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Despite the extensive research on bubble collapse near rigid walls, the bubble collapse
dynamics in the presence of shear flow near a rigid wall is poorly understood. We conduct
direct simulations of the Navier–Stokes equations to explore the bubble dynamics and
pressures during bubble collapse near a rigid, flat wall under linear shear flow conditions.
We examine the dependence of the bubble collapse morphology and wall pressures on the
initial bubble location and shear rate. We find that shear distorts the bubble, generating
two re-entrant jets – one developing from the side opposite to the mean flow and the
other from the far end toward the wall. Upon impact of the jet on the opposite side of the
bubble, water-hammer shocks are produced, which propagate outward and interact with
the convoluted bubble shape. The shock stretches the bubble towards the wall, resulting in
a closer impact location for the jet originating from the far end compared with the case with
no shear flow. The water-hammer pressure location can be approximated as the theoretical
distance travelled by a particle initialised at the bubble centre with the corresponding
constant shear flow velocity. The maximum wall pressures can thus be predicted by
considering the distance between the far jet impingement location and the wall along
the wall-normal direction. As the shear rate is increased, the maximum wall pressure
increases, although only marginally. We determine the critical initial stand-off distance
from the wall at which the bubble morphology is shear dominated, i.e. characterised by
converging re-entrant jets.
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1. Introduction

Cavitation erosion is prevalent in applications such as fuel injectors, propellers, therapeutic
ultrasound and ultrasonic cleaning. In hydrodynamic applications, cavitation-induced
pitting damages solid surfaces and may constitute a lifetime-limiting factor (Blake &
Gibson 1987). For example, cavitation erosion poses design constraints on the mercury
target vessel and proton-beam power limitations in the Spallation Neutron Source (Haines
et al. 2014; Riemer et al. 2014; Winder, Lin & Mach 2021). Applications such as diesel
injector nozzles (Chaves et al. 1995; Gavaises et al. 2007; Giannadakis, Gavaises &
Arcoumanis 2008), hydraulic turbines (Escaler et al. 2006; Brijkishore, Khare & Prasad
2021) and hydrofoils (Patella, Archer & Flageul 2012; Venning, Pearce & Brandner 2022)
have also observed degradation in performance due to cavitation erosion. In some cases,
the cavitating bubble can form near a solid boundary within the boundary layer or may
be submerged in a mean shear flow. For example, in ultrasonic cleaning applications, the
ultrasonic waves can result in acoustic streaming, which results in travelling cavitation
bubbles that can remove contaminants with a greater efficiency (Kim et al. 2009; Shchukin
et al. 2011; Kim et al. 2014; Ando, Sugawara & Sakota 2021). Ceccio & Brennen (1991)
and De Chizelle, Ceccio & Brennen (1995) experimentally observed travelling cavitation
bubbles over standard head forms where hemispherical cavitation bubbles deform into
wedge-like shapes due to the interaction of the bubbles with the flow, which shears
the bubble and fragments it into smaller bubbles, resulting in multiple collapses. These
additional albeit weaker collapses generate noise and extent of damage to the surface.
Dular et al. (2019) examined a single bubble collapsing near a surface in a homogeneous
velocity field (5 m s−1) parallel to the adjacent surface. The shear flow deflects the
re-entrant jet in the shear flow direction, resulting in an asymmetric splash of the collapsing
bubble onto the neighbouring wall. The deflected re-entrant jet was reported to be the
primary damage mechanism for a bubble initially detached and located a finite distance
from the wall.

The collapse of a bubble is the central problem of cavitation erosion. Rayleigh (1917)
demonstrated that a spherical cavity imploding in an infinite, initially stationary fluid
produces high pressures in the liquid. Upon collapse, energy is released as a shock
propagating radially outward, which can damage neighbouring materials (Plesset 1949).
The shock produced at collapse plays an essential role in cavitation erosion (Hickling &
Plesset 1964). Early experiments showed that the presence of a wall leads to asymmetry,
resulting in an axisymmetric collapse (Naudé & Ellis 1961; Benjamin & Ellis 1966; Gibson
1968). During the collapse, the bubble migrates towards the wall due to the attraction
from the image bubble. The axisymmetric collapse is characterised by the formation of
a re-entrant jet directed towards the wall. This jet originates from the bubble interface
furthest from the wall, penetrates the bubble, accelerates up to several hundred metres and
impinges on the opposite bubble side (Plesset & Chapman 1971; Lauterborn & Bolle 1975;
Philipp & Lauterborn 1998). Jet impingement produces an outward propagating shock.
Soon after the production of this water-hammer shock, the bubble continues imploding,
reaches minimum volume and produces an implosion shock (Supponen et al. 2017). If
the bubble is sufficiently close to the wall, then it may directly impinge upon the wall.
However, experimental efforts to relate material damage to the shock pressure and jet
impingement on the wall via experiments or theory have proven to be challenging due to
the presence of a wide range of spatio-temporal scales (Hickling & Plesset 1964; Shutler
& Mesler 1965; Gonzalez-Avila, Denner & Ohl 2021).

Numerical simulations have provided further insights into the bubble collapse near
a wall. Early studies used potential flow to examine the re-entrant jet formation
(Benjamin & Ellis 1966; Plesset & Chapman 1971). The shape evolution and re-entrant
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jet velocity results agreed well with experimental observations made by Benjamin &
Ellis (1966) and Lauterborn & Bolle (1975). However, these methods consider the
liquid to be incompressible and, therefore, are unable to capture the shocks produced
during the collapse and their interaction with the nearby rigid wall. Johnsen & Colonius
(2009) numerically solved the Euler equations with a finite-volume method using an
interface-capturing approach and achieved good agreement with the experimental collapse
time (Lindau & Lauterborn 2003) and wall pressure (Shima, Tomita & Takahashi 1984)
for different initial stand-off distances. Beig (2018) examined the collapse morphology,
dynamics and maximum wall pressures produced by the axisymmetric collapse at various
initial stand-off distances. The work showed that the driving pressure across the bubble
interface and initial stand-off distance from the rigid boundary determine the bubble
collapse time and morphology of the re-entrant jet, respectively. Results agreed with the
experimental bubble shape evolution (Philipp & Lauterborn 1998), re-entrant jet speed
(Brujan et al. 2002; Supponen et al. 2016) and maximum pressure decay (Cole 1948).
These methods have also been used to study the bubble collapse dynamics and pressures
at surfaces near a vessel (Coralic & Colonius 2013), corner (White, Beig & Johnsen 2023)
and crevice (Trummler et al. 2020).

A limited number of numerical investigations have been conducted on the cavitation
dynamics in a shear flow. Two distinct bubble collapse morphologies are observed
in simulations: (i) re-entrant jet deflection, also observed experimentally by Dular
et al. (2019), and (ii) shear-induced converging jets. Yu, Ceccio & Tryggvason (1995)
numerically simulated a bubble collapse in a shear flow at a driving pressure of 50 kPa to
investigate interactions with the boundary layer. As the shear rate increases, the re-entrant
jet becomes smaller, and the jet impact location moves further downstream in the flow
direction. Additionally, as the shear flow velocity approaches the characteristic re-entrant
jet speed, the bubble collapse rate increases and approaches the inviscid, no-shear limit.
Dabiri, Sirignano & Joseph (2010) and Chen (2010) considered bubble collapse in a flow
generated by two shearing plates and observed the bubble deforming into an ellipsoid
shape. High-pressure regions near the major axis of the ellipsoid were observed, followed
by the emergence of a concave shape on the surface of the bubble. Dabiri et al. (2010)
reported the formation of re-entrant jets along the minor axis of the ellipsoid, which
impact the bubble interface, resulting in vapour entrapment and the formation of ‘satellite
bubbles’. Although these studies examined the effect of initial shear rates and stand-off
distances on the bubble shape morphology, these simulations could not represent shock
wave generation and propagation, as they consider semi-incompressible fluid flow with
only the gas being compressible.

This work aims to investigate the competing effect between inertia and shear on the
collapse of a gas bubble in a shear flow near a rigid wall. By varying the initial shear rate
and stand-off distance from the wall in our numerical simulations, we examine the bubble
morphologies and characterise the outward-propagating shock impingement on the nearby
wall and the resulting maximum wall pressure at the wall. The manuscript is organised as
follows. In § 2, the problem set-up is presented. The governing equations and numerical
solver are then discussed. In § 3, we compare the bubble collapse dynamics and maximum
wall pressures for different shear rates and stand-off distances. We provide our conclusions
in § 4.

2. Problem set-up and governing equations

Figure 1 illustrates our problem set-up. We consider a linear shear flow near an infinitely
long, flat rigid wall with an initially spherical gas bubble of radius Ro surrounded by
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Figure 1. Schematic of an initially spherical gas bubble of radius Ro in a shear flow located at a distance zo
away form a rigid, flat wall. The y-axis direction points out of the page and xo is the wall centreline location,
x = 0.

water of density ρl, pressure p∞ and temperature T∞ and placed at a distance of zo
from the wall. In practical applications, bubbles can grow from O(1) to O(102)µm,
resulting in a non-spherical shape and non-uniform pressure distribution due to the
presence of the rigid wall and shear (Dabiri et al. 2010; Tiwari, Pantano & Freund
2015; Dular et al. 2019; Gonzalez-Avila et al. 2021). To study the effect of shear and
distance from the wall solely on the bubble collapse dynamics, we initialise with an
initial radius Ro = 500 µm for all the cases. Thus comparing similar bubble collapses.
This initially spherical gas bubble has an equivalent volume to the bubbles after growth,
thus considering the equivalent volume after vapour condensation and ignoring surface
tension effects (Lauterborn et al. 2018; Gonzalez-Avila et al. 2021). Bubbles of similar
radius have been studied experimentally (Dular et al. 2019; Gonzalez-Avila et al. 2021)
and numerically investigated (Yu et al. 1995; Beig, Aboulhasanzadeh & Johnsen 2018;
Bußmann et al. 2023). The initial non-dimensional stand-off distance is γo = zo/Ro. The
bubble contains vapour, which is modelled as a non-condensable ideal gas with pressure
po = 3550 Pa and temperature To = 300 K. The initial liquid pressure p∞ = 5 MPa is
considered, motivated by the studies of Franc et al. (2011), who identify it as relevant
for cavitation erosion applications; we define �p = p∞ − po. The shear across the bubble
is ς̇o = ((ux)γo+1 − (ux)γo−1)/2Ro, where (ux)γo+1 and (ux)γo−1 are the x-components of
the velocity at the top of the bubble (farthest from the wall) and bottom of the bubble
(closest to the wall), respectively. A symmetry boundary condition is used along the
xz-centreplane. The slip non-reflecting boundary conditions of Thompson (1990) are used
at the top boundary to enforce the top plate velocity corresponding to the desired shear
rate. A perfectly reflecting, no-slip boundary condition represents the rigid wall. The left,
right and back boundaries are non-reflective boundary conditions. The computational
domain has size 8Ro × 4Ro × 6Ro. Beig (2018) showed that 128 computational cells
per initial bubble radius can resolve the maximum wall pressure due to inertia-driven
collapse. Previous studies (Yu et al. 1995; Dabiri et al. 2010; Dular et al. 2019) have
shown that bubble collapse under shear flow results in a larger bubble surface area and,
therefore, in the present study, 128 cells per initial bubble radius is considered sufficient
resolution.

We perform direct simulations of the Navier–Stokes equations with the five-equation
multiphase model (Kapila et al. 2001), where pressure and velocity equilibria between the
phases are assumed. This model and its improvements have been widely applied to study
a range of phenomena (Allaire, Clerc & Kokh 2002; Murrone & Guillard 2005; Perigaud
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& Saurel 2005; Petitpas et al. 2009; Beig 2018; Yang et al. 2021; Rodriguez et al. 2022;
Bidi et al. 2023; Yang et al. 2023). We solve the mass conservation, momentum and energy
balance equations in the absence of gravity

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0, (2.1a)

∂

∂t
(ρ(1)α(1)) + ∂

∂xj
(ρ(1)α(1)uj) = 0, (2.1b)

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj + pδij) = ∂τij

∂xj
, (2.1c)

∂E
∂t

+ ∂

∂xj
((E + p)uj) = ∂

∂xk
(uiτik − Qk), (2.1d)

where ρ is the total (mixture) density, ui the velocity vector, Qk the heat flux, α(1) the
volume fraction of water and we use indices i, j = 1, 2 and 3; repeated indices denote
summation. Equation (2.1b) is the mass conservation equation for the water component.
The total energy per unit volume E comprises internal and kinetic contributions: E =
ρe + 1

2ρu2
k . An additional species transport equation is solved for α(k) in non-conservative

form to maintain interfacial equilibrium conditions for velocity, pressure and temperature
(Beig & Johnsen 2015).

The Noble–Abel stiffened-gas equation of state of Le Métayer & Saurel (2016) is used
to relate the internal energy to pressure

ρ(e − q) = p(1 − ρb)

n − 1
+ nB(1 − ρb)

n − 1
, (2.2)

where q, n, B and b are material constants prescribed to produce the correct propagation
speeds in water. Table 1 lists the properties of liquid water and water vapour. Fourier
conduction describes the heat diffusion process: Qi = −κ∂T/∂xi, where κ is the thermal
conductivity. Fluids behave in a Newtonian fashion, such that the viscous stress is
given by τij = μbε̇kkδij + μsε̇

(d)
ij , where μb is the bulk viscosity, μs the shear viscosity

and ε̇ij the strain-rate tensor with ε̇
(d)
ij as its deviatoric part. For water vapour, κ =

0.02 W (m K)−1 and μb = μs = 10−5 Pa s; for liquid water, κ = 0.6 W (m K)−1 and μb =
μs = 9 × 10−4 Pa s. Based on the characteristic speed uc = √

�p/ρl defined by Plesset
& Chapman (1971) and Ro, the Reynolds number is of O(104) such that the flow is
inertia driven and the bulk viscosity would have negligible effects. Thus, bulk viscosity
is assumed to be identical to the shear viscosity for numerical convenience. For the
characteristic speed and Ro, the estimated Weber number is 3.4 × 104. Using the shear
velocity at the top domain boundary, the Weber numbers range between 1.9 × 104 and
3 × 105. For such large Weber numbers, surface tension has negligible influence and,
therefore, can be neglected. Since the bubble collapses under consideration are inertia
or shear dominated, mass transfer (Beig 2018) and phase change (Storey & Szeri 2000;
Preston 2004) can be neglected. We use the numerical approach presented by Beig &
Johnsen (2015) to solve the resulting set of equations.

Three non-dimensional parameters govern the problem: the initial driving pressure
p∞/ρlal(�p/ρl)

1/2, stand-off distance γo = zo/Ro and shear rate ωo = 2ς̇oRo/uc. Our
focus is on the latter two parameters to understand the role of shear on the wall pressure
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Phase n (−) B (MPa) b (m3 kg−1) q (MJ kg−1) c (J (kg K)−1)

Vapour 1.47 0 0 2.1 3610
Liquid 1.19 702.8 6.61 × 10−4 −1.2 955

Table 1. Constants in the Noble–Abel stiffened-gas equation of state for water.
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Figure 2. Initial x-component of the velocity at a distance γo from the rigid wall with parameters for the
shear rate (�, green) and initial stand-off distance (�, blue). Black dashed iso-line (- - -): initial velocity
(ux)γo

√
ρl/�p = 1.

Study ωo γo p∞/ρlal(�p/ρl)
1/2

Baseline
1
2

3
2

0.046

ωo
1
4

,
1
2

,
3
4

, 1
3
2

—

γo
1
2

9
8

,
5
4

,
3
2

, 2, 3 —

Single wall 0
9
8
,

5
4
,

3
2

, 2, 3 —

Table 2. Initial condition parameters for computations. Parameters are the non-dimensional shear rate, ωo,
and non-dimensional stand-off distance, γo, and non-dimensional driving pressure.

produced by bubble collapse with different initial stand-off distances. As a baseline, we
consider γo = 3/2 (as done by Yu et al. 1995) and ωo = 1/2. As illustrated in figure 2
and tabulated in table 2, we vary ωo and γo to understand the effect of shear rate and
stand-off distances on the wall pressures. While studies conducted by Yu et al. (1995)
explored ωo ∈ {0, 2, 3, 4} for �p = 50 kPa, in the present study, we focus on lower shear
rates at a higher driving pressure. The initial stand-off distances have also been previously
investigated for cavitation near a rigid wall (Beig & Johnsen 2015; Dular et al. 2019;
Gonzalez-Avila et al. 2021).
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3. Results and discussion

3.1. Overall dynamics
We first qualitatively describe the role of shear on bubble collapse. Figure 3 shows a
time series of pressure contours along the xz-centreplane for the baseline case with shear
(γo = 3/2 and ωo = 1/2) and for the case with no mean flow. In the absence of flow,
the bubble collapse is axisymmetric as described by Johnsen & Colonius (2009) and
Beig (2018). A re-entrant jet directed normal to the wall develops and penetrates the
bubble, ultimately impinging upon the bubble interface proximal to the wall at a distance
γp at time tp (referred to here as the posterior impingement, and estimated based on
pressure contours). The bubble then takes the form of a vortex ring. The water-hammer
shock generated by the jet impact propagates radially outward, further collapsing the
vortex ring and causing a second shock upon reaching minimum volume at time tvc.
In the presence of shear, however, the collapse becomes asymmetric: the bubble rotates
in the clockwise direction and adopts an elongated shape due to shear. As a result, the
re-entrant jet is initially directed at an angle of approximately 45◦ with respect to the
horizontal. As the collapse progresses and the bubble rotates further, the jet trajectory
rotates in a manner consistent with observations by Dular et al. (2019), such that the jet
impinges upon the opposite side of the bubble in a direction nearly parallel to the wall.
Compared with the case with no mean flow, this impingement takes place further away
from the wall at a distance γa and at time ta such that ta < tp (hereafter referred to as
the anterior impingement, also estimated based on pressure contours). The water-hammer
shock thereby produced further collapses the bubble as it propagates outward. Given the
concave shape of the bubble, this shock propagates along the bubble interface before
focusing at the farthest end, thereby causing a shock-induced collapse of the gas pocket.
This process releases a second water-hammer shock at tp. Along the shock front, the
shock strength is greatest in the direction of propagation of the jet. Eventually, this shock
impinges upon the wall. The water-hammer shock produced by a shock-induced collapse
originates closer to the wall than in the case with no mean flow. For both, with and
without shear, the reflection of shock waves from the neighbouring wall produces weak
negative pressure (maximum normalised negative pressure magnitude is 0.02). However,
these negative pressures are only observed for an interval �t/tc = 0.1 and, therefore, are
not shown for visualisation purposes.

Figure 4 shows the z-component of the vorticity along the xz-centreplane for the
baseline case with shear and for the case with no mean flow. For the case with shear
flow, the vorticity of the mean background flow has been subtracted. Without shear
flow the vorticity generation is axisymmetric and is localised along the bubble interface.
Introducing shear flow results in larger vorticity production, as also observed by Dabiri
et al. (2010). Further, the vorticity production is asymmetric, with a larger positive ωz,
thereby resulting in a re-entrant jet that is inclined relative to the rigid wall.

The bubble volume at collapse and the location of collapse are important factors
governing the wall pressure. Figure 5 shows the time history of the bubble volume and the
centroid migration for the baseline case with shear and the case with no shear. The bubble
volume in the two cases follows similar behaviour, except that collapse in the shear flow
gives rise to a far larger minimum volume and a smaller rebound. In the case with shear,
the bubble centroid location increases nearly linearly in the x-direction until collapse due to
the rotation imparted by the shear. Along the z-direction, bubble centroid distance remains
nearly unaffected until the bubble collapses. Upon collapse, a smaller bubble centroid
migration is observed, i.e. the bubble centroid is farther away from the wall in the case
with shear.
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Figure 3. Pressure contours along the xz-centreplane of a gas bubble with γo = 3/2 and p∞ = 5 MPa for
ωo = 0 (a i–a iv) and 1/2 (b i–b iv). The dashed line denotes the initial bubble shape. Minimum contour level
set to zero for visualisation purposes. Animations for the simulations are given in the supplementary movies
available at https://doi.org/10.1017/jfm.2024.1146.
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Figure 4. The z-component of the vorticity along the xz-centreplane of a gas bubble with γo = 3/2 and
p∞ = 5 MPa for ωo = 0 (a i–a iv) and 1/2 (b i–b iv). The dashed line denotes the initial bubble shape.

Figure 6 shows the time history of pressure at the wall centre (i.e. xo location in figure 1)
and the maximum wall pressure along with its location. Comparing these two cases, the
collapse in a shear flow leads to higher pressures along the wall by approximately 10 %.
The anterior shock drives the posterior jet such that the impact of the latter upon the
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Figure 5. Normalised bubble volume vs time (a) with no shear (- - -) and with shear (ωo = 1/2) (——, red),
and centroid migration vs time (b) with �z (——, black) and �x (- - -) for the case with no shear and �z (– · –·,
red) and �x (· · · · · ·, red) for the case with shear (ωo = 1/2).
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Figure 6. Pressure at the wall centreline (x = 0) (a), maximum wall pressure (b) and its location (c) for
γo = 3/2, with ωo = 0 (- - -) and ωo = 1/2 (——, red).

opposite side of the bubble takes place closer to the wall, thus leading to less shock decay
and, therefore, a higher pressure by the time the shock reaches the wall. The normalised
location of the maximum pressure is nearly 0.27, downstream in the direction of the
shear flow. By contrast, the maximum pressure in collapse in an initially stationary liquid
is achieved at the wall centre.

3.2. Dependence on the shear rate
To understand how shear affects the bubble dynamics and shock emission, we consider a
sequence of simulations with different initial shear rates while holding the initial stand-off
distance fixed at γo = 3/2. Figure 7 shows the anterior and posterior impingement
migration distances � = γi − γr, where γi is the impingement location and γr the
reference location (the z-direction reference location for the anterior and posterior
migration distances are γo + 1 and γo − 1, respectively), and the pressure produced
upon jet impingement. The anterior and posterior impingement locations and times are
obtained by finding the maximum pressure in the field contours. Table 3 shows that the
time to anterior impingement decreases with increasing shear rate. As reported by Dular
et al. (2019), the linear translation of the anterior and posterior impingement locations
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Figure 7. Migration distances of anterior (a) �z (�, red), �x (�, red) and posterior (b) �z (�, red), �x (�,
red) impingement and pressures (c) at anterior (�, red) and posterior impingement (�, red) for different shear
rates with γo = 3/2.

ωo
ta
tc

(–)
tp
tc

(–)
tvc

tc
(–) �ts = tp − ta

tc
× 102 (–)

0 — 1.058 1.066 —
1/4 1.052 1.063 1.064 1.1
1/2 1.047 1.067 1.069 2.0
3/4 1.043 1.069 1.071 2.6
1 1.033 1.074 1.076 4.1

Table 3. Re-entrant jet impingement impact times and minimum volume bubble collapse times for different
shear rates, ωo, with γo = 3/2.

in the x-direction are due to the flow. With increasing shear rate, the migration distance
along the z-direction decreases for anterior impingement. However, the migration distance
remains mostly constant along the z-direction for posterior impingement. Due to the
increasing wall-normal distance of the anterior impingement, the water-hammer shocks
travel farther, thus increasing the time to posterior re-entrant jet impingement and bubble
collapse. While the wall-normal distance increases for the anterior impingement, the
stronger water-hammer shock produced upon impingement produces stronger shocks upon
posterior impingement.

Figure 8 shows the bubble collapse volume and centroid migration distance. The
bubble rotation due to shear and generation of the two jets and shocks give rise to an
asymmetric bubble shape at collapse. Increasing the initial shear rate increases bubble
shape asymmetry and results in a larger minimum bubble volume. In the absence of
shear, the bubble centroid position is a good approximation to the shock emission location
(Rodriguez et al. 2022). When shear is present, the overall bubble migration is larger than
in the case with no shear due to the migration in the x-direction. For all values of ωo > 0,
the bubble centroid migration in the z-direction toward the wall is smaller compared with
the case with no shear flow.

The maximum pressure and its location are quantities relevant to cavitation damage.
Figure 9 shows the maximum wall pressure location and magnitude for different shear
rates. We consider the theoretical maximum wall pressure location as the x-direction
translation of a particle initially located at γo, i.e. (ux)γo tvc. Except ωo = 1/4, the
theoretical location agrees well with the maximum wall pressure location (error ≈ 0.019),
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Figure 8. Bubble collapse volume (a) and centroid migration distance (b) �z (�, red) and �x (�, red) vs ωo
with γo = 3/2.
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Figure 9. Maximum wall pressure location (�, red) and theoretical impact location along the x-direction
(——) (a) and maximum wall pressure (b) for γo = 3/2.

underlying the convection effect. The discrepancy is due to the bubble rotation during the
collapse and the resulting translation modifying the re-entrant jet trajectory. For ωo = 1/4
and 1/2, the shearing and translating bubble achieves the exact maximum pressure location
but not the same magnitude. The maximum wall pressure does not significantly vary with
the shear rate for this initial stand-off distance. The maximum wall pressure occurs at a
non-dimensional shear rate of 1/2 and is approximately 1.1 times greater than in the case
with no shear. Although stronger (posterior) shocks are emitted in the liquid in the cases
with shear, the distance travelled to the wall is greater.

3.3. Dependence on the initial stand-off distance
As observed earlier, increasing the initial shear rate gives rise to a greater bubble
translation and rotation. However, the resulting maximum wall pressures do not
significantly vary with the shear rate. Figure 10 shows a time series of pressure contours
along the xz-centreplane in the case with shear (ωo = 1/2) for γo = 2 and 3. Increasing
the stand-off distance for a fixed shear rate results in the formation of a second jet in a
direction that is nearly opposite to that of the anterior jet, forming a pair of converging
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Figure 10. Pressure contours along the xz-centreplane of a gas bubble with p∞ = 5 MPa and ωo = 1/2 for
γo = 2 (a i–a iii) and 3 (b i–b iii). The dashed line denotes the initial bubble shape. Minimum contour level set
to zero for visualisation purposes.

jets (see figure 10a i,b i). The axis of convergence of these jets is oblique to the wall, in
contrast to the wall-parallel direction seen when a bubble collapses between two plates
without any mean flow (Rodriguez et al. 2022). Eventually, the two jets impinge upon
each other, thereby generating a water-hammer shock (figure 10a ii,b ii) that propagates
outward and further collapses the bubble. The remnants of the bubble appear to be similar
to the satellite bubbles observed in Dabiri et al. (2010) (see figure 10a iii,b iii). For all
examined initial stand-off distances, the reflection of the shock from the neighbouring wall
produces short-lived weak negative pressures. These negative pressures are not shown for
visualisation purposes.

Figure 11 shows the minimum bubble volume and centroid migration distance for
different initial stand-off distances. In the absence of shear, Beig (2018) showed that
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Figure 11. Bubble collapse volume vs stand-off distance (a) with no shear flow (ωo = 0) (�) and shear flow
(ω0 = 1/2) (�, red), and bubble centroid migration distance vs stand-off distance (b) with �z (�) for the case
with no shear and �z (�, red) and �x (�, red) for the case with shear (ωo = 1/2). Data with no mean shear
flow were taken with permission from Rodriguez et al. (2022).

γo

γp

1.0 1.5 2.0 2.5 3.0
0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 12. Posterior impingement location along the z-direction with no shear flow (ωo = 0) (�) and shear
flow (ωo = 1/2) (�, red). Solid red line denotes the relation γp = γo − (γ

−4/3
o ). For the case with no shear

flow, γp = γc. Data with no mean shear flow were taken with permission from Rodriguez et al. (2022).

the minimum bubble volume decreases with increasing initial stand-off distance as the
effect of the image bubble decreases and the dynamics of collapse converges to the
spherical collapse case, thus leading to greater convergence. With shear, the minimum
bubble volume decreases with increasing stand-off distance, except at the highest shear
rate. This behaviour is due to the formation of larger satellite bubbles with increasing γo
(see figure 10). Beyond a critical stand-off distance γo,c ≈ 2, the collapse morphology is
dominated by the formation of converging jets. Increasing the initial stand-off distance in
both cases leads to less migration towards the wall.

Figure 12 shows the posterior jet impingement location for different initial stand-off
distances and shear rates. In the absence of shear, Rodriguez et al. (2022) showed
the posterior jet impingement location is nearly equal to the bubble collapse location
and can be used to develop scaling relations for the maximum wall pressure. In the
case with no shear, the bubble collapse location γc is the posterior jet impingement
location, i.e. γp = γc. Additionally, Beig (2018) reported that the bubble collapse location
goes as γc = γo − γ

−4/3
o . In the presence of shear, the bubble collapse location and
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Figure 13. Maximum wall pressure vs posterior jet impingement distance with no shear flow (ωo = 0) (�)
and shear flow (ωo = 1/2) (�, red). Solid black line (——) slope is −1.13 observed for underwater explosion
shocks (Cole 1948). Data with no mean shear flow were taken with permission from Rodriguez et al. (2022).

posterior impingement location differ, with the posterior location being closer to the wall.
We observe that the same approximation holds and closely matches the jet impingement
location. This relationship extends to the maximum wall pressure. Figure 13 shows
the maximum wall pressure for different locations of posterior jet impact location. For
comparison, we show the maximum wall pressures for cases with no shear from Rodriguez
et al. (2022). The maximum wall pressures from both cases collapse onto a curve with
slope −1.13, representative of underwater explosion shock decay (Cole 1948). For initial
stand-off distance γo < γo,c, the maximum wall pressure obtained in the case with shear
is higher. However, lower wall pressures are obtained as the effect of the image bubble
reduces and the collapse becomes shear dominated. The scaling relation can be used to
estimate the maximum wall pressure for a location of posterior jet impingement.

4. Conclusions

Numerical simulations are conducted to determine the role of a mean shear on the inertial
collapse of a gas bubble near a rigid surface. Shear breaks the symmetry of the collapse by
causing migration in the streamwise direction and rotation. As a result, the re-entrant jet
originating from the bubble end farthest from the wall rotates and impinges the opposite
side of the bubble in a direction that is not normal to the wall. The resulting water-hammer
shock propagates outward and causes a second shock-induced collapse of the part of
the bubble closest to the wall. Although the pressure thereby generated increases with
increasing shear, the maximum wall pressure only increases marginally. The shock is
strongest in the direction of motion of the jet, such that that portion of the shock travels
a longer distance before impinging the wall, thus decaying more than the portion of the
shock travelling the shortest distance to the wall. As a result, the wall pressures are only
marginally higher in collapse with shear for a non-dimensional shear rate of 1/2. Even in
the presence of shear, the dependence of the wall pressure on the stand-off distance obeys
previously determined scalings corresponding to bubble collapse in an initially stationary
fluid near a wall. For a critical initial stand-off distance γo,c > 2 where the effect of the
image bubble is reduced and the collapse becomes shear dominated, the maximum wall
pressure becomes lower compared with the case with no shear flow.

While this study has yielded valuable insights into the effects of shear and initial
stand-off distance on the bubble collapse dynamics, several avenues for future research
remain. Future investigations could incorporate the bubble growth phase to provide a
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more comprehensive understanding of the entire bubble lifecycle under shear. This would
include vapour condensation and surface tension effect during bubble growth under shear
flow and varying initial stand-off distances. Additionally, studying quantities such as
wall shear stress and temperatures would offer deeper insights into surface cleaning and
material damage in the presence of mean shear flow (Dijkink & Ohl 2008; Beig et al. 2018;
Zeng et al. 2018; Kondo & Ando 2019).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1146.
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