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Abstract

Elevated levels of IL-6 in plasma are associated with the severity of visceral leishmaniasis (VL).
The clinical manifestations of VL vary among patients, influenced by host factors and the
virulence of the Leishmania infantum parasite. Considering that severe VL may result from
an exaggerated inflammatory response, this study investigated whether IL-6 could serve as
a biomarker to identify pro-inflammatory virulence factors. We conducted a genome-wide
association study (GWAS) analysis on L. infantum isolates from patients with VL, whose
IL-6 concentrations were measured. The analysis revealed that the relationship between IL-
6 levels and clinical outcomes (survival vs mortality) had an area under the curve (AUC)
of 0.67 (95% CI 0.52–0.81). A cut-off of 391.7 pg mL−1 for IL-6 was established to conduct
a logistic regression analysis. We identified 10 029 single nucleotide variants (SNVs) across
62 genomes, resulting in 6,948 SNVs after filtering, of which 6,341 are located in protein-cod-
ing regions. The association analysis with PLINK identified 722 variants, of which 35 showed
significant associations, with odds ratios ≥3.3, primarily in coding regions. These findings
demonstrate that IL-6 levels tended to be associated with the fatal outcome of VL and high-
light 35 novel genetic variants that could serve as potential biomarkers for prognosis. Further
research into the biological role of these variants may lead to new therapeutic targets and
improve the clinical management of VL, especially in identifying high-risk patients.

Introduction

Visceral leishmaniasis (VL), or kala-azar, is the most severe form of leishmaniasis
(Ruiz-Postigo, 2021). In 2020, VL was endemic in approximately 79 countries, with 1,834
cases reported in 13 Latin American countries, including Brazil, which accounted for 92%
of the region’s cases (OPAS, 2023). If left untreated, the disease can be fatal, especially in
infants and the elderly. VL is caused by different species of protozoa from the genus
Leishmania, which exhibit opportunistic behaviour, usually associated with social factors
and primarily affecting the most vulnerable age groups, such as patients with comorbidities
and/or immunosuppressive diseases (Burza et al., 2018).

The clinical characterization and cure of the disease are associated with the development of
an effective and balanced immune response. The characteristics of the immune responses
attributed to Leishmania infections vary among affected individuals, resulting in different clin-
ical outcomes. These discrepancies arise from factors such as the host’s immune profile, the
species of Leishmania, exposure to the parasite, coinfections and other factors (Liese et al.,
2008; Ribeiro et al., 2020).

The innate and adaptive immune response is part of a complex attempt by the organism to
resist Leishmania. The cell-mediated immune response plays a crucial role in both clinical cure
and disease progression. Effector cells, such as monocytes and macrophages, are essential for
the regression or progression of the infection. These cells act as antigen-presenting cells and
are involved in the early responses of the innate immune system, requiring mechanisms
that modulate the activation of the inflammatory response. This occurs through the produc-
tion of cytokines such as TNF-α, NO and reactive oxygen intermediates, which function to
eliminate the parasite. However, cytokines related to the Th2 pathway, such as IL-4, IL-10
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and TGF-β, are associated with the maintenance and survival of
the parasites within the cells (Costa et al., 2013; Dayakar et al.,
2019; Samant et al., 2021).

Evidence in humans demonstrates that the uncontrolled
increase in the production of inflammatory cytokines in VL sig-
nificantly contributes to the pathogenesis of the disease. Several
studies show elevated serum levels of cytokines such as IL-4,
IL-6, IL-12, IFN-γ and TNF-α during the active phase of the dis-
ease compared to asymptomatic infection (Peruhype-Magalhães
et al., 2005; Peruhype-Magalhães et al., 2006; Costa et al.,
2012). IL-6 plays a crucial role in the progression of VL, exhibiting
various effects, such as inducing immunosuppression in the liver
of the infected host, increasing hypergammaglobulinemia, and
inhibiting TNF-α production during the early stage of infection
(De Lima et al., 2007; Murray, 2008; Samant et al., 2021). High
levels of IL-6 in patients with VL are associated with the severity
of the disease, with greater concentrations of inflammatory cyto-
kines compared to less severe cases. Furthermore, IL-6 is related
to symptoms such as haemorrhages, vomiting and changes in
laboratory tests, as well as markers of disseminated intravascular
coagulation. Therefore, disease progression is closely linked to
the dysregulation of the inflammatory response, which, in turn,
contributes to the development of systemic inflammatory syn-
drome (Costa et al., 2010, 2013; Ribeiro et al., 2020; Guedes
et al., 2022).

The host’s genetics is undoubtedly a crucial factor in suscepti-
bility to VL, as evidenced by genetic influence on infections by L.
infantum and L. donovani (Blackwell et al., 2009). The genetic
diversity of the L. infantum parasite is fundamental to the mortal-
ity associated with leishmaniasis, as demonstrated in the study by
Grace et al. (2022). Different isolates of this parasite exhibit var-
iations in their virulence, which implies that the risk of mortality
may vary depending on the isolate responsible for the infection
(Grace et al., 2022). Advances in leishmaniasis research have
been significantly accelerated by the availability of genomic
data, which are essential for investigations using genomic, tran-
scriptomic and proteomic approaches (Cruz and Freitas-Castro,
2019). The first genome of L. infantum was sequenced and pub-
lished in 2007, marking a milestone that enabled various investi-
gations through DNA sequencing technology. This innovation
facilitated the exploration of the genetic structure of the parasite
and resulted in significant discoveries about the species
(Peacock et al., 2007). The L. infantum genome is approximately
32Mb, distributed across 36 chromosomes, with a total of 32 802
969 base pairs (González-de et al., 2017). The assessment of gen-
etic diversity within the species cannot be conducted based on a
single genome, making the study of other genomes from specific
parasite populations a valuable tool (Hall, 2007).

Genome-wide association studies (GWAS) are powerful tools
for connecting a phenotype to its underlying genetic basis. This
method offers a hypothesis-free approach, systematically testing
hundreds of thousands of variants across the genome without
the need for prior knowledge about the location of causal variants.
GWAS investigates small variations, known as single nucleotide
variants (SNVs), throughout the genome that occur more fre-
quently in organisms with a specific phenotype than in organisms
not related to that phenotype (Korte and Farlow, 2013; Simon
et al., 2016; Marigorta et al., 2018). In this context, the import-
ance of genomic annotation databases, such as Tritryp and
TrypsNetDB, becomes evident, as they provide crucial informa-
tion about the location and functionality of these variants in
Leishmania. These resources enable researchers to integrate vari-
ant data with information about genes, biological functions and
phenotypic characteristics, facilitating the identification of poten-
tial causal variants. Furthermore, these databases assist in validat-
ing results and formulating hypotheses about the functional role

of identified variants, promoting a deeper understanding of the
genetic basis of complex phenotypes (Gazestani et al., 2017;
Shanmugasundram et al., 2023).

Thus, based on the premise that severe VL is caused by an
exaggerated inflammatory response from the host and that this
response is at least partially conditioned by virulence factors of
L. infantum, we aimed to determine whether a marker of the
host’s inflammatory response – IL-6 – could be used as a pathway
to identify pro-inflammatory virulence factors. To pursue this, we
decided to conduct a GWAS on L. infantum isolates derived from
individuals diagnosed with VL whose plasma IL-6 concentrations
were measured.

Materials and methods

Participants

At the Natan Portela Institute of Tropical Diseases (IDTNP), a
reference hospital for infectious diseases, 66 individuals diagnosed
with visceral leishmaniasis were treated. The participants were
selected based on diagnostic criteria, specifically those with con-
firmed VL diagnosis through culture, with parasites frozen in
liquid nitrogen. Clinical and laboratory data were meticulously
collected from the patient’s medical records. For each isolate, a
250 μL aliquot of serum was taken before the initiation of treat-
ment and stored at −20°C to preserve its immunological integrity
for subsequent analyses.

Isolates

The parasites were obtained through bone marrow aspiration and
cultured in 2 mL of combined solid and liquid phase medium,
consisting of NNN (Neal, Novy, Nicolle) medium and
Schneider Insect Medium. After reaching the logarithmic phase
of growth, they were cryopreserved in liquid nitrogen (registered
in SISGEN-C8035C5) until use.

Interleukin-6 quantification

A 25 μL aliquot of serum was used for the quantification of the
IL-6 cytokine. The experiment was conducted using the BD™
Cytometric Bead Array (CBA) Human IL-6 Enhanced
Sensitivity Flex Set kit, on a FACS CANTO 2 flow cytometer
(Becton Dickinson, New Jersey, USA).

Statistical analysis of interleukin-6 concentration in
participants

Data on IL-6 concentration and clinical outcomes of the subjects
were used to construct a non-parametric receiver operating char-
acteristic (ROC) curve, particularly applied when data do not fol-
low a specific parametric distribution. This analysis aimed to
assess IL-6’s ability to classify disease status, whether survival or
death. In addition to investigating the points of the curve, the
area under the curve (AUC) metric was employed to evaluate
the accuracy of the test, providing an estimate of the probability
of correct classification of a subject at random. Logistic regression
was used to understand and model the relationship between vari-
ables, offering probabilities associated with different values of the
independent variables.

In the ROC curve analysis, the maximum Youden index was
employed to determine an optimal cut-off point for IL-6 concen-
tration in individuals. This approach aimed to balance sensitivity
and specificity, contributing to a more precise interpretation of
the test’s performance. All statistical analyses were performed
using Stata 15.1 IC software (StataCorp LLC, College Station, USA).
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Parasite DNA sequencing

Sample preparation
After thawing the 66 isolates, the parasites were cultured in NNN
(Novy-MacNeal-Nicolle) and Schneider’s medium (Insect
Medium, Schneider, Sigma, St. Louis, USA), supplemented with
foetal bovine serum (10%), urine (2%), 100 UmL−1 penicillin
and 100 μg mL−1 streptomycin (Pen/Strep, Gibco, Grand Island,
NY, USA). After a 7-day period and confirmation of parasite via-
bility, a passage was made in 10 mL of supplemented Schneider
medium. Upon reaching the exponential phase, approximately 5
days later, the tubes containing the parasites were centrifuged at
3000 rpm for 10 minutes at 4°C, and the resulting pellet was
washed three times with physiological solution (0.9% NaCl).
After the final wash, the parasites were resuspended in 200 μL
of 0.9% NaCl and subjected to DNA extraction.

Parasite DNA extraction
DNA extraction was performed using the Mini Kit Genomic
DNA Purelink (Invitrogen™) with 200 μL of the solution con-
taining the parasites. This procedure is based on the use of spe-
cific buffers and proteins for cell lysis, followed by the binding
of DNA to the chaotropic salt membrane present in the kit col-
umns. Afterward, the DNA was washed and eluted. DNA quanti-
fication was carried out using the Qubit® 2.0 Fluorometer and
NanoDrop™ 2000/2000c spectrophotometers, where the concen-
tration and purity of the samples were assessed by the 260 nm/
280 nm ratio, respectively. The integrity of the extracted DNA
was verified by 1% agarose gel electrophoresis.

DNA sequencing of isolates
The DNA from the isolates was sequenced by Macrogen, Inc.
using the Illumina® Next Generation Sequencing (NGS) platform,
with the HiSeq2500 sequencer and the TruSeq DNA PCR-Free
Library Prep Kit.

Whole genome sequencing (WGS) analysis with MegaBOLT
The 66 genomes were assembled and analyzed using MegaBOLT
v.2.4.0 (MGI), a self-developed bioinformatics analysis accelerator
focused on Next-Generation Sequencing (NGS). This software
provides comprehensive support for whole genome sequencing
(WGS) analysis, from FASTQ data input to generating results
in binary alignment map (BAM) format, following alignment,
and in Variant Call Format (VCF), derived from variant calling.

The MegaBOLT workflow includes various stages, such as
quality control (FastQ/DataQC), read mapping (SAM), position
sorting, duplicate removal, marking and base quality score recali-
bration (BQSR), along with specific modules for variant calling,
following GATK’s best practices for preprocessing data in variant
discovery (Danecek et al., 2011). This process includes alignment
with the L. infantum reference genome (MCAN/ES/98/LLM-724;
González-de et al., 2017), as well as several data-cleaning steps to
correct technical biases and ensure that the data are suitable for
analysis, with the final output stored in VCF files containing
information about the sequence variations of the analysed gen-
omes (Li et al., 2023).

Quality control and genome-wide association study (GWAS)
To ensure the quality and integrity of the study, rigorous quality
control (QC) was implemented on the genotypic data before per-
forming the genome-wide association study (GWAS) analysis.
The VCF file was filtered with a minimum Variant Allele
Frequency (VAF) of 20% and a minimum read depth (DP) of
10 to ensure the quality and reliability of the identified variants.
Of the 7 recommended quality control steps (Marees et al.,
2018), 5 were considered applicable to this study: missing data

per individual and per SNV, minimum allele frequency (MAF),
Hardy–Weinberg equilibrium deviations (HWE), heterozygosity
rate and population stratification.

GWAS was conducted to investigate the relationship between
SNVs and IL-6 quantifications in 62 isolates of L. infantum
from patients with visceral leishmaniasis (VL). Although
Leishmania is an aneuploid organism, the genotypic data were
converted to diploid format to standardize the analysis and
apply exclusion criteria for polymorphic sites. Regions with
more than one variant were removed, ensuring that only single
genetic variants were included for greater consistency in the
results. The association analysis was conducted using a logistic
regression model with binary data, implemented in PLINK soft-
ware (version 1.9) (Chang et al., 2015). In logistic regression, to
correct for multiple testing, the ‘–indep-pairwise 50 5 0.2’ param-
eter was used in PLINK to perform SNV pruning and identify
independent variants. R software (version 4.4.1) with the
qqman package (version 0.1.9) was used for global visualization
of the results, generating a Manhattan plot, Quantile-Quantile
(Q-Q) plot and a plot illustrating the distribution of SNV counts
per chromosome.

The annotation of the variants regarding the genomic region
and functional impact was performed using SnpEff v4.0
(Cingolani et al., 2012), with a database created from Tritryp
(Shanmugasundram et al., 2023) using the L. infantum genome
version (MCAN/ES/98/LLM-724; González-de et al., 2017). This
process involved configuring and indexing the genomic data.
For the description of genomic regions, data from TriTrypDB
and TrypsNetDB were consulted, using the corresponding gene
ID (Gazestani et al., 2017; Shanmugasundram et al., 2023).

Results

Characterization and description of the study population

The study population consisted of 50 men (75.8%) and 16 women
(24.2%), with an average age of 25.8 years. Among the partici-
pants, 27 (40.9%) were children: 4 children under 12 months
(6%), 7 (11%) children aged 1 to 23 months, and 16 (24%)
aged 2 to 15 years. The remaining subjects were between 16
and 40 years old, with 20 (30%) in this range, while 19 individuals
were older than 40 years (29%). A total of 13 subjects (19.69%)
presented co-infection with HIV. Of the 66 participants included
in the study, 46 survived (70.70%), while 20 died (30.30%).
Among the symptoms manifested by the studied population,
the most prevalent were splenomegaly (100%), fever (90.90%),
oedema (40.90%), vomiting (37.87%), dyspnoea (24.24%), jaun-
dice (19.69%) and sepsis syndrome (15.15%) (Table 1).

Interleukin-6 concentration and epidemiological data

The median IL-6 concentration in the serum of participants with
VL was 100.90 pg mL−1 (interquartile range (IQR): 32.51; 281.69),
with an overall median of 70.72 pg mL−1 (IQR: 32.265; 275.848).
In the group of subjects who succumbed, the median IL-6 con-
centration was 170.33 pg mL−1 (IQR: 43.37; 609.76), while in sur-
viving individuals, it was 57.8 pg mL−1 (IQR: 30.07; 235.35).
Additionally, the median IL-6 concentration in participants
co-infected with HIV was lower, at 31.77 pg mL−1 (IQR: 11.61;
77.39), compared to those without co-infection, whose median
was 100.9 pg mL−1 (IQR: 35.29; 287.52), P value 0.0156.
Women had a higher median IL-6 concentration compared to
men (343.36 pg mL−1 vs 60.31 pg mL−1, P value 0.067) (Table 2).

Logistic regression was used to understand and model the rela-
tionship between IL-6 levels (log-transformed) and the variables
age, sex, HIV co-infection and death. The model was statistically
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significant (LR χ2 (4) = 19.79, P value = 0.0005), with a pseudo R2

of 0.2444, indicating that the variables explain approximately 24%
of the variation in the probability of death. Among the variables
analysed, death was significantly associated with IL-6 levels (coeffi-
cient = 1.0446, P = 0.015), suggesting that higher IL-6 levels
increase the likelihood of death in patients with visceral leishman-
iasis. Age showed a negative coefficient (coef =−0.0146, P = 0.081),
indicating that although there is a trend of lower IL-6 levels with
increasing age, this association was not statistically significant.
Similarly, sex showed a positive association with IL-6 levels (coef
= 0.7775, P = 0.080), although this relationship did not reach statis-
tical significance. HIV co-infection showed no significant associ-
ation with IL-6 levels (coef =−0.7479, P = 0.114) (Table 3). These
results indicate that IL-6 concentration is strongly associated with
the death outcome in patients with visceral leishmaniasis, support-
ing the hypothesis that inflammation, as measured by IL-6, plays a
crucial role in the prognosis of the disease.

An analysis of IL-6 concentration data was conducted in rela-
tion to the outcome of survival or death using a non-parametric
ROC curve. An area under the curve (AUC) of 0.67 (95% CI
0.52–0.81) was obtained. Subsequently, logistic regression and
the Youden Max technique were applied to determine the optimal
cut-off point that maximizes the correlation between IL-6 concen-
tration and the mortality outcome. The resulting value was 391.7
pg mL−1 (Fig. 1).

Sequencing and assembly

Whole-genome sequence data were generated using the Illumina
Next-Generation Sequencing (NGS) platform. The sequences
resulted in a genomic coverage of at least 10X, with an average
of 99.45% (±0.31) and a median of 99.45%, and a minimum
coverage of 30X, with an average of 95.17% (±6.24) and a median
of 96.55%, mapped against the L. infantum JPCM5 reference

Table 1. Characterization of the study patients (n = 66)

Characteristic Number (%)

Sex

Male 50 (75.8)

Female 16 (24.2)

Age group

<12 months 4 (6)

12–23 months 7 (11)

2–15 years 16 (24)

16–40 years 20 (30)

>40 years 19 (29)

HIV co-infection

Reactive 13 (19.69)

Non-reactive 53 (80.31)

Clinical outcome

Survivors 46 (70.70)

Deaths 20 (30.30)

Main symptoms

Splenomegaly 66 (100)

Fever 60 (90.90)

Oedema 62 (40.90)

Vomiting 25 (37.87)

Dyspnoea 16 (24.24)

Jaundice 13 (19.69)

Sepsis syndrome 10 (15.15)

Table 2. Distribution of IL-6 concentration in the serum of participants with VL by age group, sex, HIV coinfection and clinical outcome

Characteristic Number (%) Mean (pg mL−1) S.D. (pg mL−1) Median (pg mL−1)

Interquartile range
(pgmL−1)

Q1 Q3

Age*

<12 months 4 (6) 2106.0 3307.4 120.5 36.5 6161.1

12–23 months 7 (11) 411.2 503.7 294.6 41.4 391.7

2–15 years 16 (24) 458.4 159.06 109.1 52.6 675.2

16–40 years 20 (30) 144.5 49.6 49.9 16.3 154.2

>40 years 19 (29) 118.2 32.4 47.0 21.8 159.4

Sex**

Male 50 (76) 173.6 42.0 60.3 23.0 206.8

Female 16 (24) 943.1 502.2 246.4 52.6 775.3

HIV***

Reactive 13 (19,7) 123.3 64.7 31.7 11.6 77.40

Non-reactive 53 (80,3) 410.7 1154.4 100.9 35.29 287.52

Outcome****

Deceased 20 (30) 791.1 1814.7 170.3 43.3 609.7

Survivors 46 (70) 172.8 303 57.8 30.7 235.3

Total 66 (100)

*P = 0.043; **P = 0.067; ***P = 0.0156; ****P = 0.0281.
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genome (MCAN/ES/98/LLM-724; González-de et al., 2017)
(Fig. 2A). The sequences had an average depth of 79.62X and a
uniformity of 99.27% (Fig. 2B).

Genomic variation

In the 66 analyzed genomes of L. infantum, 10 029 SNV variants
were identified in the VCF file. After applying the filters of VAF
≥20% and DP ≥10, 62 genomes remained, with a total of 6,948
identified SNVs (Fig. 3). Of these, 6,341 were located in protein-
coding regions, with 4,999 having a modifier impact, 866 a mod-
erate impact, 454 a low impact and 22 a high impact.
Additionally, among the 6,948 SNVs, 5,751 exhibited a minor
allele frequency (MAF) of ≤5%.

Relationship between single nucleotide variants and
interleukin-6 concentration levels

After conducting the association test on 62 samples with IL-6
dosage using PLINK software, we identified 722 variants asso-
ciated with the logistic regression analysis, using the dichoto-
mized IL-6 concentration values above and below the cutoff
point of 391.7 pg mL−1. The selection of SNVs was based on
different P values (See Table 4 in the supplemental material).
Figures 4A and 4B display all the SNVs resulting from the
logistic regression, including the Manhattan plot and Q–Q
plots.

In total, 35 SNVs showed a significant association with IL-6
levels in the logistic regression analysis, all having an odds ratio
of 3.3 or higher. Among these SNVs, the majority are located
in coding regions, with some associated with hypothetical pro-
teins, along with 3 SNVs found in intergenic regions.

Discussion

The sample in this study reflected the expected trend of a pre-
dominance of male individuals, who represented 75.8% of the
cases. Studies conducted in endemic regions have already indi-
cated a higher incidence of cases among men (Andrade et al.,
2020; Cavalcante et al., 2020). However, despite this predomin-
ance, the concentration of IL-6 was significantly higher in
women. Previous studies have shown that women have higher
levels of IL-6 compared to men (Panagi et al., 2019; Mun et al.,
2020). Evidence suggests that gender and sex hormones directly
influence the incidence, prevalence and mortality of various dis-
eases, including leishmaniasis, as well as impacting clinical man-
ifestations and responses to established treatments (Lockard et al.,
2019; de Araújo Albuquerque et al., 2021).

The concentration of IL-6 was higher in participants who were
HIV non-reactive. Elevated levels of IL-6 have been observed in
individuals with active VL, being associated with the severity of
cases and the risk of death (Costa et al., 2013; Guedes et al.,
2022). Moreover, in cases of coinfection with VL, IL-6 may play
a crucial role as a contributing factor to fatal outcomes (Costa
et al., 2013).

The dysregulation of the inflammatory response, which is
closely associated with disease progression, significantly contri-
butes to the development of systemic inflammatory syndrome
(Costa et al., 2010; Ribeiro et al., 2020). The definition of the cut-
off point was based on a prediction analysis of IL-6 for mortality,
using the ROC curve and the maximum Youden index, which
presented an AUC of 67.1. This analysis indicated that, in our
studied population, a concentration of 391.70 pg mL−1 may pre-
dict mortality in individuals with VL. The association analysis
between polymorphisms and IL-6 aimed not to correlate IL-6
concentration with mortality but rather to associate the SNVs
with IL-6 concentration. Studies conducted by Costa et al.
(2013) and Dos Santos et al. (2016) demonstrated a strong posi-
tive correlation between IL-6 levels and manifestations of severity
in VL. Notably, individuals with severe VL had significantly ele-
vated levels of IL-6, with concentrations above 200 pg mL−1

being strongly associated with fatal outcomes. These results are
consistent with the proximity between elevated IL-6 levels and
mortality observed in our study. In healthy adults, the IL-6 level
is 1.79 ± 2.03 pg mL−1 (Yoshida et al., 2002), while in healthy
new-borns, this level is 9.8 pg mL−1 (Martin, Olander, and
Norman, 2001). In another study, IL-6 levels were below the
detection limit in over 90% of the blood donors tested (Kildey
et al., 2014).

GWAS analyses aim to identify SNVs whose frequencies
change systematically based on specific phenotypic characteristics
(Marees et al., 2018). The approach adopted to investigate the
relationship between SNVs and IL-6 concentration in patients
with VL utilized logistic regression, where the concentration of
IL-6 was previously categorized for analysis. Logistic regression
is often used due to its flexibility compared to other methods; it
allows for consideration of confounding effects by incorporating
covariates and is useful for adjusting for population stratification

Table 3. Logistic regression results modelling the relationship between IL-6 levels and clinical variables in patients with visceral leishmaniasis

Variables Coefficient SE 95%CI P value

Age −0.0146 0.0083 −0.0309–0.0017 0.081

Sex 0.7775 0.4441 −0.0929–1.6479 0.080

HIV co-infection −0.7479 0.4732 −1.6754–0.1796 0.114

Death 1.0446 0.4294 0.2028–1.8863 0.015

*IL-6 values are log-transformed.

Figure 1. Relationship between IL-6 concentration and mortality outcome: area
under the curve analysis with ideal cut-off point. The red point denotes the cut-off
point (391.7 pgmL−1) that maximizes the correlation between IL-6 concentration
and the mortality outcome, highlighting its relevance as a predictor.
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(Rentería et al., 2013). In the association analysis, logistic regres-
sion obtained 35 SNVs with highly significant P values. The Q–Q
plot indicated that this association is a robust assumption, as the
points align almost linearly.

It was observed that 23 SNVs identified in the logistic regres-
sion analysis are located in regions associated with hypothetical
proteins. Among the 8,548 proteins described in L. infantum
(JPCM5), 40.5% are hypothetical proteins, 3,980 are disordered
proteins and approximately 37% are situated in regions with char-
acteristics of intrinsic disorder (Avelar et al., 2020). Three SNVs
were identified in genes of uncharacterized proteins. In addition
to 3 intergenic regions, the remaining SNVs are located in
genes encoding amastin surface glycoprotein, kinesin K39, kinase
protein and phospholipase C-like protein.

One SNV associated with the kinesin K39 region exhibited a
synonymous effect with low impact. Kinesin K39 is a highly anti-
genic motor protein in L. infantum, located in the cytosol of both
the promastigote and amastigote forms of the parasite (Gerald;

Coppens; Dwyer, 2007). In our analysis, one SNV was identified
in the coding region of the amastin protein, with a downstream
effect and modifying impact. The gene family of amastin proteins
consists of up to 45 members, which perform distinct or comple-
mentary functions (Rochette et al., 2005). Some of these proteins
are involved in the intracellular survival of Leishmania spp. in
infected hosts, facilitating the transport of ions, metals and nutri-
ents to the internalized parasites (Wu et al., 2000; Rochette et al.,
2005). Amastins have been suggested as potential virulence fac-
tors, as they are associated with the intracellular survival of the
parasite (Dupé et al., 2014). Additionally, these proteins have
been found to be highly expressed in L. donovani isolated from
individuals with VL (Salotra et al., 2006).

One SNV exhibited an upstream effect and a modifying
impact, with an odds ratio of 8.2, in the gene that encodes the
phospholipase C protein. Phospholipases catalyze the cleavage
of phospholipid molecules and are involved in various physio-
logical processes, such as cell membrane remodelling, lipid-

Figure 2. Analysis of genomic coverage and sequencing depth in the samples. Panel 2A shows the genomic coverage at ≥10X and ≥30X for the samples analyzed in
the study, illustrating the distribution of genomic coverage across different sequencing depths. Panel 2B presents the analysis of sequencing uniformity and depth
per sample, highlighting the consistency of sequencing depth and uniformity across the samples.

Figure 3. Distribution of the number of SNVs by chromosome. The figure illustrates how the SNVs are distributed across chromosomes, providing an overview of the
genetic variation in the study.
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mediated signal transduction, cell proliferation and virulence
(Flammersfeld et al., 2018). Three SNVs were identified in
uncharacterized proteins, including the DUF3535 protein. Its
ortholog in L. major (LmjF.36.3340) has been described in sta-
tionary promastigotes as a probable signal peptide (Casanova
et al., 2015). Additionally, the ortholog in L. major
(LmjF.20.0700), which is a putative ubiquitin-like protein, is
described as one of the 25 proteins with differential expression
(upstream and downstream) in response to the overexpression
of Maf1 (Rivera-Rivas et al., 2024). The study by Rivera-Rivas
et al. (2024) suggests that Maf1 is involved in various functions
in L. major, including global transcription regulation, cell cycle
control, ribosomal biogenesis, lipid metabolism, carbohydrate
metabolism and cytoskeletal modification.

A comprehensive understanding of the development, prolifer-
ation, virulence and biological processes of an organism is often
limited by a lack of knowledge regarding the function of certain
proteins. Therefore, the annotation of hypothetical proteins is
essential for deepening our understanding of the organism
(Folador et al., 2018). Virulence is a multifaceted phenotype influ-
enced by various characteristics of pathogens and hosts (Gerstein
et al., 2019). Understanding the virulence factors of the infectious
agent, as well as the immunological mechanisms and host
immune response, is crucial for determining the progression
and clinical outcome of an infection. The absence of a detailed
analysis of the interactions between these elements, also consider-
ing environmental conditions, may create gaps in the understand-
ing of virulence. To enhance knowledge about the biology of the
parasite and its interactions with the host, it is necessary to iden-
tify, characterize and validate new therapeutic targets (Roberts,
2011). One limitation of this study was the absence of environ-
mental covariates, such as sex, age and HIV, in the association
analyses. Including these factors could provide a more detailed
understanding of how environmental variables interact with gen-
etic characteristics, enriching the interpretation of the results.
However, even with the inclusion of these variables, the confirm-
ation of the identified associations depends on independent valid-
ation in additional populations (Hayes, 2013).

Furthermore, although the study provided valuable insights
with the available sample, the relatively modest sample size (66
samples) may have influenced the statistical power of the analyses.
Replication of the results in larger cohorts would contribute to a
more robust validation of the identified genetic associations.
Although the identified genetic associations suggest potential can-
didates for functional investigations, genome-wide association
studies do not have the capacity to directly predict phenotypes
(Marigorta et al., 2018). Therefore, further investigations are
needed to explore the functional impact of these variants.

Additionally, the absence of IL-6 values for healthy controls in
the study sample is a limitation, and as a result, comparisons
were made with previously published data. This should be consid-
ered when interpreting the findings.

This study provided valuable insights into the relationship
between genetic polymorphisms and IL-6 levels in patients with
VL. The identification of 35 novel variants associated with IL-6
concentration underscores the complexity of the inflammatory
response and its connection to disease severity. The prevalence
of hypothetical proteins among the identified SNVs highlights
the need for further studies to elucidate their biological functions
and role in the virulence of L. infantum. Additionally, although
the sample size is limited, a trend was observed linking elevated
IL-6 levels to unfavourable clinical outcomes, emphasizing the
relevance of IL-6 as a potential prognostic marker in cases of vis-
ceral leishmaniasis. A deeper understanding of these factors could
not only improve therapeutic approaches but also inform preven-
tion and control strategies for the disease in vulnerable
populations.
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