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A major challenge with the proliferation of atomically resolved images on material systems is how best 
to construct models that can explain the observations. One way of approaching this problem is to 
consider that images of atomic configurations and distortions represent the actual microstates of a 
thermodynamic system. Probing their fluctuations then provides a means to determine the system’s 
response to thermodynamic perturbations.  
 
The primary goal, once atomically resolved images of a system are determined, is to understand the 
microscopic mechanisms that lead to the observed functionalities. Such a task requires modeling. Thus, 
the aim is to produce a generative model that is most likely to reproduce the observed statistical 
distributions of atomic configurations. Here, both the choice of the model and the metric are important. 
While for the latter we use the ‘statistical distance’ for thermodynamic systems at equilibrium [1-3], the 
former is more difficult to determine. Here, we select the appropriate model by as the one maximizing 
the likelihood of generating the statistical data collected from an image, while controlling for its 
complexity using the bootstrap method. As another important challenge, the uncertainty of predictions 
from these models must be computed. We show the latter is possible via standard Bayesian methods, 
producing predicted phase diagrams, and deriving entirely from atomic configurations as opposed to 
macroscopic property measurements [4]. We show this approach on two systems. First, we generate 
models to explain observed atomic configurations in a composition series of Mo1-xRexS2. Next, we use 
an optimized model from ref [2] and Bayesian inference to predict the phase diagram of the system as a 
function of temperature and composition, with uncertainty bounds.  
 
For a composition series of Mo1-xRexS2 (x=0.05, 0.55, 0.78 and 0.95) we observed atomic configurations 
via scanning transmission electron microscopy. The lattice is hexagonal, and we ignore the S sub-lattice 
to focus on the metal atom sub-lattice. After determining the positions of all metal atoms, and using 
thresholding to classify the metal atoms as either Re or Mo, we collected the histograms of local atomic 
configurations, taking each atom and observing the identity and position of its (metal) neighbors. This is 
shown in Fig. 1(a,b) for two distinct compositions, with the experimental results in blue. At the same 
time, results from an optimized model that includes nearest and next-neighbor interactions, as well as 
from a completely random model, are shown in teal and red, respectively. For model selection, one 
straightforward method is to simply determine the probability that the configurations can arise from a 
given model. For instance, in the case of the x=0.55 composition, the p-value of 0.08 indicates that the 
random model would pass a statistical significance test (at the common level of =0.05) as generating 
the experimental statistical data [4].   
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Figure 1. Atomic configurations histogram from analyzed electron microscopy images, with data from 
the images of two separate compositions shown in (a) and (b). The configurations are identified by a set 
of integers, with the first identifying the central atom (Mo:0, Re:1), and the subsequent identifying the 
numbers of Re atom pairs in the ortho, meta, and para positions of the hexagonal local configuration. 
The blue bars represent experimental data; the red indicate the configurations from a model without any 
interactions (i.e., completely random model with same experimental composition). It is clear from this 
analysis that a completely random model appears to well-approximate the experimentally observed 
atomic configurations histogram. 
 
In the case a non-random model exists, such as ref [2], the question becomes incorporation of 
uncertainty in the predictions. We may achieve this by placing a uniform prior over the parameters w 
that define the model, and then determining the distribution of w i.e. estimating p(w|d) (where d is the 
configurations histogram data). Once this is determined, the distribution can be sampled from to 
generate phase diagrams. Repeating this for many iterations thus allows uncertainty quantification. In 
summary, these methods allow (a) appropriate model selection for atomistic configurations, and (b) 
uncertainty quantification of resulting phase diagrams. These methods extend those found in refs [1-3] 
and provide guidance on experimental design and model selection and can be further extended for time-
dynamics. 
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