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Abstract
A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial
parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreason-
able planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the
particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly,
a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the par-
ticle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters
by treating the initial parameters α and β of the ant colony algorithm and as two-dimensional coordinates in the
particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the
improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm,
but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the
improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant
colony algorithm has higher solution quality and converges faster.

1. Introduction
Robots are widely used in welding production. Although this has improved productivity, there are some
common problems, one of which is the poor path planning of spot welding robots on welding work-
stations [1]. In practice, the path planning for spot welding robots is developed by the relevant process
personnel based on their own experience, and the robot is given task instructions using online teaching
which is tedious. Therefore, it is important to use algorithms to plan a reasonable welding path. The
mainstream path planning algorithms include artificial potential field method, ant colony algorithm,
RRT algorithm, and particle swarm algorithm [2, 3, 4, 5]. Path planning for robot motion has been
studied both at home and abroad. Christian Wurll presents results from the Karlsruhe University on
path planning for a six-degree-of-freedom robot, which discretely stratifies Cartesian space to calculate
distances and uses the A∗ search algorithm to achieve finding the shortest distance between multiple
weld points, but the setting of its valuation function can seriously affect the quality and efficiency of the
solution [6]. Pei Chengsong proposed an improved cuckoo search algorithm based on compact and par-
allel techniques. This algorithm can better deal with the problem of 3D path planning, but there are still
problems such as insufficient accuracy and long paths [7]. Liu Lisang proposed a new fusion algorithm
of jump-A∗ algorithm and dynamic window approach to meet the performance requirements of global
optimization and path smoothness, but the algorithm takes more time [8]. Ma Haonan used improved
artificial potential field method to overcome the shortcoming of local minima and realized the path plan-
ning of the dual-manipulator system, but the algorithm cannot overcome the issue of unreachable target
points [9]. Zhang Zhen used the RRT algorithm based on constraint sampling to plan the path of the
robot arm, which improved the search efficiency and smoothed the trajectory, but the algorithm cannot
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obtain the shortest path [10]. XW Wang analyzed and compared the characteristics of the genetic algo-
rithm and the particle swarm algorithm, and the simulation results showed that both algorithms could be
used to solve small-scale path planning in welding tasks. Finally, A combination of the genetic algorithm
and the particle swarm algorithm was proposed, which had the effect of avoiding the algorithm from
falling into a local optimum [11]. Wang Jiahai analyzed the actual welding process and compared the
convergence speed and optimization accuracy of simulated annealing, the ant colony algorithm (ACS),
and the genetic algorithm and proved that the ACS is more effective than the others [12]. Lin Juguang
used the traditional ant colony algorithm to plan the welding path of the body-in-white base plate, and
the simulation results in DELMIA showed that the optimized path was more efficient than the traditional
path, but in-depth study of the ant colony algorithm was not carried out [13]. It is found that combin-
ing other algorithms with the ant colony algorithm or introducing adaptive strategies can improve the
adaptability and effectiveness of the ant colony algorithm [14, 15, 16, 17].

The ant colony algorithm shows strong superiority over other algorithms in terms of its global search
capability and good robustness, but the performance of its algorithm is influenced by initial parameters
[18, 19]. In this paper, particle swarm algorithm is proposed to train the initial parameters of the ant
colony algorithm to obtain the optimal initial parameters for improving the solution quality and effi-
ciency, and the influence of the initial parameters of the ant colony algorithm on the algorithm itself is
analyzed. Finally, MATLAB is used to conduct simulation to verify the feasibility and superiority of the
improved algorithm.

2. Implementation of the ant colony algorithm
The ants secrete pheromone as they walk which acts as a message transmitter, and other ants can sense
the strength of the pheromone as they pass by and use it to guide themselves [20].

2.1. Rules for the movement of ants between solder joints
The corresponding mathematical model is developed for the spot welding path planning problem based
on the ant colony algorithm. Let the number of ants in the whole ant population be m and the number of
solder joints is n. The distance between solder joint i and solder joint j is dij(i, j = 1, 2, . . . , n), and the
pheromone concentration of the path between solder joint i and solder joint j is τij(t). The ants are placed
at different solder joints at the initial moment, and the pheromone concentration on all connected paths
between solder joints remains the same τij(0) = τ0.Then, devising a probability function for the ant’s
choice between the different solder joints pk

ij(t) denotes the probability of an ant choosing at moment t
from solder joint i to solder joint j.

pk
ij(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
τij(t)

]α · [ηij(t)
]β

∑
s∈allowk

[
τij(t)

]α · [ηij(t)
]β

, j ∈ allowk

0, j /∈ allowk

(1)

where ηij(t) – The degree of expectation that ant from the solder joint i to j the weld point, as a heuristic
function

allowk – The set of all solder joints to be processed, k = 1,2. . ., n
α – Pheromone importance factor
β – Significance factor of the heuristic function
ρ – Degree of volatility of pheromones.
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2.2. Pheromone updates program design
When the ant has traversed all the solder joints once, the concentration of information connecting the
individual solder joints to each other is{

τij(t + 1) = �τij + (1 − ρ)τij(t) , 0 < ρ < 1

�τij = ∑m
k=1 �τ k

ij

(2)

where �τ k
ij – The k ant adds pheromones to the solder joint i and solder joint pheromone added to the

channel
�τij – All ants in the incremental pheromone release on the channel between the solder joints
�τ k

ij is calculated by the following method.

�τij
k =

⎧⎨
⎩

Q

LK

, if an ant visits solder joint j from solder joint i

0, otherwise
(3)

where Q – The total amount of pheromones released by the ant in one cycle
Lk – The total length of the path traveled by the first ant.

2.3. Objective function and implementation steps
In the path planning of the spot welding industrial robot, the order of access to n process points, which
is V = {v1, v2, v3, . . . vn}, is T = {t1, t2, t3, . . . tn}, where ti ∈ V , i = (1, 2, 3, . . . , n), and the corresponding
three-dimensional spatial coordinates of ti is (x, y, z). The objective function is the distance of the spot
welding robot gun movement, whose mathematical expression is

min L =
n−1∑
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 (4)

where L is a closed path to access all solder joints.
Figure 1 shows the flow chart of the program structure of the basic ant colony algorithm, and the

basic steps of the algorithm are as follows:

1. At the beginning of the calculation, the relevant parameters are initialized, the ant colony model
(number of ants) m, the pheromone factor α, the importance factor of the heuristic function β,
the volatility factor of the information system η, the total number of pheromone constants Q, the
maximum number of iterations iter_max, and the initial value of the iterations iter = 1.

2. Increasing the number of iterations.
3. Initializing the taboo table and placing the ant’s current location in the taboo table.
4. Number of ants k = k + 1.
5. Calculation of the transfer probability function pk

ij (t).
6. Modifying the contraindication form.
7. Continuing with the fourth iteration step if the current number of ants is less than the total number

of ants, otherwise, continuing updating the pheromone.
8. The loop ends and the result of the calculation is output when the number of iterations iter_max

is reached. The forbidden table is reinitialized and the loop continues if it is less than the number
of iterations.
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Figure 1. Ant colony algorithm flow chart.

3. Improvement of ant colony algorithm based on particle swarm idea
The ACO shows strong robustness and good search capability in dealing with TSP problems but has
some limitations. The solution performance of the ACO mainly depends on the pheromone factor α and
the heuristic function factor β, which are usually determined through extensive experiments or manual
experience. To avoid the problem of long solution time or poor solution quality due to improper param-
eter selection, this paper adopts a strategy of applying particle swarm ideas to optimize the α and β

parameters of the ant colony algorithm. The particle swarm algorithm can quickly approximate the opti-
mal solution [21], which provides a reasonable basis for the selection of parameters. Thus, it improves
the solution performance of the ant colony system. Figure 2 shows the flow chart of the improved ant
colony algorithm, and the basic steps of the algorithm are shown as above.

3.1. Particle update program
The particle swarm algorithm originates from the foraging behavior of a flock of birds [22], in which each
bird is one of the particles in the process of searching for food. In a D dimensional target search space,
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Figure 2. Algorithm flow chart.

provided that there are m particles, the coordinate position of the i particle in the search space is Xi =(
P1

i , P2
i , . . . , PD

i

)
, each particle is a potential solution of the objective function and will be brought into

the requested objective function to obtain the adaptation value of each particle, and the particle’s local
optimal position is noted as Pi =

(
P1

i , P2
i , . . . , PD

i

)
. The velocity of the i particle is Vi =

(
v1

i , v2
i , . . . vD

i

)
.

The particle is updated continuously at its location using the following equation.

vd
i = ωvd

i + c1r1

(
pd

i − xd
i

) + c2r2

(
pd

g − xd
i

)
(5)

xd
i = xd

i + λvd
i (6)

where i = 1, 2, . . . , m; d = 1, 2, . . . , D; ω ≥ 0 is the inertia factor. The acceleration constant is
c1 ≥ 0, c2 ≥ 0. r1 and r2 are a random number in the range [0, 1]. λ is the constraint factor for the purpose
of velocity control of the particle. In addition, vd

i ∈ [−vd
max, vd

max

]
, the maximum velocity of the particle

flying Vi, is limited by the maximum velocity. The maximum velocity is indicated by
(
v1

max, v2
max, . . . vD

max

)
.

When the velocity of a particle in one dimension exceeds vd
max, the velocity of that dimension is limited

at this point vd
max. The condition of termination of the iteration is that the set maximum number of iter-

ations is reached or the particle population is searched for the optimal solution at the moment to satisfy
the minimum permissible error of the objective function.
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3.2. Improvement and implementation of ant colony algorithm
3.2.1. Algorithm improvement scheme
First, the certain number of particles are initialized with the coordinates of the particles in two-
dimensional space (α, β). Each position of a particle is a potential target solution for parameter
optimization. The corresponding parameters of each particle are fed back to the ant colony algorithm.
The individual particle adaptation values are counted according to the objective function to determine
the degree of superiority or inferiority of the particles. Then, the positions and velocities of the parti-
cles are updated according to Eqs. (5) and (6), and the iteratively updated particles call the ant colony
algorithm again to measure the adaptation values of the particles. The above steps are cycled until the
number of iterations reaches 20 or when the difference between the optimal solutions of two adjacent
generations of particles is less than σ , terminating the cycle. The optimal particle position Pg(α, β) is
the optimal initial parameter in the ant colony algorithm.

3.2.2. Improved algorithm design

1. Initial particle swarm parameter design
In this paper, the solution variables are two dimensional. In this two-dimensional target search

space, the particle swarm is initialized by setting the initial particle coordinate values to random.
The initial position and velocity of the i particle are

p[i]
[
j
] = r1 × (xmax − xmin) + x, j ∈ [0, 1] (7)

V[i]
[
j
] = r2 × xmax, j ∈ [0, 1] (8)

where r1 and r2 are the random numbers of the variation of the range [0, 1].
Set the values of the basic particle swarm parameters as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

number = 40

generation = 20

xmin = 0.5

xmax = 10.0

vmin = 0

vmax = 1.0

ω = 0.8

c1 = 2

c2 = 2

σ = 0.001

where number is the size of the particle swarm and taken 20–40 as a general value. The 30
particles are sufficient for most problems, but the 100–200 particles are needed for special
puzzles. generation is the number of iterations. c1 and c2 are the acceleration constants, rep-
resenting the weight of the particles’ own experience and social experience, respectively. ω

is the inertia factor, which defines the particle’s flight range. The larger the flight range, the
stronger the global search ability, unfortunately, the weaker the local search ability. x is the
random variable and is determined by the direction of the dimensional space in which the parti-
cle is placed. The velocity range [vmin, vmax] and position range [xmin, xmax] of each particle place
a limit on how far the particle can be transferred and reduce the spatial extent of the particle
initialization.
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Each position of particle represents a set of parameters for the ant colony algorithm.{
α = p[i] [0]

β = p[i][1]
(9)

2. Design of other initial parameters of the ant colony
For the TSP problem, it is generally accepted that the ant cycle system model is the more

reasonable of the three models of the ant colony algorithm (ant quantity system, ant density
system, and ant cycle system). The solder joints are given as n, the number of ants is set as
m = n/2 in the ant colony algorithm, and the pheromone constant Q = 10 and the iterations of
the ant colony algorithm are set as 30.

3. Feedback of initial particle values to the ACS
In the random initialization of particles brought into the ant colony algorithm, the objective

function is defined according to the TSP problem-solving objective. The adaptation value of each
particle is calculated according to the objective function to determine the merit of the current
position of the particle. The adaptation value determines the high quality of the combination of
parameters it represents.

4. Particle information and optimal solution information update scheme
Update the velocity and position of the particle according to the following equation.

v[i]
[
j
] = ω × V[i]

[
j
] + c1 × r3 × (

pbesti − p[i]
[
j
]) + c2 × r4 × (

gbesti − p[i]
[
j
])

(10)

p[i]
[
j
] = p[i]

[
j
] + v[i]

[
j
]

(11)

In Eq. (10), r3 and r4 are random numbers in the range [0, 1]. The first term of the velocity
update is the memory term of the particle, indicating that the update direction is influenced by
the velocity magnitude and direction of the last location. The second part is the particle’s own
experience part, indicating that the particle has been to the point where the adaptation value is
optimal. The third part represents the influence brought by the social experience of the particle,
reflecting the mutual learning ability between the particles. The superposition of these three
components causes the effect of the particles automatically finding the optimal parameters.

The velocity of the particle in two dimensions is updated according to Eq. (5). The updated
particle continues to call the ant colony algorithm, which calculates the adaptation value of each
particle according to the objective function in the ant colony algorithm to determine the superi-
ority of the particle. Updating the local optimal position and the global optimal position of the
particle, and then cycling this process.

5. Iteration termination conditions
The algorithm is terminated when the difference between the adaptation values of two consec-

utive generations of particles does not exceed σ or the number of particle swarm update iterations
exceeds 20. The final two-dimensional coordinates of the particle with the best adaptation value
are the optimal parameters of the ant colony algorithm.

4. MATLAB simulation test and result analysis
In this paper, the algorithm is programmed in MATLAB to verify the effectiveness of optimist the param-
eters of the ant colony algorithm. First, extensive experiments are conducted to analyze the parameters α

and β values and combinations on the performance of the algorithm. Then, the proposed new algorithm
is used to find the combination of high-quality parameters.
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Table I. The information of side circumference solder joint.

Welded joints X coordinate Y coordinate Z coordinate Roll Pitch Yaw
1 1932.445 −184.187 422.383 −1.571 0.023 0.008
2 2106.053 −219.037 417.685 −1.572 0.021 −0.042
3 2150.443 −224.339 415.809 −1.571 0.022 −0.031
4 2193.201 −233.035 414.451 −1.571 0.026 −0.019
5 2232.299 −236.017 414.154 −1.57 0.036 0.013
6 2276.473 −243.598 415.115 −1.569 0.042 0.05
7 2321.724 −248.795 418.136 −1.565 0.06 0.092
8 2365.399 −254.188 423.177 −1.562 0.061 0.148
9 2415.047 −262.067 431.371 −1.561 0.047 0.196
10 2462.21 −266.027 441.792 −1.568 0.01 0.243
11 2497.213 −269.159 450.943 −1.57 0.002 0.266
12 1611.259 1882.524 1055 −1.571 0 −1.571
13 2511.243 −142.549 453.092 1.561 0.031 −0.236
14 2463.709 −130.864 439.767 1.569 0.008 −0.179
15 2413.256 −122.288 429.041 1.569 0.011 −0.124
16 2345.658 −106.63 420.489 1.571 −0.006 −0.03
17 2295.874 −96.98 417.807 1.571 −0.016 0.02
18 2244.811 −88.393 417.108 1.571 −0.017 0.053
19 2189.468 −80.155 417.599 1.571 −0.019 0.071
20 1939.782 −39.109 423.05 1.57 −0.019 0.087
21 1807.393 −657.074 444.337 1.045 0.042 0.005
22 1971.555 −749.707 420.325 1.048 0.01 −0.041
23 2364.185 −1034.6 435.799 1.565 0.038 0.154
24 1579.661 −90.201 440.998 −3.142 0 0
25 1569.073 −17.1 440.998 −3.142 0 0
26 1571.653 86.19 440.998 −3.142 0 0
27 1574.787 224.345 440.998 3.142 0 0
28 2018.475 −366.138 418.797 −1.571 0.023 0.008
29 2478.012 −269.731 672.751 −1.576 −0.016 0.312
30 2204.496 206.809 422.073 1.571 −0.019 0.071
31 2070.834 206.656 431.584 1.571 −0.019 0.071
32 1912.235 206.474 442.87 1.571 −0.019 0.071
33 1967.969 −45.327 745.761 1.57 −0.019 0.087
34 1231.772 −46.169 810.05 1.57 −0.019 0.087
35 1579.661 −90.201 839.998 −3.142 0 0
36 2171.661 −484.201 839.998 −3.142 0 0
37 1988.47 −565.719 417.646 −1.57 −0.011 −0.036
38 1982.002 −746.42 712.119 −1.57 −0.011 −0.036
39 1751.248 −152.832 946.849 −1.57 −0.011 −0.036

Table I shows the output of the simulation process for the 39 weld joints on the body-in-white side
surrounds. X, Y, and Z represent the position information of the weld joints in the table. Roll, Pitch, Yaw
are the Euler angles of the weld joint coordinate system. Roll represents the angle of rotation of the weld
joint coordinate system around the Z-axis in the XOY plane. Pitch represents the angle of rotation of the
YOZ around the X-axis, and Yaw represents the angle of rotation of the XOZ around the Y-axis in the
reference coordinate system.

The distribution of solder joints in three dimensions is shown in Fig. 3.
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Z

Y
X

Figure 3. Spatial distribution of welding spot.

Figure 4. Relationship between α and β values and optimal path distance.

Holding all other parameter constant, m = 75, vol = 0.2, Q = 10 as an example, to illustrate α and β

have a huge impact on the performance of the algorithm. Fixing one of α and β and varying the value
of the other, the relationship between parameter variation and optimal path distance can be derived.

As shown in Fig. 4, it is seen that the pheromone importance degree factor α < 1 in the ant colony
algorithm has a huge impact on the convergence and solution quality of the algorithm when the other
parameters of the current algorithm are fixed. The comprehensive solution performance of the algorithm
is better when α ∈ [0.5, 2.5]. The influence of the heuristic function importance degree factor β is more
obvious in the ant colony algorithm on the convergence speed of the algorithm. The comprehensive
performance of the algorithm is better when β ∈ [0, 2]. The influence of the pheromone factor and the

https://doi.org/10.1017/S026357472200114X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472200114X


Robotica 935

Table II. High-quality parameter combination.

Number α β Path length
1 1.1108 5.5596 10, 356.9353
2 0.9372 1.4561 10, 357.0823
3 1.3746 2.5438 10, 359.9847
4 0.7735 3.9751 10, 356.9815
5 0.9755 9.3640 10, 358.4784
6 1.0034 5.5273 10, 357.0432

Table III. Random parameter combination.

Number α β Path length
1 6.9713 4.3702 11, 550.9976
2 2.3191 4.6889 10, 482.8757
3 3.3748 2.2939 10, 452.6463
4 10.0000 8.7376 11, 290.9743
5 7.8979 5.2707 10, 642.6518
6 9.7741 6.4403 10, 564.8908

heuristic function factor on the algorithm was equally evident when the ant colony size m, pheromone
volatility factor vol, and constant factor Q were other values.

Table II shows the improved algorithm to find the six sets of α and β quality combinations of particles
and path lengths.

In order to compare the solution performance of the algorithm before and after optimization, the
values of α and β and their combinations are set to random, and path planning is performed with ran-
dom initial parameters. Table III shows the path lengths obtained using the six sets of random initial
parameters.

The average path length obtained by the six sets of initial parameters after optimization is
10,357.7509 mm, and the average distance of the six groups of path lengths obtained by the algo-
rithm before optimization is 10,830.8394 mm. The path distance before optimization is reduced by
473.0885 mm compared with that after optimization, which indicates that the solution quality of the
algorithm after optimization has been improved.

A set of parameters α = 1.1108, β = 5.5596, which obtained from the particle swarm training, is fed
back to the ant colony algorithm, the path order as the planning results of the ant colony algorithm is
obtained as follows:
12 32 31 30 19 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 28 37 21 22 23 38 36 29 1 20 33 39 35 34 24
25 26 27 12.

The path is a closed one, as shown in Fig. 5, with the start and end points being the robot’s operating
origin, which corresponds to the actual working conditions of the robot. The minimum distance of the
path is 10,356.9353 mm.

Figure 6 shows six sets of algorithm convergence curves for the improved ant colony algorithm
and pre-modified ant colony algorithm for path planning under different parameter. The blue lines are
optimized combination of parameters, and the red lines are random combination of parameters.

The average number of iterations for convergence of the ant colony algorithm for path planning before
the improvement is 45, while the average number of iterations for convergence of the improved ant colony
algorithm is 17, which is reduced by more than 50%. Importantly, the improved ant colony algorithm
can obtain shorter path than traditional ant colony algorithm. The average time of traditional ant colony
algorithm for path planning is 5.52 s, but the average time of improved ant colony algorithm for path
planning is 4.33 s.
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Figure 5. Path planning sequence.

Figure 6. Convergence trajectory of original algorithm and optimized algorithm.

5. Conclusion

1. This paper analyzes the principles of ant colony algorithms and particle swarm algorithms, estab-
lishes a mathematical model for the spot welding path planning problem, designs a pheromone
update scheme, and establishes an objective function.

2. Improve the ant colony algorithm by using the particle swarm algorithm to modify the
pheromone factor α in the ant colony algorithm and heuristic function factor β to avoid the
disadvantage of relying on manual experience to select the parameters.

3. MATLAB was used to analyze the extent of the pheromone factor α and the heuristic function
factor β on the path planning algorithm.
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4. The improved algorithm was used to plan the path for spot welding. The average path length
obtained from the improved six sets of initial parameters was 10,357.7509 mm, which was
473.0885 mm less than the path distance planned by the unimproved algorithm. The improved
algorithm had a higher quality solution.

5. The convergence analysis of the algorithm shows that the average number of iterations was 17
when the improved algorithm converges. The average time of improved ant colony algorithm for
path planning was 4.33 s. The improved ant colony algorithm had fewer iterations and running
time.
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