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Abstract
We study a system of nonlocal aggregation cross-diffusion PDEs that describe the evolution of opinion densities
on a network. The PDEs are coupled with a system of ODEs that describe the time evolution of the agents on the
network. Firstly, we apply the Deterministic Particle Approximation (DPA) method to the aforementioned system
in order to prove the existence of solutions under suitable assumptions on the interactions between agents. Later
on, we present an explicit model for opinion formation on an evolving network. The opinions evolve based on both
the distance between the agents on the network and the ’attitude areas’, which depend on the distance between
the agents’ opinions. The position of the agents on the network evolves based on the distance between the agents’
opinions. The goal is to study radicalisation, polarisation and fragmentation of the population while changing its
open-mindedness and the radius of interaction.

1. Introduction

The study of social phenomena through mathematical modelling has gained significant attention in the
scientific community, especially in recent decades [6, 17, 28, 35, 37, 41, 50]. The exchange of informa-
tion on these platforms has sparked research in understanding how social interactions shape the process
of opinion formation [3, 7, 10, 30, 33, 48, 51, 57].

In social interactions, the relationships between individuals are often structured as networks that co-
evolve with the individuals themselves [49]. A prominent example of this is the formation of opinions or
norms within social networks, where interactions only occur between connected agents. However, the
network connections are dynamic, and this change influences the states of the individuals. For example,
opinions can be influenced by connections, such as followers reacting to posts, while individuals tend
to follow others with closer opinions.

The network structure of social interactions plays a vital role and is commonly represented using
random networks. However, there are two natural levels in examining opinion formation processes on
network: the microscopic and macroscopic scales. The microscopic models have been employed to sim-
ulate phenomena such as opinion formation, knowledge networks, social norm formation and biological
transport networks [1, 2, 8, 31, 39, 54]. In considering processes with a huge number of agents, a natural
question arises in considering a limit procedure between the two scales. However, the specific details of
the network structure can be lost, and only few general characteristics are incorporated into the models
[19, 20].

From a mathematical standpoint, it is natural to apply methods from statistical physics or kinetic
theory to bridge the gap between microscopic interactions and macroscopic models, see [12, 52].
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This approach involves formulating partial differential equations for distributions and using well-
established asymptotic methods to simplify the equations and analyse pattern formation [11, 18]. These
mathematical approaches have successfully explained macroscopic distributions in socio-economic
interactions and various aspects of opinion formation and polarisation [3, 15, 36, 42]. Using these
tools has significantly contributed to understanding the emergence of macroscopic behaviour from
microscopic interactions in a wide range of social phenomena.

1.1. Modelling motivation: the social context

During the last two decades, the diffusion of smartphones and the increasing use of social networks
have changed how people interact and form their beliefs. There are two main aspects that have been
drastically disrupted: the number of connections and the frequency of interactions.

Due to the hyperconnectivity of the globalised world, each individual can get in contact with a wide
range of opinions. Delocalising the place of interaction from physical space to the digital realm has
destroyed the local cultural bias of interactions. This implies that each individual can come into contact
with cultures and ideas they do not know and cannot deeply understand. This aspect has resulted in a
change in the epistemic processes, specifically altering the dynamics that govern the formation of beliefs
when individuals are exposed to new inputs (news, visual art, songs, posts, tweets, chats, etc.).

Moreover, the increasing amount of inputs and their high frequency create a physical upper bound
on the processing capacity of the human brain. An individual walking through a mall cannot process all
the inputs coming from screens, speakers, billboards, smartphones and so on. The same situation occurs
while scrolling through social networks or digital social media. As a result, there is a need to filter the
inputs, both on the physical side through the network and on the rational side, by selectively processing
only a few of them and disregarding others at a peripheral level of thinking.

All these aspects are well understood by scientists from social sciences and social epistemologists (a
non-exhaustive list includes references such as [5, 9, 32, 38, 44, 56]). However, it is challenging to fit
them into a unified mathematical description. In this paper, we propose an approach that mainly focuses
on two tools: attitude areas and the Euclidean network. In Section 4, we introduce and simulate a new
model to investigate the evolution of the network and opinion distributions for agents interacting on
social networks and social media.

1.2. Modelling tools

We consider a generalisation of the model introduced by Burger in [13, 14]. In these works, the author
derives a kinetic description of an opinion formation process on networks. Inspired by these studies, we
associate two variables with each individual: the network position and the opinion distribution.

Opinion Distribution
The description of an individual’s opinion during the opinion formation process can be represented by a
distribution rather than a single value. The motivation lies in the fact that an individual may be indecisive,
lacking a clear and definite opinion. Instead, their thoughts span multiple possibilities. An example can
be related to political elections, where voters loyal to smaller parties often face the dilemma of the strate-
gic vote. This term refers to the choice of voting for a party other than their own, typically one similar but
with a higher chance of surpassing the threshold percentage. In such a case, the individual’s opinion is
described by a distribution with two peaks, one at the position of their affiliated party and another at the
position associated with the strategic vote. Now, let’s consider a finite population M = {1, . . . , M ∈N}
with M individuals. To each individual, we associate a distribution ρi : (x, t) ∈ � × [0, ∞) → [0, ∞),
where i ∈M and � ∈R is bounded.
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The Social Strength
Every individual possesses a distinct social strength denoted as σ i. This corresponds to the integral of
their opinion, i.e. σ i = ∫

�
ρi(y) dy. Mathematically, this quantity coincides with mass. However, from

a modelling perspective, it represents an individual’s inclination to uphold their own opinion. In the
scenario of an attractive binary interaction between two agents with different social strengths, the average
of their opinions tends to align more closely with the original opinion of the agent with the higher social
strength. Conversely, in the case of a repulsive interaction, the agent with the lower social strength will
deviate further from the average of the original opinions.

Euclidean Network
The network position is described by the function ai : t ∈ [0, ∞) →R

2 with i ∈M. In this way, the net-
work is based on a Euclidean space and its natural distance. Instead of considering interactions mediated
by weights between individuals i and j, we use their distance in R

2. This has a direct consequence on
the modelling interpretation of interactions. Specifically, cases are excluded where two agents are close,
but a third agent is close to one but not the other. If we take three individuals i, j and k in M, then if
i is close to j, it implies that k cannot be distant from one but close to the other.

The PDE-ODE System
The model under consideration describes the temporal evolution of the opinion distribution and the net-
work position of each agent. Given the vectors of positions a and opinion distributions ρ, their evolution
is described by the following system:

∂tρ
i(t, x) = ∂x

(
βi(ρ, a; x)∂xρ

i(t, x)
)− ∂x

(
ρi(t, x)θ i(ρ, a; x)

)
, (1.1a)

∂ta
i(t) =

∑
j∈M

V(μρi (t), μρj (t), aij) , (1.1b)

where βi and θ i are defined by:

βi(ρ, a; x) =
M∑

j=1

∫
�

Aij(x, y, aij)ρj(y, t) dy , (1.2)

θ i(ρ, a; x) =
M∑

j=1

∫
�

Kij(x, y, aij)ρj(y, t) dy , (1.3)

where Aij and Kij are interaction potentials, to be defined later. In (1.1), μρi indicates the mean of
ρi . The term aij represents the Euclidean distance between agents i and j in the network space, i.e.
aij =| ai − aj |, coinciding with aji by construction. In (1.1) we are not imposing boundary conditions.
However, we are interested in the case where individual opinions do not exit the considered interval. We
will take care of the proper boundary conditions to be imposed on (1.1) in the following.

The Interaction Potentials: Diffusion Mobility and Transport
The operators βi and θ i appearing in the evolution of the opinion distribution are related to the terms
of diffusion mobility and transport, respectively. The resulting equation combines these terms in an
aggregation-diffusion manner. Both operators have a nonlocal nature. The diffusion mobility term
depends on the vector ρ and introduces a cross-diffusion mechanism affecting the system’s opinion
evolution. The terms Aij and Kij represent the interaction kernels, applicable to both social networks
and social media descriptions. Importantly, they depend on both the distance between opinions and the
distance between agents in the network space.

https://doi.org/10.1017/S0956792524000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000093


European Journal of Applied Mathematics 751

In Section 4, we define the kernels explicitly and we give the interpretation in relation to social
network’s and social media’s structures.

Furthermore, if βi ≡ 1 in (1.1) for all i, the diffusion terms become a one-dimensional Laplacian.
The natural question is whether we can consider more general types of nonlinear (possibly degenerate)
diffusion. In what follows, we consider the general diffusion terms below

∂x

(
βi(ρ, a; x)∂x�

i(ρi)
)

Here, �i represents nonlinear functions, refer to hypothesis (Diff) below for a precise statement. The
minimal assumptions on �i include Lipschitz regularity and nondecreasing monotonicity. This class of
diffusion includes the classical porous medium equations (one-point degeneracy), the two-phase reser-
voir flow equations (two-point degeneracy) and the so-called strongly degenerate diffusion equations
where �i(s) = 0 for s ∈ [s1, s2].

1.3. The goal of the model

This model aims to describe common and general phenomena emerging in the last two decades due
to the increasingly widespread use of social networks and social media. Specifically, it focuses on the
changes in the epistemic process caused by such technology. Through the DPA scheme and numeri-
cal simulations, we aim to observe the segregation of the population or network into distinct opinion
bubbles. Additionally, maintaining a highly general model based on attraction and repulsion principles,
we aim to observe the radicalisation and polarisation of opinions based on network connectivity. In
other words, we seek to examine the tendency of the hyperconnected society towards a more polarised
distribution of opinions and a network divided into large opinion clusters.

Polarisation, Radicalisation and Segregation
Polarisation is the inclination of an individual or a group of individuals to adopt very extreme opinions,
generally in stark opposition to the majority who do not share the same opinion. Another phenomenon
often confused with polarisation is radicalisation. Radicalisation involves the tendency to become more
entrenched in one’s opinion and less prone to change. For example, a highly radicalised person is not
subject to polarisation, but what often happens is that polarisation occurs first, followed by radicalisation,
leading to the creation of extremist groups. Segregation, on the other hand, is not related to opinion but
to the network. In this work, segregation refers to the tendency of the network to develop groups that
share the same opinion. However, it is important to note that sharing the same opinion does not imply
belonging to the same group since the network can split into multiple opinion balls not connected in
terms of interactions.

Observing these phenomena without imposing them from a modelling perspective but maintain-
ing a very general description based on the epistemic process of the individual rather than population
behaviour is the applied goal of this work.

1.4. Structure and results

The paper pursues a dual objective. Firstly, we aim to establish the existence of solutions for the system
(1.1) within an appropriate functional framework. Secondly, we seek to numerically investigate solutions
to the system in order to determine its ability to replicate processes such as polarisation, radicalisation,
fragmentation and clustering of the population. Similar inquiries have been recently explored in [40].

To establish the existence of solutions for system (1.1), we draw inspiration from the deterministic
particle approximation (DPA) developed for similar equations in [25–27]. The method, along with its
various modifications, traces back to seminal works [29, 46]. It demonstrates the convergence of the
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resulting equation and has been applied in various contexts such as traffic flow [22, 23] and local or
nonlocal transport equations [21, 24, 27].

The DPA is then employed for numerical simulations of (1.1). While the numerical scheme can be
connected to moving mesh schemes applied in diverse contexts, its limitations should be acknowledged,
especially in one-dimensional applications.

The paper is organised as follows. In Section 2, we introduce the rigorous Deterministic Particle
Approximation (DPA). Preliminaries on optimal transportation theory are presented along with the main
assumptions. The section concludes with the statement of the main result in Theorem 2.2. Section 3
focuses on the proof of the main theorem by providing fundamental a priori estimates, allowing the
deduction of convergence of properly reconstructed piecewise constant densities to weak solutions.
Finally, in Section 4, we utilise the DPA numerical scheme to simulate an explicit model for opinion
formation on an evolving network. The goal is to study radicalisation, polarisation and fragmentation of
the population while altering its open-mindedness and the radius of interaction.

2. Rigorous formulation, assumptions and main result
2.1. Deterministic Particle Approximation (DPA)

We begin this section with the rigorous formulation of the particle evolution already sketched in the
Introduction. We consider in R

d a network of M nodes and we locate an agent ai ∈R
d with i ∈M =

{1, . . . , M} in each node. Assume that each agent may have opinion ranging on a compact set � ⊂R,
without loss of generality we consider � = [−1, 1]. To each agent we associate a finite opinion strength
σ i and an initial opinion density ρ̄i(x) ∈ L1(�) such that

σ i =
∫

�

ρ̄i(y) dy , ∀i ∈M .

Given N ∈N, we consider the strength fractions σ i
N = σ i/N, and we introduce for each i ∈M the {x̄i

k}
partition of � with k ∈N = {0, . . . , N} given by

x̄i
0 = −1 ,

x̄i
k = inf

{
x ∈ � :

∫ x

x̄k−1

ρ̄i(y) dy = σ i
N

}
, k ∈N \ {0, N}

x̄i
N = 1 .

(2.1)

Note that x̄i
k < x̄i

k+1, for any i ∈M and k ∈N \ {N}. This procedure allows to associate with each agent
a finite number of time-evolving opinions xi

k (t). Assume that initially all the nodes āi = ai(t = 0) are
located in a certain smooth and bounded domain 	 ∈R

d. We then let the nodes evolve in time depending
on the distances aij between the agents ai and aj and the mean opinion of the agents.

We define the discrete opinion densities for the i-th agent as

ρi
k (t) = σ i

N

|Iik (t)| , with Iik (t) = [xi
k (t), xi

k+1(t)) (2.2)

with k ∈N \ {N}, and the discrete mean opinions by

μN

xi (t) = 1

N + 1

∑
k∈N

xi
k (t) , (2.3)

where aij

N is the Euclidean distance between the agents after the opinion discretisation. In the following,
we may denote with xi,N(t) := (

xi
0(t), . . . , xi

N(t)
)
, for all i ∈M.
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Thus, we consider the following system of ODEs

ẋi
k (t) = βi

k

σ i
N

(
�i(ρi

k−1) − �i(ρi
k )
)+ θ i

k (2.4a)

ȧi
N(t) =

∑
j∈M

V(μN

xi , μN

xj , aij

N ), (2.4b)

for k ∈N \ {0, N} and i ∈M, endowed with the boundary conditions

ẋi
0(t) = 0 , ẋi

N(t) = 0 for all i ∈M, (2.5)

and initial conditions

xi
k (0) = x̄i

k , ai
N(0) = āi for all i ∈M, k ∈N. (2.6)

In (2.4), we have denoted with βi
k (t) the discrete diffusion mobilities

βi
k (t) =

∑
j∈M

∑
l∈N

σ
j

N Aij(xi
k , xj

l , aij

N ) , (2.7)

and with �i the nonlinear diffusion for the agent i, see assumption (Dif) below. The contribution of the
diffusion at the particle level can be interpreted assuming that opinions evolve with a speed equal to the
osmotic velocity associated with the diffusion process, see [25, 26, 46].

Functions θ i
k (t) describe the discrete transports and are given by

θ i
k (t) =

∑
j∈M

∑
l∈N

σ
j

N Kij(xi
k , xj

l , aij

N ) . (2.8)

We briefly comment on the boundary conditions in (2.5). As mentioned earlier, in (1.1) we did not
introduce any boundary conditions. However, we are interested in the case where individual opinions
do not exit the considered interval. Condition (2.5) enforces zero velocity for extreme opinions, which,
along with the results of Lemma 3.2 on the preservation of the order of opinions, implies zero-flux
boundary conditions for the opinion densities, as specified in equation (2.11) below.

2.2. Preliminaries and assumptions

We now present some tools from optimal transport that will be useful in the sequel. The Wasserstein
distance is the right notion of distance for the opinions since it allows to measure the distances between
measures (densities) with same mass. For a fixed mass σ > 0, we consider the space

Mσ = {
μ Radon measure on R : μ ≥ 0 and μ(R) = σ

}
.

Given μ ∈Mσ , we introduce the pseudo-inverse function Xμ ∈ L1([0, σ ] ; R) as

Xμ(z) = inf
{
x ∈R : μ((−∞, x]) > z

}
. (2.9)

In particular, if σ = 1, then M1 is the set of non-negative probability densities on R, and it is possible
to consider the one-dimensional 1-Wasserstein distance between each pair of densities ρ1, ρ2 ∈M1. As
shown in [16], in the one-dimensional setting the p-Wasserstein distance can be equivalently defined in
terms of the L1-distance between the respective pseudo-inverse mappings as

dWp (ρ1, ρ2) = ‖Xρ1 − Xρ2‖Lp([0,1]; R).

For generic σ > 0, we recall the definition for the scaled 1-Wasserstein distance between
ρ1, ρ2 ∈Mσ as

dW1
σ
(ρ1, ρ2) = ‖Xρ1 − Xρ2‖L1([0,σ ]; R), (2.10)

We refer to [4, 47, 55] for a complete presentation of the subject.
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We assume that the initial densities are under the following assumptions:

(In1) ρ̄i ∈ BV(� ; R+) with ‖ρ̄i‖L1(�) = σ i, for some σ i > 0,
(In2) there exists mi, Mi > 0 such that mi ≤ ρ̄i(x) ≤ Mi for every x ∈ �.

Due to technical constraints, initial data with a vacuum region cannot be considered, as evident in the
proof of Proposition 3.6. The lower bound is employed to control the time derivatives of extreme opin-
ion densities ρ̇i

0 and ρ̇i
N . The essential point is the need for either a uniform control over these quantities

or an estimation at an appropriate rate of N. We believe that this technical issue can be resolved, espe-
cially in the case of nonlinear diffusion, where finite speed of propagation is known and not utilised in
the numerical Section. However, addressing this matter is currently beyond our capabilities. We now
introduce the assumptions for the diffusive and transport operators.

(A) We assume that Aij : � × � ×R→R is a C1 non-negative function w.r.t. the first variable and
for all pairs (i, j) it exists cA > 0 such that

|Aij(xi
k∗ , xj

s∗ , aij) − Aij(xi
k, xj

s, aij)| ≤ cA

(|xi
k∗ − xi

k| + |xj
s∗ − xj

s|
)

,

and it exists c1,A > 0 such that

|∂1Aij(xi
k∗ , xj

s∗ , aij) − ∂1Aij(xi
k, xj

s, aij)| ≤ c1,A|xj
s∗ − xj

s|,
for all (k, k∗) and (s, s∗) pairs of indexes in N ×N, where ∂1Aij denotes the derivatives with
respect to the first entrance.

(K) We assume that Kij : � × � ×R→R is bounded, continuous, and for all pairs (i, j), it exists
cK > 0 such that

|Kij(xi
k∗ , xj

s∗ , aij) − Kij(xi
k, xj

s, aij)| ≤ cK

(|xi
k∗ − xi

k| + |xj
s∗ − xj

s|
)

,

for all (k, k∗) and (s, s∗) pairs of indexes in N ×N. We further assume that

Kii(x, x, aii) = 0.

(Dif) �i : [0, ∞) →R is a nondecreasing Lipschitz function, with �i(0) = 0.
(V) The network velocity V is a C1 bounded function on � × � ×R

+.

2.3. Continuous reconstruction and main result

Given the preliminary assumptions, we give the definition of weak solutions to equation (1.1) together
with the statement of the main result.

By setting �T = [0, T] × � and ∂�T = [0, T] × {−1, 1}, and considering ρ̄i ∈ L1 ∩ L∞(�) and āi ∈
	 ⊂R

d, we are going to deal with the following PDE-ODE system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
i = ∂x

(
βi(ρ, a; x)∂x�

i(ρi)
)− ∂x

(
ρiθ i(ρ, a; x)

)
, (t, x) ∈ �T ,

∂tai(t) = ∑
j∈M

V(μρi (t), μρj (t), aij), t ∈ [0, T],

βi(ρ, a; x)∂x�
i(ρi(t, x)) − ρi(t, x)θ i(ρ, a; x) = 0, (t, x) ∈ ∂�T ,

ρi(0, ·) = ρ̄i , x ∈ �,

ai(0) = āi ,

(2.11)

for all i ∈M, where the bold notation refers to the vectors ρ = (ρ1, . . . , ρM) and the set a = (a1, . . . , aM).
We state the notion of weak solution for the system (2.11) as follows

Definition 2.1 (Weak solution). We say that the couple (ρ, a) is a weak solution of (1.1) in the
formulation (2.11) if
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• ρi ∈ L∞ ∩ BV(�T), with ρi(0, ·) = ρ̄i, for all i ∈M

• ai ∈ C2
(
[0, T] ; Rd

)
,

and taken ζ ∈ C∞
0 (�T), for all i ∈M it satisfies∫

�T

ρi(t, x)∂tζ (t, x) + ρi(t, x)θ i(ρ, a; x)∂xζ (x) dx dt

+
∫

�T

�i
(
ρi(t, x)

) (
∂xβ

i(ρ, a; x)∂xζ (t, x) + βi(ρ, a; x)∂xxζ (t, x)
)

dx = 0
(2.12)

and

ai(t) = āi +
∑
j∈M

∫ t

0

V
(
μρi (τ ), μρj (τ ), aij(τ )

)
dτ (2.13)

for all t ∈ [0, T].

Given the discrete opinion densities defined in (2.2), we consider the following piecewise constant
density reconstructions

ρi,N(t, x) =
∑

k∈N\{N}
ρi

k (t) χIik (t)(x) . (2.14)

The main result of the paper reads as follows

Theorem 2.2. Given M ∈N and T > 0 fixed, consider aij , Kij , V and �i under assumptions (A), (K),
(V) and (Dif ), respectively, for all i, j ∈M. Let ρ̄i : � →R under assumptions (In1) and (In2) and
āi ∈ 	 ⊂R

d for all i ∈M. Then, for all i ∈M, when N → ∞ the density ρi,N introduced in equation
(2.14) converges (up to subsequence) strongly to a non-negative function ρi ∈ L∞ ∩ BV(�T) such that
‖ρi‖ = σ i and the solution to equation (2.4b) ai

N converges to ai ∈ C2
(
[0, T] ; Rd

)
where the couple

(ρ, a) is a solution to equation (1.1) in the sense of Definition 2.1.

Note that non-negativeness of the limit functions ρ easily follows by construction, see also (3.4)
below, as well as the mass preservation. To avoid lack of notation, we highlight that from now on while
considering the limit N → ∞ we refer to the limit to infinity of the cardinality of the set of indexes
N = {0, . . . , N}.

3. Proof of the main result
3.1. Basic estimates

We start providing some fundamental estimates that allow to deduce the well-posedness of (2.4) and of
the discrete densities (2.2). Let us recall that in (2.2), we introduced the intervals

Iik (t) = [
xi

k (t), xi
k+1(t)

)
, |Iik |(t) = |xi

k+1 − xi
k |, (3.1)

for i ∈M and k ∈N \ {N}. The first step is to prove that such intervals are well-defined. We start with
the following auxiliary lemma, that follows directly from Assumption (K)

Lemma 3.1. With the setting of the Main Theorem 2.2, and referring to the previous definitions, given
Kij under Assumption (K), then it exists C > 0 such that the following inequality holds

|θ i
k+1(t) − θ i

k(t)| ≤ C|xi
k+1(t) − xi

k(t)| ∀i ∈M, ∀t ∈ [0, T] , (3.2)

with C = cKσM, where σM =∑
j∈M σj .

Lemma 3.2 (Ordering preservation). Assume Aij and Kij under assumptions (A) and (K), respec-
tively, for all i, j ∈M. Let us consider the DPA system described by (2.4) with initial conditions x̄i
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constructed in (2.1), for i ∈M, and a finite time T > 0. Then, for all t ∈ [0, T) there is a positive con-
stant μ independent from N – and so from N too – such that the distance between two adjacent opinions
xi

k , xi
k+1 ∈ C[0, T] is bounded from below by(

xi
k+1 − xi

k

)
(t) ≥ min

i,k
(x̄i

k+1 − x̄i
k ) e−μT ,

for all k ∈N \ {N} and i ∈M.

Proof. Given T > 0 and i ∈M, we define τ1 as

τ1 = inf
{
s ∈ (0, T) : ∃ k ∈N\{N} s.t. (xi

k+1 − xi
k )(s) = (x̄i

k+1 − x̄i
k ) e−μs

}
,

then the same index k corresponds also to the one of the maximum ρi
k at time τ1 because Ii

k is the
minimum interval of the N partition of � for the i-th agent at time τ1.

At this point, let assume that exists τ2 ∈ (τ1, T) such that(
xi

k+1 − xi
k

)
(s) < (x̄i

k+1 − x̄i
k )e−μs ∀s ∈ (τ1, τ2) .

We show that the existence of τ2 would bring to a contradiction. Let us consider the evolution of the
interval Ii

k

d

dt

[
eμt
(
xi

k+1 − xi
k

)
(t)
]
|t=τ1

= eμτ1
βi

k+1(τ1)

σ i
N

[
�i(ρi

k (τ1)) − �i(ρi
k+1(τ1))

]+ eμτ1θ i
k+1(τ1)

− eμτ1
βi

k (τ1)

σ i
N

[
�i(ρi

k−1(τ1)) − �i(ρi
k (τ1))

]− eμτ1θ i
k (τ1)

+ μeμτ1 (xi
k+1(τ1) − xi

k (τ1)) .

At time t = τ1, as highlighted before, by construction of the discrete densities in (2.2) we have ρi
k ≥ ρi

l

for all l �= k.
Then, the monotonicity of �i gives

d

dt

[
eμt
(
xi

k+1 − xi
k

)
(t)
]
|t=τ1

≥ eμτ1
[
μ
(
xi

k+1(τ1) − xi
k (τ1)

)+ (
θ i

k+1(τ1) − θ i
k (τ1)

)]
.

Thanks to (3.2) we get
d

dt

[
eμt
(
xi

k+1 − xi
k

)
(t)
]
|t=τ1

≥ eμτ1 (μ − C)(xi
k+1(τ1) − xi

k (τ1)) ≥ 0 ,

which holds while choosing μ ≥ C. At this point, we fix t∗ ∈ (τ1, τ1 + δ < τ2) with δ as small as we want,
and we get

eμt∗ (xi
k+1 − xi

k

)
(t∗) = eμτ1

(
xi

k+1 − xi
k

)
(τ1) +

∫ t∗

τ1

d

ds

[
eμt
(
xi

k+1 − xi
k

)
(s)
]

ds ,

due to the positiveness of the last term we get the wished result which show the absurd,(
xi

k+1 − xi
k

)
(t∗) ≥ e−μt∗ (x̄i

k+1 − x̄i
k

)
,

this proves that Ii
k(t) cannot decrease faster than Ii

k(0)e−μt. Nevertheless, this does not deny the existence
of an index k̃ such that the interval Ii

k̃
(t), satisfying Ii

k̃
(τ1) > Ii

k̃
(0), decreases faster than Ii

k(t). This means
that could exists τ̃1 > τ1 for which Ii

k̃
(τ̃1) = Ii

k̃
(0), with τ̃1 < T . At this point, we should prove that there

exists μ̃ such that Ii
k̃
(t) ≥ e−μ̃tIi

k̃
(0) for all t ∈ (τ̃1, T). To prove it, we repeat the same procedure explained

before but defining τ̃1 considering the set of indexes N/{k}. The final exponential rate will be the largest
μ among those considered.

Let us also consider the case with k not unique, i.e. for τ1 there are several intervals satisfying the
definition of τ1, the set of these indexes is denoted by J = {kj}. If there is at least one kj∗ not adjacent to
other indexes of {kj}, then we take that index and we follow the proof above. In the event that there are
three indexes of {kj} in a row, we take without distinction that one with the fastest decrease in time of
the interval Ii

kj
. At this point, we are back to the steps shown above. This concludes the proof.
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Remark 3.3. A similar procedure of the one in Lemma 3.2 allows to produce the upper bound on discrete
opinions

(
xi

k+1 − xi
k

)
(t) ≤ max

k
(x̄i

k+1 − x̄i
k ) eCT ∀t ∈ [0, T] . (3.3)

This estimate, together with the one in Lemma 3.2, allows to deduce the following bounds on the discrete
densities in (2.2)

mie−CT ≤ ρi
k ≤ MieμT , for all i ∈M, k ∈N \ {N} , (3.4)

with mi and Mi in assumption (In2).

Lemma 3.4 (Velocity boundedness). Fix T > 0 and assume Aij and Kij , respectively, under assump-
tions (A) and (K) for all (i, j) ∈M ×M. Then, solutions to system (2.4) satisfy

sup
t∈[0,T]

‖ẋi,N(t)‖∞ < +∞, for all i ∈M.

Proof. Using the equation for the evolution of the partitioning, we get

1

2

d

dt

(
ẋi

k (t)
)2 ≤ xi

k

(
βi

k

σ i
N

(
�i(ρi

k−1) − �i(ρi
k )
)− θ i

k

)

≤ |xi
k |
(

1

σ i
N

‖βi
k ‖∞Lip

(
�i
) ∣∣∣ρi

k − ρi
k−1

∣∣∣+ ∣∣∣θ i
k

∣∣∣)
≤c1|xi

k |2 + c2

∣∣∣ρi
k − ρi

k−1

∣∣∣2 + c3

∣∣∣θ i
k

∣∣∣2,

for some constants c1, c2, c3 > 0. Then, the thesis follows from equation (3.4), assumption (K) and the
fact that xi

k ∈ � because (2.5) and Lemma 3.2.

We now have all the tools needed to prove the convergence in some strong sense for the piecewise
constant densities of equation (2.14). We based our strategy on the ones proposed in the context of DPA,
see for instance the proofs in [25, 27], that are using the generalised Aubin-Lions lemma version in [45],
that we report here in a simplified version adapted to our setting.

Theorem 3.5. Let T > 0 be fixed, and ρN(t, ·) : [a, b] →R be a sequence of non-negative probabil-
ity densities for every t ∈ [0, T] and for every N ∈N, where N = {0, . . . , N}. Moreover, assume that
‖ρN(t, ·)‖L∞ ≤ M for some constant M independent on t and N. If

(I) supN

∫ T

0
TV[ρN(t, ·)]dt < ∞,

(II) dW1 (ρN(t, ·), ρN(s, ·)) < C|t − s| for all t, s ∈ [0, T], where C is a positive constant independent
on N,

then ρN is strongly relatively compact in L1([0, T] × [a, b]).

The result reads as follows

Proposition 3.6. Let ρi,N be defined as in equation (2.14) for i ∈M. Then, there exists ρi ∈ L1 ∩
L∞(�T) such that ‖ρi,N − ρi‖L1 → 0 as N → ∞.

Proof. The proof reduces to the application of Theorem 3.5, in order to show that we can apply that
result we first prove that

sup
N

∫ T

0

TV[ρi,N(t, ·)] dt ≤ ∞ . (3.5)
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To show this result, we look for a Grönwall type inequality. We start performing the following
preliminary computation

ρ̇i
k = − ρi

k

|Iik |
(
ẋi

k+1(t) − ẋi
k (t)
)

= − ρi
k

|Iik |
( βi

k+1

σ i
N

(
�i
(
ρi

k

)− �i
(
ρi

k+1

))− βi
k

σ i
N

(
�i
(
ρi

k−1

)− �i
(
ρi

k

))
︸ ︷︷ ︸

:=Bi
k

+ (θ i
k+1 − θ i

k )︸ ︷︷ ︸
:=|Iik |�i

k

)

= − ρi
k

|Iik |
Bi

k + ρi
k �

i
k .

The first step consists of proving the Lipschitz continuity in time of t → TV[ρi,N
t (t, ·)]. The total

variation can be explicitly computed as

TV[ρi,N(t, ·)] = ρi
0 (t) +

∑
k∈N\{0,N}

|ρi
k (t) − ρi

k−1(t)| + ρi
N−1(t).

From the boundedness in Lemmas 3.2 and 3.4, for all s, t ∈ (0, T), we estimate

|ρi
k (t) − ρi

k (s)| ≤
∣∣∣∣
∫ t

s

ρ̇i
k (τ ) dτ

∣∣∣∣≤
∫ t

s

ρi
k

|Iik |
∣∣ẋi

k+1(t) − ẋi
k (t)
∣∣ dτ

≤ 2
Mi

min
k,i

|x̄i
k+1 − x̄i

k |
sup

τ∈[0,T]
‖ẋi,N(τ )‖∞|t − s|.

Then, it follows∣∣TV[ρi,N(t, ·)] − TV[ρi,N(s, ·)]∣∣≤|ρi
0 (t) − ρi

0 (s)| + |ρi
N−1(t) − ρi

N−1(s)|
+

∑
k∈N\{0,N}

(|ρi
k (t) − ρi

k (s)| + |ρi
k−1(t) − ρi

k−1(s)|)
≤ 2 max

k,i

Mi

min
k,i

|x̄i
k+1 − x̄i

k |
sup

τ∈[0,T]
‖ẋi,N(τ )‖∞|t − s|,

that proves the asserted Lipschitz continuity.
We now consider the time derivative

d

dt
TV[ρi,N(t, ·)] = ρ̇i

0 (t) +
∑

k∈N\{0,N}
sign

(
ρi

k (t) − ρi
k−1(t)

) (
ρ̇i

k (t) − ρ̇i
k−1(t)

)+ ρ̇i
N−1(t) .

Rearranging the sum and defining the operator

sk =

⎧⎪⎨
⎪⎩

1 − sign
(
ρi

1 (t) − ρi
0 (t)

)
k = 0,

sign
(
ρi

k (t) − ρi
k−1(t)

)− sign
(
ρi

k+1(t) − ρi
k (t)

)
, k = 1, . . . , N − 2,

1 + sign
(
ρi

N−1(t) − ρi
N−2(t)

)
, k = N − 1,

with we can rewrite the previous equation as

d

dt
TV[ρi,N

t (t, ·)] = s0ρ̇
i
0 (t) +

N−2∑
k=1

skρ̇
i
k (t) + sN−1ρ̇

i
N−1(t) . (3.6)

At this point, we show that the terms involving the diffusion are always negative, i.e.

−sk

ρi
k

|Iik |
Bi

k ≤ 0 k = 2, . . . , N − 2.

In order to prove this statement, we should distinguish different cases. First, we observe that sk is always
zero if ρi

k−1 < ρi
k < ρi

k+1 or ρi
k+1 < ρi

k < ρi
k−1. In the other two cases, namely ρi

k < ρi
k−1 and ρi

k < ρi
k+1,
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or ρi
k−1, ρi

k+1 < ρi
k and ρi

k−1 < ρi
k , the monotonicity of �i implies, respectively, sk ≤ 0 and Bi

k ≤ 0, and
sk ≥ 0 and Bi

k ≥ 0, and hence, the negativity of the diffusion contribution is proved.
Concerning the term involving �i

k , we can rearrange the sum as follows

N−2∑
k=1

skρ
i
k �

i
k = sign(ρi

1 − ρi
0 )ρi

1 �
i
1 − sign(ρi

N−1 − ρi
N−2)ρ

i
N−2�

i
N−2

+
N−2∑
k=2

sign(ρi
k − ρi

k−1)(ρi
k − ρi

k−1)�i
k

+
N−2∑
k=2

sign(ρi
k − ρi

k−1)(�i
k − �i

k−1)ρi
k−1.

Observing that |�i
k | ≤ C because of equation (3.2) and that

∣∣�i
k − �i

k−1

∣∣≤ ∣∣∣∣ 1

|Iik |
[(

θ i
k+1 − θ i

k

)− (
θ i

k − θ i
k−1

)]∣∣∣∣
+
∣∣∣∣
(

1

|Iik |
− 1

|Iik−1|
) (

θ i
k − θ i

k−1

)∣∣∣∣
≤C

ρi
k

σ i
N

(|Iik |2 + |Iik−1|2 + ∣∣|Iik | − |Iik−1|
∣∣)+ C

σ i
N

∣∣ρi
k − ρi

k−1

∣∣ |Iik−1|,

we can bound

∣∣∣∣∣
N−2∑
k=1

skρ
i
k θ

i
k

∣∣∣∣∣≤2MiC (1 + |�|) + 3C TV[ρi,N(t)].

We can finally estimate

d

dt
TV[ρi,N

t (t, ·)] ≤2C
Mi

mi

(
ρi

0 (t) + ρi
N−1(t)

)+ 2MiC (1 + |�|) + 3C TV[ρi,N(t)] ,

and thus, equation (3.5) follows by Grönwall type argument.
We now prove that the second requirement of Theorem 3.5 holds, namely there exists a positive

constant C such that

dW1

(
ρi,N(t, ·), ρi,N(s, ·))≤ C|t − s| ∀ s, t ∈ [0, T] . (3.7)

In order to do this, we use the isometry of equation (2.10), where the pseudo-inverse function for ρi,N

is given by

Xρi,N (m, t) =
∑

k∈N\{N}

(
xi

k (t) + m − kσ i
N

ρi
k (t)

)
χ[

kσ i
N ,(k+1)σ i

N

](m) .
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Then, for any t > s, we have

dW1

(
ρi,N(t, ·), ρi,N(s, ·))≤

∑
k∈N\{N}

∫ (k+1)σ i
N

kσ i
N

∣∣∣xi
k (t) − xi

k (s)
∣∣∣ dm

+
∑

k∈N\{N}

∫ (k+1)σ i
N

kσ i
N

∣∣∣∣∣(m − kσ i
N )

(
1

ρi
k (t)

− 1

ρi
k (s)

)∣∣∣∣∣ dm

≤
∑

k∈N\{N}
σ i

N

∫ t

s

∣∣∣ẋi
k (τ )

∣∣∣ dτ + (σ i
N )2

2

∫ t

s

∣∣∣∣∣ d

dτ

1

ρi
k (τ )

∣∣∣∣∣ dτ

≤ 3σ i
N

∑
k∈N\{N}

∫ t

s

∣∣∣ẋi
k (τ )

∣∣∣ dτ

≤ C|t − s|,
in view of Lemma 3.4.

Once proved the bounds described by equations (3.5) and (3.7), we can apply Theorem 3.5, which
concludes the proof.

Lemma 3.7 (Convergence of momenta). Given μρi (t) and μN

xi (t), respectively,

μρi (t) = 1

σ i|�|
∫

�

ρi(y, t)y dy, μN

xi (t) = 1

N + 1

N∑
k=0

xi
k (t),

we have that

lim
N→∞

(
μρi (t) − μN

xi (t)
)= 0

for all t > 0.

Proof. We recall that xi
0 + xi

N = 0, and � = [−1, 1], from the definitions we have

μN

xi (t) = 1

2(N + 1)

∑
k∈N\{N}

(xi
k+1 + xi

k ) = 1

2(N + 1)

∑
k∈N\{N}

(xi
k+1 + xi

k )(xi
k+1 − xi

k )

xi
k+1 − xi

k

= N

(N + 1)

∑
k∈N\{N}

ρi
k

σ i

(xi
k+1)2 − (xi

k )2

2
= N

(N + 1)

∑
k∈N\{N}

ρi
k (t)

σ i

∫ ∞

−∞
x χIik

dx

= N

(N + 1)
μρi,N (t) ,

where we used equation (2.14). We conclude that there exists a constant depending only on the domain
� such that

|μρi (t) − μN

xi (t)| ≤
∫

�

|ρi − N

N + 1
ρi,N | |x| dx

≤ C(|�|)‖ρi − ρi,N‖L1 + o

(
C

N

)
,

which concludes the proof.

The following Proposition concerns the convergence of the approximated nodes ai
N.

Proposition 3.8. Let T > 0 be fixed and consider V under assumption (V). Then, for any i ∈M, there
exists ai ∈ C([0, T]) such that ai

N → ai as N → ∞ uniformly in [0, T]. Moreover, the limits ai satisfy
(2.13) for all t ∈ [0, T].
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Proof. We first notice that from (2.4b) and the boundedness of V, we have the uniform bound

|ai
N(t)| ≤ |āi| + T‖V‖∞, with t ∈ [0, T],

for all i ∈M uniformly in N. Thus, there exist ai such that ai
N(t) pointwise converges (up to

subsequences) to ai(t) as N → ∞. Consider now N1, N2 ∈N, then∑
i∈M

|ai
N1

(t) − ai
N2

(t)| ≤
∑
i,j∈M

∫ t

0

∣∣V(μN1
xi , μN1

xj , aij

N1
) − V(μN2

xi , μN2
xj , aij

N2
)
∣∣ dτ

≤C
∑
i,j∈M

∫ t

0

∣∣μN1
xi (τ ) − μ

N2
xi (τ )

∣∣+ ∣∣μN1
xj (τ ) − μ

N2
xj (τ )

∣∣ dτ

+ C
∑
j∈M

∫ t

0

∣∣aij

N1
(τ ) − aij

N2
(τ )
∣∣ dτ

≤2C
∑
i∈M

∑
l=1,2

‖ρi − ρi,Nl‖L1(�T ) + 2C
∫ t

0

∑
i∈M

|ai
N1

(t) − ai
N2

(t)| dτ ,

where we used the estimate from the proof of Lemma 3.7 and the fact that by straightforward
manipulations we have∑

i,j∈M

∣∣aij

N1
(τ ) − aij

N2
(τ )
∣∣= ∑

i,j∈M

∣∣‖ai
N1

(τ ) − aj

N1
(τ )‖ − ‖ai

N2
(τ ) − aj

N2
(τ )‖∣∣

=
∑
i,j∈M

∣∣‖ai
N1

(τ ) ± ai
N2

(τ ) ± aj

N2
(τ ) − aj

N1
(τ )‖ − ‖ai

N2
(τ ) − aj

N2
(τ )‖∣∣

≤
∑
i,j∈M

∣∣‖ai
N1

(τ ) − ai
N2

(τ )‖ + ‖ai
N2

− aj

N2
(τ )‖

− ‖ai
N2

(τ ) − aj

N2
(τ )‖ + ‖aj

N2
(τ ) − aj

N1
(τ )‖∣∣

≤
∑
i,j∈M

∣∣ai
N1

(τ ) − ai
N2

(τ )
∣∣+ ∣∣aj

N2
(τ ) − aj

N1
(τ )
∣∣

≤ 2
∑
i∈M

|ai
N1

(t) − ai
N2

(t)| .

Thus, by using the integral version of Gronwall’s inequality we can deduce

sup
t∈[0,T]

∑
i∈M

|ai
N1

(t) − ai
N2

(t)| ≤2C
∑
i∈M

∑
l=1,2

‖ρi − ρi,Nl‖L1(�T )e
2CT .

and then

sup
t∈[0,T]

|ai
N1

(t) − ai
N2

(t)| ≤2C
∑
i∈M

∑
l=1,2

‖ρi − ρi,Nl‖L1(�T )e
2CT ,

that ensure the uniform convergences of ai
N1

to ai, for all i ∈M.
In order to show that ai satisfies (2.13), it is enough to observe that we can invoke the dominated

convergence theorem since by the continuity of V and the uniform converges proved we have that

V(μN

xi , μN

xj , aij

N ) → V(μρi , μρj , aij) a.e. in t ∈ [0, T],

and V(μN

xi , μN

xj , aij

N ) is uniformly bounded w.r.t. N. Thus,∫ t

0

V(μN

xi , μN

xj , aij

N ) dτ →
∫ t

0

V(μρi , μρj , aij) dτ ,

for all t ∈ [0, T].
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We now prove that the empirical measures associated with the solution of equation (2.4a) and the
piecewise constant densities in equation (2.14) share the same limit with respect to a suitable topology.

Lemma 3.9. For any T > 0, the empirical measures associated with the solution of equation (2.4a),
defined by

ρ̃i,N(t, x) = σ i
N

∑
k∈N

δxik (t)(x), i ∈M, (3.8)

satisfy

dW1

(
ρ̃i,N(t, ·), ρi(t, ·))→ 0, as N → ∞,

for all t ∈ [0, T], where ρi is the limit obtained in Proposition 3.6.

Proof. We take again advantage of the isometry between the 1−Wasserstain space for probability mea-
sures and the L1 space in the space pseudo-inverse functions by noticing that the pseudo-inverse of an
empirical measure is piecewise constant and then

dW1

(
ρ̃i,N(t, ·), ρi,N(t, ·))=‖Xρ̃i,N (t, ·) − Xρi,N (t, ·)‖L1([0,σ i ])

≤
∑

k∈N\{N}

∫ (k+1)σ i
N

kσ i
N

∣∣∣∣∣(m − kσ i
N )

1

ρi
k (t)

∣∣∣∣∣ dm

=σ i
N

2
|�|.

The statement then follows from a triangulation argument.

3.2. Convergence to weak solutions

With aN we denoted the vector (ai
N)i∈M, of agents with piecewise constant opinion distribution ρi,N,

while a is related to the vector of continuous distributions ρ. This distinction is not stressed in the rest
of the paper where the context does not allow misunderstanding.

Remark 3.10. We notice that evaluating the operator βi in (3.8) we have

βi(ρ̃N , aN ; xi
k ) =

∑
j∈M

∫
�

Aij(xi
k , y, aij

N )ρ̃j,N(y, t) dy

=
∑
j∈M

∑
l∈N

σ
j

N Aij(xi
k , xj

l , aij

N )

=βi
k .

(3.9)

Moreover,

∂xβ
i
(
ρ̃

N , aN ; x
)=

∑
j∈M

∫
�

∂1Aij(x, y; aij

N )ρ̃j,N(t, y) dy, (3.10)

Lemma 3.11. Let T > 0, and consider the kernels Aij , Kij under assumptions (A) and (K), respec-
tively. Let ρi,N and ρ̃i,N be the sequences defined in equations (2.14) and (3.8), respectively, and their
limits ρi given by Proposition 3.6 and Lemma 3.9, for all i ∈M. Then, for every ζ ∈ C∞

0 (�T) we have

∫
�T

ρi,N∂tζ dx dt →
∫

�T

ρi∂tζ dx dt (3.11)

∫
�T

�i
(
ρi,N

)
∂xβ

i
(
ρ̃

N, aN; x
)
∂xζ dx dt →

∫
�T

�i
(
ρi
)
∂xβ

i (ρ, a; x) ∂xζ dx dt (3.12)
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∫
�T

�i
(
ρi,N

)
βi
(
ρ̃

N, aN; x
)
∂xxζ dx dt →

∫
�T

�i
(
ρi
)
βi (ρ, a; x) ∂xxζ dx dt (3.13)

∫
�T

ρi,Nθ i
(
ρ̃

N, aN; x
)
∂xζ dx dt →

∫
�T

ρiθ i (ρ, a; x) ∂xζ dx dt (3.14)

as N → ∞.

Proof. We only prove equation (3.12), since equations (3.13) and (3.14) follow from similar argument,
and equation (3.11) is a direct consequence of the L1 strong compactness proved in Proposition 3.6. We
first split the terms as following∣∣∣∣

∫
�T

(
�i
(
ρi,N

)
∂xβ

i
(
ρ̃

N, aN; x
)− �i

(
ρi
)
∂xβ

i (ρ, a; x)
)
∂xζ (t, x)dx dt

∣∣∣∣
≤
∣∣∣∣
∫

�T

(
�i
(
ρi,N

)− �i
(
ρi
))

∂xβ
i
(
ρ̃

N, aN; x
)
∂xζ (t, x) dx dt

∣∣∣∣
+
∣∣∣∣
∫

�T

�i
(
ρi
) (

∂xβ
i
(
ρ̃

N, aN; x
)− ∂xβ

i (ρ, a; x)
)
∂xζ (t, x)dx dt

∣∣∣∣
= |I| + |II|.

We now treat the two terms separately. Assumption (A) and equation (3.10) ensure the following bound

|I| ≤
∑
j∈M

∫
�T

∣∣�i
(
ρi,N

)− �i
(
ρi
)∣∣ ∫

�

∣∣∂1Aij(x, y; aij)ρ̃j,N(t, y) dy
∣∣ |∂xζ (t, x)| dx dt

≤C‖ρi,N − ρi‖L1(�T ).

where C is a constant depending on
∥∥∂1Aij

∥∥
∞, ‖∂xζ‖∞, Lip

(
�i
)

and σM. In order to bound the second
integral, let us introduce �i,N an optimal transport plan between ρ̃i,N and ρi. Then, we have

|II| ≤
∑
j∈M

∫
�T

�i
(
ρi
) ∫

�2

∣∣∂1Aij(x, y; aij

N ) − ∂1Aij(x, z; aij)
∣∣ d�i,N(y, z)|∂xζ | dx dt

≤C
∑
j∈M

∫
�T

∫
�×�

|y − z| d�i,N(y, z) dx dt

≤CM|�|
∫ T

0

dW1 (ρ̃i,N(t, ·), ρi(t, ·)) dt,

where in this case C is a constant depending on ‖ρi‖∞, ‖∂xζ‖∞, and the constant c1,A from Assumption
(A). The convergences in Proposition 3.6 and Lemma 3.9 ensure that equation (3.12) holds.

We are now in the position of proving that the limit densities and nodes satisfy the weak formulation
in the sense of Definition 2.1. More precisely, we are going to show that for N → +∞ we have∫

�T

ρi,N∂tζ + ρi,Nθ i(ρ̃N, aN; x)∂xζ dx dt

+
∫

�T

�i
(
ρi,N

) (
∂xβ

i(ρ̃N, aN; x)∂xζ + βi(ρ̃N, aN; x)∂xxζ
)

dx dt → 0
(3.15)

that combined with the convergences in Lemma 3.11 gives the assertion. We state the following

Proposition 3.12. Given M ∈N, and T > 0 fixed, for all i, j ∈M consider Aij , Kij , V and �i under
assumptions (A), (K), (V) and (Dif ), respectively. Let ρ̄i : � →R under assumptions (In1) and (In2)
for all i ∈M.

https://doi.org/10.1017/S0956792524000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000093


764 S. Fagioli and G. Favre

Then, for all i ∈M the densities ρi,N introduced in equation (2.14) and ρ̃i,N introduced in equation
(3.8) satisfy the condition given by the limit (3.15) as N → ∞, for all ζ ∈ C∞

0 (�T).

Proof. We start considering the term involving the time derivative. By definition of ρi,N in equation
(2.14), a discrete integration by parts and Fundamental Theorem of Calculus give∫

�T

ρi,N∂tζ =
∑

k∈N\{N}

∫ T

0

ρi
k (t)

∫
Iik (t)

∂tζ (t, x) dx dt

=
∑

k∈N\{N}

∫ T

0

ρi
k (t)ẋi

k+1(t)

(∫
Iik (t)

ζ (t, x) dx − ζ (t, xi
k+1(t))

)
dt

−
∑

k∈N\{N}

∫ T

0

ρi
k (t)ẋi

k (t)

(∫
Iik (t)

ζ (t, x) dx − ζ (t, xi
k (t))

)
dt.

A second-order expansion of ζ around xi
k+1(t) in the first average integral and around xi

k (t) in the second
average integral produces∫

�T

ρi,N∂tζ = − σ i
N

2

∑
k∈N\{N}

∫ T

0

ẋi
k+1(t)∂xζ (t, xi

k+1) dt

+ 1

2

∑
k∈N\{N}

∫ T

0

ρi
k (t)ẋi

k+1(t)
∫

Iik (t)

∂xxζ (t, x̂i
k+1)

(
x − xi

k+1(t))
)2

dx dt

− σ i
N

2

∑
k∈N\{N}

∫ T

0

ẋi
k (t)∂xζ (t, xi

k ) dt

− 1

2

∑
k∈N\{N}

∫ T

0

ρi
k (t)ẋi

k (t)
∫

Iik (t)

∂xxζ (t, x̂i
k )
(
x − xi

k (t))
)2

dx dt,

where x̂i
k and x̂i

k+1 are points in
[
xi

k , x
]

and equation
[
x, xi

k+1

]
, respectively. We now combine the first and

third terms on the r.h.s. above and use (2.4) in order to obtain

−σ i
N

2

∑
k∈N\{N}

∫ T

0

(
ẋi

k (t)∂xζ (t, xi
k ) + ẋi

k+1(t)∂xζ (t, xi
k+1)

)
dt = A1 + A2,

where

A1 = −1

2

∑
k∈N\{N}

∫ T

0

(
βi

k

(
�i(ρi

k−1) − �i(ρi
k )
)
∂xζ (t, xi

k )

+ βi
k+1

(
�i(ρi

k ) − �i(ρi
k+1)

)
∂xζ (t, xi

k+1)
)

dt,

and

A2 = −σ i
N

2

∑
k∈N\{N}

∫ T

0

(
θ i

k (t)∂xζ (t, xi
k ) + θ i

k+1(t)∂xζ (t, xi
k+1)

)
dt.

We now combine the integral A1 with the two terms involving the diffusion in equation (3.15) in order
to show that

A1 +
∫

�T

�i
(
ρi,N

)
∂x

(
βi(ρ̃N, aN; x)∂xζ (t, x)

)
dx dt = 0.
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Invoking equation (3.9) and the fact that ∂xζ (t, xi
0) = ∂xζ (t, xi

N) = 0, we can compute∫
�T

�i
(
ρi,N

)
∂x

(
βi(ρ̃N, aN; x)∂xζ (t, x)

)
dx dt

=
∑

k∈N\{N}

∫ T

0

�i
(
ρi

k

) ∫
Iik (t)

∂x

(
βi(ρ̃N, aN; x)∂xζ (t, x)

)
dx dt

=
∑

k∈N\{N}

∫ T

0

�i
(
ρi

k

) (
βi(ρ̃N, aN; xi

k+1)∂xζ (t, xi
k+1) − βi(ρ̃N, aN; xi

k )∂xζ (t, xi
k )
)

dt

=
∑

k∈N\{N}

∫ T

0

�i
(
ρi

k

) (
βi

k+1∂xζ (t, xi
k+1) − βi

k ∂xζ (t, xi
k )
)

dt

=
∑

k∈N\{0,N}

∫ T

0

βi
k

(
�i(ρi

k−1) − �i(ρi
k )
)
∂xζ (t, xi

k ) dt,

which can be combined with A1 by shifting the indexes and using again the fact that the test function
vanishes at the boundary.

Recalling the definition of θ i
k in equation (2.8), rearranging the indexes in A2, using the fact that ∂xζ

vanishes at the boundary of � and summing with the second term in equation (3.15) we obtain

∑
k∈N\{0,N}

∑
i∈M

∑
l∈N\{N}

σ i
Nσ

j

N

∫ T

0

Kij(xi
k , xj

l ; aij

N )∂xζ (t, xi
k ) dt

+
∑

k∈N\{N}

∑
i∈M

∑
l∈N\{N}

σ
j

N

∫ T

0

ρi
k (t)

∫
Iik

Kij(x, xj

l ; aij

N )∂xζ (t, x) dx dt.

A first-order expansion on ∂xζ around xi
k for ˆ̂xi

k ∈ [xi
k , x
]
, together with the definition of ρi

k and assumption
(K), yields ∣∣∣∣∣ ∑

k∈N\{0,N}

∑
i∈M

∑
l∈N\{N}

σ
j

N

∫ T

0

ρi
k ∂xζ (t, xi

k )
∫

Iik

Kij(xi
k , xj

l ; aij

N ) − Kij(x, xj

l ; aij

N ) dx dt

+
∑

k∈N\{N}

∑
i∈M

∑
l∈N\{N}

σ
j

N

∫ T

0

ρi
k (t)

∫
Iik

Kij(x, xj

l ; aij

N )(x − xi
k )∂xxζ (t, ˆ̂xi

k ) dx dt

∣∣∣∣∣
≤

∑
k∈N\{0,N}

∑
i∈M

∑
l∈N\{N}

σ
j

N

(
cK‖∂xζ‖∞ + ‖Kij‖∞‖∂xxζ‖∞

) ∫ T

0

ρi
k

∫
Iik

|xi
k − x| dx dt

=
∑

k∈N\{0,N}

∑
i∈M

σj

2

(
cK‖∂xζ‖∞ + ‖Kij‖∞‖∂xxζ‖∞

) ∫ T

0

σ i
N |Iik |(t) dt

≤ σ i
N

∑
i∈M

σj

2

(
cK‖∂xζ‖∞ + ‖Kij‖∞‖∂xxζ‖∞

)
T|�|,

that vanishes as N → ∞ together with σ i
N . We are now left in showing that the remainder, i.e.

Ri
k,k+1 =1

2

∑
k∈N\{N}

∫ T

0

ρi
k (t)ẋi

k+1(t)
∫

Iik (t)

∂xxζ (t, x̂i
k+1)

(
x − xi

k+1(t))
)2

dx dt

− 1

2

∑
k∈N\{N}

∫ T

0

ρi
k (t)ẋi

k (t)
∫

Iik (t)

∂xxζ (t, x̂i
k )
(
x − xi

k (t))
)2

dx dt,
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goes to zero. We first notice that for all h, k ∈N \ {N}, we have∫
Iik (t)

∂xxζ (t, x̂i
h)
(
x − xi

k (t))
)2

dx ≤ ‖∂xxζ‖∞
|Iik |3(t)

3
≤ C

for some constant C > 0, then

|Ri
k,k+1| ≤

‖∂xxζ‖∞
2

∑
k∈N\{N}

∫ T

0

ρi
k (t)

(|ẋi
k+1(t)| + |ẋi

k (t)|) |Iik |3(t)

3
dt

≤C‖∂xxζ‖∞
∑

k∈N\{N}

∫ T

0

ρi
k (t)|Iik |3(t) dt

=σ i
N C‖∂xxζ‖∞|�|T ,

where the second inequality holds in view of Lemma 3.4 and the BV bound on ρi
k .

4. Modelling, simulation and interpretation
4.1. Modelling

As stated in the introduction, the objective of this model is to elucidate various aspects inherent in
interactions on social networks and social media. Specifically, it focuses on elements related to network
evolution, homophily and heterophobia. The aim is to examine whether polarisation of opinions and
fragmentation of the population can be observed solely by modelling the processes governing network
rewiring and the epistemic process. It is essential to note that we do not explicitly model polarisation;
instead, we adhere to describing the dynamics of opinion formation that underlie the formation of echo
chambers and epistemic bubbles.

In recent years, epistemologists have placed particular emphasis on studying and understanding the
formation and evolution processes of the aforementioned social structures. Following Nguyen’s defini-
tion [38], echo chambers and epistemic bubbles are social epistemic structures based on two distinct
types of filtering. In the case of epistemic bubbles, filtering occurs at the network level, while for echo
chambers, it takes place at the epistemic process level – specifically, in the attitude towards an interlocu-
tor. In this work, we consider an attitude guided by the distance between the opinions of two interacting
agents. Nevertheless, recent studies suggest that it is important to also take into account individuals’
biases for a more comprehensive analysis of the social dynamics based on distrust leading to social
filtering, as demonstrated in the work by Pederneschi [43].

In this work, we introduce the concepts of attitude areas and a Euclidean network to describe these
dynamics.

Attitude Areas – Open-Mindedness
In this section, we model and simulate a possible choice of opinion dynamic. In particular, we focus
our attention on a model that takes into account the heterophobia and homophilia dynamics. The model
that we propose is based on five attitude areas: attraction/homophilia, curiosity, indifference, mistrust,
repulsion/heterophobia. When two agents interact, their attitude depends on the distance between their
respective opinions. We do not consider the attitude depending locally on the opinion itself, this could be
a possible improvement that describes the low propensity of changing extreme beliefs. The interaction
can be attractive, i.e. the agents move towards a position of consensus looking for a compromise, or can
be repulsive, i.e. each agent changes its own opinion moving farther from the one of the other agent.
We consider the DPA structure of equations (2.4a), (2.4b), (2.7), (2.8). The operator describing this
phenomenon has the following structure

Kij(w, v, aij) = ω(aij) ζ (μi − μj) (v − w) (4.1)
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Figure 1. Attraction/repulsion function.
The positive values of the function coincide with the attraction, on the other hand, while the function has
negative values it describes repulsion between the agents’ opinion, which could bring to radicalisation
or polarisation. Due to the choice of the domain, we have that s ∈ [0, 2]. The different colours coincide
with the following definitions of the attitude intervals:
Blue: rf = 0.15, ra = 0.20, rr = 0.30, rl = 0.40.
Black: rf = 0.25, ra = 0.34, rr = 0.36, rl = 0.65.
Red: rf = 0.30, ra = 0.45, rr = 0.55, rl = 0.70.
Olive: rf = 0.40, ra = 0.80, rr = 1.20, rl = 1.60.

where the function ω depends on the network connections, and ζ is the attitude function that measures
the distance between the agents’ mean opinion. Being s the distance between the mean opinions, the five
attitude areas coincide with the following intervals

s ∈ (0, rf) strong attraction, homophilia (rfriends)

s ∈ (rf, ra) curiosity (rattraction)

s ∈ (ra, rr) indifference
s ∈ (rr, rl) mistrust (rrepulsion)

s ∈ (rl, |�|) repulsion, heterophobia (rlimit) .

The function ζ is given by

ζ (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1

10

|s|
rf

if |s| < rf

0.1 + 8

10

[
1 − |s| − rf

ra − rf

]
if rf ≤ |s| < ra

− 0.1 + 2

10

[
1 − |s| − ra

rr − ra

]
if ra ≤ |s| < rr

− 0.9 + 8

10

[
1 − |s| − rr

rl − rr

]
if rr ≤ |s| < rl

− 0.9 − 1

10
(|s| − rl) if rl ≤ |s| ,

depending on the values of the extreme of the intervals it looks like those in Figure 1. The term open-
mindedness refers to the individual’s inclination to positively consider opinions that differ from their
own. In this article, the quantitative description of this term is associated with the value s ∈ [0, 2] such
that ζ (s) = 0. In other words, open-mindedness corresponds to the maximum distance within which an
agent regards another opinion favourably.
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Diffusion
Moreover, the opinion dynamic is not ruled only by the direct interaction with the connected agents in
the network. We continuously get inputs from all the media, this phenomenon is described in this model
by the following operator

Aij(w, v, aij) = |μj − w|2 . (4.2)

In this case, the interaction is not filtered by the network connections, i.e. by ω, and it is not affected
by the attitude. This operator plays the role of the diffusion mobility, the opinion tends to diffuse the
more the inputs are far from it, and it is not affected by the diffusion when the inputs coincide with the
opinion itself. The underlying idea is that we cannot process actively – i.e. through ζ – all the information
that we get. Those inputs that we cannot elaborate they influence our opinion distribution smoothing it
depending on the distance between the input and our mean opinion.

Evolution of the Network
As anticipated in the introduction, the Euclidean network relies on the distance between agents in

R
2. The choice of employing R

d with d = 2 instead of another dimension lacks specific applicative
rationale in this case. Should a concrete application be considered, the dimensions of the network space
might depend on factors such as biases, as discussed in [43]. In other words, the network space could
potentially capture factors of social segregation correlated with the subject of opinion evolution under
consideration.

In this paper, the distance would play a singular role, specifically in defining the interaction radius
between agents through the function ζ . This function is associated with an interaction resembling that
of social networks and epistemic bubbles, where filtering occurs at the network level, and interaction in
the network space takes place locally rather than globally. We consider rloc the radius defining the ball
of the local interaction,

ω(aij) =
{

1 if aij ≤ ρloc

0 if aij > ρloc
. (4.3)

The agents ai and aj interact if their distance on the network is smaller or equal to ρloc. The global
interaction coincides with the radius ρloc = +∞. The initial condition used for our simulation is the one
given in Figure 2.

Considering 3 different radii of interaction the network connections change as in Figure 3.
The evolution of the agents is ruled by the following operator

V(μρi , μρj , aij) =
2∑

l=1

∑
j

ζ |μρi − μρj | ω(aij) (ai − aj)el , (4.4)

with el being the j-th normal vector. In this scenario, we have three terms to consider. The function ω

evaluates the distance between two agents in the network space; if this distance is not greater than ρloc,
interaction occurs between the agents. The function ζ determines whether there is attraction or repulsion
and assesses the respective intensity by evaluating the distance between the opinion means of the two
agents. The last term defines both the intensity and the direction of movement in the network space.
Both the last term and the attitude function play a role in determining the interaction intensity. However,
their roles should not be confused: the attitude function pertains to the distance between opinions, while
the third term depends on the network.
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Figure 2. Initial network condition.
In this figure, the initial agent’s coordinates belong to [0, 10]2. The colours describe the mean opinion
of each agent, which belongs to the interval [−1, 1]. The number of agents is N = 40. The agent’s coor-
dinates are uniformly randomly distributed on each axis. The dimension of each square is proportional
to the social strength σ i of each agent, and in this case, they all almost coincide.

(a) (b) (c)

Figure 3. Local initial network interaction.
The agents interact if they are connected by a link. The magnitude and the sign of the connection range
from [−1, 1] and are described by the legend on the right of the pictures. In this case, the attitude areas
are given by the parameters rf = 0.25, ra = 0.34, rr = 0.36, rl = 0.65, i.e. the black function in Figure 1.

4.2. Simulation
Radicalisation
The term radicalisation denotes an agent’s inclination to anchor their opinion within a defined range of
opinions. In our model, this phenomenon is observed when the opinion distribution increases within an
interval and decreases sharply outside of it.

Remark 4.1. Note that this dynamics is not observable if one opts for a description that does not
consider the opinion distribution but only a singular value.

We consider the attitude areas given by the following intervals: rf = 0.25, ra = 0.34, rr = 0.36, rl = 0.65.
This setting coincides with the ζ function described by the black line in Figure 1.
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Figure 4. Initial opinion distribution.
In this picture are represented the opinion distributions at initial time of the 40 agents considered for
the simulation. Each distribution is described by a truncated Gaussian function, mean and variance
of the Gaussian functions are independently uniform random distributed respectively in the intervals
[ − 0.7, 0.7] and [0.07, 0.15].

(a)

ρloc = 3.5

(b)

ρloc = 5

(c)

ρloc = 10

Figure 5. Final opinion distribution.
We observe how the distributions are more and more concentrated either on the positive or negative
side as the radius increases. Due to the diffusion, the distributions tend to flatten once that they are
concentrated on one of the two sides.
The sharp oscillations close to the extreme values are due to the low resolution of the numerical partition
of �.

Given the initial opinion distribution as in Figure 4, we can observe that the distribution
evolves towards a more and more radicalised society as the radius increases. As evident from
Figure 5, contrary to common intuition, increasing the interaction radius—thus engaging with a greater
number of agents—leads to distributions becoming more concentrated around either positive or negative
values. As the interaction radius expands, fewer agents exhibit distributions encompassing both positive
and negative values.

The same phenomenon is described by the histogram of the mean opinions distribution in Figure 6.
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ρloc = 3.5 ρloc = 5 ρloc = 10

(a) (b) (c)

Figure 6. Initial and final mean opinions distribution.
In this figure, in blue the distribution of the mean opinions at time t = 0, and in orange the mean opinions’
distribution at final time (which corresponds to the time showing a quasi-stable status of the simulation
result). We observe that the final distribution tends to have two peaks, which means that the opinions
of the population are more and more split into two opinion groups. However, they are also more close
to the centre. This means that we observe a sort of fragmentation and radicalisation, but there is no
polarisation.

(a) (b) (c)

Figure 7. Final network distribution.
The olive function has not been plotted because it describes an extreme behaviour, all the agents collapse
very fast into a unique point.
Blue: rf = 0.15, ra = 0.20, rr = 0.30, rl = 0.40.
Black: rf = 0.25, ra = 0.34, rr = 0.36, rl = 0.65.
Red: rf = 0.30, ra = 0.45, rr = 0.55, rl = 0.70.

Opinion Polarisation and Network Fragmentation
It is intriguing to examine the final network while varying the parameters of the attitude areas. We
set the interaction radius as ρloc = 5, and we compare the first three functions depicted in Figure 1. In
this scenario, we note that a more open-minded society corresponds to a less fragmented network, as
illustrated in Figure 7.

While focusing solely on the operator Kij by setting Ai = 0, we observe the phenomenon of polar-
isation, i.e. the tendency of agents towards an opinion distribution centred on more extreme values, in
our case ±1.

It is interesting to observe how the connectivity of the population is the real driver of the polar-
isation, instead of the open-mindedness. We now compare the results of the simulation with fixed
open-mindedness. We chose the most close-minded population, i.e. the one described by the blue func-
tion in Figure 1. Increasing the radius of the interaction, the opinion gets more and more polarised. In
Figure 8, we notice that a more connected society tends to cluster into extreme opinions, while a less
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(a) (b) (c)

Figure 8. Polarisation while increasing the radius of interaction. Attitude function Blue: rf = 0.15,
ra = 0.20, rr = 0.30, rl = 0.40.

(a) (b) (c)

Figure 9. Network fragmentation and opinion homogeneity.
Network while increasing the radius of interaction and keeping the same attitude function, i.e. Blue:
rf = 0.15, ra = 0.20, rr = 0.30, rl = 0.40.

connected society keeps a more sparse distribution of opinions. This is a not expected behaviour, usu-
ally a large or global interaction is related to a higher consensus. In the work by Tucker et al. [53], it is
emphasised how in the literature on opinion polarisation, the crucial role of social networks in accelerat-
ing and intensifying the polarisation of opinions on highly debated topics online is now well-established.
This dynamic aligns with the outcomes of our simulations, given that the operator Kij describes the
interaction process on social networks.

If we observe the evolution of the network, it seems that increasing the radius of interaction does
not really affect the fragmentation of the population, but it plays a role in the opinion homogeneity of
the network clusters. In Figure 9, at the same fixed time, a larger radius of interaction brings to a wider
network space, and the groups of connected agents show a stronger homogeneity of the opinion.

4.3. Conclusions, interpretations and possible follow-up

The goal of this model is to introduce the study of the processes describing the interaction on social
networks and social media. We mainly focused on the role of the attitude areas and on that of the radius
of interaction. The dynamics ruling the opinion formation of agents interacting on social platforms is
different from the one described by models based on alignment, averaged consensus or Cucker-Smale
with positive communication rate.
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Recently, sociologists and philosophers described the epistemic processes of the hyperconnected
society typical of the last two decades. The high amount of interactions and notions, together with their
high frequency, modified the way how we create and reinforce our beliefs. Authors like Nguyen, see [38],
explain how the network and the opinion distance are the discriminant for different epistemic processes.
In our model, we describe these two aspects through the definition of the attitude areas and through the
dynamic of the network, which takes into account the distance on the network and the distance of the
opinions.

Drawing on the literature, e.g. [5, 8, 34, 53], we observe that describing interactions through attitude
areas and Euclidean network suggests that the approach is heading in the right direction to capture
the dynamics of polarisation, radicalisation and fragmentation that arise through interactions on social
networks and social media. A particularly intriguing phenomenon to observe is the fragmentation of
society into numerous ‘mono-opinion’ groups.

Future steps could involve assuming that the social strength σ i of each agent evolves over time based
on connections. Additionally, in our case, we used a single function ζ for the entire population; however,
it would be interesting to consider a different function for each agent, reflecting varying levels of open-
mindedness. Numerous possible avenues exist, but caution should be exercised to avoid overexposing
the problem to parameters and external choices. The authors’ intention is to continue in the direction of
general models based on epistemological theories and interacting group theories. Certainly, an intriguing
insight for future work comes from Pederneschi [43] concerning the possibility of introducing biases to
explain the dynamics of trust and distrust.
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