
AN INEQUALITY BETWEEN NUMERICAL HOMOTOPY 
INVARIANTS 

M. J. M. PRIDDIS 

1. Introduction. In (1), Berstein and Ganea denned the nilpotency 
class of a based topological space. For a based topological space X we write 
nil X for the nilpotency class of the group SIX in the category of based topo­
logical spaces and based homotopy classes. Hilton, in (3), defined the nil-
potency class, nil class K of a based semi-simplicial (s.-s.) complex; actually, 
the restriction of connectedness can be removed. Hence, by using the total 
singular complex functor S} an invariant (nil class SX) can be defined for 
a based topological space X. In this note, it is our purpose to prove that 
nil class SX ^ nil X for X of the based homotopy type of a CW-complex. 

2. Preliminaries. By a space we shall always mean a based topological 
space. We further assume that all maps and homotopies keep base points 
fixed. 

If X and F are two spaces, then the wedge X V F is considered as a sub-
n 

set of the Cartesian product X X F and VX will denote the n-io\d wedge 
n 

of X. Let Vn: VX -» X be the folding map for n ^ 2 and let Vi: X -> X be 
the identity map of X. 

The fibre of the inclusion map X V Y —> X X F is denoted by* X \> Y. By 
definition, X \? Y is the space of paths in X X Y that begin at the base point 
and end in X V Y. The map, f . I | ? F - > l V F, which projects a path onto 
its end point, is essentially the inclusion of the fibre into the total space. 

For the s.-s. case by a complex we shall mean a Kan complex with base 
point and all s.-s. maps and homotopies are assumed to preserve base points. 

All the above concepts apply to the s.-s. case and we use the same symbol 
to denote the s.-s. analogue, except that we indicate the construction of the 
flat product. First, we digress to give the construction and main properties 
of the s.-s. analogue of the mapping tract functor. 

PROPOSITION 1. Let f: K —» L be an s.-s. map between an s.-s. K with base 
point and an s.-s. Kan complex L with base point. Then there exists an s.-s. 
fibre space (M, p, L) with the following properties: 

(i) M is a Kan complex with base point, p is base-point preserving and the 
fibre is a Kan complex; 
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(ii) There exist base-point preserving s.-s. maps f±: K —» M and f2: M —» K 
such that f2fi = id and f\j\ ^ id, relative to the base point. 

Proof. M is obtained as the total space of the fibre map over K X L induced 
b y / X id from the fibre space (Hom(A[l], L), Hom(inj, id), Hom(A[l], L) ) ; 
see (5) for details. The first assertion of (i) follows from (5) and the others 
can be easily verified, as can (ii). 

To simplify notation, we often refer to the fibre map (K,f, L) rather than 
the actual fibre map (Af,p,L). 

For two complexes K and L let k: K V L —> K X L denote the inclusion 
of the union of K and L, united at their base points into their Cartesian pro­
duct. We define K b L to be the fibre of the fibre map associated with k 
according to Proposition 1. The composition of the inclusion of K b L into 
the total space followed by the projection onto K V L is denoted by / . 

For spaces X, Y let SX, S Y denote their total singular complexes. I t can 
be readily verified that the inclusion a\ SX V SY—±S(X V Y) is a weak 
homotopy equivalence, where, for definiteness, we take Tn(K) to be defined 
as Tn(S \K\) for a not necessarily Kan complex K. 

3. The b-invariant. For a positive integer n and a space X we define 
n 

the nth flat product \?nX and maps in: \?nX —> VX as follows: 

n = 1, VX = Xu in = id, 
n > 1, bnX = (bw~1X)bX, in = (i,_x V id)i, 

where 
i: (\?n~lX)\>X -> V-lX V X. 

3.1. Definition. The flat invariant, b — X, of a space X is the least integer 
n è 0 for which the map Vw+i4+i: bw+1^T —> X is null-homotopic; if no such 
integer exists, we write b — X = oo. 

3.2. PROPOSITION. 7/ X is dominated by Y, then \? — X ^ \? — Y. 

Proof. We may assume that b — Y = n < oo. L e t / : X —•> F and g: F—»X 
be maps such that g / " ~ l . Then / induces \?n+1f: \?n+1X -* \>n+1Y and 
w+l re+1 n + 1 

F / : V X-^ V Y, giving commutativity in the diagram 

[>n+lx W t ) " ^ z
 V"+S X 

bM+1/ i "vf ï f i 
n+1 _ 

Then Vn+i^+i ~ gf Vn+1in+1 = gVn+1in+1\?
n+1f ^ 0. 

3.3. COROLLARY. \> — X depends only on the homotopy type of X. 
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In exactly the same way, a definition of the flat invariant can be given for 
a complex K, which can also be shown to be a homotopy-type invariant. The 
same notation is used except that in and i are replaced by jn and j , respectively. 
We remark that in both cases X b X = X0 b Xo, where X0 is the path com­
ponent of a space or complex containing the base point. Thus, in dealing with 
the flat invariant, there is no loss in generality in assuming that the spaces 
are path connected and the complexes connected. 

Reverting to the topological category, define G' — nil X = sup nil T(A, X), 
where A ranges over all cogroup-like spaces with non-degenerate base point 
and 7T denotes the collection of homotopy classes of maps from A to X. 

The proof of Theorem 6.11 of (1) readily dualizes to give the following 
results. 

3.4. PROPOSITION. Let X have a non-degenerate base point. Then 

G' - nil X ^ nil X. 

3.5. THEOREM. Let X be a space, then b — X ^ G' — nil X. 

Proof. Suppose that \? — X < k and let A be a cogroup-like space with 
non-degenerate base point. We consider maps fi, . . . ,fk: A —> X and let 

*/ = / i V . . . V /* 

and \?kf the map induced from kf. Consider the diagram 

r'b k b k X7 

A C-\ VA % VX ^ > X 

H\ H \ 

}>*A ^l \?kX 

where c'k is the &-fold co-commutator map of A. Now c'k can be factored 
through \>kA, say i^g^idk. Then 

Vffc'n ~ Vk%g = VkikVf~0. 

3.6. COROLLARY. If X has a non-degenerate base point, then b — X ^ nil X. 

This can be regarded as a partial generalization of Theorem 3.1 of (3). 

4. The main inequality. Now we connect the two flat invariants. 

4.1. LEMMA. Let X be a space. Then for all positive integers n there is an s.-s. 
map \//n: \?

n(SX) —* S(\?nX) which is a homotopy equivalence and 

S{Vnin)ypn ~ Vnjn. 

Proof. The assertion for n = 1 is trivial. We proceed by induction. Con­
sider the diagram 
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S((\?n~lX)bX) - ^ l S(bn~lX V X ) - ^ > 5(bw _ 1X X X) 

(y^SX^SX JL+ )TXSX. V SX —k—+ V~XSX X S X ; 

here pn = ^ _ x X I , qn = g ( ^ - i V 1) (on identifying S^^X X X ) with 
S^X X SX) and k: ^(SX) V 5 I - > b ^ S X X SX are the na tura l in­
clusions. 

T h e square commutes up to homotopy and since 5* preserves fibrations, 
there is an s.-s. m a p \//n: \?

nSX —» S(\?nX) such t h a t S(i)\//n£^ qnj. 
An application of x* to the diagram then shows t h a t \f/n is a weak homotopy 

equivalence; and since both S(\?nX) and \?n(SX) are K a n complexes, \f/n is 
a homotopy equivalence. 

T h e second half of the lemma then follows easily from the inductive hypo­
thesis. 

4.2. T H E O R E M , b — X ^ b — SX and if X is of the homotopy type of a 
CW-complex, then b — X = b — SX. 

Proof. T h e first pa r t follows immediately from the lemma and the second 
pa r t follows from (6). 

We now connect the simplicial flat invar iant with the group complex nil-
potency class. 

Le t A be a group complex, A(n) the nth free derived group complex of A, 
ln the inclusion homomorphism A(n) —» *A, and Vn the folding m a p : *A —•» 4̂ ; 
see (3) for the explicit definitions and for the definition of the W functor 
of K a n . 

4.3. L E M M A . For each positive integer n, there is a complex s.-s. homotopy 
equivalence <j>n\ \?n(WA) —> W(A(n)) and W{Vnln)<t>n c^ Vnjn. 

T h e proof is similar to t h a t of 4 .1 , using the following straightforward 
proposition. 

4.4. P R O P O S I T I O N . Let p: A —> B be an epimorphism of group complexes, then 
Wp: WA —> WB is an s.-s. fibre map. 

4.5. T H E O R E M , nil class A ^ b — WA and if A is a free group complex, 
then nil class A = b — WA. 

Proof. T h e first pa r t follows immedia te ly from 4.3 and the second follows 
by using the properties of the function a of (4). 

4.6. COROLLARY. If K is a complex, then nil class K = \? — K. 

Proof. By the obvious modification of the a rgumen t of § 13 in (4), it can 
be shown t h a t K and WGK are of the same homotopy type . 

Finally, using 3.6, 4.2, and 4.6 we deduce the following theorem. 
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4.7. THEOREM. Let X be of the homotopy type of a CW-complex, then 
t> — X = nil class SX and so nil class S(X) ^ nil X. 
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