71 0.685 2.9
0.64 1 × 108 2.6 × 103 2 768(2) 384(2) 10 000 40 000 18.17 1.094 0.4
0.64 1.4 × 108 3.6 × 103 2 768(2) 384(2) 10 000 50 000 23.17 1.461 0.3
0.64 2 × 108 5.2 × 103 2 768(2) 384(2) 5000 2000 29.51 1.964 2.2
0.64 4 × 108 1.0 × 104 2 768(2) 384(2) 5000 2000 42.32 3.323 0.8
0.64 1 × 109 2.6 × 104 2 1152(3) 576(3) 2000 2000 63.25 6.480 0.5
0.64 2 × 109 5.2 × 104 2 1152(3) 576(3) 2000 1000 75.16 9.840 0.5
0.64 4 × 109 1.0 × 105 2 1152(3) 576(3) 2000 1000 94.37 15.62 0.4
0.64 1 × 1010 2.6 × 105 2 1280(4) 640(4) 1000 1000 133.3 29.29 0.3
0.64 1 × 1011 2.6 × 106 2 1536(6) 768(6) 1000 1000 249.1 126.5 0.04

0.36 1 × 108 1.7 × 102 2 1152(1) 576(1) 40 000 20 000 1.352 0.150 0.7
0.36 4 × 108 6.8 × 102 2 1152(1) 576(1) 20 000 10 000 6.003 0.642 0.2
0.36 1 × 109 1.7 × 103 2 1152(3) 576(3) 12 000 10 000 15.10 1.632 0.5
0.36 1.5 × 109 2.6 × 103 2 1152(3) 576(3) 10 000 10 000 22.15 2.418 0.8
0.36 2 × 109 3.4 × 103 2 1152(3) 576(3) 15 000 5000 28.49 3.164 2.6
0.36 4 × 109 6.8 × 103 2 1152(3) 576(3) 10 000 5000 50.12 5.958 3.3
0.36 1 × 1010 1.7 × 104 2 1280(4) 640(4) 10 000 3000 88.69 13.04 0.9
0.36 2 × 1010 3.4 × 104 2 1280(4) 640(4) 5000 2000 124.7 21.90 1.5
0.36 4 × 1010 6.8 × 104 2 1280(4) 640(4) 5000 2000 164.9 35.62 1.0
0.36 1 × 1011 1.7 × 105 2 1536(4) 768(4) 5000 2000 218.5 59.78 0.7
0.36 4 × 1011 6.8 × 105 2 1536(4) 768(4) 4000 2000 374.1 158.5 0.5
0.36 1 × 1012 1.7 × 106 1 1536(4) 1536(4) 1000 500 488.0 279.8 0.1

0.15 1 × 1010 9.1 × 102 1 1536(1) 1536(1) 10 000 4000 9.427 2.201 0.1
0.15 2 × 1010 1.8 × 103 1 1536(1) 1536(1) 14 000 6000 17.23 4.269 0.1
0.15 3 × 1010 2.7 × 103 1 1536(1) 1536(1) 14 000 8000 25.25 6.297 0.3
0.15 4 × 1010 3.6 × 103 1 1536(1) 1536(1) 10 000 8000 33.74 8.480 0.4
0.15 1 × 1011 9.1 × 103 1 1536(2) 1536(2) 5000 2000 77.71 20.41 0.8
0.15 4 × 1011 3.6 × 104 1 1536(4) 1536(4) 2000 2000 190.3 61.18 2.4
0.15 1 × 1012 9.1 × 104 1 1536(4) 1536(4) 2000 3000 311.6 123.0 0.2
0.15 2 × 1012 1.8 × 105 1 2048(4) 2048(4) 1500 1000 388.0 194.2 1.9
0.15 4 × 1012 3.6 × 105 1 2048(4) 2048(4) 1000 1000 566.9 324.9 0.4

Table 2. Numerical details for all the cases. Columns from left to right are: the porosity, the Rayleigh number,
the Rayleigh–Darcy number, the aspect ratio, the resolutions with refined factors in the horizontal and vertical
directions, the simulation time before the statistical stage, the statistical time, the statistical Sherwood number,
the statistical Reynolds number, and the relative difference of the statistical Sherwood numbers calculated at
the two plates.

vanish and are replaced by irregularly distributed mega-plumes in the central region and
proto-plumes near the boundaries. Figure 3 presents four typical concentration fields for
the cases of φ = 0.64. When Ra = 107 and RaD = 2.6 × 102, the flow field is composed
of four pairs of convection cells, corresponding to the quasi-steady regime, as shown in
figure 3(a). At this stage, the concentration distribution in the region near the upper and
lower boundary plates is very uniform over at least one basic unit. As the Rayleigh number
increases, large-scale structures in the flow field begin to become disordered, entering
the high Rayleigh regime, as shown in figure 3(b). At this stage, large-scale convection
cells disappear, replaced by smaller-scale plumes that are chaotically distributed.
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Figure 3. Snapshots of the instantaneous concentration fields for the cases with (a) Ra = 107, (b) Ra = 2 × 108,
(c) Ra = 2 × 109 and (d) Ra = 1011. The porosity is fixed at 0.64. The obstacles are denoted by the white
squares.

These plumes originate from the upper and lower boundaries, and merge into larger-
scale plumes in the middle of the domain. When RaD further increases to 5.2 × 104,
as shown in figure 3(c), the characteristic structures of the concentration field comprise
two parts: one consists of two pairs of large-scale convection cells with a fan-like shape
probably caused by mechanical dispersion (Wen et al. 2018), and the other consists of
small-scale plumes generated at the boundaries, with sizes smaller than the gaps between
obstacles. Finally, for the highest Rayleigh number in this set of cases, i.e. Ra = 1011

and RaD = 2.6 × 106, the bulk area is thoroughly mixed, with clearer convection cells,
as shown in figure 3(d). Meanwhile, the extremely small-scale plumes near the boundaries
become highly turbulent. The flow field at this stage resembles classical RB convection,
with obstacles having minimal impact.

It is important to note that the chaotic structures in figure 3(b) differ from classical
turbulence, with a very low Reynolds number of approximately 2 (see table 2). In the field
of porous media convection, this type of flow is often referred to as ‘pseudo-turbulence’
(Jin & Kuznetsov 2024). By defining the pore-scale Reynolds number Rep (2.8), we
can better characterise the turbulent flows in porous media. A Darcy-type flow occurs
when Rep � 1 (Hewitt 2020; De Paoli 2023). Figure 4 presents the contour plots of Rep
corresponding to four instantaneous fields shown in figure 3. It can be observed that in the
first two cases, the magnitude of Rep is much less than 1, indicating that the flow in the
pores is not turbulent and conforms to Darcy flow. However, for the flow field in figure 4(b),
the larger-scale structures are random and chaotic, leading us to classify this as ‘pseudo-
turbulence’. For the cases in figures 4(c) and 4(d), the maxima of Rep approach or exceed
1, clearly indicating that the classical Darcy model is no longer applicable at this stage.
Furthermore, we can examine the transition process from Darcy flow to non-Darcy flow
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RaD = 2.6×102(×10–3)

RaD = 2.6×106

951 (×10–2)951

951

RaD = 5.2×103

RaD = 5.2×1040.90.50.1

(a) (b)

(c) (d )

Figure 4. Snapshots of the instantaneous pore-scale Reynolds number Rep for the cases with (a) Ra = 107,
(b) Ra = 2 × 108, (c) Ra = 2 × 109 and (d) Ra = 1011. The porosity is fixed at 0.64. The obstacles are denoted
by the white squares.

through the distribution of Rep. At RaD = 2.6 × 102, the flow field consists of relatively
stable convection cells, with alternating regions of higher and lower velocities in the bulk.
When RaD = 5.2 × 103, the chaotic distribution of Rep clearly represents the pseudo-
turbulent state at this stage. At RaD = 5.2 × 104, two pairs of large-scale convection cells
form, with higher velocities primarily appearing at the boundaries of the cells, while the
velocities in their centres are very low, as seen in the dark areas of figure 4(c). At this
stage, some smaller-scale plumes still appear in the bulk region. For RaD = 2.6 × 106, the
bulk region is essentially dominated by only two pairs of convection cells, with very low
velocities in the large central areas of these cells.

3.2. Horizontal characteristic scale
We have observed that as the Rayleigh number increases, the flow state gradually
transitions from the Darcy flow to the non-Darcy flow, and the transitional state exhibits
complex flow structures. In addition to the pore-scale Reynolds number being sufficiently
small, the condition for the existence of Darcy flow also requires that the characteristic
scale of the flow field structure be much larger than the pore scale (Hewitt 2020; De Paoli
2023). It should be noted that the horizontal scale of the plumes is generally much smaller
than their vertical scale. Therefore, in this section, we further examine the variations in the
horizontal characteristic scale of the flow field.

First, a simple method of finding the characteristic wavelength λx , or the corresponding
wavenumber kx , is the fast Fourier transform (FFT). Figure 5 shows the horizontal
wavenumber spectra for all cases with φ = 0.64. During sampling, we selected data from
the middle height region of the domain to avoid the influence of the upper and lower
boundaries. Since obstacles are arranged at z = 0.5, we selected the interval of d/2 � |z −
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Figure 5. Time-averaged spectra of the mass concentration at d/2 � |z − 0.5|� 2/D (excluding obstacles).
The sampled data for fast Fourier transform (FFT) comes from the statistical steady state of the cases with
φ = 0.64. The triangles indicate the first dominant wavenumber, while the circles indicate the second dominant
wavenumber. The wavenumber is re-scaled as k̂ = kxΓ/2π .

0.5|� 2/D, which is a region within the height of one basic unit, excluding the obstacles.
Additionally, for each case, we performed FFT on the instantaneous concentration field
for at least 100 moments over the statistical time ts and then averaged them over time.
The wavenumber is rescaled as k̂ = kxΓ/2π , thus it directly represents the number of
periodic structures within the domain width. In figure 5, we use triangles and circles to
denote the first and second dominant wavenumbers, respectively. From figure 5(a), we can
see that for the smallest Rayleigh number (Ra = 107) considered here, the wavenumber
k̂ = 4 is absolutely dominant, corresponding to the four stable pairs of convection cells
in figure 3(a). However, when Ra increases to 4 × 107 and 108, k̂ = 2 replaces k̂ = 4 as
the dominant wavenumber, with their proportions being relatively close. In addition, other
small wavenumbers, such as k̂ = 1 and k̂ = 3, also have significant shares. This indicates
that the flow field is tending towards a more chaotic state. When Ra increases to 2 × 108,
the first dominant wavenumber is k̂ = 1, corresponding to the highly chaotic and random
flow state in figure 3(b), where there is no obvious periodic structure. For the three cases in
figure 5(b), the shares of the small wavenumbers are relatively even, indicating that there
is no stable periodic structure in the flow field at this stage, and plumes of multiple scales
are distributed chaotically in both time and space. When Ra increases further to 2 × 109,
the wavenumber k̂ = 2 becomes dominant and its proportion far exceeds that of other
wavenumbers, as shown in figure 5(c). This corresponds to the two pairs of convection
cells in figure 3(c). After this, as Ra increases, the dominant wavenumber remains at
k̂ = 2 and the intensity of all modes gradually decreases. When Ra reaches 1011, the
intensity of the dominant wavenumber is quite low, implying a weak disturbance in the
concentration field, as shown in figure 3(d). Overall, as Ra or RaD increases, the dominant
wavenumber of the flow field exhibits a relatively complex, non-monotonic change, with
multiple wavenumbers interacting with each other. Previous numerical simulations under
the Darcy model indicate kx ∼ Ra0.4

D (Hewitt et al. 2014). In current pore-scale simulations,
due to the interaction between large-scale convection cells and small-scale plumes, FFT
alone cannot provide similar conclusions.

To uniformly examine the variation pattern of the characteristic scale, we calculated the
horizontal auto-correlation coefficient of the concentration field within the middle height
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Figure 6. (a) Horizontal auto-correlation function Rx (δx ) of the mass concentration at d/2 � |z − 0.5|� 2/D
(excluding obstacles). The sampled data come from the statistical steady state of each case with φ = 0.64.
The dashed lines denote the quadratic fitting of Rx within Rx � 0.9 for cases of Ra = 107 and Ra = 1011.
(b) Horizontal characteristic wavelength λx versus the Rayleigh number Ra. λx is four times the δx value at
Rx = 0 from the quadratic fitting curve shown in panel (a).

region, namely:

Rx (δx ) = 〈c(x, z, t)c(x + δx , z, t)〉zmid

〈c2(x, z, t)〉zmid

. (3.1)

For φ = 0.64 and 0.15, zmid is d/2 � |z − 0.5|� D/2; for φ = 0.36, zmid is |z − 0.5|�
l/2. Figure 6(a) plots Rx (δx ) for all cases with φ = 0.64. The colours denote different
Ra. It can be seen that when Ra = 107, Rx rapidly decreases from 1 to below 0 as δ

increases, without any inflection points. This corresponds to the periodic structure shown
in figure 3(a). If we assume that it satisfies a sinusoidal model (Hewitt et al. 2014), that
is, c = c0(z, t) sin(2πx/λx ), then we can easily find Rx (λx/4) = 0. This means that we
can extract four times the δx value at Rx = 0 as the horizontal wavelength. However,
as Ra increases, Rx gradually deflects above 0. When Ra reaches approximately 109, a
clear inflection point appears at approximately Rx = 0.8, corresponding to the emergence
of large-scale structures (see figure 3c). Before the inflection point, Rx still reflects the
characteristics of small-scale structures to some extent. Therefore, we extracted the Rx
values between 0.9 and 1 and performed a quadratic fitting, as shown by the dashed lines
in figure 6(a). The value of δx at Rx = 0 of the fitted curve can be approximately considered
as a quarter of the wavelength of the small-scale structure. Using this method, we
calculated the horizontal wavelengths for all cases, with the results plotted in figure 6(b).
For three sets of cases with different porosities, the variation of λx with Ra is similar.
That is, as Ra increases, λx first decreases rapidly, then remains unchanged, and even
slightly increases, before continuing to decrease. The intermediate plateau phase reflects
the complex transition of the flow regime from Darcy flow to RB convection. The increase
in scale with increasing Ra might be due to dispersion effects, which is also found in
experiments (Liang et al. 2018).

Previous pore-scale simulations (Gasow et al. 2020) indicate that the scale of interior
plumes in the Darcy regime increases with increasing D, namely the scale of the basic unit.
In figure 7(a), we show the variation of λx/D with RaD . It can be seen that when RaD is
small, the cases with different φ largely overlap; and as φ decreases, the wavenumber
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Figure 7. (a) Horizontal characteristic wavelength λx re-scaled by D versus the Rayleigh–Darcy number RaD .
The vertical dashed line denotes RaD = 4000. (b) λx versus the ratio of the pore space l and concentration BL
thickness. The vertical dashed line denotes l/δc = 6. Both panels are in log-log coordinates. The open coloured
symbols denote the Darcy regime, the grey symbols denote the transition regime and the solid symbols denote
the RB regime.

kx = 2π/λx and RaD gradually approach the 0.4 scaling (Hewitt et al. 2014; Gasow
et al. 2020), as indicated by the black dashed line in the figure. When RaD reaches
approximately 4000, λx/D starts to stabilise at approximately 2 and does not continue to
decrease, implying that the width of a single plume (λx/2) remains comparable to the scale
of one basic unit. This indicates that when the characteristic scale of the flow field structure
decreases to the pore scale, the Darcy flow assumption starts to fail. Over a considerable
range of RaD values thereafter (up to approximately RaD = 105), although the intrinsic
scale of the plumes decreases, the dispersion effect caused by the porous structure leads to
its actual scale always increasing to the size of the basic unit. We define the flow state at
this stage as being in the transition regime, indicated by grey symbols in figure 7. Before
this stage, the variation in characteristic scale follows the features of the Darcy flow, so we
refer to the flow state at this stage as being in the Darcy regime.

After the transition regime, λx begins to decrease continuously with increasing RaD .
At this stage, the cases with different φ separate, indicating that the characteristic scale
is no longer controlled by D. Similarly, RaD , as the control parameter that describes the
Darcy regime, is no longer applicable at this stage. From figure 3, we can observe that
the flow field enters a state similar to RB convection. Our previous work found that when
the thickness of the thermal boundary layer (BL) is less than the pore space l, the heat
transport begins to follow the classic 0.3 scaling in RB convection (Liu et al. 2020).
Therefore, we also examine the relationship between the concentration BL thickness δc
and l in current cases. Here, dimensionless thickness is defined as δc = δ∗

c /H∗ = 1/(2Sh).
Figure 7(b) shows the relationship between λx and l/δc. We find that the transition regime
does not end at l/δc = 1, but at approximately l/δc = 6, as indicated by the grey dashed
line in the figure. After this, the cases with different φ overlap again and satisfy the linear
relationship λx ∼ δc/ l. We refer to the flow state that satisfies this relationship as being in
the RB regime, indicated by solid symbols. In the next section, we will show that Sh and
Ra indeed satisfy the 0.3 scaling of RB convection in this regime.

It is natural that λx and δc satisfy a linear relationship because the scale of the plume
shedding from the boundary layer is similar to the BL thickness (van der Poel et al. 2015).
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Figure 8. Zoom-in plots of the instantaneous concentration fields near the bottom plate. The two cases have the
same Ra = 1011 and δc = 0.002, but with different porosities: (a) φ = 0.64; (b) φ = 0.36. The plumes within
the dashed ellipse undergo mechanical dispersion due to the obstacles.

However, why is λx inversely related to l? Figure 8 shows the instantaneous concentration
fields near the bottom boundary for two cases with φ = 0.64 and 0.36. These two
cases have the same Rayleigh number Ra = 1011 and their Sherwood numbers Sh are
similar, resulting in almost the same BL thickness δc, both of which are smaller than
the corresponding pore space l. From figure 8(a), we can see that when l is much larger
than δc, the plumes can grow relatively freely. However, when they encounter obstacles,
mechanical dispersion occurs, leading to an increase in the horizontal scale, as seen in
the dashed ellipses in the figure. A naive idea is to assume that one plume maintains
its volume when it encounters obstacles. If it has an intrinsic vertical scale λz , we have
λzδc = λx l, from which we can derive λx ∼ δc/ l. When l and δc are comparative, as shown
in figure 8(b), the constraint on the plumes by the obstacles becomes very strong. At this
stage, the plumes can disperse to the scale of a basic unit and the flow field is still in the
transition regime. This explains why the transition to the RB regime requires l to be much
larger than δc. Additionally, we should note that in the RB regime, although the porous
structure no longer affects the BLs and, therefore, does not affect the transport efficiency,
it still impacts the small-scale structure of the internal flow field.

4. Mass transfer and energy dissipation

4.1. Mass transport efficiency
Now, we examine the efficiency of mass transport in different regimes. In the Darcy model,
classical theory posits that when flow enters the high Rayleigh regime (hereafter referred
to as the high-RaD Darcy regime), Sh and RaD satisfy a linear relationship, i.e. Sh ∼
RaD (Howard 1966; Doering & Constantin 1998). Recent two-dimensional Darcy-scale
simulations have corroborated this conclusion well (Hewitt et al. 2014). However, both
pore-scale simulations and experiments have observed nonlinear scaling. For example,
Gasow et al.’s (2020) pore-scale simulations found Sh ∼ Ra0.8

D for φ = 0.56 and Liang
et al.’s (2018) one-sided experiments found Sh ∼ Ra0.75

D . This indicates that the actual
pore-scale structures can influence mass transfer.

In the current study, we similarly observed nonlinear relationship for Sh and RaD , as
shown in figure 9. It can be seen that within the Darcy regime, the data approach the
linear scaling (indicated by the black dashed line). However, we performed a linear fit
on the data where 1300 � RaD � 4000, namely the high-RaD Darcy regime, and found
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Figure 9. Time-averaged Sherwood number Sh versus the Rayleigh–Darcy number RaD . The cases with
φ = 0.15−0.64 are from the current study, where the obstacles are impermeable to the species, while the cases
with φ = 0.75−0.92 are from Liu et al. (2020) and Xu et al. (2023), where the obstacles are permeable and
impermeable to heat, respectively. For the current cases, the open coloured symbols denote the Darcy regime,
the grey symbols denote the transition regime and the solid symbols denote the RB regime. The yellow area
denotes the high-RaD Darcy regime with 1300 � RaD � 4000; the exponent γ is calculated by fitting the data
within this area, which equals 0.81, 0.92 and 0.97 for φ = 0.64, 0.36 and 0.15, respectively.

Sh ∼ Ra0.81
D for φ = 0.64, Sh ∼ Ra0.92

D for φ = 0.36 and Sh ∼ Ra0.97
D for φ = 0.15. These

are consistent with the conclusions of Gasow et al. (2020, 2021, 2022). However, with
further increases in RaD , our current cases reveal a transition from Sh ∼ RaD to Sh ∼ Ra0.3

(note that RaD ∼ Ra when Da remains constant). This transition begins at approximately
RaD = 4000, which is more easily observed in figure 7(a). Furthermore, within the
transition regime, the scaling exponent of Sh with RaD gradually changes, making the
initial phase of the transition regime potentially imperceptible. In figure 8 of Gasow et al.
(2022), it can also be observed that as RaD approaches 105, there is a trend of decreasing
Sh. The underlying physical interpretation of the transition may be the influence of the
porous structure on the flow structure. The transition starts when the characteristic scale
of the flow structure is comparable to the size of the basic unit. When the scale of the
plumes, or the thickness of the boundary layer, is much smaller than the size of the pore
space l, the effect of the porous media on mass transport can be neglected and Sh with
Ra satisfies the 0.3 scaling of RB convection. For smaller φ (corresponding to smaller
l), the Rayleigh number required to reach the RB regime is larger. The current cases
with φ = 0.15 have not yet reached the RB regime, which would require Ra to exceed
the order of 1013, posing a significant challenge under current computational conditions.
Finally, since thermal turbulence has long been a subject of interest among researchers
and has been extensively explored in various structures (e.g. Blass et al. 2020; Wang
et al. 2023, 2024), we compare the results obtained from the previous work (Liu et al.
2020; Xu et al. 2023) on thermal convection in porous media, as shown by the purple
lines and orange symbols in the figure. The differences between the two primarily lie in
two aspects: whether the obstacles are adiabatic and whether the obstacles are arranged
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Figure 10. (a) Time-averaged Sherwood number Sh versus the Darcy number Da. (b) Sh versus the Péclet
number Pe. (c) Ratio of the root-mean-square velocity u∗

rms to the characteristic velocity U∗
K defined by the

permeability versus Pe. (d) Ratio of the effective diffusivity κe to the molecular diffusivity κ versus Pe. The
open coloured symbols denote the Darcy regime, the grey symbols denote the transition regime and the solid
symbols denote the RB regime.

in a regular pattern. In these cases, the Prandtl number (Pr = 0.7−5.3) is significantly
smaller than the currently set Schmidt number (Sc = 400) and the porosity is also higher
(0.75 � φ � 0.92), resulting in a much earlier transition. Consequently, the flow enters the
RB regime at a relatively low Rayleigh–Darcy number. In the RB regime, the data for
both types of thermal convection align closely, indicating that the adiabatic nature and
regular arrangement of the obstacles have minimal impact on the overall thermal transport
efficiency. However, when RaD is very small, Xu et al.’s (2023) results are larger than
those of Liu et al. (2020). This is likely because irregularly arranged obstacles disrupt
the original quasi-steady structure, leading to more intense flow. This phenomenon is also
observed in our test cases, as shown in Appendix A.

We further examine the effect of the Darcy number Da itself on transport efficiency.
In figure 10(a), we plot the variation of Sh with Da under different Ra. The results
align with expectations: Sh decreases as Da decreases, indicating that transport efficiency
decreases with decreasing permeability. Moreover, a smaller Da allows the flow to remain
in the Darcy regime for a longer period. For example, at Ra = 1010, the case with
Da = 9.1 × 10−8 remains in the Darcy regime, while the case with Da = 1.7 × 10−6 has
already transitioned to the transition regime and the case with Da = 2.6 × 10−5 has entered
the RB regime. As previously mentioned, the Darcy model is valid when the characteristic
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scale of the flow field is much larger than the pore scale. This condition is equivalent to
the pore-scale Péclet number Pe being much less than 1 (Hewitt 2020; De Paoli 2023).
Here, Pe is defined as

Pe = U∗
K

√
K ∗

κ
= RaD Da1/2, (4.1)

in which U∗
K = gβΔ∗

c K ∗/ν is the characteristic buoyancy velocity in the Darcy model.
Note that Pe represents the ratio of the pore scale

√
K ∗ to the characteristic length scale

κ/U∗
K . Figure 10(b) illustrates the variation of Sh with Pe. It can be observed that for

cases in the Darcy regime, Pe is not significantly less than 1 and can reach magnitudes
of the order of O(10). However, the results in figure 7(a) indicate that for these cases,
the horizontal length scale λ∗x � 2D∗ 	 √

K ∗. This apparent contradiction arises from the
underestimation of the actual flow scale by the length scale κ/U∗

K .
To clarify this point, we examine the discrepancies between the velocity U∗

K and the
diffusivity κ compared with their actual effective values. First, we calculate the ratio of the
root-mean-square velocity u∗

rms to U∗
K , as shown in figure 10(c). It is evident that within

the Darcy regime, this ratio remains relatively constant. For higher porosities φ = 0.64
and 0.36, U∗

K slightly overestimates u∗
rms , while for the smallest porosity φ = 0.15,

U∗
K is nearly equal to u∗

rms . As the flow enters the transition regime, U∗
K increasingly

overestimates the actual velocity, signalling the breakdown of the Darcy model. Second,
we define an effective diffusivity based on the actual velocity u∗

rms and characteristic
length λ∗x , i.e.

κe = λ∗x u∗
rms . (4.2)

We compute the ratio of κe to κ , as shown in figure 10(d). The results reveal that, for all
cases within the Darcy regime, the magnitude of κe/κ lies in the range of O(10)–O(100).
This indicates that in pore-scale simulations, the effective diffusivity is generally much
larger than the molecular diffusivity, which can be essentially attributed to the effects
of mechanical dispersion. This phenomenon is the primary reason why the length scale
in simulations exceeds expectations. Note that in the transitional and RB regimes, the
dispersion effect is further amplified, implying that the length scale remains influenced by
the porous structure. This observation is consistent with the conclusions in § 3.2.

4.2. Energy dissipation rate
We further investigate the energy dissipation in different regimes. The dimensional energy
dissipation rates for concentration and kinetic energy are defined as follows:

ε∗
c = κ

∑
i

[
∂c∗

∂x∗
i

]2

, ε∗
u = 1

2
ν

∑
i j

[
∂u∗

j

∂x∗
i

+ ∂u∗
i

∂x∗
j

]2

. (4.3)

The corresponding dimensionless forms read

εc = 1√
RaSc

∑
i

[
∂c

∂xi

]2

, εu = 1
2

√
Sc

Ra

∑
i j

[
∂u j

∂xi
+ ∂ui

∂x j

]2

. (4.4)

In figure 11, we plot the vertical distribution of the two energy dissipation rates. Here, the
energy dissipation rates are time-averaged and spatially averaged over vertical intervals
of D, namely the size of the basic unit. Additionally, the vertical coordinate is also
rescaled using D. For each regime and porosity, we selected cases with similar RaD values.
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φ = 0.64 (Darcy)
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〉 D

Figure 11. Normalised dissipation rates for (a) concentration and (b) kinetic energy versus the distance from
the wall. The distance is re-scaled by the size D of the basic unit. The dissipation rates are averaged both
in time and space ((n − 1)D � z � nD, n = 1, 2, 3 . . .). The open coloured symbols denote the cases with
RaD = 2.6 × 103 (φ = 0.64 and 0.36) and RaD = 2.7 × 103 (φ = 0.15); the grey symbols denote the cases
with RaD = 2.6 × 104 (φ = 0.64), RaD = 3.4 × 104 (φ = 0.36) and RaD = 3.6 × 104 (φ = 0.15); the solid
symbols denote the cases with RaD = 2.6 × 106 (φ = 0.64) and RaD = 1.7 × 106 (φ = 0.36).

In figure 11(a), it can be observed that, after normalising by the value at the first point
of each group (denoted by superscript 1), the distribution of εc for cases with similar
RaD is consistent. The dissipation rate rapidly decreases with increasing distance from
the wall, and this decrease becomes more pronounced as RaD increases. In the Darcy
regime, εc decreases to approximately 4 % of ε1

c at a distance of three basic units from the
wall. For the transition regime and RB regime, this ratio is approximately 2 % and 0.5 %,
respectively. Therefore, concentration energy dissipation is concentrated mainly within
the distance 3D from the wall. Gasow et al. (2022) also reported that in their numerical
simulations, energy dissipation within 5 basic units of the wall accounted for 93 % of the
total dissipation. The distribution of kinetic energy dissipation, however, shows a different
pattern. As shown in figure 11(b), at lower RaD values, there is a slight increase in εu
near the centre, reaching approximately 18 % of ε1

u . This is caused by the chaotic plumes
observed in the high-RaD Darcy regime and the transition regime. Numerous plume
structures in the bulk area cause significant kinetic energy dissipation at the boundaries
of obstacles. Here, εc is less affected because the normal concentration gradient at the
obstacles’ boundaries is zero. Moreover, for different porosities, the change in εu with
RaD exhibits a lag effect. For larger porosities, as RaD increases, εu increases later in the
central region before eventually decreasing. In the RB regime, εu continues to decrease
with increasing distance from the wall. At the fifth basic unit position, it has dropped to
approximately 1 % of ε1

u .
The distribution of dissipation rates throughout the entire flow field allows us to see

the differences between the various regimes more clearly, as shown in figure 12. Here,
we selected three cases represented by circular symbols (φ = 0.64) from figure 11. In the
high-RaD Darcy regime (figures 12a and 12b), the chaotic plumes lead to an increase
in both dissipation rates. For the concentration, dissipation is more pronounced near the
boundaries and extends several basic units into the bulk region. In contrast, significant
kinetic energy dissipation shows a larger region throughout the field, with most of the
contribution coming from plume structures interacting with the boundaries of obstacles.
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RaD = 2.6×103–4 –2–6 RaD = 2.6×103–4 –2–6

RaD = 2.6×104–4 –2–6 RaD = 2.6×104–4 –2–6

RaD = 2.6×105–4 –2–6 RaD = 2.6×105–4 –2–6

(a) (b)

(c) (d )

(e) ( f )

Figure 12. Typical snapshots of (a,c,e) concentration energy dissipation rate log10εc and (b,d,f ) kinetic energy
dissipation rate log10εu for the cases with φ = 0.64. The yellow dashed lines in panels (a,c,e) denote the
concentration BL.

In the transition regime (figures 12c and 12d), plume scales become smaller and large-
scale structures gradually form. This causes concentration energy dissipation to be more
concentrated near the boundaries, with very low dissipation across a wide area in the bulk
region. In contrast, for kinetic energy dissipation, the more intense flow in the bulk region
leads to increased dissipation, even exceeding that near the boundaries. As the flow enters
the RB regime (figures 12e and 12f ), stable large-scale convective rolls result in an even
larger low-εc area within the bulk region, with dissipation concentrated mainly along the
edges of the convective rolls. At this stage, kinetic energy dissipation throughout the field
further increases and contributions near the boundaries become more significant because
of the presence of chaotic small-scale plumes near the boundaries.

In the next section, we will analyse the Sh−Ra relationship based on the Grossmann
and Lohse (GL) theory (Grossmann & Lohse 2000, 2001), which primarily focuses on
dividing energy dissipation rates into BL contributions and bulk contributions. Therefore,
here, we first examine the BL thickness. For the concentration field, we calculated
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the dimensionless BL thickness using δc = 1/(2Sh). In figure 12(a,c,e), concentration
boundary layers (BLs) are marked with yellow dashed lines. It can be observed that, in
the Darcy regime, δc is approximately 0.028, exceeding the pore width l, but smaller than
the basic unit size D. In this case, the dissipation rate within BLs is relatively large. In
the transition regime, δc is reduced to less than l, approximately 0.008. In the RB regime,
δc becomes very small, approximately 0.004, resulting in a minimal contribution to the
overall dissipation. For the kinetic BL, due to the no-slip condition at the obstacles, the
BL thickness at both the upper and lower plates is always less than l. In our subsequent
theoretical analysis, we consider that BLs exist at the boundaries of all obstacles
throughout the field. The definitions of the bulk region and the BL region differ from
the traditional ones in this context. Specific details will be introduced in the next section.

5. Application of GL theory
The key idea of GL theory is to decompose the dissipation rates into contributions from
the BLs and the bulk region, i.e.

ε∗
u = ε∗

u,BL + ε∗
u,bulk, ε∗

c = ε∗
c,BL + ε∗

c,bulk . (5.1)

Depending on the regime, the dissipation rates may be dominated by the BL part or by
the bulk part, leading to the corresponding estimation formulae. Moreover, in a closed RB
system, there exist exact relations (Grossmann & Lohse 2000, 2001):

〈ε∗
u 〉V = ν3

H∗4 (Sh − 1)RaSc−2, 〈ε∗
c 〉V = κ

Δ∗
c

H∗2 Sh. (5.2)

Here, the overline represents time-averaging and the bracket 〈·〉V indicates averaging over
the entire domain. It should be noted that the presence of obstacles does not affect the
validity of the exact relations (5.2).

In our previous work on thermal convection in porous media (Liu et al. 2020), we
found that additional laminar-type BLs exist in the channels between obstacles, leading
to the conclusion that kinetic energy dissipation is dominated by the numerous obstacle
BLs throughout the domain. By combining the corresponding estimation formula with the
exact relation (5.2), we obtain

Sh ≈ α · φ
(

H∗

l∗

)2

Sc2Re2Ra−1 + 1. (5.3)

Here, α is an empirical coefficient. Note that we have replaced the Nusselt number Nu and
the Prandtl number Pr in the original formula ((5.3) of Liu et al. 2020) with the Sherwood
number Sh and Schmidt number Sc, respectively, and the Reynolds number Re is defined
based on the domain height H∗ (2.5). More details can be found in that paper. Although
this formula was derived for thermal convection, it theoretically also holds for the current
cases with large Sc. In figure 13, we plot the relationship between Sh and Ra, along with
(5.3) represented by the solid lines. Here, we set the coefficient α to 10 (compared with
8 by Liu et al. 2020). It can be observed that (5.3) matches the DNS results remarkably
well across almost all regimes, including the high-RaD Darcy regime, transition regime
and RB regime. Together with previous work, (5.3) demonstrates high universality and is
valid over a wide range of Sc, Ra and φ.

Nevertheless, (5.3) does not directly provide the relationship between Sh and Ra, as it
also includes the Reynolds number Re. Therefore, we need to further derive a new equation
based on concentration dissipation. For large Sc, as Ra increases, the flow transitions from
the so-called I∞ regime to I I I∞ regime (Grossmann & Lohse 2001), where εc shifts
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φ = 0.64 (Darcy)

φ = 0.36 (Transitional)

φ = 0.64 (Transitional)

φ = 0.15 (Transitional)

φ = 0.36 (RB)

φ = 0.64 (RB)

φ = 0.15 (5.3)

φ = 0.36 (5.3)

φ = 0.64 (5.3)

Figure 13. Time-averaged Sherwood number Sh versus the Rayleigh number Ra. The open coloured symbols
denote the Darcy regime, the grey symbols denote the transition regime and the solid symbols denote the RB
regime. The solid lines denote (5.3) with α = 10.

from being BL-dominated to bulk-dominated, consistent with our previous observations
(figure 12). In the high-RaD Darcy regime, εc is dominated by BLs and the governing
equation for concentration within BLs can be simplified from (2.1b) as follows:

u∗
x∂x c∗ + u∗

z ∂zc∗ = κ∂2
z c∗. (5.4)

The magnitudes of the two terms on the left-hand side of the above equation are
comparable due to the incompressibility condition (2.1c) (Grossmann & Lohse 2000).
However, in contrast to the classical RB configuration, the presence of the porous medium
leads to the formation of numerous proto-plumes within the boundary layer, resulting in
the magnitudes of u∗

x and u∗
z being comparable. This is discussed in detail in Appendix B.

In summary, we can compute the order of magnitude of either term on the left-hand side of
(5.4) to represent the overall magnitude. By using the balance between u∗

z ∂zc∗ and κ∂2
z c∗

and considering ∂z ∼ 1/δ∗
c , we can obtain

u∗
z

δ∗
c

∼ κ

δ∗2
c

. (5.5)

If we define a vertical Reynolds number as Rez = 〈u∗
z 〉rms

BL H∗/ν, where 〈·〉rms
BL denotes

the root-mean-square value calculated over the concentration BL region (including the
obstacles), and consider Sh = H∗/(2δ∗

c ), we can conclude from (5.5) that

Sh ∼ RezSc. (5.6)

In Appendix B, we demonstrate that Sh and Rez indeed follow a linear scaling in the
high-RaD Darcy regime for various φ.

If Rez ∼ Re, then by combining (5.3) and (5.6), and considering Sh 	 1, we can
obtain Sh ∼ Ra, consistent with the classical theory (Howard 1966). However, the vertival
velocity within BLs originates from the proto-plumes. These plumes enter the bulk
region and evolve into mega-plumes. During this process, the mechanical dispersion
influences the changes in vertical velocity. Consequently, Rez ∼ Re does not always hold
when the porous structure has an impact on it. In figure 14(a), we plot the relationship
between Sh and Re. By fitting the data points from the high-RaD Darcy regime, the
corresponding Sh ∼ Reζ scaling is obtained, with exponents of 0.90, 0.96 and 0.98 for
the three porosities. This suggests a nonlinear scaling Rez ∼ Reζ . In the RB regime, the
data approach the Sh ∼ Re0.5 scaling, which can be derived from the classical GL theory

1009 A10-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.213


Journal of Fluid Mechanics

108 109 1010 1011

10

20

30

40

10–1 100 101 102 103

100

101

102

103

(a) (b)

Sh ∼ Reζ
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φ = 0.15 (Darcy)

φ = 0.15 (Transitional)

φ = 0.36 (Darcy)

φ = 0.36 (Transitional)

φ = 0.64 (Darcy)

 (5.7)

Gasow et al. 2022

φ = 0.64 (Transitional)

φ = 0.36 (RB)

φ = 0.64 (RB)

Sh

Re Ra

Figure 14. Time-averaged Sherwood number Sh versus (a) the time-averaged Reynolds number Re and (b) the
Rayleigh number Ra. The open coloured symbols denote the Darcy regime, the grey symbols denote the
transition regime and the solid symbols denote the RB regime. The exponent ζ in panel (a) is calculated by
fitting the DNS data, which equals 0.90, 0.96 and 0.98 for φ = 0.64, 0.36 and 0.15, respectively. In panel (b),
only cases in the high-RaD Darcy regime are presented; the dashed line is calculated using (5.7) with ζ derived
from panel (a); the solid line is given by Gasow et al.’s (2022) (15), where the geometric parameter a takes
values of 0.0125, 0.01 and 0.0092 for φ = 0.64, 0.36 and 0.15, respectively.

in the I I I∞ regime (Grossmann & Lohse 2001). Substituting these two scaling laws into
(5.3) and considering Sh 	 1, we can obtain

Sh ∼ Raγ , γ =

⎧⎪⎪⎨
⎪⎪⎩

ζ

2 − ζ
high-RaD Darcy regime,

1
3

RB regime.
(5.7)

Here, ζ is an empirical coefficient related to the mechanical dispersion effect, reflecting
the correlation between the vertical velocity within the BLs and the global velocity. As
porosity decreases, ζ gradually approaches 1. Substituting its specific values into (5.7), we
obtain the γ values for the three porosities as 0.82, 0.92 and 0.96, respectively, which
is consistent with the previous results (see figure 9). It should be noted that Gasow

et al. (2022) also proposed an empirical correlation, i.e. Sh = aRa1−0.2φ2

D + 1, where a
is a pore-scale geometric parameter. In figure 14(b), we plot Sh−Ra for the cases in the
high-RaD regime, meanwhile, we show the results of (5.7) (denoted by dashed lines) and
Gasow et al. (2022) (denoted by solid lines). It can be seen that both formulae agree
well with the simulation results, while the exponents γ predicted by Gasow et al. (2022)
are slightly higher. Moreover, the range of the fitted coefficient a is consistent with the
interval obtained by Gasow et al. (2022). Overall, both formulae suggest that the pore-
scale structure influences mass transport. What is particularly notable about the current
study is that we successfully extend the GL theory to porous medium convection and
provide a physical explanation for the nonlinear scaling of mass transport.

6. Conclusion
In summary, we conducted a series of 2-D pore-scale simulations to investigate density-
driven convection in porous media. The porous structure was modelled by arranging
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obstacles in a regular pattern within the RB region, with porosities φ of 0.64, 0.36 and
0.15. With the Schmidt number set to 400, owing to the enhanced capabilities of the dual-
resolution technique, we were able to set the values of the Rayleigh–Darcy number RaD
over a broad range, form 102 up to 106. As RaD increases, the flow regime sequentially
transitions through the Darcy regime, transition regime and RB regime. Correspondingly,
the Sh ∼ Raγ

D relationship transitions from a sublinear scaling to the classic 0.3 scaling
seen in RB convection. The exponent γ in the high-RaD Darcy regime increases with
decreasing φ, i.e. γ = 0.81, 0.92 and 0.97 for φ = 0.64, 0.36 and 0.15, respectively. A
detailed analysis of the flow field structure revealed that when the plume width in the bulk
region decreases to a scale comparable to the basic unit size D, the pore-scale structure
begins to influence the flow and the Darcy model starts to fail. The corresponding critical
RaD is approximately 4000 for all porosities. The flow finally enters the RB regime when
the concentration BL thickness δc is less than 1/6 of the pore space l, meaning that
the plume width is much smaller than the spacing between obstacles. At this stage, the
porous structure has minimal impact on mass transport. Using GL theory, we successfully
explained the changes in the scaling of Sh ∼ Raγ

D across different regimes and obtained
a unified formula (5.7), which shows good agreement with the DNS results. We found
that in the high-RaD Darcy regime, the variation in γ may originate from the mechanical
dispersion, which causes velocity changes during plume development. Our findings shed
some new light on the nonlinear scaling that emerges in mass transport when considering
pore-scale effects.

In the Darcy regime, as RaD increases, the concentration field transitions from large-
scale convection rolls to chaotic small-scale plumes. At this stage, the pore-scale Reynolds
number remains much smaller than 1, indicating a ‘pseudo-turbulent’ state. As RaD further
increases, the flow enters the transition regime, where large-scale periodic structures re-
emerge, accompanied by fan-shaped structures caused by the dispersion effect. When
RaD becomes sufficiently high, the flow enters the RB regime and the entire flow field
consists of both very small-scale plumes and large-scale convection rolls. By calculating
the horizontal auto-correlation coefficient of the concentration field, we can systematically
examine the variation in the horizontal characteristic length scale of small-scale structures.
In the Darcy regime, when the horizontal wavelength λx is re-scaled by D, the cases
with different φ collapse and the wavenumber approximately follows kx ∼ Ra0.4

D . In the
transition regime, λx remains roughly constant at 2D, indicating that individual plumes
tend to remain within one basic unit. In the RB regime, although the porous structure has
little effect on mass transport, λx becomes proportional to δc and inversely proportional
to l. This is primarily due to the horizontal dispersion of the plumes after encountering
obstacles. Further investigation revealed that mechanical dispersion affects all regimes,
resulting in the actual characteristic scale λx being larger than the estimated value κ/U∗

K .
The above results indicate that, in porous media convection, the basic unit size D is a
crucial intrinsic length scale. Similarly, when the vertical coordinate z is re-scaled by
D, the vertical profiles of the concentration dissipation rate εc exhibit consistency at the
same RaD . However, the kinetic energy dissipation rate εu shows a certain degree of lag,
mainly due to the additional kinetic energy dissipation caused by the boundaries of internal
obstacles.

The starting point of our current work is geological CO2 sequestration, where
understanding the settling rate of CO2 in saline aquifers is of significant practical
importance. However, the current simulations still have some discrepancies with real-
world conditions, including the non-random distribution of obstacles, the flow being
confined to 2-D, and the fixed salinity distribution on both the upper and lower boundaries
(where the real scenario is closer to one-sided convection). Despite these limitations,

1009 A10-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.213


Journal of Fluid Mechanics

φ Ra RaD Γ Nx (mx ) Nz(mz) td ts Sh Re ΔSh (%)

0.64 1 × 107 2.6 × 102 2 1280(1) 640(1) 10 000 3000 6.673 0.238 0.5
0.64 1 × 108 2.6 × 103 2 1280(1) 640(1) 5000 5000 24.06 1.391 0.4
0.64 1 × 109 2.6 × 104 2 1280(3) 640(3) 5000 2000 61.97 6.760 1.8
0.64 1 × 1010 2.6 × 105 2 1280(4) 640(4) 5000 2000 120.3 29.92 1.1
0.64 1 × 1011 2.6 × 106 2 1536(6) 768(6) 2500 1000 212.8 118.8 1.2

Table 3. Numerical details for the cases with randomly arranged obstacles. Columns from left to right are: the
porosity, the Rayleigh number, the Rayleigh–Darcy number, the aspect ratio, the resolutions with refined factors
in the horizontal and vertical directions, the simulation time before the statistical stage, the statistical time,
the statistical Sherwood number, the statistical Reynolds number, and the relative difference of the statistical
Sherwood numbers calculated at the two plates.

our current configuration provides a statistically steady state, allowing us to draw
some meaningful conclusions. This is helpful for understanding convection in porous
media itself, which can ultimately be applied to CO2 sequestration. Our study also
provides valuable insights into thermal convection in porous media. Through comparisons
presented in this paper, it can be observed that, regardless of whether the obstacles are
adiabatic, heat transfer tends to transition into the RB regime earlier and the breakdown of
the Darcy model occurs at relatively low Rayleigh–Darcy number. This is likely due to the
higher thermal diffusivity. We are also working on the case where obstacles are randomly
distributed in a 3-D setting.

Funding. This work was supported by the National Natural Science Foundation of China under grant nos.
11988102 and 12402255, the Postdoctoral Fellowship Program of CPSF under grant no. GZC20231219, the
New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER
PRIZE. Y.Y. also acknowledges the partial support from the Laoshan Laboratory Project under grant no.
LSKJ202202000.
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Appendix A. Results with randomly distributed obstacles

This appendix presents the DNS results with randomly distributed obstacles. We simulated
five cases with φ = 0.64 and Ra ranging from 107 to 1011. The size of the obstacles
remains d = 0.04 and the minimum spacing between them is lmin = 0.008. The resolution
we set ensures that there are at least five grid points within lmin . Table 3 summarises
the numerical details of all cases. For simplicity, the permeability is estimated to be the
same value as that of the obstacles arranged in a regular pattern. In figure 15, we plot
variation of Sh and Re with Ra obtained from these cases, and we also include the
results from the cases with aligned obstacles for comparison. It can be observed that
the overall trends are consistent between the two. In the Darcy regime, Sh and Re of
the cases with randomly distributed obstacles are slightly higher than those with aligned
obstacles, but in the transitional and RB regimes, the results of both are nearly identical.
For the scaling of Sh ∼ Raγ in the high-RaD Darcy regime, it can be predicted that the
exponent γ will be smaller for randomly distributed obstacles. The differences in the flow
field structures between the two distributions are more significant, as shown in figure 16.
Compared with the flow field with aligned obstacles in figure 3, large-scale structures
never disappear when obstacles are randomly distributed and the dispersion effects are
more prominent across all regimes. For the quasi-steady regime (RaD = 2.6 × 102), the
originally regular four pairs of convection cells (figure 3a) are disrupted by randomly
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107 109 1011 107 109 1011
100

101

102

10–2

100

102

Random Aligned

(a) (b)

Ra Ra

Sh Re

Figure 15. (a) Time-averaged Sherwood number Sh and (b) the time-averaged Reynolds number Re versus the
Rayleigh number Ra.

RaD = 2.6×1020.5 1.00 RaD = 2.6×1030.5 1.00

RaD = 2.6×1040.5 0.60.4 RaD = 2.6×105

(a) (b)

(c) (d )

0.5 0.60.4

Figure 16. Snapshots of the instantaneous concentration fields for the cases with randomly arranged obstacles:
(a) Ra = 107; (b) Ra = 108; (c) Ra = 109; and (d) Ra = 1010. The porosity is fixed at 0.64. The obstacles are
denoted by the white squares.

distributed obstacles, transforming into two pairs of irregular convection cells. As a result,
both Ra and Re increase. Starting from the high-RaD Darcy regime (RaD = 2.6 × 103),
there is only one pair of large-scale convection rolls in the flow field. In summary, the
distribution of obstacles does have an impact on mass transport efficiency and flow field
structure. Specifically, the relationship between Sh and Ra further deviates from linearity
in the high-RaD Darcy regime with the presence of randomly distributed obstacles. More
systematic simulations and analyses will be conducted in the future.
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Figure 17. Zoom-in plots of the instantaneous velocity fields near the bottom plate: (a) horizontal velocity
ux ; (b) vertical velocity uz . The case has RaD = 2.6 × 103 and φ = 0.64. The dashed yellow lines denote the
concentration BLs.
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RaD

Sh ∼ Rez

Re
z/

Re
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Sh
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φ = 0.15 φ = 0.36 φ = 0.64

Figure 18. (a) Ratio of the vertical Reynolds number Rez to the horizontal Reynolds number Rex versus the
Rayleigh–Darcy number RaD . Both Reynolds numbers are calculated within the BL region and time-averaged.
(b) Time-averaged Sherwood number Sh versus Rez . Only cases in the high-RaD Darcy regime are presented.

Appendix B. Supplementary information on the GL theory
This appendix provides additional details for § 5. Figure 17 illustrates the velocity
field near the boundary for the case with RaD = 2.6 × 103 and φ = 0.64. The yellow
dashed lines mark the position of the concentration BLs. It can be observed that
numerous proto-plumes exist around the boundary layer. Due to the porous medium,
these plumes exhibit both horizontal and vertical movements, resulting in horizontal and
vertical velocities of comparable magnitudes. We calculated the ratio of vertical Reynolds
number Rez = 〈u∗

z 〉rms
BL H∗/ν to horizontal Reynolds number Rex = 〈u∗

x 〉rms
BL H∗/ν within
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the boundary layer for cases in the high-RaD Darcy regime, as shown in figure 18(a).
The results indicate that for different porosities, Rez and Rex are of the same order of
magnitude, although Rez is relatively smaller. The ratio decreases with increasing Ra.
Furthermore, based on the incompressibility condition ∂x u∗

x + ∂zu∗
z = 0, the magnitudes

of u∗
x∂x c∗ and u∗

z ∂zc∗ are also comparable. We calculated these two terms from the DNS
data and verified that their values are close. Finally, figure 18(b) illustrates the relationship
between Sh and Rez in the high-RaD Darcy regime. By fitting the DNS data points, it
can be observed that Sh and Rez indeed follow a linear scaling for various φ, thereby
validating (5.6).
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