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POLYTYPISM OF MICAS: OD-INTERPRETATION,
STACKING SYMBOLS, SYMMETRY RELATIONS

K. DORNBERGER-SCHIFF,'t K.-O. BACKHAUS,! AND S. DURrOVIC?

Abstract—From the symmetry point of view, micas may be classified as follows: those with all three oc-
tahedrally coordinated sites occupied by the same cation (homo-octahedral micas), those with only two of
these sites occupied by the same cation (meso-octahedral micas), and those with the three sites occupied
by different cations or by two different cations and a void, in an ordered manner (hetero-octahedral micas).
For any of these three classes, mica polytypes, idealized in accordance with the generalized Pauling model,
can be interpreted as OD structures consisting of octahedral OD layering and tetrahedral OD layering in
which an interlayer cation plane is sandwiched between tetrahedral sheets. A mica layer built up by an
octahedral sheet and two halves of tetrahedral sheets on either side consists of two OD packets linked by
a two-fold rotation.

The orientation of any OD packet may be given by a number from 0 to S (related to a hexagonal coordinate
system). A dot behind or before these numbers is used to denote the position of the octahedral layer (num-
ber + dot = orientational character). The displacement of a packet against its predecessor is characterized
by a vector from the origin of a packet p, (or g,_,) to the origin of the adjacent packet p,; (Or p,,). These
displacements may also be symbolized by numbers from 0 to 5 (displacement characters); a zero displace-
ment is symbolized by *. Any mica polytype (ordered or disordered) can thus be described by a two-line
symbol. The orientational characters are located on the first line, and the displacement characters on the
second. Any symbol, therefore denotes unequivocally the stacking layers in a polytype. The space-group
symmetry of ordered polytypes follows directly from the symbol.

Key Words—Mica, Order-disorder, Polytypism, Stacking symbol, Symmetry.

INTRODUCTION

Using the Pauling (1930) model of mica, Hendricks
and Jefferson (1939) interpreted the Weissenberg dia-
grams of more than 100 specimens and found that all
modifications may be referred to unit cells which are
multiples of the same subcell, having symmetry Cm.
Pabst (1955) showed that the space group of this subcell
is C2/m. Smith and Yoder (1956) derived their well
known symbolism of mica polytypes on the basis of a
single ideal mica layer with the symmetry C12/m(1).
Also Ross et al. (1966) based their vector stacking sym-
bolism for characterizing mica polytypes on a centro-
symmetrical mica layer, with the same symmetry.
Likewise, Zvyagin (1964) based his deduction of the
regular mica polytypes on the same assumption, but he
used the tetrahedral and octahedral networks as sepa-
rate building units. For the trioctahedral case the pos-
sibilities deduced by Smith and Yoder resulted. For the
dioctahedral case Zvyagin discussed on centrosym-
metrical 2:1 layers.

Guven and Burnham (1967) found a dioctahedral
mica with a non-centrosymmetrical 2:1 layer, namely
a 37 muscovite with the symmetry C12(1) of the single

layer. Zvyagin and Soboleva (1974) also described di-
octahedral micas with non-centrosymmetrical 2:1 lay-
ers, found by electron diffraction.

From electron microscopic investigations of etch pits
on lepidolite and zinnwaldite crystals, Brauer (1971)
obtained strong indications of ordered occupation of
the octahedral sites by three different cations. The con-
tours of some single etch pits, due to stepwise etching,
showed no symmetry, but were related to neighboring
contours by a mirror plane. This effectis to be expected
if the three octahedral sites per unit cell are occupied
by three different chemical entities (different cations or
avoid) in an ordered way and if consecutive mica layers
are related by a symmetry plane. From an ordering of
the octahedral cations, C2 symmetry for the single layer
would result. The existence of layers in phyllosilicates
with ordered occupation of the octahedral positions by
three different chemical entities was predicted by
Dornberger-Schiff and Durovi¢ (1975a, 1975b) and con-
firmed by the X-ray diffraction analysis of a 1M zinn-
waldite by Guggenheim and Bailey (1977) and of a 3T
lepidolite by Brown (1978).

The present paper is part of a program aimed at an
OD interpretation® of polytypism in various classes of
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3 An outline of this concept is given in the Appendix to a
paper on kaolinites by Dornberger-Schiff and Durovi& (1975a).
See also Dornberger-Schiff (1979). The letters OD are derived
from order-disorder, but OD phenomena should not be con-
fused with order-disorder phenomena in alloys.
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Figure 1.

Projection along b of part of a mica structure; on
the left: sequence of OD layers indicated; on the right: se-
quence of OD packets indicated. Large circle = interlayer
cation; small circle = octahedral ion; medium circle = oxy-
gen ion; double circle = OH.

phyllosilicates, the description of their structures on a
common basis, and the derivation of the respective sets
of MDO polytypes defined by the so-called MDO con-
ditions (i.e., simple or regular polytypes). Mica struc-
tures are treated on the basis of a generalized Pauling
model. The silicate sheets are assumed to have hex-
agonal symmetry P(6)mm (without distinguishing be-
tween Si and Al), but the possiblity is considered that
different octahedral cations may occupy the different
sites in an ordered manner, with the translations a , a
kept unchanged.

An OD interpretation of the mica structure is given
below together with a symbolism for the representation
of mica polytypes, and the symmetry relations follow-
ing from any symbol.

TERMINOLOGY

The terms used are in accordance with the recom-
mendations of the AIPEA Commission on Nomencla-
ture. Orientational and displacement characters and
their notations were introduced earlier (Dornberger-
Schiff and Durovig, 1975a, 1975b) and the reader is re-
ferred to these papers for their meaning.

The crystallochemical discussion of the mica struc-
tures led to the well-kncwn classification as di- and
trioctahedral micas. This does not suffice for a geo-
metrical characterization of the octahedral sheets,
because it does not indicate the equivalence or non-
equivalence of the occupation of the octahedral sites.
Durovi¢ and Miklos (in preparation) considered the fol-
lowing types of site occupancy: (1} All octahedral sites
are occupied by the same kind of chemical entity—
homo-octahedral micas; (2) two octahedral sites are
occupied by the same chemical entity, the third by a
different entity, in an ordered way—meso-octahedral
micas; (3) all three sites are occupied by three different
chemical entities in an ordered way—hetero-octahedral
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Figure 2. Left: tetrahedral layer with apical oxygens marked
and the six possible positions of the octahedral layer numbered
(0 to 5). Center and right: the six possible positions of Oc.y, 3,
relative to the assumed position of T,, and the six possible
positions of T,,,, relative to the latter. At the top: the possible
layer to layer displacements and the numerical characters in-
dicating them.

micas. Thus, e.g., trioctahedral micas with three cat-
ions of the same element or a statistical distribution of
different cations are called homo-octahedral micas; di-
octahedral micas with two cations of the same element
or a statistical distribution of different cations over two
sites and a void or a cation of a different kind are called
meso-octahedral micas.

In all types, the translations a,, a, (related to a hex-
agonal coordinate system) common to the silicate sheet
and the interlayer cations are assumed to be transla-
tions of the octahedral cations, if statistically disor-
dered cations are treated as average cations.

OD INTERPRETATION OF THE
MICA STRUCTURE

The description of mica polytypes as different stack-
ings of mica layers or unit layers (Takeda and Sada-
naga, 1969) does not deduce the stacking possibilities
from any general principle. This is the aim of an OD
interpretation which presupposes that any polytype of
a given polytypic substance may be considered as con-
sisting of parts periodic in two dimensions called OD
layers, for which the vicinity condition (VC) holds. For
micas these parts are of two kinds: octahedral OD lay-
ers (Oc) and tetrahedral OD layers (Tet). An octahedral
OD layer consists of a plane of octahedrally coordinat-
ed cations and halves of the coordinating oxygen atoms
on either side of the cation plane. A tetrahedral OD lay-
er consists of an interlayer plane of cations and the two
tetrahedral sheets adjacent to it, excluding the halves
of oxygen atoms belonging to the octahedral OD layer
(Figure 1). Such OD layers may be designated . . . L,
L,,L,,. . .accordingto their sequence in the structure,
with tetrahedral OD layers indicated by L,,, and oc-
tahedral OD layers by L, ;. Tetrahedral and octahe-
dral OD layers are designated Tet,, and Oc,,,,, re-
spectively. All pairs of adjacent OD layers, i.e., (Tet,,,
Ocyni1) and (Ocyy 4, Tety,), are geometrically equiva-
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lent in any homo-octahedral mica, and the same holds
for any meso- and for any hetero-octahedral mica. The
term OD layer implying the validity of the vicinity con-
dition (see Appendix to Dornberger-Schiff and Durov-
i¢, 1975a and Dornberger-Schiff, 1979) is therefore jus-
tified for them. OD layers are sometimes called
“‘layers’’ in the following discussion. The possible po-
sitions of the octahedral layer (Oc,,,,) and tetrahedral
layer (Tet,,,,) relative to a fixed position of Tet,, are
shown in Figure 2.

The layer group of any tetrahedral layer is assumed
to be P(6/m)mm with a statistical distribution of Si and
Al atoms in the tetrahedral positions. Thus, a tetrahe-
dral layer is indicated in Figure 2 by a regular hexagon.

In a homo-octahedral mica either the three octahe-
dral positions marked 0, 2, 4 or those marked 1, 3, 5 are
occupied (Figure 2). Three trigonal stars per unit cell
with their centers at the octahedral sites represent the
octahedral layer (Figures 2 and 3a). The octahedral ions
and the coordinating oxygen atoms are arranged trans-
lationally equivalent with a translation b/3 = (a, — a,)/
3. The translational group for an octahedral layer is thus
generated by b4/3 and a, or a,. Analogous to the no-
menclature for space groups, the resulting Bravais net
may be labelled by the Bravais symbol H, so that the
layer group of an octahedral layer of a homo-octahedral
mica is HG)1m. '

In meso-octahedral mica only two of the three oc-
tahedral sites are occupied by the same kind of cation.
Thus, the octahedral layer has the symmetry P(3)1m
and may be considered as represented by a trigonal star
with its center at a vacant (or uniquely occupied) oc-
tahedral site (Figure 3b).

In a hetero-octahedral mica the three octahedral sites
are occupied by three different chemical entities. The
symmetry of the octahedral layer is P(3)12. Three dif-
ferent trigonal stars indicate the positions of the octa-
hedral sites (Figure 3c), any one of which represents
the symmetry of the layer.

For any mica, homo-, meso-, or hetero-octahedral,
the layer pair (Oc,,,,, Tety,,,) is related to (Tet,,,
Oc,,.,) by a rotation around one of the two-fold axes
of Oc,,,; thus these pairs are congruent.

Origin of OD layers

The origin of any OD layer has to be chosen accord-
ing to convention for its layer group. For Tet,, the or-
igin is at a point with site symmetry 6/mmm, and as
there is only one point per unit cell with this symmetry,
the choice is unequivocal (except for the trivial ambi-
guity due to the translational group). The origin of an
octahedral layer must be taken at a point with site sym-
metry 312, 31m or 31m, in hetero-, meso-, and homo-
octahedral mica, respectively.

In a meso-octahedral layer Oc,,,, only one point per
unit cell has this site symmetry—the unoccupied oc-
tahedral site (or the site occupied by a cation different

https://doi.org/10.1346/CCMN.1982.0300507 Published online by Cambridge University Press

Dornberger-Schiff, Backhaus, and S. Durovi¢

Clays and Clay Minerals

(a) H(3)1m
(b P(3)1m
(c) P(3)712
Figure 3. Schematic representation of an octahedral layer

Oc¢yp4;- (a) homo-octahedral; (b) meso-octahedral; (c) hetero-
octahedral.

from the other two octahedral cations) (Figure 3b). This
site must therefore be selected as the origin. For a het-
ero-octahedral mica, the origin of a particular octahe-
dral layer (e.g., Oc,) may be arbitrarily chosen at one
of the three octahedral sites. The origin of any other
octahedral site is then unequivocally determined by the
condition that the origin of all octahedral layers should
be occupied by the same chemical entity. In a homo-
octahedral layer Oc,,, ; any of the three octahedral sites
could be selected as the origin (not depending on the
choice of origin in any other layer).

Structure and symmetry of OD layers

The layer group of either of the kinds of OD layers
is nonpolar in all three classes of mica. Thus, the
groupoid families belong to category IV (Dornberger-

4 The symmetry relations within any polytype are given by
a set of coincidence operations; such a set has not the property
of a group (in the mathematical sense) but of a groupoid, and
is called an OD groupoid. The set of OD groupoids corre-
sponding to a family of OD structures (e.g., the different mica
structures) is called an OD groupoid family (see e.g., Dorn-
berger-Schiff and Grell-Niemann, 1961).
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Table 1.
to the origin of the respective layer and hexagonal basic vec-
tors a,, ds; Cy.

Coordinates®

Atom! X y z

Tetrahedral layer K 0 0 0

Obas 172 0 Zhas

Si, Al 173 2/3 Zg;

O, H 0 0 Zap

12 ap 13 2/3 Zap

Hetero-octahedral Ma 0 0 0

layer Me 1/3 2/3 0

Mi 2/3 173 0
Oy)s 0 213 1 - z,)

Meso-octahedral Ma 1/3 2/3 0
layer Oy 0 213 (1-1z,)

Homo-octahedral Ma 0 0 0
layer Oy 0 2/3 1 - z,,)

2 Ma, Me, and Mi indicate octahedral cations of different
elements.
2 bas = basal, ap = apical.

Schiff, 1975, 1979) and are indicated by the symbols of
the two layer groups given in the first line, and by one of
the possible displacements indicated by its components
in the directions a,, b, in the second line, below the
interval between the layer groups (Grell-Niemann and
Dornberger-Schiff, submitted for publication). In any
of the three classes of mica polytypes, one of the pos-
sible displacements (i.e., projection of the vector from
the origin of L, to that of L, ,), is a,/3, so that the fol-
lowing symbols of OD groupoid families result:

OD groupoid family

Homo-octahedral mica P(6/m)mm HG)Im
{173, 0]

Meso-octahedral mica P(6/m)mm P3)Im
[1/3, 0]

Hetero-octahedral mica P(6/m)mm P(3)12
[1/3, 0]

The atomic positions within any OD layer are given in
Table 1.

STACKING OF LAYERS IN MICA POLYTYPES
AND DESCRIPTIVE SYMBOLS

The stacking of layers may be characterized by a vec-
tor leading from the origin of layer L,, to the origin of
L., where the origin of any layer is chosen as indi-
cated above. The normal projection of this vector onto
the a,-a, plane is called the displacement of L., rel-
ative to L,,. In the mica structures, only the six dis-
placements *a;/3 (with i = 1, 2, 3) may occur as dis-
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Idealized atomic coordinates in OD layers referred Table 2. Vectors (j) indicated by the characters j and their

sums.
i G i @
0 as/3 4 a,/3 Gy + G+2)=
1 —a,/3 5 —a,/3 G+ 1)
2 a,/3 * 0 G+ G+3)=(
3 —a3 Gy =G =6

placements from one layer to the next. For these
displacements the numbers 0 to 5 are to be used as char-
acters (see Figure 2 and Table 2).

For meso-octahedral micas the stacking of layers in
unequivocally characterized by the displacements of
Oc,p., relative to Tet,, and the displacements of Tety,,,
relative to Oc,,,;, or the characters of these displace-
ments. A sequence of these characters can be used as
a polytype symbol, as follows:

ijkl..., M

wherei, j, k, 1are characters indicating the layer to layer
displacements and the dots mark the positions of the
octahedral layer. The two characters immediately be-
hind and in front of a dot refer to layer pairs sharing an
octahedral layer and must be either both even or both
odd (parity condition). The orientation of the layers
need not be indicated: All layers Tet,, have the same
orientation, and the orientation of any Oc,,,, follows
from the displacement of Oc,,,, relative to Tet,,.

In hetero-octahedral micas the displacement of
Oc,,, relative to Tet,, does not indicate unequivocally
the orientation of Oc,,,,. It indicates only the position
of the octahedral site occupied by the cation used to fix
the origin, but does not answer the question which of
the other octahedral cations occupies which of the re-
maining sites. A prime or double prime replacing any
dot in the symbol of form (1) is used to remove this am-
biguity: Any character consisting of a number with a
prime immediately in front or behind it indicates a right-
handed octahedral layer; correspondingly, any char-
acter with a double prime indicates a left-handed oc-
tahedral layer.

In homo-octahedral micas the stacking of the layers
is characterized by the displacements of Tet,,., rela-
tive to Tet,,, while the position of the layer Oc,,., is
unambiguously fixed by the position of the adjacent tet-
rahedral layers (see above). Thus, a symbol for a homo-
octahedral mica can be written as a sequence of dis-
placement characters

2

where r, t, s stand for numbers 0 to 5, indicating the
vectors +a;/3 (Figure 2 and Table 2). They indicate the
displacement of a tetrahedral layer relative to the pre-
ceding tetrahedral layer, in contrast to the other two
cases discussed above.

rts...,
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The symbol for a periodic polytype consists of the
sequence of characters referring to one period, placed
between vertical bars.

POLYTYPE SYMBOLS REFERRING
TO OD PACKETS

In many materials (e.g., kaolinite-type minerals) it is
useful to introduce ‘“OD packets’ which, according to
Durovié (1974), constitute the smallest continuous part,
periodic in two dimensions which represents fully the
chemical composition of a polytype. Any mica packet
consists of half of a tetrahedral plus half of an octahe-
dral layer (see Figure 1). From the fact that in any of
the three types of mica the pairs of adjacent OD layers
are equivalent, it follows that all packets are equivalent.
Packets are polar and lie with one side or the other al-
ternately facing up; they will be indicated by the letters
p and q, as follows: p,, = Tet,,/2 + Oc,,.,/2 and
Qon-1 = OCy,_y/2 + Tet, /2. The origin of any packet
will be taken at a hexad of its tetrahedral half layer.

The packets of the homo-, meso-, and hetero-octa-
hedral micas have the layer groups P(3)1m, P1m(1), and
P(1), respectively, and can be represented as shown in
Figure 4(c), (b), and (a), respectively. The origin of any
packet is at the center of the equilateral triangle (homo-
octahedral) or at the point of the arrow (meso- and het-
ero-octahedral packet).

Orientation of the packets

In a meso-octahedral mica the orientation of any
packet p,, is unequivocally indicated by the displace-
ment of Oc,,, , relative to Tet,,; that of any q,,_, by the
displacement of Tet,, relative to Oc,,_,. The numbers
0 to 5 introduced above are also used to denote these
displacements. A packet pair (p, q) corresponds rough-
ly to the 2:1 layer (with the addition of one half of an
interlayer on either side). To distinguish between the
orientation of packets lying with different sides up, a
dot is placed between the numbers referring to p,, and
Qon+1, thus marking the position of the octahedral layer.
The orientation of any packet B, (=p,, or q,,) is thus
fully characterized by a number T,;, and a dot to its right
for m = 2n, orleft form = 2n + 1. Such a number fol-
lowed or preceded by a dot is the orientational char-
acter of the respective packet. Within a symbol only
one dot is given between the numerical parts of orien-
tational characters referring to a packet pair corre-
sponding to a 2:1 layer (see Figure 4b).

In a hetero-octahedral mica the left- or right-hand-
edness (enantiomorphous nature) of a packet has also
to be indicated. A certain packet (called a right-handed)
and any packet congruent to it is indicated by a prime
immediately before or after the number T, referring to
it; any packet enantiomorphous to it, by a double
prime. In any packet pair py,, Quny; (COntaining a mica
layer) the packets p,, and qs,,, are linked by a two-fold
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Figure 4. Pictorial representation of packets and their ori-
entational characters. (a) hetero-octahedral; (b) meso-octa-
hedral; (¢) homo-octahedral (left = p,,; right = Qupe1)-

rotation and are thus of the same enantiomorphous na-
ture. Therefore, in any symbol only one prime or dou-
ble prime is given between the numbers T,, and T,,.,
(similar to the single dot in a symbol for a meso-octa-
hedral mica polytype).

In a homo-octahedral mica there are only two pos-
sible orientations of any packet p,,; the same holds for
packets Qo ,. A displacement of Oc,, ., relative to Tet,,
corresponding to the characters 0. or 2. or 4. leads to
the same orientation of p,,, a displacement correspond-
ing to characters 1. or 3. or 5., to the other orientation.
These orientations are, therefore indicated by the let-
ters e (for even, i.e., 0, 2, 4) and u (for uneven, i.e., 1,
3, 5). The situation is similar for packets Qap4 -

Packet to packet displacements

The displacement of any packet q,,, relative to pyy,
called v,, an.1, iS €qual to the displacement of Tet,,,,
relative to Tet,,. For meso- and hetero-octahedral mi-
cas such a displacement is thus equal to the sum of the
displacements indicated by the numerical parts of the
orientational characters of p,, and q,,.,. As follows
from the choice of their origin, the displacement of any
packet p,, relative to q,, ; is equal to zero and will be
indicated by the character *. In the pictorial represen-
tation the shafts of the arrows representing meso- or
hetero-octahedral packets are taken of such a length
(a;/3) that for a pair pq corresponding to a mica layer
their ends coincide.

Full and short polytype symbols

For any meso-octahedral polytype the full stacking
symbol has the form

To - T, T, - Ts

*
Vo,1 Va3

R 3)

where any of the characters T, and vy, 5,4, stands for
a number 0 to 5. Furthermore, if the vector indicated
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Table 3. Point operations and corresponding conversions of
characters.
T-operation i p-operation
1 j 1t
6! 1+j 6y
3! 24 3
¢ 345 (m)!
3y 44+ 3y
(6)! 547 ©))
””” " and ” o T and T
remain interchange
m LB - 2 || by
m i a, 1-3j 2 0 a
m 1 b, 2 - 2| b,
m 1 a 3-j 2| a
mLlb, 4—j 2 b
m L a 5—-3 2 a
’ and " ’ and "
interchange remain

by Ty OF Vi, anyy is denoted by (Ty,) or (Vay, anii1), Te-
spectively, the following relation results:

(Van, ons1) = {Ton) + (Toper). @

Eq. (4) shows that the second line of symbol (3) follows
unequivocally from the first line and is thus redundant.
The nonredundant (short) symbol form is

T, T, To.Ts . . . . (5)

For any given polytype the sequence of numbers and
dots in such a short symbol is the same as in the short
symbol referring to OD layers introduced above.

For hetero-octahedral mica polytypes also, two-line
full symbols and one-line short symbols corresponding
to symbols (3) and (5) result, with the proviso, that any
dot must be replaced by a prime or a doubie prime (see
above). Again the short symbol referred to packets
looks exactly like the short symbol referred to layers.

For a homo-octahedral polytype the full symbol has
also the form of symbol (3), but with T,,, = T,,,,, where
T, as well as T,, ., may stand now either for e or for
u. The first line is redundant as are the asterisks of the
second line. The corresponding non-redundant (short)
symbol is

6

and the sequence of characters is again the same as that
in the symbol (2) referring to layers.

Vo, V23 Va5 - - - 5

SYMBOLS DENOTING THE SAME POLYTYPE
OR ENANTIOMORPHOUS POLYTYPES

The finite sequence of characters between vertical
bars stands for an infinite periodic sequence and may
be replaced by a finite sequence of the same length
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starting at a different character of the infinite sequence,
without change of the denoted polytype. Symbols dif-
fering only in the finite part selected to represent a cer-
tain infinite sequence will not be regarded as different.

In addition, rotation of the polytype relative to a cho-
sen triple of basic vectors by a multiple of 60° around
an axis parallel to c,, or by 180° around an axis parallel
toa;orb; (i = 1,2, or3) may change its symbol without
changing the polytype. Application of a reflection
across a plane perpendicular or parallel to basic vectors
leads to the enantiomorph of the original polytype as
do the inversion at a point and roto-inversion. The cor-
responding conversions of characters are governed by
the following rules: (1) rotations leave primes and dou-
ble primes unchanged; (2) any operation leaving a layer
or packet upside up i.e., converting a packet p,, into a
packet p,, or g, into g is called a r-operation and leaves
the converted characters in the same sequence as the
original characters; (3) any operation turning a layer or
packet upside down, i.e., converting a packet p,, into
a packet q, and vice versa is called a p-operation and
reverses the sequence of converted characters, com-
pared with the sequence of original characters. These
relations are indicated in detail in Table 3. Application
of a coincidence operation to a polytype corresponds
to a conversion of its symbol according to the following
rules: Replace any number j of the symbol by a number
as indicated in the line marked i; for p-operations re-
verse the sequence of numbers and dots (primes and
double primes), for 7-operation keep the sequence; for
hetero-octahedral micas keep or interchange primes
and double primes as indicated.

Thus, the same polytype is denoted by (2’0 4”0| and
the following symbols: | 4"0 2’0[ (different start of finite
sequence), |3’1 5"1| (application of (6)™"), |1'5 1"3]
(application of (6) ). The polytype |2.04.03.1] is en-
antiomorhpous to |4.0 2.0 3.5| (applicationof m| b, and
to | 1.3 0.4 0.2| (inversion).

For hetero-octahedral polytypes another ambiguity
for the choice of symbols results from the ambiguity in
choosing the origin of octahedral layers on the site of
any one of the three chemical entities (see Figure 5,
central and top part). If a different entity is chosen to
fix the origin, the primes and double primes of the sym-
bol remain unchanged, but the numerical parts of char-
acters are changed in a way depending on their position
in front or behind a prime or double prime as follows:

j/ _% (j + a)l jll — (i _— a)l!
Wherea =20r =2 (7)
SR (43 IR (I a9

As far as the meaning of primes and double primes is
concerned, no general rule has been given that states
which arrangement of cations in an octahedral layer or
packet has to be called right-handed and indicated by
a prime. If an arrangement to the previously called left-
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4’2 3"

o'o 1"3
3 *2 2

Schematic representation of an arbitrary sequence of five hetero-octahedral layers: (c) by representation of their

layers numbered 0 to 4; layers numbered 0, 1, 2 shown in the left unit cell, 2, 3, 4 in the right unit cell; (b) and (d) by representing
the four packets contained in the sequence (numbered ¢ to 3), referred to the respective origins indicated in (f); (a) and (e) by

the symbols corresponding to (b) and (d), respectively.

handed and indicated by a double prime is now called
right-handed and indicated by a prime, any polytype is
now indicated by a symbol obtained from the original
symbol by a replacement of all primes by double primes
and vice versa (see the relation between the symbols
given in Figure 5a and 5e).

The symbols which, referred to differently chosen
origins denote the same polytype (as the symbols given
in Figure 5a), obviously denote in general different
polytypes, if meant to refer to the same choice of origin.
Similarly, two symbols, related to one another by an
interchange of primes and double primes (as, e.g., the
two symbols of Figure 5a and Se, both left) denote in
general different polytypes, if primes are taken to in-
dicate the same arrangement of chemical entities in oc-
tahedral sites. Polytypes denoted by symbols in either
of these ways differ, however, only in the occupation
of octahedral sites by different chemical entities. They
have the same relative position of tetrahedral layers
(and thus of silicate sheets). Interchange of primes and
double primes of a symbol corresponds to an isomor-
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phous interchange in any octahedral layer of the chem-
ical entities not chosen to fix the origin, i.e., there is an
isomorphous replacement of one of these entities by the
other and vice versa. Similarly, symbols related as in-
dicated by Eq. (7) denote, if referred to origins fixed in
the same way, polytypes related by a cyclic isomor-
phous interchange of the chemical entities occupying
the three octahedral sites (cf. the situation in hetero-
octahedral kaolinite-type minerals, Dornberger-Schiff
and Durovi&, 1975b) where these polytypes were called
mono-octahedral).

RELATIONS OF HOMOMORPHY BETWEEN
POLYTYPES OF DIFFERENT CLASSES

A meso-octahedral polytype has a relation of ho-
momorphy to a homo-octahedral polytype, namely the
polytype which would result, if the three octahedral
sites of the meso-octahedral mica were occupied by
cations of the same kind. The full symbol of the homo-
octahedral polytype thus related to a certain meso-oe-
tahedral polytype may be obtained from the full symbol
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of the latter by replacing the even or odd orientational
characters by the character e and u, respectively, leav-
ing the displacement characters unchanged.

The relation of homomorphy between hetero- and
meso-octahedral polytype obtained from the hetero-
octahedral polytype by equalizing the different ions not
lying on the chosen origin corresponds to the following
relations between their full symbols: the symbol of the
meso-octahedral polytype is obtained from the symbol
of the hetero-octahedral polytype by replacement of
primes and double primes by dots. The relation be-
tween the symbols of a hetero-octahedral polytype and
a homo-octahedral polytype which is obtained from the
latter by replacing the three different octahedral cations
by cations of the same kind follows from the relations
just described: the replacement of even and odd ori-
entational characters of the full symbol of the hetero-
octahedral polytype by e and u, respectively, and the
primes and double primes by dots.

THE DETERMINATION OF THE SPACE GROUP
OF A PERIODIC POLYTYPE FROM ITS SYMBOL

To determine the space group of any periodic mica
polytype from its symbol one may proceed as follows:

(1) Determine a translational vector, ¢’ spanning, to-
gether with g, and a,, a primitive unit cell.

(2) Take note of any conversion of characters listed in
Table 3 which reproduces the sequence of charac-
ters in the symbol if applied to its characters one
after the other. The corresponding point operations
lead to the point group isogonal to the space group.

(3) Accordingto ¢’ (see symbol (1)) and the point group
(see symbol (2)), select a triple of basic vectors in
keeping with conventions for the crystal class and
preferably also to the conventions formulated be-
low, and give the corresponding Bravais lattice.

(4) To any rotations or reflections of the point group
find the translational components of the symmetry
operations and hence the space group.

With reference to symbol (1), a vector ¢’ is obtained
as®

®
where 2ris the number of packets per period, and (v,, ,)
(for any of the numbers m, n) denotes the sum
(Vm,m+1) + (Vm+1, m+2> t...0t <Vn—1’ vn)a indicated
by the displacement character v, ,. Because for any
mica polytype Vy,_;. on = ¥, it follows that (v, ,.) =
(Vo,1) + (v, 30 + ... + {Vys 9r—). For meso- and
hetero-octahedral mica, 2r is equal to the number of
figures between vertical bars of the symbol; for homo-

¢’ = 2rcy + Vo, ),

5 The vector c, is defined as a vector perpendicular to a, and
a,, the length of ¢, is defined so that any vector from the origin
of the packet p, to that of p,,, is equal to ¢, + aa, + Ba,
(where a, 8 depend on the stacking.)
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octahedral mica, r is the number of figures between ver-
tical bars of the short symbol.

With reference to symbol (3), for hexagonal, trigonal,
and orthorhombic polytypes the displacement vector
{Vy.2r) = 0,and ¢ = ¢’ and is parallel to ¢,. This results
from the fact that neither a 3- nor a 6-fold rotation or
roto-inversion can occur in any mica polytype. For any
hexagonal and trigonal polytype, a, and a, may be tak-
en as the other two basic vectors. In any orthorhombic
polytype there are symmetry planes and/or 2-fold axes
referring to a pair of directions parallel to a; and b, (with
i = lor2or3). The vectors a; and b; may then be taken
as basic vectors a and b, respectively. The Bravais lat-
tice is C. For any monoclinic polytype with symmetry
plane and/or 2-fold axis referring to a direction a; or b;
the vector a; or b;, respectively, will be chosen as basic
vector b or —b and the other vector as vector a or —a;
Bravais lattice C. For any monoclinic polytype with
symmetry plane and/or 2-fold axis referring to c, we
way choose b = ¢’. Basic vectors a and ¢ may then
either be chosen equal to g, and a,, respectively (i, k =
1, 2, 3, 1 # k) Bravais lattice P or equal to ; and b;,
respectively, Bravais lattice C. Generally speaking,
{V,, 5} is in any case parallel to one of the directions
+a; or +b,, therefore any triclinic polytype may be re-
ferred to metrically monoclinic basic vectors with Bra-
vias lattice C.

With reference to symbol (4), in hexagonal and tri-
gonal polytypes the conversions listed under (6)71, (6)*,
(3)71, and (3)! indicate the presence of screw axes 6;,
6,, 3,, and 3,, respectively. Point operations m L a or
m 1 b which correspond to a conversion of characters
relating any character to itself, indicate mirror planes
or b- or a-glide planes, respectively, of the polytype;
operations which correspond to a conversion relating
different characters indicate c-glide or n-glide planes of
the polytype. Symmetry planes perpendicular to ¢ can
only be mirror planes connected with n-glide planes.
The 2-fold axes parallel to a or to b are necessarily ro-
tation axes connected with screw axes. Any 2-fold axis
parallel to ¢, is necessarily a screw axis. From the Bra-
vais lattice, the point group, and by applying the rules
given in this paper, the space group then follows.

EXAMPLES

Three examples follow that demonstrate how the
space group of a polytype may be deduced from its
symbol.

Example |

Full symbol |2.0 4.0|, short symbol |2.0 4.0,
1 *5*
quoted by Zvyagin and Soboleva (1974), Zvyagin
symbol s,54t,5,5¢t, (see Figure 6).

¢’ =2+ (1) + (5) = 2, + a,/3.
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20 4-0
1 #5 ¥

Figure 6. Pictorial representation of the polytype |2.0 4.0‘ .

Rules of conversion: j. into (6 — j). and .j into .(6 — j)
hold for characters.

Point operation corresponding to this rule: m 1 bs.
Symmetry operation c-glide perpendicular b, results.
Basic vectors chosen:

a = —az b = —b,; ¢ = 2¢c, — a/3; Bravais lattice C.
Space group Cc.

Example 2
Full symbol |2.4

3 *
symbol s,s,t, (see Figure 7).

, short symbol |2.4

, Zvyagin

¢ =cy+ (3) =c¢, — a,/3.

Rule of conversion: j. into .(6 — j) and .j into (6 — j).
holds for characters with reversal of their sequence.

Point operation corresponding to thisrule 2 || b,. No
other relevant rule holds, thus point group 2 follows.
Basic vectors chosen a = ay; b = bs; ¢ = ¢'. Bravais
lattice C. Space group C2.

Example 3

Zinnwaldite, hetero-octahedral, 13/. The following
polytype symbols denote 1M polytpyes: [0'0[ and
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2°4
3

Figure 7. Pictorial representation of the polytype |2A4] .

|2'4| together with those evidently indicating the same
or enantiomorphous polytypes (cf. the first packet pair
indicated in Figure 5c, left unit cell, and middle and left
part of 5a and 5b). Which of the two symbols is correct
depends on the choice of the octahedrally coordinated
cation chosen to fix the origin of the octahedral layer.

In either case there is one rule of conversion, name-
ly j’ into '(6 — j) which corresponds to a 2-fold rotation
axis parallel to b. Space group C2, with ¢/’ = ¢ =
co + (3) = ¢y —ay/3,tobereferredtoa = a;, b = by,
space group C2.

As can easily be seen, the polytype |2.4| (Figure 6)
would resunlt from |2'4] (Figure 5(b), left) if the two
cations not chosen to indicate the origin were re-
placed by cations of the same kind (ionic replacement).

The stacking mode of any mica polytype (ordered as
well as disordered) can be explained by the stacking of
OD layers. By a special procedure, following from OD
theory, all possible so-called MDO polytypes (regular
or simple polytypes) can be deduced for the given three
mica classes. The homomorphic relations between
these three classes seem to be useful for the discussion
of chemical related micas. For the discussion of real
mica structures the ditrigonalization of the tetrahedral
sheet must be taken into account. This and an ordered
Si/Al substitution are problems to be treated in the fu-
ture.


https://doi.org/10.1346/CCMN.1982.0300507

Vol. 30, No. 5, 1982

REFERENCES

Brauer, K.-H. (1971) Die Resultate der Atzmethode an Kris-
tallen der Glimmergruppe: Akademie-Verlag, Berlin, 185

pp-

Brown, B. E. (1978) The crystal structure of a 37 lepidolite:
Amer. Mineral. 63, 332-336.

Dormberger-Schiff, K. (1979) OD structures—a game and a bit
more: Krist. Tech. 14, 1027-1045.

Dornberger-Schiff, K. and Durovi¢, S. (1975a) OD interpre-
tation of kaolinite-type structures. I: Symmetry of kaolinite
packets and their stacking possibilities: Clays & Clay Min-
erals 23, 219-229.

Dornberger-Schiff, K. and Durovig, S. (1975b) OD interpre-
tation of kaolinite-type structures. II: The regular polytypes
{(MDO-polytypes) and their derivation: Clays & Clay Min-
erals 23, 231-246.

Domberger-Schiff, K. and Grell-Niemann, H. (1961) On the
theory of order-disorder (OD) structures: Acta Crystallogr.
14, 167-177.

Durovig, S. (1974) Notion of ‘‘packets’ in the theory of OD
structures of M > 1 kinds of layers: Acta Crystallogr. B30,

Polytypism of micas

373

Giiven, N. and Burnham, C. W. (1967) The crystal structure
of 3T muscovite: Z. Kristallogr. 125, 163-183.

Hendricks, S. B. and Jefferson, M. E. (1939) Polymorphism
of the micas with optical measurements: Amer. Mineral. 24,
729-771.

Pabst, A. (1955) Redescription of the single-layer structure of
the micas: Amer. Mineral. 40, 11-12.

Pauling, L. (1930) Structure of micas and related minerals:
Proc. Nat. Acad. Sci. 16, 123-129.

Ross, M., Takeda, H., and Wones, D. R. (1966) Mica poly-
types: Systematic description and identification: Science
151, 191-193.

Smith, J. V. and Yoder, H. S. (1956) Experimental and the-
oretical studies of the mica polymorphs: Mineral. Mag. 31,
209-235.

Takeda, H. and Sadanaga, R. (1969) New unit layers for mi-
cas: Mineral. J. 5, 434-449.

Zvyagin, B. B. (1964) Electron Diffraction Analysis of Clay
Mineral Structures: Nauka, Moscow, 43-46.

Zvyagin, B. B. and Soboleva, S. V. (1974) The generalization
of mica polytypism for noncentric layers of the same dis-
placement parity: Abstracts, European Crystallographic

76-78.

Guggenheim, S. and Bailey, S. W. (1977) The refinement of
zinnwaldite-1M in subgroup symmetry: Amer. Mineral. 62,
1158-1167.

Meeting, Keszthely, Hungary 165-167 (abstract).
(Received 28 April 1980; accepted 25 September 1981)

PesiomMe—C TOUKH 3PCHHMsI CAMMETPHH CIHOJbI MOTYT ObITh KiacCHHLMpoBanbl cicayomum obpa3om:
CHIIONBI CO BCEMH TPEMsI OKTalAPUYECKUMM KOOPAWHHPOBAHHLIMH MeCTaMH, 3aHATBHIMH OJUHAKOBBLIMH
KATHOHAMH (FOMO-OKTa3IpHYECKHNE CIIOABI), CIIONbI C TOJLKO JBYMsI MECTaMH, 3aHIATHIMH OJUHAKOBBIMHA
KaTHOHaM# (Me30-0KTa3PHUECKHe CIOJbI), H CIO/bI C TPEMS MECTaMH, 3aHSITBIMA pPa3HBIMH KaTHOHAMH
b0 JOBYMsI pa3HbIMH KATHOHAMH W IYCTOTOH B ymnopsifoueHHOH bopMme (reTepo-OKTasApHYECKHE
cmiofibl). 175l BceX 5THX TPEX CHCTEM, IOJIMTHUIILI CJION, MACAIN3UPOBAHHbIE B COrachu ¢ 0006meHHOH
moaensro IlayaMara, MoryT ObITh MHTEPIPETUPOBAHBI Kak cTpykKTyphl OD, cocrosime U3 OKTadApH-
yeckux caoes OD u rerpasgpuueckux cioeB OD, B KOTOPBIX IIOCKOCThL MEKCJIOHHOTO KaTHOHA 3aMKHYTa
MEXIy TeTpasApUYecKAMH cJiostMu. CJIOH CIHIONBI, MOCTPOEHHBIA U3 OKTa3PUYECKOro U IBYX IOJIOBUH
TETPAAPHIECKUX CJIOEB ¢ KaskA0i CTOPOHbI, COCTOMT U3 [BYX MAKETOB, CBSI3aHHBIX ABOHHOH poTanuei.

Opuentanus xaxjoro makera OD moxer ObITh onmcana xHomepom oT 0 1o 5 (Mo OTHOIIEHHIO K
reKcaroHaJIbHOM cHcTeMe KoopmuHar). Touxka mepep auGo NOCiie 3THX HOMEPOB UCNOJNL3YETCS st
OIMMCAHUS MOJIOXKEHUS] OKTAIPUYECKOro C/10s (HOMep + ToyKa = XapakTep opueHTauun). [TepeMemenne
naKeTa MO OTHOIIEHHIO K €ro NpeflieCTREHHHKY XapaKTepH3YeTCsl BEKTOPOM OT Hadaja NaKeTa pp
(1 q,—,) IO Hayada COCEAHEro NAKETA Pnyy (MIH Poy). DTH MEPEMELIEHMS. MOTYT OBbITh TAKXKE OINHCAHBI
HoMepaMi oT O go S (xapakTepbl HepeMellcHHs);, HYJEBOC NEepeMelleHHe O3HauyaeTcsd CHUMBOJIOM™.
IMosToMy KaXKIblii IOJUTHN CHIOAbI (YNOPANOYEHHOH HJIM HEyNopsAnodeHHo#H) MosKeT ObITh olncad
JBOUHBIM CHMBOJIOM. XapaKTephl OPUEHTAIIMH PACIOJIOKEHbl B NMEPBOH JIMHMH, a XapakTephl Iepe-
MelleHnss—Bo BTopoil. Kaskibli CMMBOJI OMUCBHIBAET SICHO OTHOCHUTEJBHOE PAacMOJIOXKEHHE CJIOCB B
nosmTune. CHMMETprs TIPOCTPABCTBEHHBIX TPYNIT YIOPSNOUYEHHBIX HOJUTUNOB CJICAYET HEMOCPENCTBEHHO
u3 3THX cuMBoJI0B. [E.C.]
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Resitmee—Vom Gesichtspunkt der Symmetrie konnen die Glimmer wie folgt klassifiziert werden: Glimmer,
deren 3 oktaedrisch koordinierte Plitze von Kationen gleicher Art besetzt sind (homo-oktaedrisch), Glim-
mer mit 2 gleichartig besetzten Oktaederplitzen (meso-oktaedrisch) und Glimmer mit 3 verschieden be-
setzten Oktaederplatzen oder 2 verschieden besetzten plus einer Liicke in geordneter Weise (hetero-okta-
edrisch). Fiir jede dieser 3 Klassen werden die Glimmerpolytypen, entsprechend dem verallgemeinerten
Pauling-Modell, als OD-Strukturen aus 2 Arten von OD-Schichten interpretiert, die Oktaederschicht und
die Tetraederschicht, die aus der Zwischenschichtkationenebene und den beiden benachbarten tetrae-
drischen Netzwerken besteht. Eine Glimmerschicht, die aus einer Oktaederschicht und zwei Tetraeder-
halbschichten aufgebaut ist, besteht aus 2 OD-Paketen, die durch eine zweizéhlige Achse verkniipft sind.

Die Orientierung jedes OD-Pakets wird durch Ziffern von 0 bis 5 gekennzeichnet (bezogen auf ein hex-
agonales Koordinaten-system). Ein Punkt hinter oder vor den Ziffern bezeichnet die Lage der Oktaeder-
schicht (Ziffer + Punkt = Orientierungscharakter). Die Verschiebung eines Pakets p, (oder q,_,) gegen-
iiber dem Paket p,., (oder p,,) wird durch einen Vektor vom Ursprung des einen zum Ursprung des
anderen charakterisiert. Diese Verschiebungen werden ebenfalls durch Ziffern von 0 bis 5 charakterisiert
(Verschiebungscharakter). Eine 0-Verschiebung wird durch einen * symbolisiert. Jeder Glimmertyp
(geordnet als auch fehlgeordnet) kann nun durch ein zweizeiliges Symbol beschrieben werden. In der ersten
Zeile stehen die Orientierungscharaktere, in der zweiten die Verschiebungscharaktere. Jedes Symbol kenn-
zeichnet die Stapelung von Schichten in einem Polytyp eindeutig. Die Raumgruppensymmetrie geordneter
Polytypen folgt direkt aus dem Symbol.

Résumé—Du point de vue de la symmétrie, les micas peuvent étre classifiés de la maniére suivante: ceux
dont les trois sites coordonnés octaedralement sont occupés par le méme cation (micas homo-octaédraux),
ceux dont deux de ces sites seulement sont occupés par le méme cation (micas méso-octaédraux), et ceux
dont les trois sites sont occupés par des cations différents ou par deux cations différents et par un vide, de
maniere ordonnée (micas hétéro-octaédraux). Pour chacune de ces trois classes, des polytypes micas,
idéalisés en accord avec le modele généralisé de Pauling, peuvent &tre interprétés en tant que structures
OD consistant de couches octaédres OD et de couches tetraedres OD dans lesquels un plan intercouches
de cations est entouré par des feuillets tetraédres. Une couche mica composée d’un feuillet octaédre et de
deux moitiés de feuillets tetraedres de chaque c6té consiste en deux paquets OD joints par une rotation a
double pli.

L’orientation de tout paquet OD peut étre donné par un nombre de 0 & 5 (apparenté a un systeme de
coordonnées hexagonales). Un point précédant ou suivant ces nombres est employé pour indiquer la po-
sition de la couche octaédrale (nombre + point = caractére d’orientation). Le déplacement d’un paquet
contre son prédécesseur est caracterisé par un vecteur de !'origine d’un paquet p, (ou q,_,) 4 I’origine du
paquet adjacent p,,,(p.,). Ces déplacements peuvent étre aussi symbolisés par des nombres de 0 a 5 (car-
acteres de déplacement), un déplacement nul est symbolisé par *. Tout polytype mica (ordonné ou désor-
donné) peut donc étre décrit par un symbole a deux lignes. Les caractéres d’orientation sont situés sur la
premiere ligne, et les caractéres de déplacement sur la deuxiéme. Tout symbole, par consequent, indique
de maniére unique I’assemblage de couches d’un polytype. La symmétrie espace-groupe de polytypes
ordonnés suit directement du symbole.[D.J.]
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