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On a conjecture of M. R. Murty and
V. K. Murty

Yuchen Ding

Abstract. Let ω∗(n) be the number of primes p such that p − 1 divides n. Recently, M. R. Murty and
V. K. Murty proved that

x(log log x)3 ≪ ∑
n≤x

ω∗(n)2 ≪ x log x .

They further conjectured that there is some positive constant C such that

∑
n≤x

ω∗(n)2 ∼ Cx log x ,

as x →∞. In this short note, we give the correct order of the sum by showing that

∑
n≤x

ω∗(n)2 ≍ x log x .

Let ω(n) be the number of distinct prime divisors of n. In about 100 years ago, Hardy
and Ramanujan [3] found out that ω(n) has normal order log log n, which means that
for almost all integers n we have ω(n) ∼ log log n. Later, Turán [6] provided a quite
elegantly simplified proof by establishing

∑
n≤x
(ω(n) − log log n)2 ≪ x log log x .

In 1955, Prachar [5] considered a variant arithmetic function of ω. Let ω∗(n) be the
number of primes p such that p − 1 divides n. Prachar proved that

∑
n≤x

ω∗(n) = x log log x + Bx + O(x/ log x)

and

∑
n≤x

ω∗(n)2 = O (x(log x)2) ,

where B is a constant. Motivated by Prachar’s work, Erdős and Prachar [2] proved
that the number of pairs of primes p and q so that the least common multiple
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[p − 1, q − 1] ≤ x is bounded by O(x log log x). Following a remark of Erdős and
Prachar, M. R. Murty and V. K. Murty [4] improved this to O(x). By this improve-
ment, they reached the nice bounds

x(log log x)3 ≪ ∑
n≤x

ω∗(n)2 ≪ x log x .

With these in hands, M. R. Murty and V. K. Murty conjectured that there is some
positive constant C such that

∑
n≤x

ω∗(n)2 ∼ Cx log x ,

as x →∞. In this note, the author shall give a slight improvement of the result due to
M. R. Murty and V. K. Murty toward the correct direction of their conjecture.

Theorem 1 There are two absolute constants a1 and a2 such that

a1x log x ≤ ∑
n≤x

ω∗(n)2 ≤ a2x log x .

Proof We only need to prove the lower bound as the upper bound is displayed by
M. R. Murty and V. K. Murty. Throughout our proof, the number x is sufficiently large.
From the paper of M. R. Murty and V. K. Murty [4, equation (4.10)], we have

∑
n≤x

ω∗(n)2 = x ∑
d≤x

φ(d)
⎛
⎜⎜⎜
⎝

∑
p≤x

p≡1 (mod d)

1
p − 1

⎞
⎟⎟⎟
⎠

2

+ O(x).(1)

Integrating by parts gives

∑
p≤x

p≡1 (mod d)

1
p
= π(x; d , 1)

x
+ ∫

x

2

π(t; d , 1)
t2 dt ≥ ∫

x

x3/4

π(t; d , 1)
t2 dt,(2)

where π(t; d , 1) is the number of primes p ≡ 1 (mod d) up to t. Thus, from
equations (1) and (2), we obtain

∑
n≤x

ω∗(n)2 ≥ x ∑
d≤x 1/3

φ(d)(∫
x

x3/4

π(t; d , 1)
t2 dt)

2

+ O(x).(3)

For any integer 0 ≤ j ≤ ⌊ log x
13 log 2 ⌋, let Q j = 2 jx 1/4. Then Q j < x 1/3 for all integers j. From

a weak form of the Bombieri–Vinogradov theorem (see, for example, [1]), we have

∑
Q j<d≤2Q j

max
y≤z
∣π(y; d , 1) − li y

φ(d) ∣ ≪
z

(log z)5 ,

for any 0 ≤ j ≤ ⌊ log x
13 log 2 ⌋ and x3/4 ≤ z ≤ x, where the implied constant is absolute. It

follows immediately that

https://doi.org/10.4153/S0008439522000650 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000650


On a conjecture of M. R. Murty and V. K. Murty 681

max
y≤z
∣π(y; d , 1) − li y

φ(d) ∣ <
li z

φ(d) log z
(4)

hold for all Q j < d ≤ 2Q j but at most O (Q j/(log x)2) exceptions. From equation (4),
we have

π(y; d , 1) > li y
2φ(d) (z/2 < y ≤ z)

for all Q j < d ≤ 2Q j with at most O (Q j/(log x)2) exceptions. A little thought with
the dichotomy of z between the interval [x3/4 , x] leads to the fact

π(y; d , 1) > li y
2φ(d) >

y
3φ(d) log y

(∀ x3/4 ≤ y ≤ x)(5)

for all Q j < d ≤ 2Q j except for O (Q j/ log x) exceptions. For any integer 0 ≤ j ≤
⌊ log x

13 log 2 ⌋, let S j be the set of all integers Q j < d ≤ 2Q j such that equation (5) holds.
Thus, from the analysis above and equations (3) and (5), we conclude that

∑
n≤x

ω∗(n)2 ≥ x
9 ∑

0≤ j≤⌊ log x
13 log 2 ⌋

∑
d∈S j

φ(d)(∫
x

x3/4

1
φ(d)t log t

dt)
2

+ O(x)

≫ x ∑
0≤ j≤⌊ log x

13 log 2 ⌋
∑

d∈S j

1
φ(d) + x ≫ x log x .

∎

It is worth here mentioning that we have the following corollary:

∑
p,q≤x

1
[p − 1, q − 1] ≍ log x

due to (see [4, p. 6, last line])

∑
n≤x

ω∗(n)2 = ∑
p,q≤x

x
[p − 1, q − 1] + O(x).
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