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OPTIMAL STOPPING UNDER GENERAL 
DEPENDENCE CONDITIONS 

BY 

M. L O N G N E C K E R 

ABSTRACT. Let {Xn} be a sequence of random variables, not 
necessarily independent or identically distributed, put Sn = £" X-
(S() = 0) and Mn =max()<k=Sn \Sk\. Effective bounds on E(M„) in 
terms of assumed bounds on E\Y,{Xk\

1', for v>0, are used to 
identify conditions under which an extended-valued stopping time T 
exists. That is these inequalities are used to guarantee the existence 
of the stopping time T such that E(\ST\/aT) = sup teT^ E(\St\/at), where 
TV denotes the class of randomized extended-valued stopping times 
based on SUS2, ••• and {an} is a sequence of constants. Specific 
applications to stochastic processes of the time series type are 
considered. 

1. Introduction. Let {Xn} be a sequence of random variables, not necessarily 
independent or identically distributed, put Sn = YA^I (So = 0) and Mn = 
max0<k<n \Sk\. Effective bounds on E(M„) in terms of assumed bounds on 
E(|XJXk|v), for v>0, are used to identify conditions under which an extended-
valued stopping time r exists. That is, these inequalities are used to guarantee 
the existence of the stopping time r such that E(\ST\/ar) = sup teT^E(\St\/at), 
where Tx denotes the class of randomized extended-valued stopping times 
based on Sl5 S2, • . • and {an} is a sequence of constants. Examples of random 
sequences which are neither independent random variables nor martingales are 
provided to illustrate the generality of the conditions guaranteeing the exis­
tence of the optimal stopping rules. 

2. General problem. A game is conducted in which a player observes 
sequentially the random variables X l5 X 2 , . . . . The player may stop observing 
the random variables at any time n, basing the decision on whether or not to 
stop only on the observations X l 5 . . . , Xn. A player stopping at the nth stage 
receives a reward Yn = Yn(Xu . . . , Xn), a known function of Xu . . . , Xn. It is 
of interest to find stopping times r which maximize the expected reward E{ YT}. 

More formally, the problem consists of a probability space (fl, JB, F), a 
sequence of <r-algebras Bl^B2'^ • • • ^BX = B, and a sequence of random 
variables Yu Y2,.. ., Yx such that Yn is Immeasurable for l < n < ° c . Let TU 
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denote the collection of all extended-value stopping rules with respect to 
B 1 ? . . . , IL. Specifically, Tœ consists of those random variables t taking values 
in { 1 , 2 , . . . , oc} such that {t =n}eBn for all n. The problem is to determine 
under what conditions does there exist reTx such that 

E{YT} = sup E{Yt} where Yt=t YnI(f=n). 

In seeking solutions to the above problem, the following theorem from 
[Theorem 4 of Siegmund (1967)] is useful. 

THEOREM A. Assume that 

(i) 

(2) 

Ejsup Ynr<oo 

Y^^limsup Yn a.s. 

Then there exists reTx such that 

E{YT}= sup E{Y,}. 
feToc 

3. The reward sequence: \Sn\/an. Now suppose we examine the particular 
reward sequence , 

an 
Ixk 

where {an} is an increasing sequence of positive constants and {Xn} is a 
sequence of random variables. In order to apply the results of Theorem A to 
this particular reward sequence, it will be necessary to consider the following 
maximal inequality from Longnecker and Serfling (1977). 

THEOREM B. Let Wu W 2 , . . . , Wn be arbitrary random variables. Suppose that 
for constants v>0 and y > l , 

(3) 1 Wk •(g(i,j))y (all ! < / < / < « ) , 

where g satisfies either 

(4) 

or 

(5) 

Then 

(6) 

g(h i) + g(; + 1 , k)<g(i, k) (all 1 < i<;< k < n) 

g(i,j)lg(l,n)<(j-i + l)ln (all l < i < / < n ) . 

Efmax \ t Wk\%AvJg(l,n))\ 
l l < i < n Ifc=1 I > 

where A is a function of just v and y. 
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The following theorem will establish the existence of an optimal stopping 
time. 

THEOREM 1. Let {at} be an increasing sequence of positive constants and {Xt} 
be a sequence of random variables such that 

(7) Î — XJ W l w k j , (a//l<i</<n), 
k = i ak I > X k = i ' 

where v>\, y>l, and {un} is a nonnegative sequence of constants such that 

Then there exists T Ê T , such that 

(8) 
1 Î xk 

Tit1 

sup Es 
i x\\ 

Proof. It will be shown that conditions (1) and (2) of Theorem A hold with 

Y„= — | S n | - (So = 0), 
an 

where Sn = £? Xk. Let Bn = £ " — Xk. Then it follows that 
1 ak 

max Yj < 2 max |Bj| . 
l < i < n 1 < t < n 

By Theorem B, 

Thus, 

E max I B ^ U A ^ J Z 

ï| sup Yn = 

Wk 

: Ej lim max Yt 

••} 
= lim Ei max Y; 

>. 1 <i<rc 

= 2 lim E{ max |J3; 
-1 < i < n 

<2 1im E^ jmax |Bj|"I 

/ » XT/" 

^2AJ^ l u j <co. 

Hence condition (1) of Theorem A holds. 
By applying Theorem B a second time, it can be shown that Bn = £" (l/ak)Xk 

converges a.s. Hence Yn = l/an\Sn\ converges a.s. to 0 by the Kronecker 
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Lemma. Hence Yao = 0 = limn Yn a.s., and condition (2) of Theorem A holds. 

4. Applications. The derivation of optimal stopping times for the reward 
sequence \Sn\/an has been dealt with extensively in the literature. Some 
particular results are the following. 

Case 1: If {Xt} are i.i.d. with E{Xt} = 0 and an = n, then Davis (1973) proves 
that condition (A) holds iff E{\X^\\og\XA\}<^. 

Case 2: Klass (1974) considers the case {Xt} i.i.d with E j X j ^ O . He proves 
that condition (A) holds with an = n1/a, K a < 2 , iff E{\X1\

a}<^. 
Case 3: Basu and Chow (1977) obtain optimal rules for the reward sequ­

ence Xn = n~a \Snf for constants 2a > j3 > 0, where (Sn, 3Fn, n > 1) is a martin­
gale with E( |S n -S n _ 1 | m a x ( 2 ' / 3 ) | ^ n _ 1 )<C<œ a.s. 

To apply Theorem 1 to specific sequences {Xn} the results of Longnecker 
and Serfling (1978) are useful. In this paper they introduce several dependence 
restrictions of the weak multiplicative type. The dependence restrictions in­
volve product moments E{XhXh • • v X J rather than conditional expectations 
or joint distribution functions. Hence, the conditions are relatively easy to 
check in practice. 

One of these types of restrictions is 

DEFINITION 2. A sequence {X }̂ is said to satisfy condition (B) with respect to 
an even integer v, a sequence of constants {at} and a function g of v\2 
arguments if for all 1 < ix < i2 < • • • < iv, 

(9) |E{X^Xi2- • • X J | < g ( ; 2 - ; l , ï 4 - ; 3 , . . . , iv-iv^)ah- • • aiv 

and 
oc k k 

(10) Z I ••• Z g(/i,...,7w2-i,fc)<°°. 
k = l j , = l . Jv/2-i = l 

Under this restriction, the following moment inequality is derived. 

THEOREM C. Let {Xt} satisfy Condition (B) and let bt = {E{Xv^)llv <œ? for v 
an even integer. Let |8 be given by 

oc k k 

P= Z Z ••• Z g0'i,...,Âv2-i,fc)<°° 
k = l J, = l J v / 2 - l = l 

Then 

E{(Î ckxk)"}<(vW+Dpyi2(t blclj'\ 

where Dv is a function of just v. 

Thus condition (7) of Theorem 1 holds v>2, y = vj2 and 

uk = (v\p + Dv)b
2
kak2. 
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Similar results for several other weak multiplicative type sequences are 
derived. Also a version of the above theorem for strictly stationary, strongly 
mixing sequences can be derived. 

The following stochastic processes from Longnecker and Serfling (1975) 
demonstrate the extent to which Theorem 1 extends previous results concern­
ing optimal stopping rules. 

1. The random telegraph signal Let X(t) be a stochastic process taking 
values +1 or - 1 in continuous time t Let the changes of sign occur according 
to a Poisson process. The process was examined analytically by Kenrick (1929), 
as a model for treating a telegraph message of random lengths. It was studied 
by Magness (1954) as an example of non-Gausian noise. Further, Wonham and 
Fuller (1958), noting that X(t) may be generated by standard electronic 
methods, have shown that random signals having specified probability density 
functions may be generated as the output of a smoothing network with X(t) as 
input. 

The relevant moments of X(t) are contained in Wonham and Fuller (1958). 
They established, for any even integer v, 

(11) E{X(0X(f + T 1 ) - - -X(r + .TI/.1)} = exp{-2jLL(|T1h|T2| + |T3| + k_1 | )} 

for —oo<Tl< • • . < T V _ 1 < O O and JLC is the average number of sign changes per 
unit time. (The odd product moments are 0.) Consider the discrete-time 
sequence {Xk} given by 

(12) X1 = X(0),X2 = X ( - 1 ) , . . . . 

Applying (11) with t = -iA + 1, r^ = ix - /2, r2 = ix - i3,. . . , TV_X = ix - iv, where 
1 < ij < • • • < iv, it can be seen that 

/.13) E{XhXi2- • • X j = e x p { - 2 ^ ( | f 1 - i 2 | - | i 1 - i 3 | + • • • + |i1-iI,|)} 

= exp{-2/A[(i2-i1) + ( i 4 - i 3 )+ • • • +(iv-h-,)]}. 

Thus, {Xt} satisfies Condition B for any even integer v>4 with 

g(/i> Î2, • • • > U/2-i, k) - exp{-2^x[/1 + / 2 + • • • +;; /2_1 + fc]}. 

Also, {Xj} is seen to be neither independent nor a martingale by an examina­
tion of (13) and by noting that E[X(t)] = 0 and E[X2(t)]^l. 

2. The square of a Gaussian time series. Another process considered by 
Magness (1954) for quantitative illustration of non-Gaussianity is 

(14) X(f) = 2-*[Z2(f)- l] , 

where Z(t) is a Gaussian process with E[Z(t)] = 0, E[Z2(t)]=l, and 
E[Z(t)Z(t + r)]=r(r). Consider the associated discrete-time sequence {Xt}, 
where 

(15) Xk = X(k), k = l , 2 , 
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It is readily seen that E{Xk} = 0 and E{X%}= 1 and that, for any even integer v, 
E{Xi}=Cv<™. It is found that 

(16) E{X^J}=r20,-0 

and 

E{XhXi2XhXi4} = 4r(i2- ijrfa- h)r{h~ i3)r(i4- it) 

+ 4r(i3-i1)r(i4-i3)r(i4-i2)r(i2-i1) 

(17) + 4 r ( i 4 - h)r(i4- i2)r(i3- i2)r(i3- h) 

+ r2(i4- ijr2(i3- i2) + r2(i3- ijr2(i4- i2) 

+ r2(i2-il)r
2(i4-i3). 

For those processes {Z(t)} having |r(r)| nonincreasing as |T| increases, (17) 
yields, for i\ <i2< i3< i4, 

(18) l E j X . X ^ X J I < 15 \r(i2- iMh~ ht 

Thus, {Xf} satisfies Condition B with v = 4 and 

g(j1,k) = 15 \r(jMk)\ 

provided that YA J ;IK/)|<0°- However, an examination of (16) indicates that 
{Xt} is neither independent nor a martingale unless r(/) = 0 or r2(/) = l , respec­
tively. 

3. Moving Averages. Given a time series {Yn}, a related series {Xn} gener­
ated by 

(19) Xn = t ckWn_k 

is called a "moving average". Such series arise in connection with various types 
of sequences {Wn} of dependent random variables, in problems of representa­
tion of time series with absolutely continuous special distribution and in related 
prediction problems. In other types of application, the sequence {Wn} repres­
ents some non-ideal input process and the constants {q} are "design" constants 
selected to make the output process {Xn} have desired statistical properties in 
terms of performance characteristics. 

A particular case of broad applicability is the familiar moving average model 

(20) Xn= t akWn_k. 
k = 0 

where \a\ < 1 and {Wn} is a sequence of independent random variables. Again, 
{Xn} satisfies Condition B but is neither independent nor a martingale. This can 
be seen by computing . 

E{XiXiiXiXi} = I a ' . ^ ^ - 4 * 
k = — oo 

= (l-a4rV'2+i3+'4~3''' 
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Thus, {Xn} satisfies Condition B with 

g(j1,k) = (l-a4)2a'>+k. 
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