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This investigation explores the potential formation of a relaxed equilibrium state,
specifically the quadruple Beltrami state, in a three-component dusty plasma consisting
of electrons, ions and negatively charged dust particles. This equilibrium state is derived
by employing momentum-balanced equations along with Ampere’s law. The quadruple
Beltrami state is a composite of four Beltrami states, each associated with four distinct
eigenvalues. Using the variational principle, we obtained the same relaxed state based on
the system’s constraints, which include magnetofluid energy, and the helicity of electrons,
ions and dust particles. The unified flow is also derived. Dynamo action is investigated in
two configurations: a rectangular geometry and a rectangular geometry with an internal
conductor. Small-scale turbulent dynamo behaviour is observed in the former, while
large-scale turbulent dynamo effects are noted in the latter. The magnitude of the magnetic
field is found to be greater in the configuration with an internal conductor. Additionally,
flow profiles are plotted as functions of Beltrami parameters and density variations of
plasma species. This study contributes to the understanding of relaxation theory and the
underlying physics of systems with an internal conductor, such as Saturn (planetary rings
around a magnetosphere) and Jupiter magnetosphere, Uranus, Neptune, etc.
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1. Introduction

The relaxed structures epitomize a self-organized phenomenon in plasma termed the
Beltrami state. This state, characterized by its force-free nature, signifies that the system’s
current density (∇ × B = J ) aligns parallel to its magnetic field B (Shivamoggi 2011),
expressed as

J = λB, (1.1)

where λ is a constant (Woltjer 1958). It encompasses diverse structural forms like twisted,
helical and spiral configurations observed across different systems. The Beltrami field
arises in various plasma models like the reversed field pinch (Ogawa 2002) and field
reversal configurations (Sun et al. 2017). Vortex formations like hurricanes (Nebbat &
Annou 2010) serve as illustrations of the Beltrami state within Earth’s atmosphere. It
represents a divergence-free vector field (Yoshida & Giga 1990) governing incompressible
flows. Taylor’s relaxation model (Taylor 1974, 1986) elucidates this phenomenon within
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2 S.M. Gondal

single-fluid plasma systems, known as magnetohydrodynamics (MHD). It posits that the
rate of energy decay surpasses that of helicity, symbolizing the structural complexity of
the magnetic field within the system. The Beltrami field aids in elucidating the traits
observed in solar coronal structures (Gold & Hoyle 1958), with analogous structures
found in various astrophysical entities. These include twisted flux tubes, which have been
extensively researched. Additionally, the storage of magnetic energy via helical winding
(Salingaros 1990) in toroidal configurations has been explored within the context of
force-free fields. However, the single Beltrami field falls short in explaining the relaxed
structures observed in tokamaks.

In the study of multi-species plasmas, it has been observed that the vorticity associated
with each fluid imposes constraints (Avinash 1991, 1992) on the system, indicating a
non-force-free relaxed state. For systems consisting of two fluids, such as electrons
and ions, a relaxation theory proposed by Steinhauer & Ishida (1998) describes energy
minimization while maintaining helicity constraints. This theory predicts the emergence
of pressure and strong flow, phenomena absent in single-fluid plasmas.

In the context of Hall magnetohydrodynamic (HMHD) plasmas, Mahajan & Yoshida
(1998) and Yoshida & Mahajan (1999) introduced a relaxation theory known as the
double Beltrami state. A new framework based on variational principles (Yoshida &
Mahajan 2002) was also presented, considering three invariants: energy, magnetic helicity
and generalized helicity involving vorticity. In discussions related to two-fluid plasmas
(Yoshida et al. 2001) and multi-fluid plasmas (Mahajan & Yoshida 2000; Yoshida et al.
2001; Guzdar, Mahajan & Yoshida 2005), there has been a focus on high-confinement
boundary layers, which are associated with increased pressure within the plasma system.

The relaxation theory was extended to higher-order Beltrami states, including the triple
Beltrami state (Bhattacharyya, Janaki & Dasgupta 2003; Gondal & Iqbal 2021a) and then
the quadruple Beltrami state (Shatashvili, Mahajan & Berezhiani 2016), through the use
of a multi-fluid plasma system (Gondal et al. 2017; Gondal & Iqbal 2020a; Gondal 2020b;
Gondal & Iqbal 2020c). The triple Beltrami state is composed of three individual Beltrami
states, each with its own scale parameter, while the quadruple Beltrami state is formed
from four distinct Beltrami states, each with its own scale parameter.

Mathematical models have been developed to explain catastrophic transformations,
showing how the double Beltrami state transitions into single Beltrami states in two-fluid
(Ohsaki et al. 2001, 2002) and three-fluid plasma systems (Gondal et al. 2019).
Additionally, the double Beltrami state has been applied to model solar eruptions (Kagan
& Mahajan 2010). The Beltrami flow has been used to investigate phenomena such as
spinning black holes (Bhattacharjee & Feng 2020a) and accretion disks (Bhattacharjee &
Stark 2020b). Similarly, the mathematical model of the quadruple Beltrami state in a slab
geometry has been applied to elucidate the formation of relaxed structures in the Earth’s
mesosphere (Gondal 2020b).

In this current research, our objective is to investigate the relaxed structures within
Saturn’s atmosphere using the mathematical model of the quadruple Beltrami state in
a coplanar rectangular geometry. This geometry mirrors the dual configuration of Saturn’s
magnetosphere and its rings.

The dual configuration elucidates the role of an internal conductor within a plasma
system. The presence of an internal conductor coil introduces an innovative approach to
relaxation theory, particularly under conditions of high pressure and flow. Experimental
investigations into the presence of an internal conductor in a plasma system have been
conducted through various means, such as confining turbulent plasmas using internal
coils (Yoshida et al. 2004) or linear mirror devices (Valanju, Mahajan & Quevedo 2006),
and studying the impact of biased electrodes (Saitoh et al. 2004a, b). Yoshida et al.
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(1998) examined plasma confinement using the internal coil device, while in cylindrical
configurations (Yoshida et al. 1999), solutions for the single-Beltrami-state case have been
observed. The magnetic confinement of several devices employing internal coils (Yoshida
et al. 2007) has been studied both theoretically (Yoshida et al. 1999; Nakashima et al.
2002; Gondal & Iqbal 2021b; Gondal 2022) and experimentally (Saitoh et al. 2004c).

Our study also delves into the dynamo mechanics present in both geometries. We
consider a system consisting of three fluids: electrons, ions and negatively charged
dust particles. The behaviour of the magnetic and flow fields under different conditions
suggests distinct dynamo mechanisms at play. In the present work, it is observed, in a
simple rectangular geometry (Saturn’s magnetosphere), where the magnetic field is weaker
than the flow field, the dynamics align with a fast dynamo process. In such a regime,
where fluid motions are dominant, rapid stretching and folding of magnetic field lines
can efficiently amplify the field, a characteristic feature of fast dynamos. In contrast,
rectangular geometry with an internal conductor (Saturn’s E ring) presents a scenario
where the magnetic field is stronger than the flow field. This configuration supports a
slow dynamo, where the stronger magnetic field constrains the fluid motions, leading to a
more organized interaction and slower amplification of the magnetic field. The presence
of an internal conductor in the ring further enhances the magnetic field strength compared
with the simpler rectangular geometry of the magnetosphere. The investigation aims to
explore the characteristics of both the composite flow and the individual fluids within the
system. Additionally, this exploration involves varying the Beltrami parameters and the
concentration of the plasma species. To elucidate the dynamo mechanics and the influence
of plasma species velocities within the Saturn atmosphere, all graphs are plotted using
plasma parameters derived from real Saturnian plasma (Shohaib et al. 2022; Wahlund
et al. 2009). This work may also prove beneficial in studying and comprehending the
physics of planets with dual configurations, such as Jupiter (Yoshida et al. 2004), Neptune,
Pluto, near-Earth plasma sheet (Wang, Cao & Liu 2016), ionosphere (Wahlund et al. 1998;
Mahmood & Ur-Rehman 2013) etc. Additionally, it may offer insights into explaining
nuclear fusion devices featuring an internal conductor.

The manuscript is structured as follows.

I. Introduction: we outline the problem.
II. Basic equations: we present a set of equations to elucidate the dynamics of plasma
species.
III. Formalism: the formalism of the relaxed equilibrium system is discussed.
IV. Flows: we discuss the unified flow and the flows of individual components of
plasma species.
V. Constraints: we elaborate on the constraints of the system and the presentation of
the generalized Bernoulli conditions
VI. Solutions: two sets of solutions for the relaxed quadruple Beltrami state are
derived.
VII. Results: we display the magnetic and flow profiles of the vortex pattern based
on Beltrami parameters and the impact of plasma species density variation.
VIII. Conclusion: we conclude the work.

2. Basic equations

We investigate the relaxed structures within a collisionless dusty plasma, taking into
account three plasma species: electrons (se), ions (si) and negatively charged dust particles
(sd). Additionally, Zsd denotes the charge state of the negatively charged dust particles,
while the ions are assumed to be singly ionized. It is presumed that the plasma equilibrium
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condition is fulfilled, which can be expressed as

Zsd nsd + nse = nsi, (2.1)

here, nse , nsi and nsd are the symbols to represent the equilibrium densities of the
components: electrons, ions and dust particles, respectively. The masses assigned to the
plasma constituents, encompassing electrons, ions and dust particles, are designated as mse ,
msi and msd , respectively. The normalized system of governing fluid equations, designed to
elucidate the dynamics of the relaxed equilibrium structures, is presented as follows:

∂

∂t

(
U se − A

) + ∇ψse − U se × (∇ × U se − H
) = 0, (2.2)

∂

∂t

(
U si + Msi A

) + ∇ψsi − U si ×
(∇ × U si + Msi H

) = 0, (2.3)

∂

∂t

(
U sd − Zsd Msd A

) + ∇ψsd − U sd × (∇ × U sd − Zsd Msd H
) = 0, (2.4)

whereψse = −φ + pse + U2
se
/2,ψsi = Msiφ + (Msi/Nsi)psi + U2

si
/2 andψse = −Zsd Msdφ +

(Msd/Nsd)psd + U2
sd
/2, while the mass ratios of the plasma components are Msd = mse/msd

and Msi = mse/msi . In the given context, U j (j = se, si, sd) represent the electrons,
ions and dust particles velocities, respectively, normalized by the Alfvén velocity
VA = B0/

√
μ0nse mse (B0 is the arbitrary value of magnetic field and μ0 represents the

permeability of free space). The pressure pj is scaled by B2
0/μ0. The electric field E can

be described as follows:

E = −∇φ − ∂A
∂t
. (2.5)

The vector potential A which can be defined as H = ∇ × A, where H is the magnetic
field and the electrostatic scalar potential φ are normalized by λse B0 and λse B0VA,
respectively. The units of time and space are in terms of electron plasma period (inverse
of electron gyrofrequency ω−1

p ) and electron skin depth λse (Iqbal & Shukla 2012), where
ω−1

p = VA/λse and λse = VA/ωp = √
mse/μ0nse e2. The plasma frequency (Miyamoto 1980)

corresponding to ωp is expressed as eB0/mse , where e is the charge with a value of
1.6 × 10−19 C. It is important to note that the effects of dust charge fluctuations, acting
as a source of dissipation and contributing to the formation of shock structures, are
not the primary focus of our present consideration. Upon using the curl operator on
the dynamic equations presented in (2.2)–(2.4), we derive the subsequent set of vortex
dynamic equations:

∂

∂t

(∇ × U se − H
) − ∇ × {

U se × (∇ × U se − H
)} = 0, (2.6)

∂

∂t

(∇ × U si + Msi H
) − ∇ × {

U si ×
(∇ × U si + Msi H

)} = 0, (2.7)

∂

∂t

(∇ × U sd − Zsd Msd H
) − ∇ × {

U sd × (∇ × U sd − Zsd Msd H
)} = 0, (2.8)

and we ultimately reach the following equation:

∂Ω j

∂t
− ∇ × [V j × Ω j] = 0, (2.9)

which represents the compact form of (2.6)–(2.8). In this context, Ω j(j = se, si, sd), (Ω se =
∇ × U se − H , Ω si = ∇ × U si + Msi H and Ω sd = ∇ × U sd − Zsd Msd H ) denote the

https://doi.org/10.1017/S0022377824001673 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001673


Application of quadruple Beltrami state on Saturnian dusty plasma 5

generalized vorticities, and V j

V j = U j, (2.10)

represents the velocities of the plasma components. To complete the system, Ampere’s law
(Mahajan & Yoshida 1998; Mahajan & Lingam 2020; Shatashvili et al. 2016; Gondal et al.
2017; Gondal & Iqbal 2020a; Gondal 2020b; Gondal & Iqbal 2020c) is applied, yielding
the subsequent expression:

U si = 1
Nsi

(∇ × H + U se + Zsd Nsd U sd

)
, (2.11)

where the symbols Nsi and Nsd are defined as Nsi = nsi/nse and Nsd = nsd/nse , the ratio of
the ions to electrons and dust particles to electrons, respectively.

3. Relaxed Beltrami equation in a dusty plasmas

By adhering to the Mahajan–Shatashvili (Shatashvili et al. 2016) methodology, we
derive the Beltrami condition, which is the steady-state condition of (2.9),

ΛjΩ j = U j. (3.1)

Expressed in terms of the plasma components – electrons, ions and dust particles – the
equilibrium Beltrami condition can be characterized as

ase U se = ∇ × U se − H , (3.2)

asi U si = ∇ × U si + Msi H , (3.3)

asd U sd = ∇ × U sd − Zsd Msd H , (3.4)

where the symbols ase , asi and asd represent the vorticity to the flow ratio of the plasma
particles – electrons, ions and dust particles, respectively. The inverse of these symbols
are also termed as Beltrami parameters (Λj = 1/aj, where j = se, si and sd) (Gondal et al.
2017). Obtaining the flow of electrons U se is achieved by inserting (2.11) into (3.3),

U se = K1 (∇×)2 H − K2∇ × H + K3H + K4U sd , (3.5)

where K1 = (asi − ase)
−1, K2 = asi/K1, K3 = (1 + Nsi Msi + Z2

sd
Nsd Msd)/K1 and K4 =

Zsd Nsd(asd − asi)/K1. Substituting the value of U se from (3.5) into (3.2) provides the
expression for the flow of dust particles, which can be expressed as

U sd = l1 (∇×)3 H − l2 (∇×)2 H + l3∇ × H − l4H , (3.6)

where l1 = [Zsd Nsd(ase − asd)(asd − asi)]
−1, l2 = (ase + asi)/l1, l3 = (ase asi + 1 + Nsi Msi +

Z2
sd

Nsd Msd)/l1 and l4 = (asi + (ase + asi − asd)Z
2
sd

Nsd Msd + ase Nsi Msi)/l1. Employing the
aforementioned (3.6) into (3.4) ultimately yields the relaxed equilibrium state, recognized
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as the quadruple relaxed Beltrami state,

(∇×)4 H − b1 (∇×)3 H + b2 (∇×)2 H + b3∇ × H + b4H = 0, (3.7)

where

b1 = ase + asi + asd , (3.8)

b2 = ase asi + asi asd + asd ase + 1 + Nsi Msi + Z2
sd

Nsd Msd , (3.9)

b3 = Nsi Msi

(
asd + ase

) + Z2
sd

Nsd Msd

(
ase + asi

) + (
asi + asd

) + ase asi asd , (3.10)

b4 = Nsi Msi asd ase + Z2
sd

Nsd Msd ase asi + asi asd . (3.11)

The equilibrium state, as indicated by (3.7), in a three-component dusty plasma is a
composite of four distinct single equilibrium Beltrami states. The overall solution of (3.7)
can be characterized in terms of the following eigen expression (Shatashvili, Mahajan &
Berezhiani 2019):

∇ × Bδ = λδBδ, (3.12)

where the eigenfunction is Bδ and the eigenvalue is λδ. Here, δ = 1, 2, 3, 4 describes four
states having four individual eigenvalues. Equation (3.12) can also be interpreted as

(curl −λ1) (curl −λ2) (curl −λ3) (curl −λ4)H = 0, (3.13)

by expressing the operator (∇×) as ‘curl’. In the above expression, H = H 1 + H 2 +
H 3 + H 4 and λ1, λ2, λ3 and λ4 represent the four distinct eigenvalues. Solving (3.13)
yields the same fourth-order equation as previously derived in (3.7),

(∇×)4 H − b1 (∇×)3 H + b2 (∇×)2 H + b3∇ × H + b4H = 0, (3.14)

in the above expression, b1, b2, b3 and b4 are the constants, which can be read as in terms
of eigenvalues,

b1 = λ1 + λ2 + λ3 + λ4, (3.15)

b2 = λ1λ2 + λ2λ3 + λ3λ4 + λ4λ1 + λ1λ3 + λ2λ4, (3.16)

b3 = λ1λ2λ3 + λ2λ3λ4 + λ3λ4λ1 + λ4λ1λ2, (3.17)

b4 = λ1λ2λ3λ4. (3.18)

The values of λ1, λ2, λ3 and λ4 (Gondal et al. 2017; Gondal & Iqbal 2020a;
Gondal 2020b; Gondal & Iqbal 2020c) can be determined as λ1 = (b1 + 2r + 2δ)/4,
λ2 = (b1 + 2r − 2δ)/4, λ3 = (b1 − 2r + 2δ)/4 and λ4 = (b1 − 2r − 2δ)/4, where r =
(
√

b2
1 − 4b2 + 4Y)/2, Y = (d − 3u2 + 3uα1)/3u, u = 3

√
(q/2)+ √

(q/2)2 + (d/3)3, q =
(9α1α2 − 2α3

1 − 27α3)/27, d = (3α2 − α2
1)/3, α1 = b2, α2 = b3b1 − 4b4 and α3 = b2

3 +
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b2
1b4 − 4b2b4. For r �= 0, δ and ξ are given as

δ =
√

3
4

b2
1 − r2 − 2b2 + 1

4r
(4b1b2 − 8b3 − b3

1),

ξ =
√

3
4

b2
1 − r2 − 2b2 − 1

4r
(4b1b2 − 8b3 − b3

1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.19)

while for r = 0, δ and ξ read as

δ =
√

3
4 b2

1 − 2b2 + 2
√

Y2 − 4b4,

ξ =
√

3
4 b2

1 − 2b2 − 2
√

Y2 − 4b4.

⎫⎪⎬
⎪⎭ (3.20)

The discourse presented in the above equations highlights that the eigenvalues are
contingent on Beltrami parameters, plasma particle densities, the mass of plasma particles
and the charge state of dust particles. These eigenvalues may exhibit either a real nature
or a combination of real and a pair of complex conjugates. Therefore, by manipulating the
Beltrami parameters and plasma parameters, we have the ability to alter the characteristics
of the eigenvalues and subsequently influence the nature of the relaxed structures. In § 7,
we delved into the analysis of velocity profiles by varying the Beltrami parameters and the
densities of plasma species.

4. Unified flow

To determine the unified flow U , we can employ the following momentum equation:

U = ρse U se + ρsi U si + ρsd U sd

ρ
, (4.1)

where ρ is the mass density of the system which can be described as ρ = ρse + ρsi + ρsd .
Here, ρse , ρsi and ρsd represent the density of electrons, ions and negatively charged dust
fluids, respectively (ρse = nse mse , ρsi = nsi msi and ρsd = nsd msd ). By substituting the flow
of ions from (2.11) into the aforementioned (4.1), we obtain

U = c1∇ × H + c2U se + c3U sd , (4.2)

where c1 = ρsi/ρNsi , c2 = (ρse + ρsi/Nsi)/ρ and c3 = (ρsd + ρsi Zsd Nsd/Nsi)/ρ. By
inserting the value of the electron flow U se into the equation above, we obtain

U = d1 (∇×)2 H − d2∇ × H + d3H + d4U sd , (4.3)

where d1 = c2K1, d2 = c2K2 − c1, d3 = c2K3 and d4 = c2K4 + c3. Now, by incorporating
the value of the flow of negatively charged dust particles U sd from (3.6) into the above
equation, we arrive at the ultimate expression for the unified flow, which can be read as

U = e1 (∇×)3 H − e2 (∇×)2 H + e3∇ × H − e4H , (4.4)

where e1 = d4l1, e2 = d4l2 − d1, e3 = d4l3 − d2 and e4 = d4l4 − d3.
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5. Physical invariants and the equilibrium state

In the realm of plasma dynamics, Mahajan’s exploration of systems involving S fluids
reveals the existence of S + 1 invariants (Mahajan 2008; Mahajan & Lingam 2015). In
the current research, the system under investigation features three distinctive components:
electrons, ions and negatively charged dust particles. Consequently, the constraints for
this tripartite plasma system encompass magnetofluid energy (E), the generalized helicity
of electrons (hse ), the generalized helicity of ions (hsi ) and the generalized helicity
of negatively charged dust grains (hsd ). By employing (2.6)–(2.8), these four integral
invariants can be elegantly expressed as

E = 1
2

(
U2

se
+ Nsi

Msi

U2
si

+ Nsd

Zsd Msd

U2
sd

+ H 2
)
, (5.1)

hse = 1
2

∫
v

(
U se − A

) · (∇ × U se − H
)

dv, (5.2)

hsi = 1
2

∫
v

(
U si + Msi A

) · (∇ × U si + Msi H
)

dv, (5.3)

hsd = 1
2

∫
v

(
U sd − Zsd Msd A

) · (∇ × U sd − Zsd Msd H
)

dv. (5.4)

Another approach, termed the variational principle (Sudan 1979; Steinhauer & Ishida
1997; Mahajan & Yoshida 1998), can also be employed to recover the relaxed magnetized
equilibrium state,

δ
(
E − μse hse − μsi hsi − μsd hsd

) = 0, (5.5)

where the symbols μse , μsi and μsd represent the Lagrangian multipliers. By solving the
aforementioned equations concurrently and treating δA, δU si and δU si , as independent
parameters, we derive

1
ase

(
H − ∇ × U se

) + Nsi

asi

(
Msi H + ∇ × U si

) + Nsd

asd

(
Zsd Msd H + ∇ × U sd

) = ∇ × H ,

(5.6)

asi U si = ∇ × U si + MiH, (5.7)

asd U sd = ∇ × U sd + Zsd Msd H , (5.8)

considering μe = −1/ase , μsi = Nsi/asi Msi and μsd = −Nsd/asd Msd Zsd . Inserting (5.7)–
(5.8) into (5.6), the resulting expression is

U si = 1
Nsi

(∇ × H + Zsi Msi U si + U si

)
. (5.9)

It has been noted that the set of equations (5.7)–(5.9) obtained through the variational
principle bears resemblance to our earlier set of equilibrium equations (3.2)–(3.4). This
observation indicates that the self-organization of ordered structures can be discerned
through the variational principle.

The Beltrami alignment illustrated in (2.4)–(2.3) imposes the subsequent generalized
Bernoulli conditions, by replacing (2.6)–(2.8) into (2.2)–(2.4), which represent the
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macroscopic evolution equations of the plasma species, and setting the time derivative
∂/∂t equal to 0 (indicating a steady state), we derive the subsequent equations:

∇
(

1
2

U2
se

+ pse − φ

)
= 0, (5.10)

∇
(

1
2

U2
si

+ Msi

Nsi

psi + Msiφ

)
= 0, (5.11)

∇
(

1
2

U2
sd

+ Msd

Nsd

psd − Zsd Msdφ

)
= 0, (5.12)

which articulate the equilibrium of all remaining potential forces. Upon integration of the
aforementioned set of equations, we obtain

fse = 1
2 U2

se
+ pse − φ, (5.13)

fsi = 1
2

U2
si

+ Msi

Nsi

psi + Msiφ, (5.14)

fsd = 1
2

U2
sd

+ Msd

Nsd

psd − Zsd Msdφ, (5.15)

where the constants of integration are fse , fsi and fsd . The consolidated form of these
equations can be described as

Constant = P + 1
2

(
U2

se
+ U2

si
+ U2

sd

) − (
1 − Msi + Msd

)
φ, (5.16)

where P = pse + Msi psi N
−1
si

+ Zsd Msd psd N
−1
sd

.

6. Solutions of the field equation

Expressed as the linear sum of four Beltrami states, the quadruple Beltrami field (3.7)
can be written as

H = C1H 1 + C2H 2 + C3H 3 + C4H 4. (6.1)

In this context, the symbol C1, C2,C3 and C4 signify the amplitude four Beltrami
states. Equation (3.7) denotes a partial differential equation, with ABC flow (Arnold &
Khesin 1998) being one of the solutions corresponding to the Beltrami state in the slab
geometry. Subsequent to the ABC flow, the derivations for solving (3.7)) are conducted
for two distinct modes: (i) a simple rectangular geometry (Gondal et al. 2017; Gondal
& Iqbal 2020a,c); and (ii) a coplanar rectangular geometry, which involves a rectangular
conducting chamber within the Cartesian coordinate system.

6.1. Solution of quadruple Beltrami state in a simple rectangular geometry
Expressing the solution of (3.7) in terms of x, y and z, we get

⎛
⎝Hx

Hy
Hz

⎞
⎠ =

⎛
⎝ 0

C1 sin(λ1x)+ C2 sin(λ2x)+ C3 sin(λ3x)+ C4 sin(λ4x)
C1 cos(λ1x)+ C2 cos(λ2x)+ C3 cos(λ3x)+ C4 cos(λ4x)

⎞
⎠ , (6.2)

where the symbols Cα (α = 1, 2, 3 and 4) signify the amplitude. The values of these
constants can be determined by applying the following set of boundary conditions:
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|Hy|x=X = g1, |Hz|x=0 = g2, |(∇ × H)y|x=X = g3 and |(∇ × H)z|x=0 = g4 in (6.2), we
obtain

g1 = C1 sin(λ1X)+ C2 sin(λ2X)+ C3 sin(λ3X)+ C4 sin(λ4X), (6.3)

g2 = C1 + C2 + C3 + C4, (6.4)

g3 = C1λ1 sin(λ1X)+ C2λ2 sin(λ2X)+ C3λ3 sin(λ3X)+ C4λ4 sin(λ4X), (6.5)

g4 = C1λ1 + C2λ2 + C3λ3 + C4λ4. (6.6)

Solving the above equations, we obtain

C1 = L1

L5
, C2 = L2

L5
, C3 = L3

L5
, C4 = L4

L5
, (6.7a–d)

where

L1 = [sin(λ3X) sin(λ4X)(g4 − g2λ2)+ sin(λ2X)(g3 − g1λ2)](λ3 − λ4)

+ [sin(λ3X) sin(λ2X)(g4 − g2λ4)+ sin(λ4X)(g3 − g1λ4)](λ2 − λ3)

+ [sin(λ2X) sin(λ4X)(g4 − g2λ3)+ sin(λ3X)(g3 − g1λ3)](λ4 − λ2), (6.8)

L2 = [sin(λ3X) sin(λ1X)(g4 − g2λ4)+ sin(λ4X)(g3 − g1λ4)](λ3 − λ1)

+ [sin(λ3X) sin(λ4X)(g4 − g2λ1)+ sin(λ1X)(g3 − g1λ1)](λ4 − λ3)

+ [sin(λ1X) sin(λ4X)(g4 − g2λ3)+ sin(λ3X)(g3 − g1λ3)](λ1 − λ4), (6.9)

L3 = [sin(λ1X) sin(λ4X)(g4 − g2λ2)+ sin(λ2X)(g3 − g1λ2)](λ4 − λ1)

+ [sin(λ1X) sin(λ2X)(g4 − g2λ4)+ sin(λ4X)(g3 − g1λ4)](λ1 − λ2)

+ [sin(λ2X) sin(λ4X)(g4 − g2λ1)+ sin(λ1X)(g3 − g1λ1)](λ2 − λ4), (6.10)

L4 = [sin(λ3X) sin(λ1X)(g4 − g2λ2)+ sin(λ2X)(g3 − g1λ2)](λ1 − λ3)

+ [sin(λ1X) sin(λ2X)(g4 − g2λ3)+ sin(λ3X)(g3 − g1λ3)](λ2 − λ1)

+ [sin(λ2X) sin(λ3X)(g4 − g2λ1)+ sin(λ1X)(g3 − g1λ1)](λ3 − λ2), (6.11)

L5 = (λ4 − λ1)[sin(λ4X) sin(λ1X)+ sin(λ3X) sin(λ2X)](λ3 − λ2)

+ (λ4 − λ3)[sin(λ4X) sin(λ3X)+ sin(λ2X) sin(λ1X)](λ2 − λ1)

+ (λ2 − λ4)[sin(λ2X) sin(λ4X)+ sin(λ3X) sin(λ1X)](λ3 − λ1). (6.12)

6.2. Solution of quadruple Beltrami state in a rectangular geometry with an internal
conductor

An internal conductor geometry involves embedding a rectangular chamber within another
rectangular configuration. Let us assume the length of this submerged rectangular chamber
is denoted as x0 along the x-axis. The solution for (3.7) within this specific region can be
expressed as follows:⎛

⎝Hx
Hy
Hz

⎞
⎠ =

⎛
⎝ 0

M1 sin(λ1x)+ N1 cos(λ1x)+ M2 sin(λ2x)+ N2 cos(λ2x)
M1 cos(λ1x)− N1 sin(λ1x)+ M2 cos(λ2x)− N2 sin(λ2x)

⎞
⎠

+
⎛
⎝ 0

M3 sin(λ3x)+ N3 cos(λ3x)+ M4 sin(λ4x)+ N4 cos(λ4x)
M3 cos(λ3x)− N3 sin(λ3x)+ M4 cos(λ4x)− N4 sin(λ4x)

⎞
⎠ . (6.13)
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In this context, the symbols Mα (α = 1, 2, 3 and 4) and Nα (α = 1, 2, 3 and 4) signify
the amplitude. Upon applying the relevant boundary conditions, namely |By|x=x0 =
w1, |Bz|x=x0 = w2, |(∇ × B)y|x=x0 = w3, |(∇ × B)z|x=x0 = w4, |((∇×)2B)y|x=x0 = w5,
|((∇×)2B)z|x=x0 = w6, |((∇×)3B)y|x=x0 = w7 and |((∇×)3B)z|x=x0 = w8, we derive the
following system of equations:

w1 = M1 sin(λ1x0)+ N1 cos(λ1x0)+ M2 sin(λ2x0)+ N2 cos(λ2x0)

+ M3 sin(λ3x0)+ N3 cos(λ3x0)+ M4 sin(λ4x0)+ N4 cos(λ4x0), (6.14)

w2 = M1 cos(λ1x0)− N1 sin(λ1x0)+ M2 cos(λ2x0)− N2 sin(λ2x0)

+ M3 cos(λ3x0)− N3 sin(λ3x0)+ M4 cos(λ4x0)− N4 sin(λ4x0), (6.15)

w3 = λ1M1 sin(λ1x0)+ λ1N1 cos(λ1x0)+ λ2M2 sin(λ2x0)+ λ2N2 cos(λ2x0)

+ λ3M3 sin(λ3x0)+ λ3N3 cos(λ3x0)+ λ4M4 sin(λ4x0)+ λ4N4 cos(λ4x0), (6.16)

w4 = λ1M1 cos(λ1x0)− λ1N1 sin(λ1x0)+ λ2M2 cos(λ2x0)− λ2N2 sin(λ2x0)

+ λ3M3 cos(λ3x0)− λ3N3 sin(λ3x0)+ λ4M4 cos(λ4x0)− λ4N4 sin(λ4x0), (6.17)

w5 = λ2
1M1 sin(λ1x0)+ λ2

1N1 cos(λ1x0)+ λ2
2M2 sin(λ2x0)+ λ2

2N2 cos(λ2x0)

+ λ2
3M3 sin(λ3x0)+ λ2

3N3 cos(λ3x0)+ λ2
4M4 sin(λ4x0)+ λ2

4N4 cos(λ4x0), (6.18)

w6 = λ2
1M1 cos(λ1x0)− λ2

1N1 sin(λ1x0)+ λ2
2M2 cos(λ2x0)− λ2

2N2 sin(λ2x0)

+ λ2
3M3 cos(λ3x0)− λ2

3N3 sin(λ3x0)+ λ2
4M4 cos(λ4x0)− λ2

4N4 sin(λ4x0), (6.19)

w7 = λ3
1M1 sin(λ1x0)+ λ3

1N1 cos(λ1x0)+ λ3
2M2 sin(λ2x0)+ λ3

2N2 cos(λ2x0)

+ λ3
3M3 sin(λ3x0)+ λ3

3N3 cos(λ3x0)+ λ3
4M4 sin(λ4x0)+ λ3

4N4 cos(λ4x0), (6.20)

w8 = λ3
1M1 cos(λ1x0)− λ3

1N1 sin(λ1x0)+ λ3
2M2 cos(λ2x0)− λ3

2N2 sin(λ2x0)

+ λ3
3M3 cos(λ3x0)− λ3

3N3 sin(λ3x0)+ λ3
4M4 cos(λ4x0)− λ3

4N4 sin(λ4x0). (6.21)

Following certain algebraic manipulations, we acquire the subsequent set of equations:

M1 = Q1

Q9
, M2 = Q2

Q10
, M3 = Q3

Q11
, M4 = Q4

Q12
,

N1 = Q5

Q9
, N2 = Q6

Q10
, N3 = Q7

Q11
, N4 = Q8

Q12
,

⎫⎪⎪⎬
⎪⎪⎭

(6.22)

where

Q1 = sin(λ1x0)

[
(λ2 − λ4)

(
w7 − w3λ

2
4 + (w1λ3λ4 − w3λ3) (λ3 + λ4)

)
− (w5 − w3λ3 − w3λ4 + w1λ3λ4)

(
λ2

2 + λ2λ3 − λ3λ4 − λ2
4

)
]

+ cos(λ1x0)

[
(λ2 − λ4)

(
w8 − w4λ

2
4 + (w2λ3λ4 − w4λ3) (λ3 + λ4)

)
− (w6 − w4λ3 − w4λ4 + w2λ3λ4)

(
λ2

2 + λ2λ3 − λ3λ4 − λ2
4

)
]
,

(6.23)
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Q2 = sin(λ2x0)

[
(λ1 − λ4)

(
w7 − w3λ

2
4 + (w1λ3λ4 − w3λ3) (λ3 + λ4)

)
− (w5 − w3λ3 − w3λ4 + w1λ3λ4)

(
λ2

1 + λ1λ3 − λ3λ4 − λ2
4

) ]

+ cos(λ2x0)

[
(λ1 − λ4)

(
w8 − w4λ

2
4 + (w2λ3λ4 − w4λ3) (λ3 + λ4)

)
− (w6 − w4λ3 − w4λ4 + w2λ3λ4)

(
λ2

1 + λ1λ3 − λ3λ4 − λ2
4

) ]
,

(6.24)

Q3 = sin(λ3x0)

[
(λ4 − λ2)

(
w7 − w3λ

2
2 + (w1λ1λ2 − w3λ1) (λ2 + λ1)

)
− (w5 − w3λ1 − w3λ2 + w1λ1λ2)

(
λ2

4 + λ1λ4 − λ1λ2 − λ2
2

) ]

+ cos(λ3x0)

[
(λ4 − λ2)

(
w8 − w4λ

2
2 + (w2λ1λ2 − w4λ1) (λ2 + λ1)

)
− (w6 − w4λ1 − w4λ2 + w2λ1λ2)

(
λ2

4 + λ1λ4 − λ1λ2 − λ2
2

) ]
,

(6.25)

Q4 = sin(λ4x0)

[
(λ3 − λ2)

(
w7 − w3λ

2
2 + (w1λ1λ2 − w3λ1) (λ2 + λ1)

)
− (w5 − w3λ1 − w3λ2 + w1λ1λ2)

(
λ2

3 + λ1λ3 − λ1λ2 − λ2
2

) ]

+ cos(λ4x0)

[
(λ3 − λ2)

(
w8 − w4λ

2
2 + (w2λ1λ2 − w4λ1) (λ2 + λ1)

)
− (w6 − w4λ1 − w4λ2 + w2λ1λ2)

(
λ2

3 + λ1λ3 − λ1λ2 − λ2
2

) ]
,

(6.26)

Q5 = cos(λ1x0)

[
(λ2 − λ4)

(
w7 − w3λ

2
4 + (w1λ3λ4 − w3λ3) (λ3 + λ4)

)
− (w5 − w3λ3 − w3λ4 + w1λ3λ4)

(
λ2

2 + λ2λ3 − λ3λ4 − λ2
4

) ]

− sin(λ1x0)

[
(λ2 − λ4)

(
w8 − w4λ

2
4 + (w2λ3λ4 − w4λ3) (λ3 + λ4)

)
− (w6 − w4λ3 − w4λ4 + w2λ3λ4)

(
λ2

2 + λ2λ3 − λ3λ4 − λ2
4

) ]
,

(6.27)

Q6 = cos(λ2x0)

[
(λ1 − λ4)

(
w7 − w3λ

2
4 + (w1λ3λ4 − w3λ3) (λ3 + λ4)

)
− (w5 − w3λ3 − w3λ4 + w1λ3λ4)

(
λ2

1 + λ1λ3 − λ3λ4 − λ2
4

) ]

− sin(λ2x0)

[
(λ1 − λ4)

(
w8 − w4λ

2
4 + (w2λ3λ4 − w4λ3) (λ3 + λ4)

)
− (w6 − w4λ3 − w4λ4 + w2λ3λ4)

(
λ2

1 + λ1λ3 − λ3λ4 − λ2
4

) ]
,

(6.28)

Q7 = cos(λ3x0)

[
(λ4 − λ2)

(
w7 − w3λ

2
2 + (w1λ1λ2 − w3λ1) (λ2 + λ1)

)
− (w5 − w3λ1 − w3λ2 + w1λ1λ2)

(
λ2

4 + λ1λ4 − λ1λ2 − λ2
2

)
]

− sin(λ3x0)

[
(λ4 − λ2)

(
w8 − w4λ

2
2 + (w2λ1λ2 − w4λ1) (λ2 + λ1)

)
− (w6 − w4λ1 − w4λ2 + w2λ1λ2)

(
λ2

4 + λ1λ4 − λ1λ2 − λ2
2

)
]
,

(6.29)

Q8 = cos(λ4x0)

[
(λ3 − λ2)

(
w7 − w3λ

2
2 + (w1λ1λ2 − w3λ1) (λ2 + λ1)

)
− (w5 − w3λ1 − w3λ2 + w1λ1λ2)

(
λ2

3 + λ1λ3 − λ1λ2 − λ2
2

) ]

− sin(λ4x0)

[
(λ3 − λ2)

(
w8 − w4λ

2
2 + (w2λ1λ2 − w4λ1) (λ2 + λ1)

)
− (w6 − w4λ1 − w4λ2 + w2λ1λ2)

(
λ2

3 + λ1λ3 − λ1λ2 − λ2
2

) ]
,

(6.30)

Q9 = (λ1 − λ3)
(
λ2

1λ2 − λ1λ
2
2 + λ2

2λ4 − λ2λ
2
4 + λ1λ

2
4 − λ2

1λ4
)
, (6.31)

Q10 = (λ2 − λ3)
(
λ2

2λ1 − λ2λ
2
1 + λ2

1λ4 − λ1λ
2
4 + λ2λ

2
4 − λ2

2λ4
)
, (6.32)

Q11 = (λ3 − λ1)
(
λ2

2λ3 − λ2λ
2
3 − λ2

2λ4 + λ2λ
2
4 − λ3λ

2
4 + λ2

3λ4
)
, (6.33)

Q12 = (λ4 − λ1)
(
λ2

3λ2 − λ3λ
2
2 + λ2

2λ4 − λ2λ
2
4 + λ3λ

2
4 − λ2

3λ4
)
. (6.34)
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In this arrangement, a greater number of boundary conditions is used compared with the
uncomplicated slab geometry. These additional conditions introduce an additional degree
of freedom, providing a more effective means of system control. The entire system can be
managed with increased efficiency. Modifying the magnetic field, which is contingent on
the Beltrami parameter and density ratio, within the inner slab allows for straightforward
control over the structure’s characteristics. Adjusting the length of the inner slab can
reduce the pressure inside. In contrast, in the case of the simple slab geometry, the
application of additional boundary conditions is not feasible, resulting in challenges in
controlling the nature of the relaxed structure at the system’s centre.

7. Numerical results

The inherent magnetic field is a fundamental characteristic of a planet. Beyond
influencing the electromagnetic conditions surrounding a planetary body, it acts as a
crucial indicator of the internal structure and dynamics of the host planet (Cao et al. 2020).
The presence of a robust planetary-scale magnetic field is likely the result of dynamo
action occurring within the planet. This process requires a large amount of electrically
conductive fluid and involves rapid and intricate-moving fluid motions within the planet’s
interior. These movements help generate and maintain the magnetic field. In this current
study, our focus is on investigating the dynamo action within Saturn. To achieve this,
our numerical investigation relies on observational data from Saturn’s E-ring (Wahlund
et al. 2009; Shohaib et al. 2022), with the plasma parameters having the following
specified values: md = 4 × 10−15 kg, nse = (2 − −7)× 107 m−3, nsd = 104 − −105 m−3

and Zd = 102. In the present work, the velocities were normalized by a characteristic
velocity, such as the Alfvén velocity VA, and the distances were normalized by the electron
skin depth λse . Thus, the plotted values are dimensionless.

7.1. Plasma flow and dynamo action
Dynamo processes are now widely accepted as the primary origin of magnetic fields in
many astrophysical settings. This section will explore the features of the magnetic field and
flow field of the relaxed structures within Saturn’s E-ring a three-component dusty plasma
(Wahlund et al. 2009; Shohaib et al. 2022), considering both configurations – simple
rectangular geometry and coplanar rectangular geometry. The analysis will primarily focus
on examining the impact of Beltrami parameters on the characteristics of self-organized
structures. The graphs are generated with a fixed value of x = 5, representing the length
of the rectangle, in the case of simple rectangular geometry. Meanwhile, for coplanar
rectangular geometry, the graphs are plotted with x0 = 2, representing the length of the
inner rectangular slab along the x-axis, and x = 5, representing the length of the outer
rectangular slab along the x-axis. Figures 1–2 exhibit the fluctuations in the magnetic and
velocity profiles concerning the Beltrami parameter ase = 25.7, asi = 0.1 and asd = 1.0
and figures 3–4 are plotted for a different set of Beltrami parameters ase = 0.7, asi =
1.4 and asd = 50.9. Figures 1 and 3 depicting the magnetic field and velocity profiles
are presented for the solution of the quadruple Beltrami state within a straightforward
rectangular configuration and figures 2–4 illustrating the magnetic field and velocity
profiles are generated to showcase the solution of the quadruple Beltrami state in a
rectangular configuration featuring an internal rectangular slab.

The magnetic field and flow field behave differently in these two cases, indicating
distinct dynamo mechanisms.
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(b)(a)

FIGURE 1. Magnetic field and velocity profiles are plotted for the solution of quadruple
Beltrami state in a simple rectangular configuration. The Beltrami parameters are ase = 25.7,
asi = 0.1 and asd = 1.0. The associated scale parameters are λ1 = 25.661, λ2 = 0.050553,
λ3 = 1.0 and λ4 = 0.0884166.

(b)(a)

FIGURE 2. Magnetic field and Velocity profiles are plotted for the solution of quadruple
Beltrami state in a rectangular configuration with an internal conductor. The Beltrami parameters
are ase = 25.7, asi = 0.1 and asd = 1.0. The associated scale parameters are λ1 = 25.661,
λ2 = 0.050553, λ3 = 1.0 and λ4 = 0.0884166.

(b)(a)

FIGURE 3. Magnetic field and velocity profiles are plotted for the solution of quadruple
Beltrami state in a simple rectangular configuration. The Beltrami parameters are ase = 0.7,
asi = 1.4 and asd = 50.9. The associated scale parameters are λ1 = 50.9, λ2 = 1.3998, λ3 =
0.350101 + 0.936942i and λ4 = 0.350101 − 0.936942i.
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(b)(a)

FIGURE 4. Magnetic field and velocity profiles are plotted for the solution of quadruple
Beltrami state in a rectangular configuration with an internal conductor. The Beltrami parameters
are ase = 0.7, asi = 1.4 and asd = 50.9. The associated scale parameters are λ1 = 50.9, λ2 =
1.3998, λ3 = 0.350101 + 0.936942i and λ4 = 0.350101 − 0.936942i.

(b)(a)

(c) (d )

FIGURE 5. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of quadruple Beltrami state in a simple
rectangular configuration. The Beltrami parameters are ase = 0.7, asi = 1.5 and asd = 50.9.
The associated scale parameters are λ1 = 50.9, λ2 = 1.49979, λ3 = 0.350104 + 0.9369271i and
λ4 = 0.350104 − 0.9369271i.

7.1.1. Saturn’s magnetosphere
Magnetic field < flow field: in this scenario, shown in figures 1 and 3, the magnetic

field is weaker than the flow field. This suggests the presence of a fast dynamo. In
such environments, where the flow dominates the magnetic field, turbulent or rapid
fluid motions can stretch, fold and amplify the magnetic field efficiently, which is
characteristic of a fast dynamo (Vainshtein & Rosner 1991). Although altering the Beltrami
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(b)(a)

(c) (d )

FIGURE 6. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of quadruple Beltrami state in a rectangular
configuration with an internal conductor. The Beltrami parameters are ase = 0.7, asi = 1.5 and
asd = 50.9. The associated scale parameters are λ1 = 50.9, λ2 = 1.49979, λ3 = 0.350104 +
0.9369271i and λ4 = 0.350104 − 0.9369271i.

(b)(a)

(c) (d )

FIGURE 7. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of quadruple Beltrami state in a simple rectangular
configuration. The Beltrami parameters are ase = 2.7, asi = 1.3 and asd = 0.9. The associated
scale parameters are λ1 = 2.25706, λ2 = 0.443913, λ3 = 1.29902 and λ4 = 0.9.
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(b)(a)

(c) (d )

FIGURE 8. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a rectangular
configuration with an internal conductor. The Beltrami parameters are ase = 2.7, asi = 1.3 and
asd = 0.9. The associated scale parameters are λ1 = 2.25706, λ2 = 0.443913, λ3 = 1.29902 and
λ4 = 0.9.

(b)(a)

(c) (d )

FIGURE 9. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of quadruple Beltrami state in a simple rectangular
configuration. The densities of plasma species are nse = 2 × 109, nsi = 2 × 109, nsd = 101 and
zd = 102.
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(b)(a)

(c) (d )

FIGURE 10. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a simple
rectangular configuration. The density of plasma species are nse = 2 × 109, nsi = 2 × 109,
nsd = 102 and zd = 102.

(b)(a)

(c) (d )

FIGURE 11. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a simple
rectangular configuration. The density of plasma species are nse = 2 × 108, nsi = 2 × 108,
nsd = 103 and zd = 102.
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(b)(a)

(c) (d )

FIGURE 12. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a simple
rectangular configuration. The density of plasma species are nse = 2 × 107, nsi = 2 × 107,
nsd = 104 and zd = 102.

(b)(a)

(c) (d )

FIGURE 13. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a simple
rectangular configuration. The density of plasma species are nse = 2 × 106, nsi = 2 × 107,
nsd = 105 and zd = 102.
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(b)(a)

(c) (d )

FIGURE 14. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a rectangular
configuration with an internal conductor. The density of plasma species are nse = 2 × 109, nsi =
2 × 109, nsd = 101 and zd = 102.

(b)(a)

(c) (d )

FIGURE 15. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a rectangular
configuration with an internal conductor. The density of plasma species are nse = 2 × 109, nsi =
2 × 109, nsd = 102 and zd = 102.
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(b)(a)

(c) (d )

FIGURE 16. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a rectangular
configuration with an internal conductor. The density of plasma species are nse = 2 × 108, nsi =
2 × 108, nsd = 103 and zd = 102.

(b)(a)

(c) (d )

FIGURE 17. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a rectangular
configuration with an internal conductor. The density of plasma species are nse = 2 × 107, nsi =
2 × 107, nsd = 104 and zd = 102.
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(b)(a)

(c) (d )

FIGURE 18. Velocities (velocity of dust particle V sd , electrons V se , ions V si and composite
velocity V ) profiles are plotted for the solution of the quadruple Beltrami state in a rectangular
configuration with an internal conductor. The density of plasma species are nse = 2 × 106, nsi =
2 × 107, nsd = 105 and zd = 102.

parameters from ase = 25.7, asi = 0.1 and asd = 1.0 to ase = 0.7, asi = 1.4 and asd = 50.9
results in a transformation of the corresponding scale parameters from real λ1 = 25.661,
λ2 = 0.050553, λ3 = 1.0 and λ4 = 0.0884166 to complex conjugate λ1 = 50.9, λ2 =
1.3998, λ3 = 0.350101 + 0.936942i and λ4 = 0.350101 − 0.936942i, while the inherent
characteristics of the magnetic and flow fields remain unchanged.

7.1.2. Saturn’s E ring
Magnetic field > flow field: in this case, illustrated in figures 2 and 4, the magnetic

field is stronger than the flow field, which may favour a slow dynamo (Soward 1990).
A stronger magnetic field leads to more organized and less turbulent interactions with
the flow, resulting in slower amplification of the magnetic field. Figures 2 and 4 are
plotted using the same Beltrami parameters as figures 1 and 3, respectively. Moreover,
the magnetic field in figure 4 demonstrates a scale significantly exceeding that of the
driving flow, it identifies a large-scale dynamo (Brandenburg 2009). The field strength
is significantly higher here, not only due to the influence of the flow field, but also because
of the internal conductor, resulting in a much stronger magnetic field than in the simple
rectangular geometry. It indicates that altering the Beltrami parameters in the scenario of a
rectangular configuration with an internal conductor can result in the dynamo transitioning
between fast dynamo and slow dynamo, or vice versa.

7.2. Velocities profiles of the plasma species
Within this section, we showcase the velocity profiles of distinct plasma constituents –
namely, electrons, ions and negatively charged dust particles – along with the unified
velocity. The velocity profiles for electrons V se , ions V si and negatively charged dust
particles V sd are graphed in accordance with (3.5), (2.11) and (3.6), respectively.
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Meanwhile, the unified flow is illustrated through the useof (4.4). The analysis of the
graphs is conducted for both solutions, involving a simple rectangular geometry and
a rectangular configuration with an internal conductor. This examination involves the
manipulation of Beltrami parameters and the densities of plasma species.

7.2.1. Influence of Beltrami parameters
Figures 5–6 are generated using identical Beltrami parameters ase = 0.7, asi = 1.5

and asd = 50.9. In figure 5, velocity profiles of plasma species are illustrated within a
simple rectangular geometry, while figure 6 depicts the velocities of plasma components
within a rectangular configuration featuring an internal conductor. The corresponding four
scale parameters are denoted as λ1 = 50.9, λ2 = 1.49979, λ3 = 0.350104 + 0.9369271i
and λ4 = 0.350104 − 0.9369271i, comprising two real values and a pair of complex
conjugates. Same Beltrami parameters ase = 2.7, asi = 1.3 and asd = 0.9 are employed
in the creation of both figures 7 and 8. In figure 7, we showcase the velocity profiles
of plasma species in a simple rectangular geometry, while figure 8 reveals the velocities
of plasma components within a rectangular set-up featuring an internal conductor. The
corresponding four scale parameters are articulated as λ1 = 2.25706, λ2 = 0.443913, λ3 =
1.29902 and λ4 = 0.9, all of which possess real values. In the scenario of a rectangular
geometry with an internal conductor, it has been noted that when all the scale parameters,
which are dependent on Beltrami parameters, are real, the unified flow reaches its peak
magnitude (figure 8). Conversely, when the scale parameters form a pair of complex
conjugates, the unified flow exhibits its minimum intensity (figure 6). This trend is reversed
in the case of a simple rectangular geometry. This indicates that the Beltrami parameters
exert a significant influence on the velocity of the plasma system and its constituent
components.

7.2.2. Influence of plasma species densities
In the atmosphere of Saturn, the densities of plasma species like electrons, ions and dust

particles exhibit non-uniformity, fluctuating with changes in the magnetosphere’s radius.
Consequently, the velocities of plasma particles are significantly impacted by the density
ratios among these species. Figures 9–18 depict variations in both the unified velocity and
individual velocities of plasma particles, highlighting the influence of changing plasma
particle densities and keeping constant all other parameters. Figures 9–13 are generated
based on the quadruple Beltrami state solution within a basic rectangular geometry, while
figures 14–18 are plotted from the solution of the quadruple Beltrami state in a rectangular
configuration featuring an internal conductor. The examination of these graphs reveals that
the magnitudes of velocities for smaller species such as electrons and ions remain constant
when altering the densities of plasma species in both configurations – whether in a simple
rectangular geometry or in a rectangular geometry with an internal conductor. Conversely,
the velocity magnitude of dust particles is markedly influenced by the density ratio of
plasma particles. It reaches its maximum, as shown in figures 9 and 14, when electron
density is at its highest, nse = 2 × 109, and the density of negatively charged dust particles
is at its lowest, nsd = 10. Conversely, its magnitude diminishes shown in figures 13 and 18
when electron density decreases, nse = 2 × 106,and the density of dust particles increases,
nsd = 105. Since the unified velocity is a composite of the velocities velocities of electrons,
ions and dust particles, the unified velocity attains its maximum value when the velocity
strength of dust particles is at its peak, and conversely, it decreases when the velocity of
dust particles diminishes. Furthermore, the total magnitude of the unified velocity is higher
in the scenario of a rectangular geometry with an internal conductor compared with the
velocity strength in a simple rectangular configuration. This observation indicates that the
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presence of an internal conductor has the potential to augment the velocity’s intensity. This
insight holds significance in elucidating the velocity dynamics of the plasma system within
the Saturn magnetosphere and its rings. The trend of the magnetic profiles are strongly
influenced by changing the Beltrami parameters or by varying the density of the dust
particles in a simple rectangular geometry. In the above discussion for a simple rectangular
configuration, it has been also observed that the associated scale parameters are real for
the paramagnetic trend, but for complex scale parameters, the magnetic field becomes
maximum moving away from the centre, which manifests the diamagnetic trend. This
shows a clear distinction of the both geometries.

8. Concluding remarks

The relaxation phenomenon in a magnetized three-fluid dusty plasma, consisting of
negatively charged dust particles, electrons and ions, has been observed. The Beltrami
conditions are attained by solving the momentum-balanced equations for the three
components alongside Ampere’s law. A quadruple Beltrami state is derived by considering
three Beltrami parameters. The helicities of dust particles, electrons and ions, along with
the total energy, serve as the four constraints in the current plasma system. The quadruple
curl relaxed Beltrami state is a composite of four distinct single relaxed Beltrami states,
resulting in the system having four unique eigenvalues. The solutions for the relaxed state
have been obtained in two distinct configurations. One corresponds to a simple rectangular
geometry, and the other involves a rectangular geometry featuring an inner rectangular slab
acting as an internal conductor. We have established relationships describing the unified
flow and derived the individual flows of plasma particles, including electrons, ions and
negatively charged dust particles. Dynamo action has been identified in the Saturn plasma,
using real plasma parameters from Saturn itself. Dynamo action is discerned by varying
the Beltrami parameters, exhibiting small-scale dynamo behaviour in a simple rectangular
geometry and generating large-scale dynamo effects in a rectangular configuration with
an internal conductor. Additionally, it has been observed that the overall strength of
the magnetic field reaches its maximum in the presence of an internal conductor in the
rectangular geometry.

Velocity profiles have been graphed by systematically altering the Beltrami parameters
and the density of plasma species. It has been noted that the densities of smaller species,
namely electrons and ions, and the density of heavier particles, negatively charged dust
particles, significantly impact the description of the plasma system’s flow. The unified
velocity increases with a higher electron concentration and lower dust particle abundance,
and vice versa. Similarly, the flow of dust particles is influenced by changes in density
ratio in a manner consistent with the unified flow, while the overall flow of smaller species
– electrons and ions – remains unaltered. These findings are valuable for elucidating
the characteristics of relaxed structures and dynamo action in the context of Saturn’s
rings, planetary rings, rotating stars, pulsar magneto sphere and excitations in interstellar
medium.
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