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Abstract. We develop combinatorial tools to study partial rigidity within the class
of minimal S-adic subshifts. By leveraging the combinatorial data of well-chosen
Kakutani–Rokhlin partitions, we establish a necessary and sufficient condition for partial
rigidity. Additionally, we provide an explicit expression to compute the partial rigidity
rate and an associated partial rigidity sequence. As applications, we compute the partial
rigidity rate for a variety of constant length substitution subshifts, such as the Thue–Morse
subshift, where we determine a partial rigidity rate of 2/3. We also exhibit non-rigid
substitution subshifts with partial rigidity rates arbitrarily close to 1 and, as a consequence,
using products of the aforementioned substitutions, we obtain that any number in [0, 1] is
the partial rigidity rate of a system.
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1. Introduction
A measure-preserving system (X, X , μ, T ) is partially rigid if there exist a constant
γ > 0 (called a constant of partial rigidity) and an increasing sequence (nk)k∈N such
that lim infk→∞ μ(A ∩ T nkA) ≥ γμ(A) for every measurable set A. When γ = 1, the
system is said to be rigid, and the sequence (nk)k∈N is called a rigidity sequence. The
rigidity notion was introduced by Furstenberg and Weiss in [27] and can be regarded as
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2 S. Donoso et al

the obstruction to mild mixing (a system is mildly mixing if and only if it does not possess
any non-trivial rigid factor). Rigidity, rigidity sequences, and their topological counterparts
have been extensively studied (refer, for example, to [3, 10, 17, 24, 30]).

Friedman is credited with pioneering the concept of partial rigidity in his seminal paper
[26] and we use King’s definition from [35]. In early studies, this notion was closely
intertwined with the partial mixing property, that is, there exists a sequence (nk)k∈N and
a constant α > 0 such that lim infk→∞ μ(A ∩ T −nkB) ≥ αμ(A)μ(B) for all A, B ∈ X ,
and was primarily explored for rank-one systems (see [26, 31, 35]). Additionally, the
exploration of the partial rigid property has been significantly less extensive than that
of rigid properties. Little is known about partial rigidity constants or partial rigidity
sequences, let alone explicit calculations of the partial rigidity rate δμ, that is, the
supremum of the partial rigidity constants of a system.

Indeed, for other types of systems, the study of partial rigidity has been only considered
as a cause of an absence of mixing. For instance, the non-mixing property was established
for substitution subshifts in 1978 [14], followed by interval exchange transformations in
1980 [34], linearly recurrent subshifts in 2003 [11], and exact finite rank Bratteli-Vershik
systems in 2013 [6]. In more recent works, the partial rigidity property has been highlighted
by Danilenko [13], who showed that indeed the aforementioned classes of systems are
partially rigid (hence, they cannot be mixing), and by Creutz [12], who proved that
non-superlinear complexity subshifts are partially rigid. In the context of interval exchange
transformations, we remark that there exists a previous study by Ryzhikov that incorporated
all the necessary points to establish partial rigidity [42].

Despite the number of results presented above for substitution, linearly recurrent, and
non-superlinear complexity subshifts, for the more general class of S-adic subshifts, there
is not a real unified framework allowing one to study partial rigidity and determine the
partial rigidity rate of a system in this class. Our aim in this paper is to provide tools based
on the combinatorial data inherent in any S-adic subshift to address these problems.

The class of S-adic subshifts of finite alphabet rank (see §2.2) is a natural class
of subshifts to study partial rigidity. This class contains well-studied classes of low
complexity subshifts, such as substitutions, linearly recurrent subshifts, and, more gen-
erally, non-superlinear complexity subshifts [16]. Although systems within this class may
be combinatorially more complex than non-superlinear complexity subshits, they share
structural dynamical properties such as having zero topological entropy, having a finite
number of ergodic measures [28], having a restrictive structure of its automorphisms group
[23], and having a finite number of factors [22].

In this paper, using the concepts of complete words and Kakutani–Rokhlin towers, we
provide a combinatorial insight to the notion of partial rigidity, which is valid beyond the
realm of finite rank S-adic subshifts. We first state a very general necessary and sufficient
condition for an ergodic and non-atomic measure-preserving system to be partially rigid.
Although this theorem may seem technically intricate, it can be applied in examples and
is the main ingredient in the proofs of other results in the article. To state it, we need the
following definitions.

A non-empty word w is a complete return to a letter, or just complete for short, if
its first and last letters coincide. For a standard Kakutani–Rokhlin partition of towers
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On partial rigidity of S-adic subshifts 3

T1, . . . , Td , and a complete word w = w1 · · · w� ∈ {1, . . . , d}∗ (w1 = w�), we let Tw

denote the set of points that start and end in tower Tw1 crossing consecutively the towers
Tw2 , . . . , Tw�−1 (see Definition 3.2 for the precise definition).

We denote u ∼ w if u = u1 · · · ur and w = w1 · · · w� are complete words and
hu1 + · · · + hur−1 = hw1 + · · · + hw�−1 , where hi is the height of the tower Ti .

THEOREM A. Let (X, X , μ, T ) be an ergodic system with μ a non-atomic measure and let
(P(n))n∈N be a sequence of Kakutani–Rokhlin partitions satisfying standard assumptions
called properties (KR1)–(KR4). Then, the following properties are equivalent:
(i) (X, X , μ, T ) is γ -rigid;

(ii) there exists a sequence of complete words (w(n))n∈N such that

lim sup
n→∞

∑
u∼w(n)

μ(T (n)
u ) ≥ γ . (1)

Here, the superindex (n) in T (n)
u denotes that we use the towers associated with

partition P(n).
The following theorem ensures the existence of a good sequence of complete words.

Recall that δμ is the supremum of all partial rigidity constants of the system (X, X , μ, T ).

THEOREM B. Under the same assumptions of Theorem A, there exists a sequence of
complete words (w(n))n∈N such that

δμ = lim
n→∞

∑
u∼w(n)

μ(T (n)
u ). (2)

Using this characterization, we derive that δμ is itself a constant of partial rigidity.
This has been pointed out in the past (see for instance [35, §1]), but our proof has the
advantage that is constructive and allows us to compute such a constant for different classes
of S-adic subshifts, while giving explicit partial rigidity sequences. Indeed, the proof of
Theorem A shows that, by constructing a sequence of complete words (w(n))n∈N, the
sequence nk = (h

(k)
w(k)1

+ · · · + h
(k)
w(k)|w(k)|−1

)k∈N is a sequence of partial rigidity.
In the context of S-adic subshifts, there is a natural sequence of Kakutani–Rohklin

partitions where Theorems A and B can be applied directly. From this, we derive in §5.2
several sufficient conditions for partial rigidity, specially relevant for subshifts of finite
alphabet rank. These include the proportionality of the tower heights or the repetition of
a positive morphism in the directive sequence defining the S-adic subshift (Theorems 5.5
and 5.21). We remark that these conditions can be tested in concrete examples, as long as
we have S-adic representations of them. Indeed, in §5.2.2, we introduce a rich family of
S-adic subshifts, which allows us to illustrate our methods and to construct a partially rigid
superlinear complexity subshift.

For substitution subshifts, we derive an expression for the partial rigidity rate in terms
of measures of cylinder sets. More precisely, we show the following.
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4 S. Donoso et al

THEOREM C. Let σ : A∗ → A∗ be a primitive and constant length substitution. Let μ be
the unique invariant measure on the substitution subshift (Xσ , S). Then,

δμ = sup
�≥2

∑
w complete word

on L(Xσ ) and |w|=�

μ([w]Xσ ), (3)

where [w]Xσ is the cylinder set given by w on Xσ .

A similar result can be derived for S-adic subshifts with constant length directive
sequence, see Theorem 7.1.

We obtain as applications that the partial rigidity rate for the Thue–Morse subshift
is 2/3 (Theorem 7.12) and construct for every ε > 0 a substitution subshift such that
1 − ε < δμ < 1 (Corollary 7.15). Using these substitutions, we prove in Theorem 7.17 that
any number in [0, 1] is the partial rigidity rate of a measure-preserving system.

Organization. In §2, we provide the essential background in measure-preserving, topo-
logical, and symbolic dynamics needed in this article. Section 3 is devoted to stating the
necessary and sufficient condition for a system to be partially rigid. The introduction and
characterization of the partial rigidity rate are presented in §4. Sections 5 and 6 delve
into the study of partial rigidity and rigidity within the context of S-adic subshifts. The
computation of partial rigidity rates for constant length substitution subshifts is presented
in §7, together with some applications. Except for the proof of Theorem 7.1, this last section
can be read independently. We end the document with some open questions.

2. Preliminaries
2.1. Measure-preserving and topological systems. A measure-preserving system (or a
system for simplicity) is a tuple (X, X , μ, T ), where (X, X , μ) is a probability space and
T : X → X is a measurable and measure-preserving transformation. That is, T −1A ∈ X
and μ(T −1A) = μ(A) for all A ∈ X . In this paper, we assume without loss of generality
that T is invertible, with a measurable and measure-preserving inverse T −1. We will also
assume without loss of generality that (X, X , μ) is a standard probability space.

We say that (X, X , μ, T ) is ergodic (or simply that T or μ is ergodic) if whenever
A ∈ X verifies that μ(A�T −1A) = 0, then μ(A) = 0 or 1. A strictly stronger notion is
that of mixing. We say that (X, X , μ, T ) is mixing if μ(A ∩ T −nB) → μ(A)μ(B) as n
goes to infinity for all measurable sets A, B ∈ X .

A measure-preserving system (X, X , μ, T ) is partially rigid if there exists an
increasing sequence of positive integers (nk)k∈N and a constant γ > 0 such that
lim infk→∞ μ(A ∩ T −nkA) ≥ γμ(A) for any measurable set A ∈ X . In such a case, we
also say that the system, or just μ, is γ -rigid and the sequence (nk)k∈N is said to be a partial
rigidity sequence. It is not complicated to prove that to state partial rigidity, one only needs
to consider sets A in a semi-algebra that generates X and that any subsequence of a partial
rigidity sequence remains a partial rigidity sequence for the same constant γ > 0.

The case γ = 1 has been extensively studied in the past. In this case, the
measure-preserving system (X, X , μ, T ) is said to be rigid and the limit inferior is
actually a limit. By standard density arguments, the system is rigid if and only if for any
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f ∈ L2(μ), we have that ‖f − f ◦ T nk‖2 goes to 0 as k goes to infinity for an increasing
sequence of positive integers (nk)k∈N. In this context, the sequence (nk)k∈N is said to be
a rigidity sequence for (X, X , μ, T ). Note that for every positive integer c, the sequence
(cnk)k∈N is also a rigidity sequence for (X, X , μ, T ). For recent developments on the
rigidity notion and the sequences one can obtain, we refer to [3].

Remark 2.1. The study of partial rigidity for ergodic systems is only interesting when the
system is non-periodic and so we will consider only non-atomic ergodic measures.

A measure-preserving system is mildly mixing if for every measurable set A ∈ X
with μ(A) > 0, infn∈N μ(A�T −nA) > 0. A measure-preserving system (X, X , μ, T ) is
weakly mixing if the product system (X × X, X ⊗ X , μ × μ, T × T ) is ergodic. It is well
known that mixing implies mildly mixing, mildly mixing implies weakly mixing, and
weakly mixing implies ergodicity, and all implications are strict. For example, there are
weakly mixing and rigid systems (see [3]), and also partially rigid and mildly mixing
systems (see [9]).

Let (X, X , μ, T ) and (Y , Y , ν, S) be two measure-preserving systems. If there exists
a measurable map π : X → Y such that π ◦ T = S ◦ π and μ(π−1A) = ν(A) for all
A ∈ Y , we say that π is a measurable factor map, (Y , Y , ν, S) is a measurable factor
of (X, X , μ, T ), and (X, X , μ, T ) is a measurable extension of (Y , Y , ν, S). When π

is invertible and π−1 is a measurable map, (X, X , μ, T ) and (Y , Y , ν, S) are said to
be measurably isomorphic. We have that ergodicity, partial rigidity, rigidity, and mixing
properties are inherited via measurable factor maps.

A topological dynamical system is a pair (X, T ), where X is a compact metric space and
T is a self-homeomorphism. The orbit of a point x ∈ X is the set orb(x) = {T nx : n ∈ Z}.
We say that (X, T ) is minimal if the orbit of any point is dense in X. A point x ∈ X is
periodic if its orbit is finite and aperiodic otherwise.

Let (X, T ) and (Y , S) be two topological dynamical systems. If there is an onto
continuous map π : X → Y such that π ◦ T = S ◦ π , then we say that π is a factor
map, (Y , S) is a factor of (X, T ), and (X, T ) is an extension of (Y , S). When π is a
homeomorphism, (X, T ) and (Y , S) are said to be topologically conjugate. Remark that
minimality is preserved under factor maps.

Given a topological dynamical system (X, T ), we let M(X, T ) (respectively E(X, T ))
denote the set of Borel T-invariant probability (respectively the set of ergodic probability
measures). For any topological dynamical system, E(X, T ) is nonempty and when
E(X, T ) = {μ}, the system is said to be uniquely ergodic. For every ν ∈ M(X, T ), there
is a probability measure ρ in M(X, T ) such that ν(A) = ∫

E(X,T )
μ(A) dρ(μ) for every

Borel measurable set A. This is called the ergodic decomposition of ν.

Remark 2.2. If every ergodic measure μ ∈ E(X, T ) is γ -rigid for the same partial rigidity
sequence (nk)k∈N, then every invariant measure ν ∈ M(X, T ) is γ -rigid. Indeed, for any
Borel measurable set A,

lim inf
k→∞ ν(A ∩ T −nkA) = lim inf

k→∞

∫
E(X,T )

μ(A ∩ T −nkA) dρ(μ)

≥
∫
E(X,T )

lim inf
k→∞ μ(A ∩ T −nkA) ≥

∫
E(X,T )

γμ(A) dρ(μ) = γ ν(A).
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6 S. Donoso et al

2.2. Cantor and symbolic systems. A Cantor system (X, T ) is a topological dynamical
system such that X is a Cantor space, that is, the topology of X has a countable basis of
clopen sets (closed and open sets) and it has no isolated points. Cantor spaces are compact
and metric. An important class of Cantor systems is symbolic systems.

Let A be a finite set that we call alphabet. The elements in A are called letters
or symbols. For � ∈ N, the set of concatenations of � letters is denoted by A� and
w = w1 · · · w� ∈ A� is said to be a word of length �. The length of a word w is denoted
by |w|. We set A∗ = ⋃

n∈N A�, where, by convention, A0 = {ε} and ε is the empty word.
Given two words u and v, we say that they are respectively a prefix and a suffix of the

word uv. For a word w = w1 · · · w� and two integers 1 ≤ i < j ≤ �, we write w[i,j+1) =
w[i,j ] = wi · · · wj . We say that u appears or occurs in w if there is an index 1 ≤ i ≤ |w|
such that u = w[i,i+|u|) and we denote this by u 
 w. The index i is an occurrence of u in
w and |w|u is the number of occurrences of u in w.

The set of one-sided sequences (xn)n∈N in A is denoted by AN and the set of two-sided
sequences (xn)n∈Z in A is denoted by AZ. The notation and concepts introduced for words
can be naturally extended for sequences in AN and AZ.

The shift map S : AZ → AZ is defined by S((xn)n∈Z) = (xn+1)n∈Z. A subshift is a
topological dynamical system (X, S), where X is a closed and S-invariant subset of AZ

endowed with the product topology. Usually, X itself is said to be a subshift. Let X be
a subshift on the alphabet A. Given x ∈ X, the language L(x) is the set of all words
appearing in x and L(X) = ⋃

x∈X L(x). For two words u, v ∈ L(X), the cylinder set
[u · v]X is given by {x ∈ X : x[−|u|,|v|) = uv}. When u is the empty word, we only write
[v]X. Cylinder sets are clopen sets that form a base for the topology of the subshift.

A word w ∈ A∗ is said to be complete if |w| ≥ 2 and w1 = w|w|. The set of complete
words in L(X) is denoted by CL(X). For u ∈ L(X), a right return word to u is a non-empty
word w such that uw ∈ L(X), uw has u as proper suffix, and uw does not have an
occurrence of u which is not a prefix or suffix. Symmetrically, one defines left return
words to u. We denote by RX(u) (respectively R′

X(u)) the set of right (respectively
left) return words to u. Every complete word v starting with a letter a ∈ A satisfies that
v = aw1 · · · wr , where w1, . . . , wr ∈ RX(a). If (X, S) is minimal, then |RX(u)| < ∞
for every u ∈ L(X).

The non-decreasing map pX : N → N defined by pX(n) = |Ln(X)| is called the
complexity function of X, where Ln(X) = L(X) ∩ An. If lim infn→∞ pX(n)/n = ∞, we
say that X has superlinear complexity. On the contrary, X has non-superlinear complexity.

Let A and B be finite alphabets and σ : A∗ → B∗ be a morphism for the concatenation.
We say that σ is erasing whenever there exists a ∈ A such that σ(a) is the empty word.
Otherwise, we say that it is non-erasing. The morphism σ is proper if each word σ(a)

starts and ends with the same letter independently of a. When it is non-erasing, it extends
naturally to maps from AN to BN and from AZ to BZ in the obvious way by concatenation.
To the morphism σ , we associate an incidence matrix Mσ indexed by B × A such that
its entry at position (b, a) is the number of occurrences of b in σ(a) for every a ∈ A and
b ∈ B (that is, (Mσ )b,a = |σ(a)|b). If τ : B∗ → C∗ is another morphism, then
τ ◦ σ : A∗ → C∗ is a morphism and Mτ◦σ = MτMσ .
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A directive sequence σ = (σn : A∗
n+1 → A∗

n)n∈N is a sequence of morphisms, where
we only consider non-erasing ones. When all the morphisms σn, n ≥ 1, are proper, we say
that σ is proper, and, when all incidence matrices Mσn , n ≥ 1, are positive, we say that σ

is positive. Here, we stress the fact that in the definition, there is no assumption (more that
non-erasingness) on the first morphism σ0, since in many cases of interest, this morphism
is neither proper nor positive.

For 0 ≤ n < N , we denote σ[n,N) = σ[n,N−1] = σn ◦ σn+1 ◦ · · · ◦ σN−1. We say that
σ ′ = (σ ′

k : B∗
k+1 → B∗

k )k∈N is a contraction of σ = (σn : A∗
n+1 → A∗

n)n∈N if there is a
sequence (nk)k∈N such that n0 = 0, Ank

= Bk and σ ′
k = σ[nk ,nk+1) for all k ∈ N. A directive

sequence σ is primitive if it has a positive contraction σ ′.
For n ∈ N, the language L(n)(σ ) of level n associated with σ is defined by

L(n)(σ ) = {w ∈ A∗
n : w 
 σ[n,N)(a) for some a ∈ AN and N > n},

and X
(n)
σ is the set of points x ∈ AZ

n such that L(x) ⊆ L(n)(σ ). This set is the subshift
generated by L(n)(σ ). It may happen that L(X

(n)
σ ) is strictly contained in L(n)(σ ), but in

the primitive case, both sets coincide and X
(n)
σ is a minimal subshift. Finally, Xσ = X

(0)
σ is

the S-adic subshift generated by the directive sequence σ . Note that if σ ′ is a contraction
of σ , then Xσ = Xσ ′ .

We define the alphabet rank of σ as

AR(σ ) = lim inf
n→∞ |An|.

When AR(σ ) is finite, via contraction and relabeling, (Xσ , S) can be defined by a directive
sequence σ ′, where for every n ≥ 1, the morphism σ ′

n is an endomorphism on a free
monoid with AR(σ ) generators.

Let σ : A∗ → B∗ be a morphism and x ∈ BZ. If x = Skσ(y) for some y ∈ AZ and
k ∈ Z, then (k, y) is a σ -representation of x. If y belongs to some subshift Y ⊆ AZ, we
say (k, y) is a σ -representation of x in Y. Also, if 0 ≤ k < |σ(y0)|, then (k, y) is a centered
σ -representation of x in Y. Following [5], we say that σ is recognizable in Y if each x ∈ BZ

has at most one centered σ -representation in Y. If any aperiodic point x ∈ BZ has at most
one centered σ -representation in Y, we say that σ is recognizable in Y for aperiodic points.
A directive sequence σ is recognizable at level n if σn is recognizable in X

(n+1)
σ . The

sequence σ is recognizable if it is recognizable at level n for each n ∈ N.
An endomorphism σ : A∗ → A∗ is called a substitution. The S-adic subshift Xσ

generated by the constant directive sequence σ is determined by L(Xσ ) = L(σ ), where
L(σ ) = {w ∈ A∗ : w 
 σn(a) for some a ∈ A and n ≥ 1}. The subshift (Xσ , S) is called
the substitution subshift associated with σ . A substitution is primitive if Mσ is primitive.

A substitution σ : A∗ → A∗ has constant length if there exists a number � ≥ 1 such that
|σ(a)| = � for all a ∈ A. More generally, a directive sequence σ = (σn : A∗

n+1 → A∗
n)n∈N

is said to be of constant length if there exists a sequence of positive integers (�n)n∈N such
that |σn(a)| = �n for every n ∈ N and a ∈ An+1. In that case, we also say that the S-adic
subshift given by σ has constant length.

Another important family of subshifts is the linearly recurrent subshifts. Using the
result of Durand [20, Proposition 1.1], we say that an S-adic subshift (Xσ , S) is linearly
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8 S. Donoso et al

recurrent if there exists a finite set of morphisms S such that the directive sequence σ =
(σn : A∗

n+1 → A∗
n)n∈N is proper, positive, and σn ∈ S for all n ≥ 1. Minimal substitution

subshifts and linearly recurrent subshifts are uniquely ergodic.
For a minimal Cantor system (X, T ) and U ⊆ X a clopen subset, we say that (U , TU) is

the induced system on U, where TUx = T n(x)x and n(x) = inf{k > 0 : T kx ∈ U}, which
is finite by minimality. The system (U , TU) is also a minimal Cantor system (see [21,
Ch. 1.1.3]). If μ ∈ M(X, T ) is an invariant (ergodic) measure of the original system and
μ(U) �= 0, then the induced measure μU = μ/μ(U) is an invariant (ergodic) measure of
(U , TU) (see [38, Ch. 2]).

2.3. Kakutani–Rokhlin partitions. Let (X, X , μ, T ) be a measure-preserving system.
We say that P is a Kakutani–Rokhlin partition of the system if it is a partition of X of the
form

P = {T jBa : 1 ≤ a ≤ d , 0 ≤ j < ha},
where d is a positive integer, B1, . . . , Bd are measurable subsets of X, and h1, . . . , hd are
positive integers. For a ∈ {1, . . . , d}, Ta = ⋃ha−1

j=0 T jBa is the ath tower of P , Ba is the

base of this tower, and B = ⋃d
a=1 Ba is the base of P . It follows from the definition of

P that μ(
⋃d

a=1 Ta) = 1.
Now, consider a sequence of Kakutani–Rokhlin partitions

(P(n) = {T jB(n)
a : 1 ≤ a ≤ d(n), 0 ≤ j < h(n)

a })n∈N

with P(0) = {X}. For every n ∈ N and a ∈ {1, . . . , d(n)}, we denote by T (n)
a and B(n)

the ath tower and the base of P(n), respectively.
We say that (P(n))n∈N is nested if for every n ∈ N, it satisfies the following two

properties:
(KR1) B(n+1) ⊆ B(n);
(KR2) P(n+1) � P(n); that is, for all A ∈ P(n+1), there exists A′ ∈ P(n) such that

A ⊆ A′.
We consider mostly nested sequences of Kakutani–Rokhlin partitions which also have

the following extra properties:
(KR3) limn→∞ μ(B(n)) = 0;
(KR4)

⋃
n∈N P(n) generates the σ -algebra X .

Remark 2.3. The Jewett–Krieger theorem (see [33, 36]) asserts that any measure-
preserving system (X, X , μ, T ), with a non-atomic ergodic measure, is measurably iso-
morphic to a minimal and uniquely ergodic Cantor system. Therefore, Kakutani–Rokhlin
partitions satisfying the properties (KR1)–(KR4) always exist (see, for instance, [32] or
[21, Ch. 4]).

3. Partial rigidity in ergodic measure-preserving systems
This section is devoted to giving a general necessary and sufficient condition for partial
rigidity (Theorem A in §1). To prove this result, we will need the following lemma and
some additional definitions.
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LEMMA 3.1. [13, Lemma 4.6] Let (X, X , μ, T ) be an invertible ergodic system
and (An)n∈N a sequence in X such that limn→∞ μ(An) = δ > 0 and limn→∞
μ(An�T An) = 0. Then, for every measurable set B ∈ X , we have

μ(B ∩ An) −−−→
n→∞ δμ(B).

Definition 3.2. Let P = {T jBa : 1 ≤ a ≤ d , 0 ≤ j < ha} be a Kakutani–Rokhlin parti-
tion and w = w1 · · · w� be a word in the alphabet {1, . . . , d}. We define Bw as the subset
of X such that x ∈ Bw1 , T hw1 x ∈ Bw2 , T hw2+hw1 x ∈ Bw3 , . . ., T

hw�−1+hw�−2+···+hw1 x ∈
Bw�

. We also define the subtower generated by w as

Tw =
hw1−1⋃
i=0

T iBw.

In words, this is the set of points that start in tower Tw1 and end in tower Tw�
, crossing

consecutively the towers Tw2 , . . . , Tw�−1 . Depending on w, it can be the empty set.
When we consider a sequence of Kakutani–Rokhlin partitions (P(n))n∈N, we define

the same objects and denote them in a natural way by B
(n)
w and T (n)

w , where w is a word in
the alphabet {1, . . . , d(n)}.
Definition 3.3. Let P = {T jBa : 1 ≤ a ≤ d , 0 ≤ j < ha} be a Kakutani–Rokhlin par-
tition and consider two complete words w, u in the alphabet {1, . . . , d}. We define the
equivalence relation w ∼P u by

|w|−1∑
i=1

hwi
=

|u|−1∑
k=1

huk
.

We let [w]P denote the equivalence class of w for this relation. Note that the last
letters of each word u and w are not considered in the summations above, since that
formula represents the number of times the transformation T must be applied to follow
the trajectory indicated by the words and return to the tower of origin. The idea of this
equivalence class is that these numbers match.

When considering a sequence (P(n))n∈N of Kakutani–Rokhlin partitions, we write
w ∼n u and [w]n instead of w ∼P(n) u and [w]P(n) , respectively. Finally, we define

T[w]P =
⋃

u∈[w]P

Tu

and similarly T (n)
[w]n . Note that the previous union is disjoint.

As mentioned above, this equivalence class tracks when different trajectories return at
the same time close to their starting point. In a sense, it is an arithmetic notion, where
the different ways of expressing an integer number in the numerical base {h1, . . . , hd} are
captured.

For an alphabet A, the abelianization map fA : A∗ → R
A is the function such that

fA(w) = (|w|a)a∈A for every w ∈ A∗. The following criterion, whose proof is straight-
forward, provides a simple way to determine that two complete words are equivalent.
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LEMMA 3.4. Let P = {T jBa : 1 ≤ a ≤ d , 0 ≤ j < ha} be a Kakutani–Rokhlin parti-
tion and consider two complete words u, w in the alphabet A = {1, . . . , d} such that
fA(u[1,|u|−1)) = fA(w[1,|w|−1)). Then, u ∼P w.

We are now ready to prove Theorem A. Recall (as mentioned in Remark 2.3) that every
system (X, X , μ, T ) with μ non-atomic and ergodic has a sequence of Kakutani–Rokhlin
partitions satisfying properties (KR1)–(KR4).

THEOREM A. Let (X, X , μ, T ) be an ergodic system with μ a non-atomic measure
and let (P(n))n∈N be a sequence of Kakutani–Rokhlin partitions satisfying properties
(KR1)–(KR4). Then, the following properties are equivalent:
(i) (X, X , μ, T ) is γ -rigid;

(ii) there exists a sequence of complete words (w(n))n∈N, where w(n) ∈ {1, . . . , d(n)}∗
for all n ∈ N, such that

lim sup
n→∞

μ(T (n)
[w(n)]n) ≥ γ .

Proof. Assume statement (ii). Consider a sequence of complete words (w(n))n∈N as in
statement (ii) and let N ⊆ N be an infinite set such that

lim
n∈N ,n→∞

μ(T (n)
[w(n)]n) = lim sup

n→∞
μ(T (n)

[w(n)]n) = δ ≥ γ > 0.

Due to the structure of a Kakutani–Rokhlin partition and property (KR3), it follows that
μ(T (n)

[w(n)]n�T (T (n)
[w(n)]n)) ≤ μ(B(n)), which goes to 0 as n goes to infinity.

Thus, by Lemma 3.1, for any measurable set A ∈ X with positive measure, we obtain
that

μ(A ∩ T (n)
[w(n)]n)

n∈N−−−→
n→∞ δμ(A) > 0. (4)

From now on, fix n ∈ N , u ∈ [w(n)]n, a = u1 = u|u|, and qn = ∑|u|−1
i=1 h

(n)
ui

. Note that
by the definition of ∼n, the value qn is the same for all words in [w(n)]n. Also, taking a
subsequence if needed, we may assume that (qn)n∈N is strictly increasing. Since u is a
complete word, by definition of B

(n)
u , it follows that for all 0 ≤ � < h

(n)
a ,

T qn+�B(n)
u ⊆ T �B(n)

a . (5)

Let A ∈ X be a set of positive measure of the form

A =
d(n0)⋃
l=1

Al =
d(n0)⋃
l=1

⋃
j∈Jl

T jB
(n0)
l , (6)

where n0 < n, Jl ⊆ {0, . . . , h
(n0)
l − 1}, and the set Al is the disjoint union of some floors

of the tower T (n0)
l for all l ∈ {1, . . . , d(n0)}. If we call Du = A ∩ T (n)

u , by equation
(4), we can assume that μ(Du) > 0; otherwise, we take a larger n or another word
u′ ∈ [w(n)]n. Since Kakutani–Rokhlin partitions are nested, then for all 0 ≤ � < h

(n)
a and

l ∈ {1, . . . , d(n0)}, T �B
(n)
a is either disjoint from T jB

(n0)
l (for j ∈ Jl) or is included.

Thus, if x ∈ Du, then there exist 0 ≤ � < h
(n)
a , l ∈ {1, . . . , d(n0)}, and j ∈ Jl such that

x ∈ T �B
(n)
a and x ∈ T jB

(n0)
u , that is, they are not disjoint. Therefore, T �B

(n)
a ⊆ T jB

(n0)
l .
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Then, using equation (5), it follows that if x ∈ Du, then T qnx ∈ T qn+�B
(n)
u ⊆ T �B

(n)
a ⊆

T jB
(n0)
l ⊆ A. Therefore, Du ⊆ A ∩ T −qnA. Since this holds for any u ∈ [w(n)]n with

μ(Du) > 0, by setting Dn = ⋃
u∈[w(n)]n Du = A ∩ T (n)

[w(n)]n , and thanks to equation (4),
we obtain that

lim inf
n→∞ μ(A ∩ T −qnA) ≥ lim inf

n→∞ μ(Dn) = δμ(A) ≥ γμ(A). (7)

We conclude by noting that by property (KR4), the collection of sets as in equation (6)
generates X and standard approximation arguments allow us to extend equation (7) to any
measurable set. This shows statement (i).

Now assume statement (i). Let (nk)k∈N be a sequence associated with γ -rigidity. Fix
ε > 0 and m ≥ 1. By assumption, there exists kε,m ∈ N such that for all a ∈ {1, . . . , d(m)},

μ(B(m)
a ∩ T −nkB(m)

a ) ≥ γμ(B(m)
a ) − ε

pm

for all k ≥ kε,m, (8)

where pm = ∑d(m)

l=1 h
(m)
l .

Then, observe that x ∈ B
(m)
a ∩ T −nkB

(m)
a if and only if there exists a complete word

w = w1 · · · w� such that w1 = w� = a, h
(m)
w1 + · · · + h

(m)
w�−1 = nk , and x ∈ Bw(m). Note

that all words that satisfy this condition are equivalent, and we write [w]m to denote this
class (here, w depends on m and nk but we omit writing this dependency for the sake of
brevity of notation). It follows that

B(m)
a ∩ T −nkB(m)

a ⊆
⋃

u∈[w]m
u1=a

B(m)
u .

We get

μ

( ⋃
u∈[w]m
u1=a

T (m)
u

)
=

∑
u∈[w]m
u1=a

μ(T (m)
u ) =

∑
u∈[w]m
u1=a

h(m)
a μ(B(m)

u )

= h(m)
a μ

( ⋃
u∈[w]m
u1=a

B(m)
u

)
≥ h(m)

a μ(B(m)
a ∩ T −nkB(m)

a )

≥ h(m)
a

(
γμ(B(m)

a ) − ε

pm

)
= γμ(T (m)

a ) − h(m)
a

ε

pm

.

Since a ∈ {1, . . . , d(m)} is arbitrary, it follows that

μ(T (m)
[w]m) = μ

( ⋃
u∈[w]m

T (m)
u

)
=

d(m)∑
a=1

μ

( ⋃
u∈[w]m
u1=a

T (m)
u

)

≥
d(m)∑
a=1

(
γμ(T (m)

a ) − h(m)
a

ε

pm

)
= γ − ε.

We get

lim sup
m→∞

μ(T (m)
[w(m)]m) ≥ γ − ε.

Since ε > 0 was arbitrary, we conclude statement (ii).
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In particular, Theorem A provides the following characterization of rigidity.

COROLLARY 3.5. Let (X, X , μ, T ) be an ergodic system with μ a non-atomic measure
and let (P(n))n∈N be a sequence of Kakutani–Rokhlin partitions satisfying properties
(KR1)–(KR4). Then, the following properties are equivalent:
(i) (X, X , μ, T ) is rigid;

(ii) there exists a sequence of complete words (w(n))n∈N, where for all n ∈ N, words
w(n) are in {1, . . . , d(n)}∗, such that

lim sup
n→∞

μ(T (n)
[w(n)]n) = 1.

Remark 3.6. In Theorem A (respectively Corollary 3.5), any increasing subsequence of
nk = ∑|w(k)|−1

i=1 h
(k)
wi(k) is a partial rigidity sequence (respectively a rigidity sequence).

We finish this section by stating a useful corollary which provides a sufficient condition
for partial rigidity. Versions of this condition have been used implicitly in other papers
(see, for instance, [6, 13]). Given a word w, it might be difficult to determine which words
are in its equivalence class, so the following corollary is easier to verify as it considers
towers given just by one word.

COROLLARY 3.7. Let (X, X , μ, T ) be an ergodic system with μ a non-atomic measure
and let (P(n))n∈N be a sequence of Kakutani–Rokhlin partitions satisfying properties
(KR1)–(KR4). If there exists a sequence of complete words (w(n))n∈N associated to
(P(n))n∈N, where w(n) ∈ {1, . . . , d(n)}∗ for all n ∈ N, such that

lim sup
n→∞

μ(T (n)
w(n)) ≥ γ ,

then, (X, X , μ, T ) is γ -rigid.

Proof. It follows directly from the fact that μ(T (n)
w(n)) ≤ μ(T (n)

[w(n)]n) and Theorem A.

4. Partial rigidity rate
When studying partial rigidity, it is natural to ask about the best partial rigidity constant.
More precisely, the following definition.

Definition 4.1. Let (X, X , μ, T ) be a measure-preserving system. The partial rigidity rate
of (X, X , μ, T ) is given by

δμ = sup{γ ∈ (0, 1] : μ is γ -rigid},
where we set δμ = 0 if (X, X , μ, T ) is not partially rigid.

Notice that although we sometimes refer to the partial rigidity rate of a topological
dynamical system, we are always talking about the system endowed with a particular
invariant measure, since the definition of partial rigidity is a purely measure-theoretic
concept.

It is clear from the definition that (X, X , μ, T ) is γ -rigid for every γ < δμ. We will see
below the less obvious fact that (X, X , μ, T ) is also δμ-rigid. We first state a set of general
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properties related to the partial rigidity rate, some of which have already been outlined in
[35, Proposition 1.13]. Recall that for a sequence of systems ((Xi , Xi , μi , Ti))i∈N such that
for every i ∈ N, there is a factor map πi : Xi+1 → Xi , its inverse limit lim←−(Xi , Xi , μi , Ti)

is the system (Z, Z , ρ, R) given by Z = {(xi)i∈N ∈ ∏
i∈N Xi : πi(xi+1) = xi , i ∈ N}, Z

the smallest σ -algebra that makes all coordinate projections pj : Z → Xi measurable,
and ρ the measure defined by ρ(p−1

i (A)) = μi(A)) for all i ∈ N and A ∈ Xi . The
transformation R is given by R((xi)i∈N) = (Ti(xi))i∈N.

PROPOSITION 4.2. Let π : X → Y be a factor map between the measure-preserving
systems (X, X , μ, T ) and (Y , Y , ν, S).
(1) If (X, X , μ, T ) is γ -rigid for the sequence (nk)k∈N, then (Y , Y , ν, S) is γ -rigid for

the same sequence and δμ ≤ δν . In particular, if (X, X , μ, T ) and (Y , Y , ν, S) are
isomorphic, then δμ = δν .

(2) For the product system (Xn, ⊗n
i=1X , μn, T × · · · × T ), we have δμn = δn

μ.
(3) If (Z, Z , ρ, R) = lim←−(Xi , Xi , μi , Ti), then δρ = infi∈N δμi

= limi→∞ δμi
.

To show that the partial rigidity rate is indeed a partial rigidity constant, we need the
following lemma.

LEMMA 4.3. Let (X, X , μ, T ) be a partially rigid ergodic system with μ a non-atomic
measure and let (P(n))n∈N be a sequence of Kakutani–Rokhlin partitions satisfying
properties (KR1)–(KR4). Then,

δμ = lim sup
n→∞

{
sup

w∈{1,...,d(n)}∗
w1=w|w|

μ(T (n)
[w]n)

}
. (9)

Furthermore, (X, X , μ, T ) is δμ-rigid.

Proof. Let M be the right-hand side in equation (9). Every sequence of complete
words (w(n))n∈N, with w(n) ∈ {1, . . . , d(n)}∗, satisfies lim supn→∞ μ(T (n)

[w(n)]n) ≤ M

and, therefore, by Theorem A, any constant of partial rigidity is bounded by M. That is,
δμ ≤ M . Conversely, let u(n) ∈ {1, . . . , d(n)}∗ be a sequence of complete words such that
for every n ∈ N, μ(T (n)

[u(n)]n) ≥ supw∈{1,...,d(n)}∗
w1=w|w|

μ(T (n)
[w]n) − (1/n). Then,

M ≥ lim sup
n→∞

μ(T (n)
[u(n)]n)

≥ lim sup
n→∞

{
sup

w∈{1,...,d(n)}∗
w1=w|w|

μ(T (n)
[w]n) − 1

n

}
= M .

We conclude, thanks to Theorem A, that (X, X , μ, T ) is M-rigid. Thus, δμ = M and
the system is δμ-rigid.

We now state the main result of this section, namely the description of the partial rigidity
rate δμ.
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THEOREM 4.4. Let (X, X , μ, T ) be an ergodic and partially rigid system. Then,
(X, X , μ, T ) is δμ-rigid. Moreover, if μ is non-atomic and (P(n))n∈N is a sequence
of Kakutani–Rokhlin partitions satisfying properties (KR1)–(KR4), then

δμ = inf
n≥1

{
sup

w∈{1,...,d(n)}∗
w1=w|w|

μ(T (n)
[w]n)

}
. (10)

Proof. Notice that the atomic (periodic) case is trivial (see Remark 2.1), so we only
consider the non-atomic case. By Lemma 4.3, the system is δμ-rigid and so we are left
to show that

lim sup
n→∞

{
sup

w∈{1,...,d(n)}∗
w1=w|w|

μ(T (n)
[w]n)

}
= inf

n≥1

{
sup

w∈{1,...,d(n)}∗
w1=w|w|

μ(T (n)
[w]n)

}
,

and then use Lemma 4.3 once again to conclude equation (10).
To this end, since (P(n))n∈N is nested, if a ∈ {1, . . . , d(n+1)}, then each floor of the

tower T (n+1)
a is a subset of a tower T (n)

l with l ∈ {1, . . . , d(n)}. We define the morphism
τn : {1, . . . , d(n+1)}∗ → {1, . . . , d(n)}∗ as τn(a) = wa = wa

1 . . . wa
�a

such that B
(n+1)
a ⊆

B
(n)

wa
1

, T
h

(n)

wa
1 B

(n+1)
a ⊆ B

(n)

wa
2

, . . . , T
h

(n)

wa
1
+···+h

(n)

wa
�a−1 B

(n+1)
a ⊆ B

(n)

wa
�a

, and h
(n)

wa
1

+ · · · + h
(n)

wa
�a

=
h

(n+1)
a .

Thus, if w = a1 · · · am ∈ {1, . . . , d(n+1)}∗ is a complete word, we have that if x ∈
T (n+1)

a1 , then there exists 0 ≤ k < h
(n)

w
a1
j

such that x ∈ T
k+h

(n)

w
a1
j−1 B

(n+1)
a1 ⊆ T kB

(n)

w
a1
j

(for 0 <

j ≤ �a1 ), that is, x ∈ T (n)

w
a1
j

. Furthermore, x ∈ T (n)
sj , where sj = w

a1
[j ,�a1 ]. More generally,

when x ∈ T (n+1)
w , we also know that x visits the towers T (n+1)

a2 , . . . , T (n+1)
am

in that order,
so x visits T (n)

w
a2
1

, . . . , T (n)

w
a2
�a2

, . . . , T (n)

w
am
1

, . . . , T (n)

w
am
�am

. Therefore, x ∈ T (n)

sj wa2 ···wam−1wam
. In

particular, x ∈ T (n)

sj wa2 ···wam−1pj
, where pj = w

am

[1,j ] = w
a1
[1,j ]. Therefore,

T (n+1)
w ⊆

⋃
j∈{1,...,�a1 }

T (n)

sj wa2 ···wam−1pj
. (11)

If v(j) = sjw
a2 · · · wam−1pj , it is easy to check that it is a complete word with first and

last letters equal to w
a1
j . Moreover, for every j , j ′ ∈ {1, . . . , �a1}, v(j) ∼n v(j ′), which is

a consequence of the fact that

|v(j)|−1∑
k=1

h
(n)
v(j)k

=
|sj |∑
i=1

h
(n)

w
a1
j−1+i

+
|wa2 |∑
i=1

h
(n)

w
a2
i

+ · · · +
|wam−1 |∑

i=1

h
(n)

w
am−1
i

+
|pj |−1∑
i=1

h
(n)

w
a1
i

=
|wa1 |∑
i=1

h
(n)

w
a1
i

+
|wa2 |∑
i=1

h
(n)

w
a2
i

+ · · · +
|wam−1 |∑

i=1

h
(n)

w
am−1
i

= h(n+1)
a1

+ · · · + h(n+1)
am−1

.
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This clearly implies that
∑|v(j)|−1

k=1 h
(n)
v(j)k

=∑|v(j ′)|−1
k=1 h

(n)

v(j ′)k for every j , j ′ ∈ {1, . . . , �a1}.
To avoid any confusion with the above calculation, it is worth recalling that the summation
that defines the equivalence relation ∼n does not take into account the height of the tower
given by the last letter.

Therefore, by equation (11),

T (n+1)
w ⊆ T (n)

[v(1)]n .

Repeating the argument with another complete word w′ ∈ [w]n+1, we conclude that for
v′(1) constructed as above, T (n+1)

w′ ⊆ T (n)

[v′(1)]n
. Moreover, as w ∼n+1 w′, using the above

equalities, we have that v′(1) ∼n v(1) because

|v(j)|−1∑
k=1

h
(n)
v(j)k

=
|w|−1∑
k=1

h(n+1)
ak

=
|w′|−1∑
k=1

h
(n+1)

a′
k

=
|v′(j)|−1∑

k=1

h
(n)

v′(j)k
.

Thus, we conclude that

T (n+1)
[w]n+1

⊆ T (n)
[v(1)]n .

This implies that

sup
w∈{1,...,d(n+1)}∗

w1=w|w|

μ(T (n+1)
[w]n+1

) ≤ sup
v∈{1,...,d(n)}∗

v1=v|v|

μ(T (n)
[v]n),

which means that the sequence of supremums is decreasing, so the limit exists and is equal
to the infimum.

Remark 4.5. If the measure-preserving system is not partially rigid, then
infn≥1 supw∈{1,...,d(n)}∗

w1=w|w|
μ(T (n)

[w]n) = 0; otherwise, Theorem A would imply that the system

is partially rigid. So, equation (10) actually holds for any measure-preserving system.

Remark 4.6. Theorem B stated in §1 follows from Theorem 4.4. Indeed, the sequence of
complete words (u(n))n∈N that appears in the proof of Lemma 4.3 fulfills that

sup
w∈{1,...,d(n)}∗

w1=w|w|

μ(T (n)
[w]n) ≤ μ(T (n)

[u(n)]n) + 1
n

,

and then, from Theorem 4.4,

δμ = inf
n≥1

{
sup

w∈{1,...,d(n)}∗
w1=w|w|

μ(T (n)
[w]n)

}
≤ lim inf

n→∞ μ(T (n)
[u(n)]n) + 1

n

≤ lim sup
n→∞

μ(T (n)
[u(n)]n) ≤ δμ.

Therefore, limn→∞ μ(T (n)
[u(n)]n) = limn→∞

∑
w∼nu(n) μ(T (n)

w ) = δμ.

Remark 4.7. In the S-adic case, which will be studied in the following sections, the
morphism constructed in the previous proof will be precisely the morphism of the directive
sequence σ defining the subshift Xσ .
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Remark 4.8. Now, we are able to construct an ergodic, non-mixing, and non-partially rigid
system. First, notice that Theorem 4.4 implies that (X, X , μ, T ) is not rigid if and only if
δμ < 1. Therefore, if (X, X , μ, T ) is weak mixing but it is not mixing (for example, the
Chacon subshift), then the countable product (XN, XN, μN, T × T × · · · ) is an ergodic
non-mixing system such that δμN = limn→∞ δn

μ = 0 and so it is not partially rigid. The
existence of such systems is already mentioned in [35, remark after Proposition 1.13].

5. Partial rigidity in S-adic subshifts
In this section, we focus on the study of partial rigidity for S-adic subshifts. From
the results of Creutz [12], we know that non-superlinear complexity subshifts, which
by [16] are S-adic of finite alphabet rank, are partially rigid. However, there are no
general conditions that allow us to deduce this property for an arbitrary S-adic subshift,
let alone provide sequences of integers giving partial rigidity. In this section, we exploit
the combinatorial structure inherent to each S-adic subshift to deduce from the results of
previous sections several sufficient conditions that imply partial rigidity.

5.1. Kakutani–Rokhlin partitions in S-adic subshifts. Let σ = (σn : A∗
n+1 → A∗

n)n∈N
be a primitive recognizable directive sequence and let (Xσ , S) be the S-adic subshift
generated by σ . We define its natural sequence of Kakutani–Rohklin partitions (P(n))n∈N
as follows:

P(n) = {Skσ[0,n)([a]) : a ∈ An, 0 ≤ k < |σ[0,n)(a)|}.
It is straightforward from [5, Lemma 6.3] that if μ is an S-invariant probability measure

and we consider the measure-preserving system (Xσ , B, μ, S), then (P(n))n∈N satisfies
properties (KR1)–(KR4) (here, B is the Borel sigma-algebra). Moreover, sets in P(n) are
not only measurable, but also clopen and, when the directive sequence σ is proper, then⋂

n≥1 B(n) is equal to a single point and
⋃

n∈N P(n) generates the topology (see [21, Ch.
5.3] for more details). Another important aspect is that the induced system on the base
B(n) coincides with X

(n)
σ . So, each invariant measure on X

(n)
σ can be treated as the induced

measure μ(·)/μ(B(n)) of an invariant measure μ on Xσ .
If σ is primitive and recognizable, for any w ∈ A∗

n, T (n)
w has a positive measure if

and only if w ∈ L(n)(σ ). This follows from the fact that B
(n)
w coincides with the cylinder

set [w]
X

(n)
σ

on the induced system on B(n) and [w]
X

(n)
σ

has positive measure whenever

w ∈ L(n)(σ ).
The following two lemmas will be very useful in the next sections.

LEMMA 5.1. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive and recognizable directive
sequence. For a ∈ An+1, if σn(a) = pwrs with r ≥ 1, p, w, s ∈ A∗

n, and w1 = b, then

μ(T (n)
w ∩ T (n+1)

a ) ≥ r

|σn(a)|b μ(T (n)
b ∩ T (n+1)

a )

and

μ(T (n)
wb ∩ T (n+1)

a ) ≥ r − 1
|σn(a)|b μ(T (n)

b ∩ T (n+1)
a ).
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Proof. It is clear that μ(T (n)
b ∩ T (n+1)

a ) = |σn(a)|bh(n)
b μ(B

(n+1)
a ) and that for every j ∈

{0, . . . , r − 1}, S
∑|p|

i=1 h
(n)
pi

+j
∑|w|

i=1 h
(n)
wi B

(n+1)
a ⊆ B

(n)
w . Therefore, μ(T (n)

w ∩ T (n+1)
a ) ≥

rh
(n)
b μ(B

(n+1)
a ) and

μ(T (n)
w ∩ T (n+1)

a ) ≥ r
|σn(a)|b
|σn(a)|b h

(n)
b μ(B(n+1)

a ) = r

|σn(a)|b μ(T (n)
b ∩ T (n+1)

a ).

For the second inequality, the argument is analogous.

More generally, we have the following lemma.

LEMMA 5.2. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive and recognizable directive
sequence. For a ∈ An+1 and w ∈ A∗

n with w1 = b, we have that

μ(T (n)
w ∩ T (n+1)

a ) ≥ |σn(a)|w
|σn(a)|b μ(T (n)

b ∩ T (n+1)
a ). (12)

Proof. Fix n ∈ N, a ∈ An+1, b ∈ An, and w ∈ A∗
n as above. Let I be the set of

occurrences of the word w in u = σn(a), that is, I = {i ∈ {1, . . . , |u|} : u[i,i+|w|) =
w}. Thus, for every i ∈ I , S

∑i−1
j=1 h

(n)
uj B

(n+1)
a ⊆ B

(n)
w . Therefore, μ(T (n)

w ∩ T (n+1)
a ) ≥

|I |h(n)
b μ(B

(n+1)
a ) and |I | = |σn(a)|w. We get that

μ(T (n)
w ∩ T (n+1)

a ) ≥ |σn(a)|w |σn(a)|b
|σn(a)|b h

(n)
b μ(B(n+1)

a ) = |σn(a)|w
|σn(a)|b μ(T (n)

b ∩ T (n+1)
a ).

Remark 5.3. Inequality (12) could be strict. For example, consider the substitution subshift
associated with the substitution σ : {0, 1}∗ → {0, 1}∗ such that σ(0) = 10111001 and
σ(1) = 10001.

If w = 11, then |σ(0)|11 = 2 and so |σ(0)|11/|σ(0)|1 = 2
5 . Also, since the substitution

is left proper with σ(0)1 = σ(1)1 = 1, then on σ(0)σ (c), the last 1 from σ(0) is always
followed by another 1 for any c ∈ {0, 1}, and S3h

(n)
0 +4h

(n)
1 B0(n + 1) is included in B11(n).

Therefore, μ(T (n)
11 ∩ T (n+1)

0 ) = 3
5μ(T (n)

1 ∩ T (n+1)
0 ) > 2

5μ(T (n)
1 ∩ T (n+1)

0 ).
Using the same reasoning, choosing the substitution given by τ : {0, 1}∗ → {0, 1}∗ such

that τ(0) = 0111001 and τ(1) = 0001, if w = 11 and a = 0, the inequality (12) is, in fact,
an equality.

In general, the smaller the quotient |w|/|σn(a)| is, the closer the inequality (12) is to
equality.

Finally, we define a clean directive sequence. This notion has different versions in the
literature (see, for example, [6, 7] or [1] in the S-adic context). Let σ be a primitive and
recognizable directive sequence, and let μ be an ergodic measure of (Xσ , S). We say that
σ is clean with respect to μ if:
(1) there exists n0 ∈ N such that An = An0 for all n ≥ n0. Set A = An0 ;
(2) there exists a constant η > 0 and Aμ ⊆ A such that

μ(T (n)
a ) ≥ η for all a ∈ Aμ, n ≥ n0 and

lim
n→∞ μ(T (n)

a ) = 0 for all a ∈ A\Aμ.
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Combining the results from [5, 6], it is known that any recognizable and primitive directive
sequence σ of finite alphabet rank can be contracted to become clean with respect to μ.
More generally, we say that σ is clean if it is clean with respect to every ergodic measure μ.
When σ is clean, if μ and ν are distinct ergodic measures of (Xσ , S), then Aμ ∩ Aν = ∅.

5.2. Sufficient conditions for partial rigidity. In the following, we provide a set of
sufficient conditions that guarantee partial rigidity of an S-adic subshift. These conditions
are of different nature: algebraic, combinatorial, and related to the order in which the
towers of level n intersect the towers of level n + 1. This allows retrieving results for
primitive substitutive systems, linearly recurrent systems [11], among others.

5.2.1. Conditions regarding tower heights. We start by extending the result concerning
exact finite rank subshifts, that is, S-adic subshifts such that A = Aμ. The concept of
exact finite rank subshift was introduced in [6], where it was proved that these systems
are not mixing. Subsequently, partial rigidity was established in [13] and part of the proof
of the next lemma shares the approach used in that paper. However, the conditions of
Theorem 5.5 are also satisfied by some superlinear complexity and non-finite exact rank
S-adic subshifts.

LEMMA 5.4. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a clean, primitive, and recognizable
directive sequence, with An = A for all n ∈ N, and μ an ergodic measure on (Xσ , S).
If Aμ �= A and for every letter b ∈ A\Aμ,

μ(B
(n)
b )

μ(B(n))
−−−→
n→∞ 0,

then (Xσ , B, μ, S) is partially rigid.

Proof. Let n ∈ N and a0 ∈ A be such that μ(B
(n)
a0 ) = maxa∈A μ(B

(n)
a ). We can take a1 ∈

A such that

μ(B(n)
a1

∩ Sh
(n)
a0 B(n)

a0
) ≥ μ(B

(n)
a0 )

d
,

where d = |A|. Similarly, we can take a2 ∈ A such that

μ(B(n)
a2

∩ Sh
(n)
a1 (B(n)

a1
∩ Sh

(n)
a0 B(n)

a0
)) ≥ μ(B

(n)
a0 )

d2 .

We can iterate this process to form a word w = a0 · · · ad ∈ A∗ such that μ(B
(n)
w ) ≥

μ(B
(n)
a0 )/dd . Since the length of w is d + 1, there are two integers 0 ≤ i < j ≤ d such

that ai = aj . We will refer to this letter as a and we set u = aiai+1 · · · aj . Therefore,

since S
h

(n)
a0 +···+h

(n)
ai−1B

(n)
w ⊆ B

(n)
u , we have

μ(B(n)
u ) ≥ μ(S

h
(n)
a0 +···+h

(n)
ai−1B(n)

w ) = μ(B(n)
w ) ≥ μ(B

(n)
a0 )

dd
≥ μ(B

(n)
a )

dd
.
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Multiplying by h
(n)
a , we get

μ(T (n)
u ) ≥ μ(T (n)

a )

dd
. (13)

Now, assume that for all n, in an infinite subset N ⊆ N, letter a0 such that μ(B
(n)
a0 ) =

maxa∈A μ(B
(n)
a ), the word u and the letter a that fulfill equation (13) are the same.

Claim. a0, a ∈ Aμ.

Indeed, if a0 ∈ A\Aμ, then

1 = μ(B(n))

μ(B(n))
=

∑
b∈A μ(B

(n)
b )

μ(B(n))
≤ d · μ(Ba0(n))

μ(B(n))
−−−−−−−→
n→∞,n∈N

0, (14)

which is a contradiction. Now, if a ∈ A\Aμ, then

1
dd

μ(B
(n)
a0 )

μ(B(n))
≤ μ(B

(n)
u )

μ(B(n))
≤ μ(B

(n)
a )

μ(B(n))
−−−−−−−→
n→∞,n∈N

0,

which produce the same contradiction given by inequalities in equation (14).
To conclude, we have that for n large enough,

η

dd
≤ μ(T (n)

a )

dd
≤ μ(T (n)

u ),

where η > 0 is the constant stating whether the directive sequence is clean. The conclusion
follows from Corollary 3.7.

THEOREM 5.5. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a clean, primitive, and recognizable
directive sequence, with An = A for all n ∈ N, and μ an ergodic measure on (Xσ , S). If
one of the following hypotheses holds:
(1) Aμ = A;
(2) there is a ∈ Aμ such that lim supn→∞ h

(n)
a /h

(n)
b < ∞ for every b ∈ A\Aμ,

then (Xσ , B, μ, S) is partially rigid.

Proof. For the first assumption, it is sufficient to repeat the proof of Lemma 5.4 and
observe that we only need to prove that a ∈ Aμ. However, since Aμ = A, this is
straightforward.

For the second one, we will prove that the hypotheses of Lemma 5.4 are fulfilled, that is,
for all b ∈ A\Aμ, μ(B

(n)
b )/μ(B(n)) −−−→

n→∞ 0. Indeed, as lim supn→∞ h
(n)
a /h

(n)
b < ∞ for

every b ∈ A\Aμ, we can fix c ∈ (0, ∞) such that for infinitely many n ∈ N and for every
b ∈ A\Aμ, h

(n)
a ≤ ch

(n)
b . Then, for an arbitrary b ∈ A\Aμ,

lim sup
n→∞

μ(B
(n)
b )

μ(B(n))
≤ lim sup

n→∞
μ(B

(n)
b )

μ(B
(n)
a )

≤ c lim sup
n→∞

(
h

(n)
b

h
(n)
a

μ(B
(n)
b )

μ(B
(n)
a )

)
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= c lim sup
n→∞

μ(T (n)
b )

μ(T (n)
a )

≤ c

η
lim sup
n→∞

μ(T (n)
b ) = 0,

where η > 0 is the constant defining whether the directive sequence is clean. Finally, we
conclude by Lemma 5.4.

Example 5.6. Theorem 5.5 allows to ensure the partial rigidity for systems that are not
of exact finite rank. Fix An = {0, 1} for all n ≥ 0 and recall that for σn : A∗

n+1 → A∗
n,

(Mσn)b,a = |σn(a)|b, where b ∈ A∗
n and a ∈ A∗

n+1. Let σ be a directive sequence such
that for all n ≥ 1, the incidence matrix of σn is of the form

Mσn =
(

an bn

c d

)
,

where c, d are two positive integers and (an)n≥0, (bn)n≥0 are integer sequences such
that limn→∞ an = ∞ and there is a constant K > 0, Kbn ≥ an for all n ≥ 1. Then,
(Xσ , S) is uniquely ergodic with invariant measure μ satisfying limn→∞ μ(T (n)

0 ) = 1
and limn→∞ μ(T (n)

1 ) = 0. That means Aμ = {0} and, in particular, it is not of exact finite
rank. Also notice that

lim sup
n→∞

h
(n+1)
0

h
(n+1)
1

= lim sup
n→∞

anh
(n)
0 + ch

(n)
1

bnh
(n)
0 + dh

(n)
1

≤ lim sup
n→∞

K
bnh

(n)
0 + (c/K)h

(n)
1

bnh
(n)
0 + dh

(n)
1

< ∞

and, by Theorem 5.5, (Xσ , B, μ, S) is partially rigid.

COROLLARY 5.7. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a clean, primitive, and recognizable
directive sequence, with An = A for all n ∈ N, and μ an ergodic measure on (Xσ , S).
If there is a constant c > 0 such that h

(n)
a ≤ ch

(n)
b for every a, b ∈ A and infinitely many

n ∈ N, then (Xσ , B, μ, S) is partially rigid.

Proof. By assumption, lim supn→∞ h
(n)
a /h

(n)
b ≤ c for every a, b ∈ A, so one of the

hypotheses of Theorem 5.5 is satisfied.

5.2.2. Conditions regarding the order. In what follows, we study partial rigidity
of S-adic subshifts that we call m-consecutive. Danilenko proved that consecutive
Bratteli–Vershik systems with a technical, but crucial, extra assumption are partially
rigid (we refer to [13, Theorem 7.6]). The m-consecutive property is slightly more general
than this family of systems and, as we shall see, is sufficiently rich to build interesting
examples. In addition, we show that the lower bound for the partial rigidity rate given for
general m-consecutive sequences can be improved if we know that the directive sequence
is of constant length.

Definition 5.8. A morphism σ : A∗ → B∗ is m-consecutive, where m ≥ 2 is an integer,
if for every a ∈ A, σ(a) = b

k1
1 b

k2
2 · · · b

kr
r , where k1, . . . , kr ≥ m and b1, . . . , br ∈ B. In

that case, we can assume that consecutive bi terms are different.
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A directive sequence σ is m-consecutive if there is n0 ∈ N such that σn is m-consecutive
for every n ≥ n0.

Remark 5.9. If τ : A∗ → B∗ is a morphism and σ : B∗ → C∗ a m-consecutive mor-
phism, then σ ◦ τ is an m-consecutive morphism. Therefore, every contraction of an
m-consecutive directive sequence is also m-consecutive.

THEOREM 5.10. Let m ≥ 2 and σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive, recognizable,
and m-consecutive directive sequence with finite alphabet rank d. Then, every ergodic
measure for (Xσ , S) is ((m − 1)/m · 1/d)-rigid.

In the following proof, for a letter b, we say that bk is a b-block on w if one of the
following holds: w[1,k] = bk and wk+1 �= b; or w(|w|−k,|w|] = bk and w|w|−k �= b; or there
exists i ∈ {2, . . . , |w| − k} such that w[i,i+k) = bk , wi−1 �= b, and wi+k �= b.

Proof. Fix μ an ergodic measure and n ≥ n0, where n0 is taken as in the definition of an
m-consecutive directive sequence. Furthermore, since the alphabet rank of σ is d, except
for contraction, as m-consecutivity is preserved, we can assume that |An| = d for every
n ≥ n0.

Consider a ∈ An+1 and b ∈ An such that b appears in σn(a). Observe that |σn(a)|bb =∑r
i=1(ki − 1), where ki is the length of the ith b-block in σn(a) in the order of occurrence

and r is the number of b-blocks in σn(a). By m-consecutivity, ki ≥ m. So,

|σn(a)|b − |σn(a)|bb

|σn(a)|b = r∑r
i=1 ki

≤ r

rm
= 1

m
.

Therefore, by Lemma 5.2,

μ(T (n)
bb ∩ T (n+1)

a ) ≥ |σn(a)|bb

|σn(a)|b μ(T (n)
b ∩ T (n+1)

a ) ≥ m − 1
m

μ(T (n)
b ∩ T (n+1)

a ).

Thus, summing over a ∈ An+1, we conclude that μ(T (n)
bb ) ≥ (m − 1)/m · μ(T (n)

b )

(note that this conclusion only requires the m-consecutive condition, and the finite alphabet
range condition is not necessary). Since

∑
b∈An

μ(T (n)
b ) = 1, there is at least one letter

b ∈ An such that μ(T (n)
b ) ≥ 1/d.

In summary, for every n ≥ n0, there is a letter b ∈ An such that μ(T (n)
bb ) ≥

(m − 1)/m · 1/d and we conclude by Corollary 3.7.

Example 5.11. As mentioned before, m-consecutive S-adic subshifts are a useful family
for constructing examples of partially rigid systems with a variety of desired properties. In
particular, by employing a construction similar to that in [16, Example 6.4] (see also [15,
§4]), we can create a partially rigid finite rank S-adic subshift with superlinear complexity.
Note that to achieve superlinear complexity, we necessarily need to build a system which
is not a substitution or linearly recurrent subshift.

Let (an)n∈N be an increasing sequence of integers larger than 4 and let σ =
(σn : {0, 1}∗ → {0, 1}∗)n∈N be a directive sequence defined by

σn(0) = 00111 and σn(1) = 03110411 · · · 110an+111.
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Let (Xσ , S) be the S-adic subshift generated by σ . It is not complicated to see that this
directive sequence is recognizable, the proof is left to the reader.

To prove that lim infn→∞ pXσ (n)/n = ∞, we show the stronger condition
limn→∞ pXσ (n + 1) − pXσ (n) = ∞. Notice that for every n ≥ 1, pXσ (n + 1) −
pXσ (n) = r(n), where r(n) is the number of right special words of length n, that is,
r(n) = |{w ∈ Ln(Xσ ) : w0, w1 ∈ Ln+1(Xσ )}|.
CLAIM 1. Fix n ≥ 1 and k ∈ {4, . . . , an+1}. Then, the word

Wn(k) = σ[0,n](0k−1110k)σ[0,n−1](00) · · · σ0(00)00

is right special in Xσ .

Proof. Indeed, 0k−1110k0 and 0k−1110k1 belong to L(X
(n+1)
σ ), so σ[0,n](0k−1110k0) and

σ[0,n](0k−1110k1) belong to L(Xσ ). However, a simple computation yields to

σ[0,n](0k−1110k0) = σ[0,n](0k−1110k)σ[0,n−1](00) · · · σ0(00)00au

and

σ[0,n](0k−1110k1) = σ[0,n](0k−1110k)σ[0,n−1](00) · · · σ0(00)00bv,

where a, b ∈ {0, 1} are different and u, v ∈ {0, 1}∗. Therefore, Wn(k)0, Wn(k)1 ∈ L(Xσ ),
which allows us to conclude.

For n ∈ N, set An = |σ[0,n](1)|, Bn = |σ[0,n](0)|, and Cn = |σ[0,n−1](00) · · · σ0(00)00|
= 2(Bn−1 + · · · + B0 + 1), where C0 = 2 by convention. A simple but tedious computa-
tion yields �An/Bn� ≥ c an for some positive constant c. Thus, by adjusting the values of
the an terms, we can assume that �An/Bn� ≥ 4.

CLAIM 2. Given n ≥ 1, k ∈ {4, . . . , an+1} and N ∈ {kBn + Cn + 1, . . . , (k + 1)Bn +
Cn}, there are at least min(k, �An/Bn�) different right special words in LN(Xσ ).

Proof. First, a simple computation shows that

|Wn(i)| = Cn + 2An + (2i − 1)Bn ≥ Cn + (k + 1)Bn ≥ N

for each i ∈ {4 + k − min(k, �An/Bn�), . . . , k}. Let wi be the suffix of length N of Wn(i).
Then,

wi = piσ[0,n](0i )σ[0,n−1](00) · · · σ1(00)00,

where pi is a suffix of σ[0,n](0i−111). From Claim 1, these words are right special. We
are left to prove that they are distinct. Consider i, j ∈ {4 + k − min(k, �An/Bn�), . . . , k}
with i < j , and notice that

pjσ[0,n](0j−i ) σ[0,n](0i )σ[0,n−1](00) · · · σ1(00)00 = wj and

pi σ[0,n](0i )σ[0,n−1](00) · · · σ1(00)00 = wi ,

then wi �= wj if and only if pi �= pjσ[0,n](0j−i ).
As wi and wj have the same length, pi and pjσ[0,n](0j−i ) also have the same length,

which is at least |σ[0,n](0)|. However, as σ[0,n](0) is not a suffix of σ[0,n](1), it cannot
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be a suffix of pi . Nonetheless, σ[0,n](0) is clearly a suffix of pjσ[0,n](0j−i ). Thus, pi �=
pjσ[0,n](0j−i ) and we conclude.

CLAIM 3. If the integer sequence (an)n∈N satisfies (an+1 + 1) > (5n + 7)An/Bn, then
limn→∞ pXσ (n + 1) − pXσ (n) = limn→∞ r(n) = ∞.

Proof. From Claim 2, we know that for every n ≥ 1, k ∈ {4, . . . , an+1}, and N ∈
{kBn + Cn + 1, . . . , (k + 1)Bn + Cn}, r(N) ≥ min(k, �An/Bn�). Also, since An/Bn ≥
c an, limn→∞ min(n, �An/Bn�) = ∞.

Now, we have that

{m, m + 1, . . .} =
⋃
n≥4

an+1⋃
k=n

{kBn + Cn + 1, . . . , (k + 1)Bn + Cn}

=
⋃
n≥4

{nBn + Cn + 1, . . . , (an+1 + 1)Bn + Cn}

for some integer m (which can be computed explicitly). Indeed, as Bn ≤ An,

(n + 1)Bn+1 + Cn+1 + 1 = (n + 1)(2Bn + 3An) + 2Bn + Cn + 1

≤ (5n + 7)An + Cn + 1 ≤ (an+1 + 1)Bn + Cn.

Therefore, for any N ≥ m, there exist n ≥ 4, k ∈ {n, . . . , an+1} such that N ∈ {nBn +
Cn + 1, . . . , (an+1 + 1)Bn + Cn}, and thus

r(N) ≥ min(k, �An/Bn�) ≥ min(n, �An/Bn�),
and we conclude.

In conclusion, (Xσ , S) has superlinear complexity and σ is 2-consecutive, so for μ ∈
E(Xσ , S), by Theorem 5.10, (Xσ , B, μ, S) is 1

4 -rigid.

When specializing Theorem 5.10 to constant length m-consecutive directive sequences,
we get the following theorem that does not require the hypothesis of finite topological rank.

THEOREM 5.12. Let m ≥ 2 and σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive, recognizable,
constant length, and m-consecutive directive sequence. Then, every invariant measure for
(Xσ , S) is (m − 1)/m-rigid.

Proof. We can use the first part of the proof of Theorem 5.10 which does not require the
system to be of finite alphabet rank. Thus, let μ be an ergodic measure and take n ≥ n0,
then for every b ∈ An, we have

μ(T (n)
bb ) ≥ m − 1

m
μ(T (n)

b ).

However, as the directive sequence has constant length, for every a, b ∈ An, aa ∼n bb.
Therefore,

μ(T (n)
[aa]n) =

∑
b∈An

μ(T (n)
bb ) ≥ m − 1

m

∑
b∈An

μ(T (n)
b ) = m − 1

m
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and, as μ is an arbitrary ergodic measure, by Theorem A, we conclude that every ergodic
measure is (m − 1)/m-rigid (recall that in this context, ergodic measures are non-atomic).
Moreover, from Remark 3.6, it is known that the partial rigidity sequence is (h(n))n∈N,
which, in this case, is independent of the measure, so by Remark 2.2, every invariant
measure is (m − 1)/m-rigid.

Remark 5.13. It is interesting to note that for every Toeplitz subshift (X, S) (see [18] for
a precise definition), there exists a minimal Cantor system that is rigid for every ergodic
measure μ and is strong orbit equivalent to (X, S). A simple proof can be constructed with
the results of [29] and the elements developed in this section.

Remark 5.14. In [8, Theorem 1.4], there is a construction of a recognizable, infinite
alphabet rank, primitive, and constant length directive sequence σ such that (Xσ , S) has
superlinear complexity and with infinitely many ergodic measures. A slight modification
of that example allows us to ensure that the directive sequence is also 2-consecutive and
therefore, by Theorem 5.12, the system is partially rigid for every ergodic measure. Thus,
the above criteria can be applied beyond non-superlinear complexity systems and exact
finite rank systems.

5.2.3. Conditions regarding return words. This condition may be one of the most
restrictive. Still, it can be used to prove the partial rigidity for the natural coding of interval
exchange transformations and, more generally, for dendric subshifts (see for instance
[4, 21]). Although the above are classical examples where the proposition can be used,
the range of applications is broader. This is because the condition only requires finiteness
of the return words sets for infinitely many levels and not for every level.

PROPOSITION 5.15. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive and recognizable
directive sequence. If there is a constant c > 0 such that

∑
a∈An

|R
X

(n)
σ

(a)| ≤ c for
infinitely many n ∈ N, then (Xσ , B, μ, S) is 1/c-rigid for every ergodic measure μ.

Proof. Observe that

T (n)
a =

⋃
w∈R

X
(n)
σ

(a)

T (n)
aw (15)

and thus

Xσ =
⋃

a∈An

⋃
w∈R

X
(n)
σ

(a)

T (n)
aw . (16)

Let N ⊆ N be infinite such that
∑

a∈An
|R

X
(n)
σ

(a)| ≤ c for all n ∈ N . Then, we have
that there exists a sequence of complete words (w(n))n∈N with w(n) = anw

′(n), where
w′(n) ∈ R

X
(n)
σ

(an), such that μ(T (n)
w(n)) ≥ 1/c. From this, we conclude using Corol-

lary 3.7.

We deduce the following.
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COROLLARY 5.16. Let (X, S) be a minimal subshift on an alphabet A. If there is a number
d > 0 such that |RX(w)| ≤ d for every word w ∈ L(X), then (X, B, μ, S) is 1/d2-rigid
for every ergodic measure μ.

Before proving the corollary, we state two lemmas whose proofs can be found in [21]. To
state them, note that given a word u ∈ L(X) appearing in a minimal subshift X, the set U =
RX(u) is a circular code, that is, every word w ∈ A∗ admits at most one decomposition as
a concatenation of elements of U and if uv, vu ∈ U∗, then u, v ∈ U∗. A circular morphism
is a morphism ϕ∗ : B∗ → A∗ whose restriction to B is a bijection into a circular code
U ⊆ A∗.

LEMMA 5.17. [21, Proposition 1.4.32] A (non-erasing) morphism σ : B∗ → A∗ is recog-
nizable on BZ if and only if σ is a circular morphism.

LEMMA 5.18. [21, Lemma 6.4.11] Let (X, S) be a minimal subshift on an alphabet A
and (un)n∈N be a sequence of words in L(X), with u0 = ε, such that un is a proper
suffix of un+1 for every n ∈ N. Let An = {1, . . . , |RX(un)|} and αn : A∗

n → A∗ a coding
morphism for RX(un). Let τ be the sequence of morphisms such that αn ◦ τn = αn+1 for
every n ∈ N. Then, τ is a primitive directive sequence such that Xτ = X.

Proof of Corollary 5.16. Let (un)n∈N be a sequence of words in L(X) such that u0 = ε,
un+1 ∈ RX(un), and |un+1| > |un|. In particular, un is a proper suffix of un+1. Let
τ = (τn : A∗

n+1 → A∗
n)n∈N be the directive sequence associated with (un)n∈N as in

Lemma 5.18.
By construction of τ , τn(An+1) = R

X
(n)
τ

(an), where an ∈ An is the letter such that
τ[0,n)(a) = un+1. Thus, by Lemma 5.17, τn is recognizable for every n ∈ N and, therefore,
τ is recognizable.

By assumption, for every n ∈ N, |RX(un)| ≤ d , and then |An| ≤ d . Moreover, for
every n ∈ N and a ∈ An, τ[0,n)(RX

(n)
τ

(a)) = RX(τ[0,n)(a)) and therefore |R
X

(n)
τ

(a)| ≤ d .

Therefore,
∑

a∈An
|R

X
(n)
τ

(a)| ≤ d2. Applying Proposition 5.15 to the directive sequence

τ , we obtain that Xτ is 1/d2-rigid for every ergodic measure.

Remark 5.19. Every statement involving the set of right return words RX(w) (Proposition
5.15, Corollary 5.16, and Lemma 5.18) also applies to the set of left return words R′

X(w).

5.2.4. Condition regarding the directive sequence. The repetition of a positive mor-
phism σ infinitely many times in a recognizable directive sequence σ implies the unique
ergodicity of (Xσ , S) (see [43] or [6]). This condition applies to substitution subshifts
and, more generally, to linearly recurrent subshifts. It is not clear whether this condition
implies non-superlinear complexity or not. In this section, we will see that this condition
also implies partial rigidity.

For a morphism σ : A∗ → B∗, denote ‖σ‖ = maxa∈A |σ(a)|.
LEMMA 5.20. Let σ = (σn : A∗

n+1 → A∗
n)n∈N be a primitive and recognizable directive

sequence. For an integer n ≥ 1 and a letter b ∈ An, if |σn(a)|b > 0 for every a ∈ An+1,
then |w| ≤ 2‖σn‖ − 1 for every w ∈ R

X
(n)
σ

(b).
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Proof. If w ∈ R
X

(n)
σ

(b), then |w|b = 1 and bw ∈ L(n)(σ ). Thus, there is a word u ∈
L(n+1)(σ ) such that bw 
 σn(u). Since |σn(a)|b > 0 for every a ∈ An+1, there exist
two letters a1 a2 ∈ An+1 such that bw 
 σn(a1a2). Then, |bw| ≤ |σn(a1)| + |σn(a2)| ≤
2‖σn‖, from which we conclude.

THEOREM 5.21. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive and recognizable directive
sequence such that there exists a positive morphism τ : A∗ → B∗ which is repeated
infinitely many times in σ (that is, |N | = |{n ∈ N : σn = τ }| = ∞). Then, (Xσ , B, μ, S)

is partially rigid, where μ is its unique invariant measure.

Proof. Fix n ∈ N . So σn = τ , An = B, and An+1 = A. By hypothesis, |σn(a)|b > 0
for all b ∈ An and a ∈ An+1. Then, Lemma 5.20 gives that |w| ≤ 2‖τ‖ − 1 for every
b ∈ An and w ∈ R

X
(n)
σ

(b). Therefore, |R
X

(n)
σ

(b)| ≤ |A|2‖τ‖−1 for every b ∈ B and∑
b∈B |R

X
(n)
σ

(b)| ≤ |B| · |A|2‖τ‖−1. We conclude by Proposition 5.15.

Question 5.22. In this section, we presented several sufficient conditions to ensure partial
rigidity on S-adic subshifts, especially for finite alphabet rank subshifts. When this paper
was first released on arXiv, we wondered whether a mixing finite alphabet rank system
existed. B. Espinoza has communicated to us that he has found such an example, and he
is currently working on a publication. It is still open to give a complete characterization,
or even to have sufficient conditions, to determine whether a directive sequence σ defines
an S-adic subshift that admits a mixing or a partially mixing measure. Similarly, we do
not know if there are uniquely ergodic finite alphabet rank S-adic subshifts that are neither
mixing nor partially rigid.

6. Rigidity in S-adic subshifts
In this section, we focus on conditions under which S-adic subshifts are rigid (that is, the
partial rigidity rate equals 1). We provide necessary conditions for a subshift to be rigid,
based on its language. As a consequence, we show that most words are complete (see
Theorem 6.3 and Remark 6.5). We also construct families of examples of subshifts, which
are rigid thanks to the criteria developed in §3.

6.1. Necessary conditions for rigidity. We recall that for a subshift X, a set of complete
words on L(X) is denoted by CL(X). We start with a general lemma.

LEMMA 6.1. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive and recognizable directive
sequence, and μ be an ergodic measure on Xσ . If (Xσ , B, μ, S) is rigid, then

lim sup
n→∞

[
μ

( ⋃
w∈CLn(Xσ )

[w]Xσ

)]
= 1, (17)

where CLn(Xσ ) = CL(Xσ ) ∩ An
0 .
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Proof. As (Xσ , B, μ, S) is rigid, by Corollary 3.5 and Theorem 4.4, there is a sequence
of complete words (w(n))n∈N, w(n) ∈ CL(X

(n)
σ ) such that

lim
n→∞ μ(T (n)

[w(n)]n) = 1.

Fix n ∈ N, u = u1 · · · ur ∈ [w(n)]n, and � = |σ[0,n)(u1)|. For 0 ≤ k ≤ �, let p
u1,n
k be the

kth prefix of σ[0,n)(u1) (that is, |pu1,n
k | = k and it is a prefix of σ[0,n)(u1)) and s

u1,n
k be the

kth suffix of σ[0,n)(u1) (that is, |su1,n
k | = � − k and it is a suffix of σ[0,n)(u1)). Notice that

p
u1,n
0 and s

u1,n
� are empty words. Then,

T (n)
u ⊆

⋃
v∈Cn

u

[v]Xσ ,

where Cn
u = {su1,n

k σ[0,n)(u2 · · · ur−1)p
u1,n
k+1 : 0 ≤ k < �} ⊆ A∗

0. Moreover, every word
v ∈ Cn

u is a complete word because the last letter of p
u1,n
k+1 is equal to the first letter of

s
u1,n
k . Thus, by definition,

T (n)
[w(n)]n ⊆

⋃
u∈[w(n)]n

⋃
v∈Cn

u

[v]Xσ . (18)

To conclude, notice that by the definition of ∼n, for mn = |σ[0,n)(u1 · · · ur−1)| + 1, one
has that if v ∈ ⋃

u∈[w(n)]n Cn
u , then |v| = mn. Therefore, for every n ∈ N,

⋃
u∈[w(n)]n Cn

u ⊆
CLmn(X) and then

1 = lim sup
n→∞

μ(T (n)
[w(n)]n) ≤ lim sup

n→∞
μ

( ⋃
u∈[w(n)]n

⋃
v∈Cn

u

[v]Xσ

)

≤ lim sup
n→∞

μ

( ⋃
v∈CLmn(X)

[v]Xσ

)

≤ lim sup
n→∞

μ

( ⋃
v∈CLn(X)

[v]Xσ

)
.

This allows us to conclude.

Remark 6.2. Similarly to Remark 3.6, in the previous proof, it can be observed that
(mn − 1)n∈N is a rigidity sequence for the system (Xσ , B, μ, S).

We recall that a linearly recurrent subshift is an S-adic subshift (Xσ , S) such that there
exists a finite set of morphisms S such that the directive sequence σ = (σn : A∗

n+1 →
A∗

n)n∈N is proper, positive, and σn ∈ S for all n ≥ 1. Linearly recurrent subshifts are
uniquely ergodic. We will use that if (Xσ , S) is linearly recurrent, then there is a constant
L > 0 such that μ([w]Xσ ) ≤ Lμ([u]Xσ ) for all words u, w ∈ L(Xσ ) of the same length
(see [19, Proposition 13]).

THEOREM 6.3. Let (Xσ , S) be a linearly recurrent subshift and let μ be its unique
invariant measure. If (Xσ , B, μ, S) is rigid, then

lim sup
n→∞

qXσ (n)

pXσ (n)
= 1, (19)

where pXσ (n) = |Ln(Xσ )| and qXσ (n) = |CLn(Xσ )|.
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To prove this theorem, we use the following lemma.

LEMMA 6.4. Let (Xσ , S) be a linearly recurrent subshift and let μ be its unique invariant
measure. Let (Wn)n∈N such that Wn ⊆ Ln(Xσ ) for all n ∈ N. Then, for any increasing
sequence of integers (mn)n∈N, we have that

|Wmn |
pXσ (mn)

−−−→
n→∞ 0 if and only if μ

( ⋃
w∈Wmn

[w]Xσ

)
−−−→
n→∞ 0.

Proof. For m ∈ N, let wm, um ∈ Lm(Xσ ) such that μ([wm]Xσ ) = maxw∈Lm(Xσ ) μ([w]Xσ )

and μ([um]Xσ ) = minw∈Lm(Xσ ) μ([w]Xσ ). Let L > 0 such that μ([wm]Xσ ) ≤ Lμ([um]Xσ )

for all m ∈ N. Combining this with the equality

μ

( ⋃
w∈Wm

[w]Xσ

)
= μ(

⋃
w∈Wm

[w]Xσ )

μ(
⋃

w∈Lm(Xσ )[w]Xσ )
=

∑
w∈Wm

μ([w]Xσ )∑
w∈Lm(Xσ ) μ([w]Xσ )

,

we obtain that

1
L

|Wm|
pXσ (m)

≤ μ

( ⋃
w∈Wm

[w]Xσ

)
≤ L

|Wm|
pXσ (m)

from where the conclusion follows.

Proof of Theorem 6.3. By Lemma 6.1, since μ is rigid, we have that

lim
n→∞ μ

( ⋃
w∈CLmn(Xσ )

[w]Xσ

)
= 1

for an increasing sequence of integers (mn)n∈N. Setting Wn = Lmn(Xσ )\CLmn(Xσ ), by
Lemma 6.4,

lim
n→∞

|Wn|
pXσ (mn)

= 0.

We conclude by noting that |Wn| + qXσ (mn) = pXσ (mn) for every n ∈ N.

Remark 6.5. As in Remark 6.2, the sequence (mn)n∈N for which the limit in equation (19)
is reached was constructed so that (mn − 1)n∈N is a rigidity sequence. Thus, Theorem 6.3
implies that, under the same assumption, there is a rigidity sequence (nk)k∈N such that
limk→∞(qXσ (nk + 1))/(pXσ (nk + 1)) = 1.

Remark 6.6. It is worth mentioning that for aperiodic subshifts, qX(m) < pX(m) for all
m ∈ N. Indeed, assume that CLm(X) = Lm(X) for some m, and let u = u1 · · · um be a
word in Lm(X) and a ∈ A such that u1u2 · · · uma ∈ L(X). Then, u2u3 · · · uma ∈ Lm(X)

and so a = u2. Therefore, every word of length m is uniquely extendable, and so X is
periodic.

6.2. A rigid S-adic subshift with multiple ergodic measures. To illustrate some applica-
tions of the results in §5, we construct an S-adic subshift with r > 0 ergodic measures,
each one rigid for the same rigidity sequence. Examples with the same property can
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be found for some Toeplitz systems [44]. To introduce the S-adic subshift, we quote
the following lemma. We need the following notion: for a vector v ∈ R

A, set |v| =∑
a∈A |v(a)|.

LEMMA 6.7. [2, Theorem 11] Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a primitive, recogniz-
able, and constant length directive sequence. The following are equivalent.
(1) There exists a contraction σ ′ = (σ ′

k = σ[mk ,mk+1))k∈N of σ such that the vectors
(vk)k∈N given by

vk(a) = min
b∈Amk+1

|σ ′
k(b)|a , a ∈ Amk

, k ∈ N

satisfy
∑
k∈N

|vk|
|σ ′

k|
= ∞.

(2) The system (Xσ , S) is uniquely ergodic.

PROPOSITION 6.8. For every r ≥ 1, there exists a minimal S-adic subshift (Xσ , S) such
that |E(Xσ , S)| = r and every ergodic measure is rigid for the same rigidity sequence.

Proof. Let A = {a1, b1, a2, b2, . . . , ar , br}. We define σ = (σn : A∗ → A∗)n∈N such
that

σn(ai) = a1a2 · · · ar(aibi)
2n

b1b2 · · · br ,

σn(bi) = a1a2 · · · ar(biai)
2n

b1b2 · · · br

for i ∈ {1, . . . , r}, which is recognizable, positive, and proper. Moreover, σ has constant
length and we denote by h(n) the height at level n.

Claim. There are r ergodic measures μ1, . . . , μr and for each i ∈ {1, . . . , r}, Aμi
=

{ai , bi}.
Notice that if μ is an ergodic measure, then it is clear that ai ∈ Aμ if and only if bi ∈

Aμ, because

μ(T (n)
ai

) = h(n)

h(n+1)

(
2n+1(μ(T (n+1)

ai
) + μ(T (n+1)

bi
)) +

∑
j �=i

(μ(T (n+1)
aj

) + μ(T (n+1)
bj

))

)

= μ(T (n)
bi

).

To conclude the claim, note that there are two possibilities: either there is a unique
invariant measure μ such that Aμ = A or there are r ergodic measures μi such that
Aμi

= {ai , bi} for all i ∈ {1, . . . , r}. This is trivial when r ∈ {1, 2}. Suppose without
loss of generality that r ≥ 3, a1, a2, b1, b2 ∈ Aμ for some ergodic measure μ and
define φi : Xσ → Xσ as the homeomorphism that, for every x ∈ Xσ , interchanges the
letters a1, b1 with ai , bi , respectively, for i ∈ {3, . . . , r}. Then, φi commutes with S,
and the pushforward measure μ′ = φiμ is an S-ergodic probability measure such that
ai , bi , a2, b2 ∈ Aμ′ . In particular, Aμ ∩ Aμ′ �= ∅ and, therefore, μ = μ′ and ai , bi ∈ Aμ.
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Since i ∈ {3, . . . , r} is arbitrary, we conclude that Aμ = A. Finally, assuming that Aμ1 =
{a1, b1}, if we define μi = φiμ1 for every i ∈ {1, . . . , r}, then Aμi

= {ai , bi}.
Now, using the same notation as in Lemma 6.7, for every contraction σ ′ of σ ,

|vk|/|σ ′
k| = O(1/2k) for every k and, therefore,

∑
k∈N |vk|/|σ ′

k| < ∞. Thus, by Lemma 6.7,
the system cannot be uniquely ergodic and we conclude the claim.

Claim. For i ∈ {1, . . . , r}, μi is rigid and (2h(n))n∈N is a rigidity sequence.

Notice that as Aμi
= {ai , bi}, μi((T

(n)
ai

∪ T (n)
bi

) ∩ (T (n+1)
ai

∪ T (n+1)
bi

)) −−−→
n→∞ 1.

Also, by Lemma 5.1,

μi(T
(n)

aibiai
) = μi(T

(n)
aibiai

∩ T (n+1)
ai

) + μi(T
(n)

aibiai
∩ T (n+1)

bi
)

≥ n2 − 1
n2 + 1

μi(T
(n)

ai
∩ T (n+1)

ai
) + n2 − 1

n2 + 1
μi(T

(n)
ai

∩ T (n+1)
bi

),

and the same applies to μ(T (n)
biaibi

). As fA(aibi) = fA(biai), by Lemma 3.4, aibiai ∼n

biaibi , so

μi(T
(n)

[aibiai ]n) ≥ n2 − 1
n2 + 1

( ∑
j ,l∈{ai ,bi }

μi(T
(n)

j ∩ T (n+1)
l )

)
−−−→
n→∞ 1.

Then, (Xσ , B, μi , S) is rigid for every i ∈ {1, . . . , r} and a rigidity sequence is given by
h

(n)
ai

+ h
(n)
bi

= 2h(n). Finally, by Remark 2.2, every invariant measure is rigid.

7. Partial rigidity rate and constant length morphisms
In this section, we show the relationship between the partial rigidity rate and the induced
system on the basis of an S-adic subshift with constant length directive sequence. Thanks
to this, we find an upper bound of the rigidity rate for a family of substitution subshifts that
allows us to compute the exact value in some cases. The most notable is the Thue–Morse
subshift.

7.1. Partial rigidity rate in constant length S-adic subshifts.

THEOREM 7.1. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a recognizable, constant length, and
primitive directive sequence. Let μ be an S-invariant ergodic measure on Xσ . Then,

δμ = inf
n≥1

sup
�≥2

{ ∑
w∈CL(n)(σ )

|w|=�

μ(n)([w]
X

(n)
σ

)

}
, (20)

where μ(n) is the induced measure on the base B(n) of the natural sequence of
Kakutani–Rokhlin partitions (P(n))n∈N associated with (Xσ , S).

Proof. By Theorem 4.4,

δμ = inf
n≥1

{
sup

w∈A∗
n

w1=w|w|

μ(T (n)
[w]n)

}
.
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First, note that two complete words u, w ∈ A∗
n are ∼n equivalent if and only if |u| = |w|.

Indeed, for any word v ∈ A∗
n,

∑|v|−1
i=1 h

(n)
vi

= (|v| − 1)h(n), where h(n) is the height of
every tower.

In addition, if w �∈ L(n)(σ ), then μ(T (n)
w ) = 0. Therefore, we can consider only the

complete words of the language of X
(n)
σ . Finally, for w ∈ CL(n)(σ ),

μ(T (n)
w ) = μ(T (n)

w )∑
a∈An

μ(T (n)
a )

= h(n)μ(B
(n)
w )

h(n)
∑

a∈An
μ(B

(n)
a )

= μ(B
(n)
w )

μ(B(n))
= μ(n)([w]

X
(n)
σ

).

Thus, we have proved that μ(T (n)
[w]n) = ∑

w∈CL(n)(σ )
|w|=�

μ(n)([w]
X

(n)
σ

) and we are done.

COROLLARY 7.2. Let σ = (σn : A∗
n+1 → A∗

n)n∈N be a recognizable, constant length, and
primitive directive sequence. Let μ be an S-invariant ergodic measure on Xσ and μ(m) the
induced measure on X

(m)
σ for m ∈ N. Then,

δμ = δμ(m) . (21)

Proof. As was proven in Theorem 4.4, (sup�≥2{
∑

w∈CL(n)(σ )
|w|=�

μ(n)([w]
X

(n)
σ

)})n∈N is a

decreasing sequence. Therefore,

inf
n≥1

sup
�≥2

{ ∑
w∈CL(n)(σ )

|w|=�

μ(n)([w]
X

(n)
σ

)

}
= inf

n≥m
sup
�≥2

{ ∑
w∈CL(n)(σ )

|w|=�

μ(n)([w]
X

(n)
σ

)

}
.

So, equation (21) follows from Theorem 7.1.

Remark 7.3. The previous corollary can be useful in the following situation. If we know
the partial rigidity rate of (Xσ , B, μ, S), then for τ = (φ1, . . . , φr , σ0, σ1, . . .), where
(φ1, . . . , φr) is a finite sequence of primitive and recognizable constant length morphisms,
the system (Xτ , B, ν, S) has the same partial rigidity rate as that of (Xσ , B, μ, S).

As a consequence, we obtain Theorem C announced in §1.

COROLLARY 7.4. (Theorem C) Let σ : A∗ → A∗ be a recognizable, primitive, and
constant length substitution. Let μ be the unique S-invariant measure on (Xσ , S). Then,

δμ = sup
�≥2

{ ∑
w∈CL(σ )

|w|=�

μ([w]Xσ )

}
. (22)
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Proof. Note that if σ is the directive sequence made up only of σ , then X
(n)
σ = Xσ for

every n ≥ 1. So, for every n ≥ 1 and � ≥ 2,∑
w∈CL(n)(σ )

|w|=�

μ(n)([w]
X

(n)
σ

) =
∑

w∈CL(σ )
|w|=�

μ([w]Xσ ),

which implies equation (20).

The last corollary allows us to conclude that the necessary condition for rigidity of
Theorem 6.3 is also a sufficient condition in the case of constant length substitutions.

COROLLARY 7.5. Let σ : A∗ → A∗ be a primitive and constant length substitution. Let μ

be the unique S-invariant measure on (Xσ , S). Then, (Xσ , B, μ, S) is rigid if and only if

lim sup
m→∞

qXσ (m)

pXσ (m)
= 1, (23)

where pXσ (m) = |Lm(Xσ )| and qXσ (m) = |CLm(Xσ )|.
Proof. Remark that by [37], the substitution is recognizable. Note that Theorem 6.3 gives
one implication. For the other, remark that by Lemma 6.4, if Wn = Ln(σ )\CLn(σ ),
the limit in equation (23) implies that there is a sequence (mn)n∈N such that
limn→∞

∑
w∈Wmn

μ([w]Xσ ) = 0. Thus,

lim
n→∞

∑
w∈CLmn(σ )

μ([w]Xσ ) = 1,

and by Corollary 7.4, (Xσ , B, μ, S) is rigid.

7.2. The Thue–Morse family. In this section, we compute the partial rigidity rate for a
family of constant length substitution subshifts. This family of substitutions is inspired
by the Thue–Morse substitution. The measures of the cylinder sets of the substitution
subshifts are computed using techniques from [39].

We need to fix some additional notions and notation. For a substitution σ : A∗ → A∗,
i, j ∈ N and a non-empty word v ∈ A∗, we define σi,j (v) as the word obtained from σ(v)

by deleting its first i and last j letters (assuming i + j < |σ(v)|). We say that a non-empty
word w ∈ A∗ admits an interpretation s = (v1v2 · · · vm, i, j) if σi,j (v1 · · · vm) = w,
where i < |σ(v1)| and j < |σ(vm)|. We denote a(s) = v1 · · · vm and say that a(s) is an
ancestor of w. The set of interpretations of w is called I (w). We will need the following
result.

LEMMA 7.6. [25, Theorem 3] Let σ : A∗ → A∗ be a primitive substitution and λ be the
Perron–Frobenius eigenvalue of Mσ . If μ is the unique S-invariant measure on Xσ , then

μ([w]Xσ ) = 1
λ

∑
s∈I (w)

μ([a(s)]Xσ ).

Notice that for a primitive and constant length substitution σ : A∗ → A∗, the
Perron–Frobenius eigenvalue of Mσ is ‖σ‖.
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From now on, we assume that the alphabet A is a finite abelian group with addition +.
Let u = u1u2 · · · u� be a non-empty word in A∗. We define the morphism σu : A∗ → A∗
as follows:

σu(g) = (u1 + g)(u2 + g) · · · (u� + g) for all g ∈ A.

For example, if we consider A = {0, 1} with the addition modulo 2, and u = 01, then σu

is the Thue–Morse substitution.
We call σu the Thue–Morse type substitution given by u. It is easy to check that for any

finite abelian group A, and any u ∈ A∗, the morphism σu is recognizable. The family of
Thue–Morse type substitutions is closed under composition, meaning that if u, v ∈ A∗,
with |u| = � and |v| = r , then

σv ◦ σu(g) = σv((u1 + g)(u2 + g) · · · (u� + g))

= (v1 + u1 + g) · · · (vr + u1 + g) · · · (v1 + u� + g) · · · (vr + u� + g)

= σw(g),

where w = σv(u).
Note that Xσu is not always infinite (for example, if u = aa for some a ∈ A). Even if we

require u to contain all the letters of A, we may have a finite Xσu (for example, for u = 010,
the substitutions 0 �→ 010 and 1 �→ 101 give rise to a periodic subshift).

In all the following, we will assume that Xσu is infinite. The following lemma shows a
recursive formula that will be very useful for computing the partial rigidity rate of many
Thue–Morse type substitution subshifts.

LEMMA 7.7. Let (Xσu , B, μ, S) be an infinite substitution subshift, where σu : A∗ → A∗
is a primitive Thue–Morse type substitution and |u| = �. Then, for every n ≥ 1 and i ∈
{1, . . . , �},

μ(Cn�+i (+g)) = 1
�

( �+1−i∑
k=1

μ(Cn+1(−uk+i−1 + uk + g)) +
i−1∑
k=1

μ(Cn+2(−uk + uk−i+1 + g))

)
,

where

Cm(+g) =
⋃

w=w1···wm∈L(σu)
such that wm=w1+g

[w]Xσu
.

Proof. We define Wm(+g) = {w = w1 · · · wm ∈ L(σu) : wm = w1 + g} (so that
Cm(+g) = ⋃

w∈Wm(+g)[w]Xσu
).

Let us fix g ∈ A, n ≥ 1, and i ∈ {1, . . . , �}. Let w ∈ W�n+i (+g) and assume that w
has a unique interpretation. Thus, it has a unique ancestor v = a(w) (this last assumption
does not play a role other than simplifying the notation; see Remark 7.8). Note that v, being
an ancestor of w, can have length n + 1 or n + 2.

If |v| = n + 1 and (σu)j ,j ′ = w, then |σu(v1)| − j + |σ(vn+1)| − j ′ + |σu(v2 · · · vn)| =
(n + 1)� − j − j ′ = |w| = n� + i. Therefore, � − i = j + j ′ and j ∈ {0, . . . , � − i}.
Then, if k = j + 1, it follows that � − j ′ = k + i − 1. Putting together the following three
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equalities:

w1 = σu(v1)k = uk + v1,

wn�+i = σu(vn+1)k+i−1 = uk+i−1 + vn+1,

wn�+i = w1 + g (w ∈ W�n+i (+g)),

we derive that uk + v1 + g = uk+i−1 + vn+1 and it follows that vn+1 = (−uk+i−1 +
uk + g) + v1 (note that here is the only moment where we use that (A, +) is abelian).
Then, v ∈ Wn+1(−uk+i−1 + uk + g).

A similar reasoning is used for the case |v| = n + 2, in which it follows that uk−i+1 +
v1 + g = uk + vn+1 and, thus, v ∈ Wn+2(−uk + uk−i+1 + g) for k ∈ {1, . . . , i − 1}.

Finally, it is clear that every word v ∈ Wn+1(−uk+i−1 + uk−i+1 + g) ∪ Wn+2(−uk +
uk−i+1 + g) is an ancestor of a word w ∈ W�n+i (+g). Hence, from Lemma 7.6, it follows
that

μ(Cn�+i (+g)) =
∑

w∈W�n+i (+g)

μ([w]Xσu
) =

∑
w∈W�n+i (+g)

1
�
μ([a(w)]Xσu

)

= 1
�

( ∑
v∈Wn+1(−uk+i−1+uk+g)

μ([v]Xσu
) +

∑
v∈Wn+2(−uk+uk−i+1+g)

μ([v]Xσu
)

)

= 1
�

( �+1−i∑
k=1

μ(Cn+1(−uk+i−1 + uk + g)) +
i−1∑
k=1

μ(Cn+2(−uk + uk−i+1 + g))

)
.

Remark 7.8. In the previous proof, it was artificially assumed that if w ∈ W�n+i (+g),
then it has a single ancestor. However, it is possible to make the same proof without that
assumption. If it has more than one interpretation, they would appear in the last summation
of the proof. Strictly speaking, the last summation of the proof corresponds exactly to the
following expression:

1
�

∑
w∈W�n+i (+g)

( ∑
s∈I (w)

μ([a(s)]Xσu
)

)
,

which is nothing more than the measure of C�n+i (+g) (see Lemma 7.6).

Remark 7.9. If 0 ∈ A is the neutral element of the group (A, +), then

μ(Cn�+i (+0)) = 1
�

( �+1−i∑
k=1

μ(Cn+1(−uk+i−1 + uk)) +
i∑

k=1

μ(Cn+2(−uk + uk−i+1))

)
,

and for every g ∈ A, it follows that

μ(Cn�+1(+g)) = μ(Cn+1(+g)).

LEMMA 7.10. Under the same assumptions of the previous lemma, for all m ≥ 2 and
g ∈ A, it follows that

μ(Cm(+g)) < 1.
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Proof. If μ(Cm(+g)) = 1, then every word of length m satisfies that wm = w1 + g, so
every word would be uniquely extensible. Indeed, for a ∈ A, if w1w2 · · · wma ∈ L(σu),
then w2 · · · wma ∈ Lm(σu) and, therefore, a = w2 + g. This would imply that p(m) =
p(m + 1) and, thus, that the system is periodic, which is a contradiction.

With both lemmas, we can prove that Thue–Morse type substitution subshifts are not
rigid.

PROPOSITION 7.11. Let (A, +) be a finite abelian group and let u ∈ A∗ be a non-empty
word. Assume that σu is a primitive substitution and that Xσu is infinite. Then, the system
(Xσu , B, μ, S) is not rigid, where μ is the unique invariant measure. Moreover,

δμ ≤ max
i∈{2,...,�}

g∈A
μ(Ci(+g)). (24)

Proof. Let us first note that if 0 ∈ A is the neutral element of the group (A, +), then by
Corollary 7.4 and using the notation of Lemma 7.7, we have that

δμ = sup
m>1

μ(Cm(+0)).

Then, by induction, it follows that for all m ≥ 2, μ(Cm(+0)) is a convex combination
of elements in the set {μ(Ci(+g)) ∈ [0, 1) : 2 ≤ i ≤ �, g ∈ A}. Therefore, for every
m ≥ 2, it follows that μ(Cm(+0)) ≤ max{μ(Ci(+g)) ∈ [0, 1) : 2 ≤ i ≤ �, g ∈ A} and we
conclude inequality (24) with Corollary 7.4.

Using Lemma 7.10, the maximum is strictly smaller than 1, so the system is not rigid.

Now, we can compute the partial rigidity rate for the Thue–Morse substitution.

THEOREM 7.12. The partial rigidity rate of the Thue–Morse subshift is δμ = 2
3 .

Proof. First, note that μ(C2(+0)) = μ([00]Xσ ) + μ([11]Xσ ) = 1
3 and μ(C2(+1)) =

μ([01]Xσ ) +μ([10]Xσ ) = 2
3 . So, δμ ≤ max{ 1

3 , 2
3 } = 2

3 .
Second, μ(C4(+0)) = μ([0010]Xσ ) + μ([0100]Xσ ) + μ([0110]Xσ ) + μ([1011]Xσ ) +

μ([1101]Xσ ) + μ([1001]Xσ ) = 2
3 . So, δμ ≥ 2

3 and we are done.

Remark 7.13. Once we know that the partial rigidity rate of the Thue–Morse substitution
subshift is 2/3, we can state that the δμ-partial rigidity sequence is (3 · 2n)n∈N. Indeed,
if we take w(n) ≡ 0100, it is straightforward to check that μ(T (n)

[0100]n) = 2/3 and by

Remark 3.6, the partial rigidity sequence is mn = h
(n)
0 + h

(n)
1 + h

(n)
0 = 3 · 2n.

This fact is interesting because we know that the ‘natural’ rigidity sequence of the
maximal equicontinuous factor of this system (the odometer) is (2n)n∈N and, with the
same proof, we can only guarantee that (2n)n∈N is a 1

3 -partial rigidity sequence of
the Thue–Morse substitution subshift. In any case, (3 · 2n)n∈N is also a rigidity sequence
for the odometer.
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Example 7.14. The same type of reasoning can be done for A = {0, 1, 2} (with addition
mod 3), u = 0100, so that σu(0) = 0100, σu(1) = 1211, σu(2) = 2022. Here, we find that

max
i∈{2,3,4}

g∈A
μ(Ci(+g)) = 1

2 and μ(C4(+0)) = 1
2 ,

so δμ = 1
2 .

Note that, in particular, this system and the Thue–Morse subshift are not measurably
isomorphic, because their partial rigidity rates are different.

Thanks to Thue–Morse type substitutions, we can prove that if �s is the set of partial
rigidity rates for substitution subshifts, then the number 1 is an accumulation point of �s .
More precisely, we have the following corollary.

COROLLARY 7.15. For every j ≥ 1 and d ≥ 2, the primitive substitution σj : A∗ → A∗
with A = {0, 1, . . . , d − 1} given by

σj (0) = 0j 1j ,

σj (1) = 1j 2j ,
...

σj (d − 1) = (d − j)j 0j ,

satisfies that 1 − (1/j) ≤ δμ < 1, where μ is the unique invariant measure of (Xσj
, S).

Proof. Set j ≤ 1, d ≤ 2, and let (Xσj
, B, μ, S) be the substitution subshift defined by

σj . Then, by Theorem 5.12, (j − 1)/j ≤ δμ. In addition, the substitution σj clearly
corresponds to a Thue–Morse type substitution in A = Z/dZ given by the word 0j 1j ,
so by Proposition 7.11, δμ < 1.

Question 7.16. Notice that in this section, all systems are uniquely ergodic so there is no
ambiguity in computing their partial rigidity rates. However, partial rigidity is a purely
measure-theoretic concept: a non-uniquely ergodic topological system could have two
ergodic measures with two different partial rigidity rates. For example, there are Toeplitz
subshifts with positive topological entropy and that have measures for which they are
measurably isomorphic to odometers (see, for instance, [44]). For such a system, there
is a measure μ1 with positive entropy, so that it is not rigid and a measure μ2 that is rigid.

When this paper was first released on arXiv, we suggested that it would be interesting
to exhibit examples of zero entropy or finite alphabet rank minimal S-adic subshifts
with multiple partial rigidity rates. In particular, construct systems such that the set
{δμ : μ is an ergodic measure} is as large as the set of their ergodic measures. This was
fully answered by the third author for the finite alphabet rank case in [41] and it is still
open for systems with infinitely many ergodic measures.

7.3. Every number is a partial rigidity rate. It is natural to wonder what values in [0, 1]
can be partial rigidity rates of a system. We establish the following.
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THEOREM 7.17. For every δ ∈ [0, 1], there is a measure-preserving system (X, X , μ, T )

such that δ = δμ.

Remark 7.18. In his seminal paper [26], Friedman proved that for every δ ∈ (0, 1), there
is an ergodic system (X, X , μ, T ) and a sequence (nk)k∈N (depending on δ) such that

lim
k→∞ μ(A ∩ T −nkB) = δμ(A ∩ B) + (1 − δ)μ(A)μ(B) for all A, B ∈ X . (25)

It is clear that equation (25) implies partial rigidity with respect to the sequence (nk)k∈N
and that δ is the largest possible constant associated with that sequence. It is unclear that in
Friedman’s construction, (nk)k∈N is the sequence that maximizes the partial rigidity rate
(recall that in the definition of partial rigidity rate, all sequences are considered). Indeed,
a system can exhibit very different behaviors along different sequences. For instance, a
system can be 1-rigid for one sequence and 1-mixing for another (consider, for example, a
weakly mixing and rigid transformation).

Our approach uses a completely different construction than that of Friedman. This
allows us to guarantee that δ is the actual partial rigidity rate. However, we note that,
unlike Friedman’s construction, our systems are not ergodic.

To prove Theorem 7.17, we will introduce a family of substitutions similar to the family
used in the proof of Corollary 7.15. For � ≥ 2, let ζ� : {0, 1}∗ → {0, 1}∗ be the substitution
given by ζ�(0) = 01�−1, ζ�(1) = 10�−1.

Notice that for every � ≥ 2, ζ� corresponds to a Thue–Morse type substitution in
A = Z/2Z given by the word 01�−1.

PROPOSITION 7.19. The partial rigidity rate for (Xζ�
, B, μ, S) is (� − 1)/(� + 1) for

every � ≥ 6 and the partial rigidity sequence is (�k)k∈N.

Proof. First, using classical methods for computing the measure of cylinder sets
for constant length substitutions from [39], we have that μ([00]Xζ�

) = μ([11]Xζ�
) =

(� − 1)/(2(� + 1)) and μ([01]Xζ�
) = μ([10]Xζ�

) = 1/(� + 1). Therefore, μ([00]Xζ�
∪

[11]Xζ�
) = (� − 1)/(� + 1) and so, by Corollary 7.4, (� − 1)/(� + 1) ≤ δμ.

Using Proposition 7.11, it suffices to show that

max
{ ∑

w∈CL(ζ�)∩Ai

μ([w]Xζ�
),

∑
w∈Ai\CL(ζ�)

μ([w]Xζ�
)

}
≤ � − 1

� + 1
for all i ∈ {2, . . . , �}.

(26)

To prove equation (26), it is not hard to see that for 3 ≤ i ≤ �,

Li (ζ�)\CL(ζ�) =
i−1⋃
j=1

({0j 1i−j } ∪ {1j 0i−j }).

Also, as for the Thue–Morse substitution, μ([w]Xζ�
) = μ([w]Xζ�

), where 0 = 1 and
1 = 0, so we can focus the analysis only on the words of the form 0j 1i−j . Thus,
after computing ζ�(00) = 01�−101�−1, ζ�(01) = 01�−110�−1, ζ�(10) = 10�−101�−1, and
ζ�(11) = 10�−110�−1, it is clear that 01i−1 has only one interpretation in 0. Therefore, by
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Lemma 7.6,

μ([01i−1]Xζ�
) = 1

�
μ([0]Xζ�

) = 1
2�

.

For 0i−11, there are two interpretations, on the word 11 and on the word 10. So using
Lemma 7.6 again, we get

μ([0i−11]Xζ�
) = 1

�
(μ([10]Xζ�

) + μ([11]Xζ�
)) = 1

2�
.

In the other cases, 2 ≤ j ≤ i − 2, 0j 1i−j has only one interpretation on the word 10, so
Lemma 7.6 gives

μ([0j 1i−j ]Xζ�
) = 1

�
μ([10]Xζ�

) = 1
�(� + 1)

.

Finally, for every 3 ≤ i ≤ �, with � ≥ 6 by assumption, we have

∑
w∈Li (ζ�)\CL(ζ�)

μ([w]Xζ�
) = 2

(
1
2�

+ 1
2�

+
i−2∑
j=2

1
�(� + 1)

)
= 1

�

(
2 + 2

i − 3
� + 1

)
≤ 1

2
.

This implies that for every 2 ≤ i ≤ �, the maximum in equation (26) is achieved for the
sum over complete words of length i. Also, for every 3 ≤ i ≤ �,

∑
w∈CL(ζ�)|w|=i

μ([w]Xζ�
) = 1 − 1

�

(
2 + 2

i − 3
� + 1

)
≤ � − 1

� + 1
.

Therefore, the maximum in equation (24) is achieved for complete words of length 2. So,
by Proposition 7.11 and Corollary 7.4, δμ = (� − 1)/(� + 1). Reasoning as in Remark 7.13,
we can deduce that the partial rigidity sequence for δμ is equal to (h(k))k∈N = (�k)k∈N.

Using the family of substitutions studied in Proposition 7.19, for any δ ∈ [0, 1], we can
construct a system whose partial rigidity rate is equal to δ. In the following proof, we will
work with different parameters �, but to not overload the notation, the unique invariant
measure of Xζ�

will be simply denoted by μ.

Proof of Theorem 7.17. The property is clear for δ = 0 (e.g., taking a mixing system)
and δ = 1 (taking a rigid system). Let δ ∈ (0, 1). Notice that for every ε0 > 0, there
exist � ≥ 6 such that for some m0 ≥ 1, ((� − 1)/(� + 1))m0+1 ≤ δ ≤ ((� − 1)/(� + 1))m0 ,
where 1 − (� − 1)/(� + 1) ≤ ε0 (and so, ((� − 1)/(� + 1))m0 − ((� − 1)/(� + 1))m0+1 ≤
((� − 1)/(� + 1))m0ε0 ≤ ε0).

By Propositions 4.2 and 7.19, ((� − 1)/(� + 1))m0 is the partial rigidity rate of
(X

m0
ζ�

, B(X
m0
ζ�

), μm0 , S × · · · × S), so δ can be ε0-approximated by a partial rigidity rate.
Recall that for (X

m0
ζ�

, B(X
m0
ζ�

), μm0 , S × · · · × S), the partial rigidity sequence is still
(�k)k∈N. If δ = ((� − 1)/(� + 1))m0 , then there is nothing more to prove. If not, we
will construct inductively a better approximation, and, in each step, we will implicitly
assume that the equality is not achieved; since otherwise, we would have completed the
construction.
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Set ε1 = ε0/2. We can find an integer �′ such that ((� − 1)/(� + 1))m0((�′ − 1)/

(�′ + 1))m1+1 ≤ δ ≤ ((� − 1)/(� + 1))m0((�′ − 1)/(�′ + 1))m1 , with ((�′ − 1)/(�′ + 1))

≤ ε1. Without loss of generality, we may assume that �′ is a power of � (that is,
�′ = �q1 ) and, therefore, ((� − 1)/(� + 1))m0((�′ − 1)/(�′ + 1))m1 is the partial rigidity
rate of (X

m0
ζ�

× X
m1
ζ�′ , B(X

m0
ζ�

× X
m1
ζ�′ ), μm0 ⊗ μm1 , S × · · · × S), where the partial rigidity

sequence can be taken as (�, �q1 , �2q1 , . . .), which is a subsequence of (�k)k∈N and equal
to ((�q1)k)k∈N except for the first term.

Then, inductively, for εk = ε0/2k , we can find sequences (mk)k∈N, (qk)k∈N, and (�k)k∈N
such that �0 = �, �k+1 = �

qk

k , and denoting δk = ∏k
i=0((li − 1)/(li + 1))mi , we have(

lk − 1
lk + 1

)
δk ≤ δ ≤ δk ,

where 1 − εk ≤ (�k − 1)/(�k + 1) < 1. Therefore, δk ↘ δ as k goes to ∞.
By construction, δk is the partial rigidity rate of

Xk = (Xk , B(Xk), μm0 ⊗ · · · ⊗ μmk , S × · · · × S),

where Xk = ∏k
i=0 X

mi

ζ�i
.

Let X∞ be the inverse limit of (Xk)k∈N, where the factor map πk : Xk+1 → Xk is the
canonical projection. Thus, by Proposition 4.2, the partial rigidity rate of X∞ is precisely
δ = infk∈N δk .

Question 7.20. Theorem 7.17 states that any number δ ∈ [0, 1] can be the partial rigidity
rate of a measure-preserving system (X, X , μ, T ). We pose the question of whether this
holds true when restricted to a particular class of systems, for instance, ergodic, finite rank,
Toeplitz, or weakly mixing. In the same direction, concerning the set of partial rigidity
rates for substitution subshifts �s , we ask: is it dense in [0, 1]? Note that �s is countable,
because there are only countable many substitutions (up to conjugacy), so density in [0,1]
is the most we can expect.

8. Open questions
This section gathers open questions that arose in the paper for the reader’s convenience,
and some further discussions.

Partial mixing. As mentioned above, when partial rigidity was introduced in [26], it
was closely related to the notion of partial mixing. It would be interesting to give a
characterization of this property for S-adic subshift. In particular, we do not know whether
any of the examples presented in this work are partially mixing or not.

Finite topological rank mixing subshifts (Question 5.22). Give a characterization or
condition on a directive sequence σ so that it defines an S-adic subshift that admits either
a mixing or a partially mixing measure. Find a uniquely ergodic finite alphabet rank S-adic
subshift such that it is not mixing nor partially rigid.

Combinatorial characterization of rigidity. Can Theorem 6.3 be extended to a broader
class of S-adic subshifts? For instance, the limit in equation (19) also holds for arbitrary
Sturmian systems which are all rigid, but not necessarily linearly recurrent subshifts (see
[40, §3.4]). We also prove in Corollary 7.5 that the limit in equation (19) is also a sufficient
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condition for rigidity in the case of constant length substitution subshifts. Is it sufficient
also for other classes of subshifts?

System with multiple partial rigidity rates (Question 7.16). Find systems of zero entropy
such that the set {δμ : μ is an ergodic measure} is as large as the set of their ergodic
measures.

Realizing partial rigidity rates (Question 7.20). Prove Theorem 7.17 for more restrictive
classes systems. Similarly, determine if the set of partial rigidity rates for substitution
subshifts �s is dense in [0, 1].
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