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For commuting contractions T1, . . . , Tn acting on a Hilbert space H with
T =

∏n
i=1 Ti, we find a necessary and sufficient condition such that (T1, . . . , Tn)

dilates to a commuting tuple of isometries (V1, . . . , Vn) on the minimal isometric
dilation space of T with V =

∏n
i=1 Vi being the minimal isometric dilation of T.

This isometric dilation provides a commutant lifting of (T1, . . . , Tn) on the minimal
isometric dilation space of T. We construct both Schäffer and Sz. Nagy–Foias-type
isometric dilations for (T1, . . . , Tn) on the minimal dilation spaces of T. Also, a
different dilation is constructed when the product T is a C.0 contraction, that is,
T ∗n → 0 as n → ∞. As a consequence of these dilation theorems, we obtain different
functional models for (T1, . . . , Tn) in terms of multiplication operators on vectorial
Hardy spaces. One notable fact about our models is that the multipliers are all
analytic functions in one variable. The dilation when T is a C.0 contraction leads to
a conditional factorization of T. Several examples have been constructed.

Keywords: polydisc; commuting contractions; isometric dilation; minimality of
dilation; functional model

2010 Mathematics Subject Classification: 47A20; 47A25; 47A45; 47B35; 47B38

1. Introduction

We consider only bounded operators acting on complex Hilbert spaces. A contrac-
tion is an operator with norm not greater than 1.

The aim of dilation, roughly speaking, is to realize a given tuple of commuting
operators as a compression of an appropriate commuting tuple of normal operators.
Let (T1, . . . , Tn) be a tuple of commuting contractions acting on a Hilbert space
H . One would like to represent (T1, . . . , Tn) as a compression of an n-tuple of
commuting unitaries or more precisely as a compression of an n-tuple of commuting

*Dedicated to Prof. B. V. Rajarama Bhat with deepest respect.

© The Author(s), 2024. Published by Cambridge University Press on behalf of
The Royal Society of Edinburgh

1

https://doi.org/10.1017/prm.2024.95 Published online by Cambridge University Press

https://orcid.org/0000-0001-5213-9029
mailto:souravpal@iitb.ac.in
mailto:souravmaths@gmail.com
mailto:prajakta@math.iitb.ac.in
mailto:praju1093@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2024.95&domain=pdf
https://doi.org/10.1017/prm.2024.95


2 S. Pal and P. Sahasrabuddhe

isometries, because, every such tuple of commuting isometries extends naturally to
a commuting tuple of unitaries. A commuting tuple of isometries (V1, . . . , Vn) acting
on a Hilbert space K is said to be an isometric dilation of (T1, . . . , Tn) if H can be
identified as a closed linear subspace of K , i.e., H ⊆ K and for any non-negative
integers, k1, . . . , kn

T
k1
1 . . . T kn

n = PH (V
k1
1 . . . V kn

n )|H ,

where PH : K → H is the orthogonal projection. Moreover, such an isometric
dilation is called minimal if

K = Span {V k1
1 . . . V kn

n h : h ∈ H , k1, . . . , kn ∈ N ∪ {0}}.

If (V1, . . . , Vn) dilates (T1, . . . , Tn), then each Ti is a compression of Vi, that is,
Ti = PH Vi|H . It is well-known that a contraction admits an isometric dilation
(Sz. Nagy, [57]) and that a pair of commuting contractions always dilates to a pair
of commuting isometries (Ando, [4]), though a triple of commuting contractions
may or may not dilate to a triple of commuting isometries (Parrott, [48]). In other
words, rational dilation succeeds on the closed unit disk D and on the closed bidisc

D2
and fails on the closed polydisc Dn

when n ≥ 3. Since a commuting tuple of
contractions (T1, . . . , Tn) does not dilate unconditionally whenever n ≥ 3, efforts
have been made to find classes of contractions that dilate under certain conditions
and some remarkable works have been witnessed, e.g., Agler [1], Arveson [8], Ball,
Li, Timotin, and Trent [13], Ball, Trent, and Vinnikov [14], Bhat, Bhattacharyya,
and Dey [19], Binding, Farenick, and Li [22], Brehmer [23], Crabb and Davie [26],
Curto and Vasilescu [27, 28], Dey [31], Grinshpan, Kaliuzhnyi-Verbovetki, Vinnikov,
and Woerdeman [36], Muller and Vasilescu [46], Popescu [53], and many others. See
the references therein and also see §2 for further details.

In this article, we consider the minimal isometric dilation space K (which is
always unique up to unitary) of the product T =

∏n
i=1 Ti of a tuple commuting

contractions (T1, . . . , Tn) acting on H . We find a necessary and sufficient condition
such that (T1, . . . , Tn) dilates to a commuting isometric tuple (V1, . . . , Vn) on K
with the product V =

∏n
i=1 Vi being the minimal isometric dilation of T =

∏n
i=1 Ti.

Note that the space K is unique in the sense that any two minimal isometric
dilation spaces of the product T are unitarily equivalent. This is one of the main
results in this article and is stated below.

Theorem 1.1 Let T1, . . . , Tn ∈ B(H ) be commuting contractions and let T =∏n
i=1 Ti.

(a) If K is the minimal isometric dilation space of T, then (T1, . . . , Tn) pos-
sesses an isometric dilation (V1, . . . , Vn) on K with V = Πn

i=1Vi being the
minimal isometric dilation of T if and only if there are unique orthogonal
projections P1, . . . , Pn and unique commuting unitaries U1, . . . , Un in B(DT )
with

∏n
i=1 Ui = IDT

such that the following conditions are satisfied for each
i = 1, . . . , n:
(1) DTTi = P⊥

i U∗
i DT + PiU

∗
i DTT ,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
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Minimal isometric dilations and operator models for the polydisc 3

(4) DTUiPiU
∗
i DT = D2

Ti
,

(5) P1 + U∗
1P2U1 + U∗

1U
∗
2P3U2U1 + . . .+ U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 =
IDT

.
(b) Such an isometric dilation is minimal and unique in the sense that if

(W1, . . . ,Wn) on K1 and (Y1, . . . , Yn) on K2 are two isometric dilations
of (T1, . . . , Tn) such that W =

∏n
i=1 Wi and Y =

∏n
i=1 Yi are minimal iso-

metric dilations of T on K1 and K2, respectively, then there is a unitary
Ũ : K1 → K2 such that (W1, . . . ,Wn) = (Ũ∗Y1Ũ , . . . , Ũ∗YnŨ).

This is Theorem 3.5 in this article and will be proved in §3. We show an explicit
construction of a Schäffer-type minimal isometric dilation for (T1, . . . , Tn) on the

space K = H ⊕ l2(DT ), where DT = Ran(I − T ∗T )
1
2 (see Theorem 3.5). We also

show in Theorem 3.9 that such a dilation can be constructed with the conditions
(1)–(4) of Theorem 1.1 only, though we do not have an exact converse part then. A
special emphasis is given to the case when the product T is a C.0 contraction, i.e.,
T ∗n → 0 strongly as n → ∞. We show in Theorem 4.1 that an analogue of Theorem
1.1 can be achieved for the C.0 case with a weaker hypothesis. We explicitly con-
struct an isometric dilation in this case too. This leads to a functional model and
a factorization of a C.0 contraction. A notable fact about this model is that the
multipliers involved here are linear analytic functions in one variable. In Theorem
6.1, another main result of this article, we construct explicitly a similar isometric
dilation for (T1, . . . , Tn) on the Sz. Nagy–Foias minimal isometric dilation space
of T. In §5, we provide several examples describing different classes of commuting
contractions that dilate to commuting isometries conditionally. There we show that
our classes of commuting contractions admitting isometric dilations are not prop-
erly contained in any of the previously determined classes in the literature. Also,
none of such classes from the literature is a proper subclass of our classes; however,
there are intersections. Finally, we present a model theory for a class of commuting
contractions in §7.

2. A brief history of dilation on the polydisc

An isometric dilation (V1, . . . , Vn) of (T1, . . . , Tn) naturally extends to a tuple of
commuting unitaries (U1, . . . , Un), and consequently, (U1, . . . , Un) becomes a uni-
tary dilation of (T1, . . . , Tn). Since (U1, . . . , Un) is a tuple of commuting unitaries
having its Taylor joint spectrum on the n-torus Tn, which is the distinguished
boundary of the closed polydisc Dn

, following Arveson’s terminology (see [7]), we
say that Dn

is a complete spectral set for (T1, . . . , Tn). So, it follows that Dn
is

a spectral set for (T1, . . . , Tn). Thus, the n-tuples of commuting contractions that
dilate to commuting isometries or unitaries must have Dn

as a spectral set. In [37],
Halmos constructed a unitary U on a certain larger space for a contraction T acting
on a Hilbert space H such that T = PH U |H , which is to say that T is a compres-
sion of a unitary U. Existence of an isometry satisfying such a compression relation
was proved before it by Julia, e.g., see [41–43]. The unitary dilation of Halmos was
missing the compression-vs-dilation frame for positive integral powers of U and T.
Later, Sz. Nagy resolved this issue in [58] with an innovative idea, where he proved
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4 S. Pal and P. Sahasrabuddhe

that there is a Hilbert space K containing H and a unitary U on K such that
Tn = PH Un|H for any non-negative integer n. This is well-known as Sz. Nagy
unitary dilation of a contraction. A few years after Sz. Nagy’s famous discovery,
Douglas [32] and Schäffer [55] produced distinct and explicit constructions of such
a unitary dilation (of a contraction). The pioneering works of Sz. Nagy, Douglas,
and Schäffer were further generalized by Ando to a pair of commuting contractions.
Indeed, in [4], Ando constructed an isometric dilation (V1, V2) for a pair of commut-
ing contractions (T1, T2). Success of dilation for a pair of commuting contractions
led to the natural question, whether an arbitrary n-tuple of commuting contrac-
tions dilates to some n-tuple of commuting isometries or unitaries for n ≥ 3. This
question was answered negatively by Parrott in [48] via a counter example. One
way of realizing the impact of this dilation result is the celebrated von Neumann
inequality.

Theorem 2.1 [62] Let T be a contraction on some Hilbert space H . Then, for
every polynomial p ∈ C[z],

‖p(T‖ ≤ sup
|z|≤1

|p(z)|.

It was observed that the existence of a unitary dilation is sufficient for a commut-
ing tuple of contractions to satisfy von Neumann inequality. Using this principle,
Crabb and Davie in [26] and Varopoulos in [60] produced examples of a triple of
commuting contractions, which do not satisfy von Neumann inequality and hence
do not admit a unitary dilation. These examples spurred a lot of mathematicians
to look into the von Neumann inequality for commuting contractions at least on
the finite dimensional spaces, [25, 33, 34, 40, 44]. In their seminal article [3], Agler
and McCarthy proved a sharper version of von Neumann inequality for a pair of
commuting and strictly contractive matrices. In [29], Das and Sarkar presented
a new proof to the result of Agler and McCarthy with a refinement of the class
of matrices. The impact of Ando’s dilation is eminent even in the 20th century.
In [12], Bagchi, Bhattacharyya, and Misra have presented an elementary proof of
Ando’s theorem in a C∗-algebraic setting, within a restricted class of homomor-
phisms modelled after Parrott’s example. In [54], Sau gave new proofs to Ando’s
dilation theorem with Schäffer- and Douglas-type constructions.

In [23], Brehmer introduced the concept of regular unitary dilation and sys-
tematically studied the existence of such dilation. For any α ∈ Zn, let α− =
(−min{o, α1}, . . . ,−min{0, αn}) and α+ = (max{0, α1}, . . . ,max{0, αn}). For a
given commuting n-tuple of contractions (T1, . . . , Tn) and a tuple of positive inte-
gers m = (m1, . . . ,mn), the following notation is used in the literature: Tm :=
Πn

i=1T
mi
i .

Definition 2.2. § 9, [17] A commuting n-tuple of unitaries U = (U1, . . . , Un) on
a Hilbert space K is said to be a regular unitary dilation of a commuting n-tuple
of contractions T = (T1, . . . , Tn) on H ⊆ K , if, for any α ∈ Zn,

T ∗α−Tα+ = PH U∗α−Uα+ |H .

Brehmer proved in [23] that a tuple of commuting contractions, if admits a
regular unitary (or isometric) dilation, can be completely characterized bysome
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positivity conditions, which is known as Brehmer’s positivity. A tuple T is said to
satisfy Brehmer’s positivity condition if∑

F⊆G

(−1)|F |T ∗
FTF ≥ 0 (2.1)

for all G ⊆ {1, . . . n}. It follows from the definition that the existence of a reg-
ular unitary dilation implies the existence of a unitary dilation for a commuting
tuple of contractions. The study of Brehmer was further continued by Halperin in
[38] and [39]. The positivity condition introduced by Brehmer attracted consider-
able attention, e.g., see the novel works due to Agler [1] and Curto and Vasilescu
[27],[28]. Indeed, Curto and Vasilescu generalized the original theorem of Brehmer
together with Agler’s results on hypercontractivity by general model theory for
multi-operators which satisfy certain positivity conditions. An alternative approach
to the results due to Agler, Curto, and Vasilescu was provided by Timotin in [59].
Timotin’s approach had thrown some new light on the geometric and combinatorial
parts of the model theory of Agler, Curto, and Vasilescu. In [22], Binding, Farenick,
and Li proved that for every m-tuple of operators on a Hilbert space, one can simul-
taneously dilate them to normal operators on the same Hilbert space such that the
dilating operators have finite spectrums. On the other hand, there are non-trivial
results on dilation of contractive but not necessarily commuting tuples. In [30],
Davis started studying such tuples, and then, Bunce [24] and Frazho [35] provided
a wider and concrete form to this analysis. An extensive research in the direction
of non-commuting dilation has been carried out by Popescu in [49–53] and also in
collaboration with Arias in [5, 6]. In [19], Bhat, Bhattacharyya, and Dey proved
that for a commuting contractive tuple, the standard commuting dilation is the
maximal commuting dilation sitting inside the standard non-commuting dilation.

In [8], Arveson considered a d−tuple (T1, . . . , Td) of mutually commuting
operators acting on a Hilbert space H such that

‖T1h1 + . . .+ Tdhd‖2 ≤ ‖h1‖2 + . . .+ ‖hd‖2.

He showed many of the operator-theoretic aspects of function theory of the unit disk
generalize to that of the unit ball Bd in complex d−space, including von Neumann
inequality and the model theory of contractions. Apart from this, the notable works
due to Athavale [9–11], Druy [33], and Vasilescu [61] were among the early contrib-
utors to the multi-parameter operator theory on the unit ball in Cn. In [46], Muller
and Vasilescu analysed some positivity conditions for commuting multi-operators,
which ensured the unitary equivalence of these objects to some standard models
consisting of backwards multi-shifts. They considered spherical dilation of a tuple
of commuting contractions (T1, . . . Td) on H . Such a tuple dilates to a tuple of
commuting normal operators (N1, . . . , Nd) on K ⊇ H satisfying

N∗
1N1 + · · ·+N∗

dNd = IK .

In [46], Muller and Vasilescu gave a necessary and sufficient condition for a com-
muting multi-operator to have spherical dilation in terms of positivity of certain
operator polynomials involving T and T ∗. The dilation results of Sz. Nagy [57] for
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contractions and Agler [2] for m−hypercontractions follow as a special case of the
result due to Muller and Vasilescu. It is evident that, unlike unitary dilation, the
tuple of contractions that admit regular dilations can be completely characterized
by Brehmer’s positivity conditions [23]. So, this means that Curto and Vasilescu in
[28] have found a bigger class of contractive tuples, which admit commuting unitary
dilations. Later Grinshpan, Kaliuzhnyi, Verbovetskyi, Vinnikov, and Woerdeman
[36] extended this result to a bigger class, which was denoted by Pd

p,q. Recently,
Barik, Das, Haria, and Sarkar [15] introduced even a larger class of commuting con-
tractions, denoted by T n

p,q(H ), which dilate to commuting isometries. Also, Barik
and Das established a von Neumann inequality for a tuple of commuting contrac-
tions belonging to Bn

p,q. In the expository essay [45], Levy and Shalit discussed a
finite dimensional approach to dilation theory and have answered to some extent
how much of the dilation theory can work out within the realm of linear algebra.
Also, an interested reader is referred to [47] due to McCarthy and Shalit. In [56],
Stochel and Szafraniec proposed a test for a commutative family of operators to
have a unitary power dilation. For a detailed study of dilation theory, an interested
reader is also referred to the nice survey articles by Bhattacharyya [20] and Shalit
[55].

3. Schäffer-type minimal isometric dilation

Let us recall a few notations and terminologies from the literature. For a contraction
T on a Hilbert space H , the defect operator of T is the unique positive square
root of I − T ∗T , and it is denoted by DT. Also, the closure of the range of DT is
denoted by DT , i.e., DT = RanDT . A contraction T ∈ B(H ) is called completely
non-unitary or simply c.n.u. if there is no non-zero subspace H1 of H that reduces
T and on which T acts as a unitary. The classical L2 space consists of complex-
valued functions defined on the unit circle T that are square integrable with respect
to the Lebesgue measure on T. A canonical basis for L2 is {einθ : n ∈ Z}, and the
closed subspace of L2 generated by the basis {einθ : n = 0, 1, 2, . . . } is denoted by

H̃2. For any Hilbert space E, the space L2(E) is defined similarly as L2, and the
only difference is that the functions in L2(E) are E -valued. It is well-known that
the Hilbert spaces L2(E) and L2 ⊗ E are unitarily equivalent. Under this unitary

equivalence, the replica of H̃2 ⊗E in L2(E) is denoted by H̃2(E). A multiplication
operator Mφ on L2(E), where φ(z) is an essentially bounded function from T to
E, i.e. φ ∈ L∞(E), is defined by Mφf(z) = φ(z)f(z). For any φ ∈ L∞(E), the

Toeplitz operator Tφ on H̃2(E) is defined by Tφf(z) = Pφ(z)f(z), where P :

L2(E) → H̃2(E) is the orthogonal projection. For any Hilbert space E, the Hardy
space H2(E) consists of analytic functions from the unit disk D to E with square
summable coefficients in its power series, i.e.,

H2(E) =

{
f : D → E : f(z) =

∞∑
i=0

anz
n , an ∈ E for all n ∈ N ∪ {0}

×
∞∑
i=0

‖an‖2 < ∞

}
.
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The Hilbert spaces H̃2(E) and H2(E) are unitarily equivalent. A multiplication
operatorMφ onH2(E), where φ(z) is an analytic multiplier, is defined byMφf(z) =
φ(z)f(z).

To explain the results of this section, we begin with the Berger–Coburn–Lebow
model (or, simply the BCL model) for commuting isometries, which will be used
in sequel.

Theorem 3.1 Berger–Coburn–Lebow, [18] Let V1, . . . , Vn be commuting isometries
on H such that V =

∏n
i=1 Vi is a pure isometry. Then, there exist projections

P1, . . . , Pn and unitaries U1, . . . , Un in B(DV ∗) such that

(V1, . . . , Vn, V ) ≡ (T
P⊥
1 U1+zP1U1

, . . . , T
P⊥
n Un+zPnUn

, Tz) on H2(DV ∗).

Later, Bercovici, Douglas, and Foias found a refined operator model for com-
muting c.n.u. isometries in [16]. They introduced the notion of model n-isometries.
A model n-isometry is a tuple of commuting n-isometries (V1, . . . , Vn) such that
each Vi is a multiplication operator of the form M

UiP
⊥
i

+zUiPi
and

∏n
i=1 Vi = Mz,

where P1, . . . , Pn are orthogonal projections and U1, . . . , Un are unitaries acting on
a Hilbert space H . The following characterization theorem for model n-isometries
is nothing but a variant of the model due to Bercovici, Douglas, and Foias and a
proof follows from lemma 2.2 in [16] and the discussion below it. This will be used
in sequel.

Theorem 3.2 Bercovici, Douglas, and Foias, [16] Let U1, . . . , Un be unitaries on
Hilbert space H and P1, . . . , Pn be orthogonal projections on H . For each 1 ≤
i ≤ n, let Vi = M

UiP
⊥
i

+zUiPi
. Then, (V1, . . . , Vn) defines a commuting n-tuple of

isometries with Πn
i=1Vi = Mz if and only if the following conditions are satisfied:

(1) UiUj = UjUi for all 1 ≤ i < j ≤ n,
(2) U1 . . . Un = IH ,
(3) Pj + U∗

j PiUj = Pi + U∗
i PjUi ≤ IH for all i 6= j and

(4) P1 +U∗
1P2U1 +U∗

1U
∗
2P3U2U1 + . . .+U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 = IH .

The following result is a corollary of Theorem 3.2. In other words, this can be
treated as a variant of Theorem 3.2. We state it here so that we can directly apply
it later.

Theorem 3.3 Let U1, . . . , Un be unitaries on Hilbert space H and P1, . . . , Pn be
orthogonal projections on H . For each 1 ≤ i ≤ n, let Vi = M

P⊥
i

U∗
i
+zPiU

∗
i
. Then,

(V1, . . . , Vn) defines a commuting n-tuple of isometries with Πn
i=1Vi = Mz if and

only if the following conditions are satisfied:

(1) UiUj = UjUi for all 1 ≤ i < j ≤ n,
(2) U1 . . . Un = IH ,
(3) Pj + U∗

j PiUj = Pi + U∗
i PjUi ≤ IH for all i 6= j, and

(4) P1 +U∗
1P2U1 +U∗

1U
∗
2P3U2U1 + . . .+U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 = IH .
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Now we present a twisted version of lemma 2.2 in [16]. This will be used in the
proof of the main theorem. For the sake of completeness, we give a proof here, and
it goes along with similar arguments as in the proof of lemma 2.2 in [16].

Lemma 3.4. Consider unitary operators U,U1, and U2 and orthogonal projections
P, P1, and P2 on Hilbert space H . If VU,P , VU1,P1

and VU2,P2
on H2(H ) are defined

as VU,P = MP⊥U∗+zPU∗ , VU1,P1
= M

P⊥
1 U∗

1+zP1U
∗
1
, and VU2,P2

= M
P⊥
2 U∗

2+zP2U
∗
2
,

then the following are equivalent:

(i) VU,P = VU1,P1
VU2,P2

,
(ii) U = U2U1 and P = P1 + U∗

1P2U1.

Proof. We prove only (i) =⇒ (ii), the proof of (ii) =⇒ (i) follows trivially. From
(i), we have VU,P = VU1,P1

VU2,P2
, and thus,

P⊥U∗ + zPU∗ = (P⊥
1 U∗

1 + zP1U
∗
1 )(P

⊥
2 U∗

2 + zP2U
∗
2 ),

i.e., P⊥U∗ + zPU∗ = P⊥
1 U∗

1P
⊥
2 U∗

2 + z(P1U
∗
1P

⊥
2 U∗

2 + P⊥
1 U∗

1P2U
∗
2 ) + z2P1U

∗
1P2U

∗
2 .

Hence, we have

(1) P⊥U∗ = P⊥
1 U∗

1P
⊥
2 U∗

2 ;
(2) PU∗ = P1U

∗
1P

⊥
2 U∗

2 + P⊥
1 U∗

1P2U
∗
2 ;

(3) P1U
∗
1P2U

∗
2 = 0.

From (2) and (3), by substituting P⊥
i = I − Pi, we obtain

PU∗ = U∗
1P2U

∗
2 + P1U

∗
1U

∗
2 . (3.1)

From (1) and (3), by substituting P⊥
i = I − Pi, we obtain

U∗ − PU∗ = U∗
1U

∗
2 − U∗

1P2U
∗
2 − P1U

∗
1U

∗
2 . (3.2)

Hence, (3.1) and (3.2) give us U = U2U1. Again, multiplying (3.1) from right by
U2U1 and substituting U = U2U1, we obtain P = P1 + U∗

1P2U1. The proof is now
complete. �

We now present a Schäffer-type minimal isometric dilation for a tuple of com-
muting contractions, and this is one of the main results of this article. However,
the proof of this theorem is going to be lengthy, and so, we will split the proof into
several parts. We request the readers to kindly bear with us for once.

Theorem 3.5 Let T1, . . . , Tn ∈ B(H ) be commuting contractions and let T =∏n
i=1 Ti.
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(a) If K is the minimal isometric dilation space of T, then (T1, . . . , Tn) pos-
sesses an isometric dilation (V1, . . . , Vn) on K with V = Πn

i=1Vi being the
minimal isometric dilation of T if and only if there are unique orthogonal
projections P1, . . . , Pn and unique commuting unitaries U1, . . . , Un in B(DT )
with

∏n
i=1 Ui = IDT

such that the following conditions are satisfied for each
i = 1, . . . , n:
(1) DTTi = P⊥

i U∗
i DT + PiU

∗
i DTT ,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
(4) DTUiPiU

∗
i DT = D2

Ti
,

(5) P1 + U∗
1P2U1 + U∗

1U
∗
2P3U2U1 + . . .+ U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 =
IDT

.
(b) Such an isometric dilation is minimal and unique in the sense that if

(W1, . . . ,Wn) on K1 and (Y1, . . . , Yn) on K2 are two isometric dilations
of (T1, . . . , Tn) such that W =

∏n
i=1 Wi and Y =

∏n
i=1 Yi are minimal iso-

metric dilations of T on K1 and K2, respectively, then there is a unitary
Ũ : K1 → K2 such that (W1, . . . ,Wn) = (Ũ∗Y1Ũ , . . . , Ũ∗YnŨ).

Proof. (a). (The ⇐ part). Suppose there are projections P1, . . . , Pn and com-
muting unitaries U1, . . . , Un in B(DT ) with

∏n
i=1 Ui = I satisfying the operator

identities (1)–(5) for 1 ≤ i ≤ n. We first show that conditions (1)–(4) guarantee
the existence of an isometric dilation of (T1, . . . , Tn). In fact, we shall construct a
co-isometric extension of (T ∗

1 , . . . , T
∗
n). It is well-known from Sz. Nagy–Foias theory

(see [17]) that any two minimal isometric dilations of a contraction are unitarily
equivalent. Thus, without loss of generality, we consider the Schäffer’s minimal iso-
metric dilation space K0 of T, where K0 = H ⊕ l2(DT ) = H ⊕DT ⊕DT ⊕ . . . and
construct an isometric dilation on K0 for (T1, . . . , Tn). Define Vi on K0 as follows:

Vi =


Ti 0 0 0 . . .

PiU
∗
i DT P⊥

i U∗
i 0 0 . . .

0 PiU
∗
i P⊥

i U∗
i 0 . . .

0 0 PiU
∗
i P⊥

i U∗
i . . .

. . . . . . . . . . . . . . .

 , 1 ≤ i ≤ n. (3.3)

It is evident from the block matrix form that V ∗
i |H = T ∗

i for each i = 1, . . . , n.
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10 S. Pal and P. Sahasrabuddhe

Step 1. First we prove that (V1, . . . , Vn) is a commuting tuple. For each i, j, we
have that

ViVj =


TiTj 0

PiU
∗
i DTTj + P⊥

i U∗
i PjU

∗
j DT P⊥

i U∗
i P

⊥
j U∗

j

PiU
∗
i PjU

∗
j DT PiU

∗
i P

⊥
j U∗

j + P⊥
i U∗

i PjU
∗
j

0 PiU
∗
i PjU

∗
j

. . . . . .

0 . . .

0 . . .

P⊥
i U∗

i P
⊥
j U∗

j . . .

PiU
∗
i P

⊥
j U∗

j + P⊥
i U∗

i PjU
∗
j . . .

. . .
. . .


and

ViVj =


TiTj 0

PiU
∗
i DTTj + P⊥

i U∗
i PjU

∗
j DT P⊥

i U∗
i P

⊥
j U∗

j

PiU
∗
i PjU

∗
j DT PiU

∗
i P

⊥
j U∗

j + P⊥
i U∗

i PjU
∗
j

0 PiU
∗
i PjU

∗
j

. . . . . .

0 . . .

0 . . .

P⊥
i U∗

i P
⊥
j U∗

j . . .

PiU
∗
i P

⊥
j U∗

j + P⊥
i U∗

i PjU
∗
j . . .

. . .
. . .

 .

Using the commutativity of Ti, Tj and Ui, Uj and applying condition (3) of the the-
orem, we obtain by simplifying the condition (2), i.e., P⊥

i U∗
i P

⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
that

PiU
∗
i U

∗
j + U∗

i PjU
∗
j = PjU

∗
j U

∗
i + U∗

j PiU
∗
i . (3.4)

Now we show that

PjU
∗
j P

⊥
i U∗

i + P⊥
j U∗

j PiU
∗
i = PiU

∗
i P

⊥
j U∗

j + P⊥
i U∗

i PjU
∗
j (3.5)

and

PjU
∗
j DTTi + P⊥

j U∗
j PiU

∗
i DT = PiU

∗
i DTTj + P⊥

i U∗
i PjU

∗
j DT . (3.6)
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For showing (3.5), we see that

PjU
∗
j P

⊥
i U∗

i + P⊥
j U∗

j PiU
∗
i = PjU

∗
j (U

∗
i − PiU

∗
i ) + (U∗

j − PjU
∗
j )PiU

∗
i

= PjU
∗
j U

∗
i − PjU

∗
j PiU

∗
i + U∗

j PiU
∗
i − PjU

∗
j PiU

∗
i

= PiU
∗
i U

∗
j − PiU

∗
i PjU

∗
j + U∗

i PjU
∗
j − PiU

∗
i PjU

∗
j

= PiU
∗
i P

⊥
j U∗

j + P⊥
i U∗

i PjU
∗
j .

Note that the second last equality follows from Eq. (3.4) and condition (3) of
Theorem 3.5.

To prove (3.6), we use a few conditions of Theorem 3.5 here. We have

PjU
∗
j DTTi + P⊥

j U∗
j PiU

∗
i DT

= PjU
∗
j (P

⊥
i U∗

i DT + PiU
∗
i DTT ) + P⊥

j U∗
j PiU

∗
i DT [by condition (1)]

= (PjU
∗
j P

⊥
i U∗

i + P⊥
j U∗

j PiU
∗
i )DT + PjU

∗
j PiU

∗
i DTT

= (PiU
∗
i P

⊥
j U∗

j + P⊥
i U∗

i PjU
∗
j )DT + PiU

∗
i PjU

∗
j DTT

[by (3.5) and condition(3)]

= PiU
∗
i (P

⊥
j U∗

j DT + PjU
∗
j DTT ) + P⊥

i U∗
i PjU

∗
j DT

= PiU
∗
i DTTj + P⊥

i U∗
i PjU

∗
j DT . [by condition (1)]

Hence, it follows that VjVi = ViVj for all i, j, and consequently, (V1, . . . , Vn) is a
commuting tuple.
Step 2. We now prove that each Vj is an isometry and that (V1, . . . , Vn) is an
isometric dilation of (T1, . . . , Tn). Note that

V ∗
j Vj =


T ∗
j Tj +DTUjPjU

∗
j DT 0 0 . . .

UjP
⊥
j PjU

∗
j DT UjP

⊥
j U∗

j + UjPjU
∗
j UjPjP

⊥
j Uj . . .

0 UjP
⊥
j PjU

∗
j UjP

⊥
j U∗

j + UjPjU
∗
j . . .

0 0 UjP
⊥
j PjU

∗
j . . .

. . . . . . . . .
. . .

 .

By condition (4), we have T ∗
j Tj+DTUjPjU

∗
j DT = I. Also, the identities UjP

⊥
j U∗

j +

UjPjU
∗
j = I and UjPjP

⊥
j U∗

j = UjP
⊥
j PjU

∗
j = 0 follow trivially. Thus, we have that

V ∗
j Vj = I, and hence, Vj is an isometry for 1 ≤ j ≤ n. It is evident from the block

matrix of Vi that V
∗
i |H = T ∗

i and thus (V1, . . . , Vn) on K0 is an isometric dilation
of (T1, . . . , Tn).
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12 S. Pal and P. Sahasrabuddhe

Step 3. It remains to show that
∏n

i=1 Vi = V , where V on K0 is the Schäffer’s

minimal isometric dilation of T. Note that V has the block matrix V =

[
T 0

C S

]
with respect to the decomposition K0 = H ⊕ l2(DT ), where

C =


DT

0

0
...

 : H → l2(DT ) and S =


0 0 0 · · ·
I 0 0 · · ·
0 I 0 · · ·
...

...
...

. . .

 : l2(DT ) → l2(DT ).

Similarly, for all 1 ≤ i ≤ n, Vi has the following matrix form with respect to the
decomposition K0 = H ⊕ l2(DT ):

Vi =

[
Ti 0

C̃i S̃i

]
,

where

C̃i =


PiU

∗
i DT

0

0
...

 : H → l2(DT ) and

S̃i =


P⊥
i U∗

i 0 0 · · ·
PiU

∗
i P⊥

i U∗
i 0 · · ·

0 PiU
∗
i P⊥

i U∗
i · · ·

...
...

...
. . .

 : l2(DT ) → l2(DT ).

Up to a unitary S ≡ Mz and S̃i ≡ M
P⊥
i

U∗
i
+PiU

∗
i
z
for 1 ≤ i ≤ n on H2(DT ).

Further (3.4) gives Pi + U∗
i PjUj = Pj + U∗

j PiUj . The conditions (1)–(4) of
Theorem 3.3 follow from the hypotheses of this theorem. Therefore, we have∏n

i=1 MP⊥
i

U∗
i
+zPiU

∗
i

= Mz and consequently S =
∏n

i=1 S̃i. As observed by

Bercovici, Douglas, and Foias in [16], the terms involved in condition (5) are all
mutually orthogonal projections. This is because the sum of projections Q1 and
Q2 is again a projection if and only if they are mutually orthogonal. Now, suppose

Tk = T1 . . . Tk, Uk = U1 . . . Uk, Pk = P1 + U1
∗P2U1 + . . .+ Uk−1

∗PkUk−1.
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Then, clearly, each Uk is a unitary, and Pk is a projection. Let us define

VTk,Uk,Pk
=


Tk 0 0 0 . . .

Pk Uk
∗DT Pk

⊥Uk
∗ 0 0 . . .

0 Pk Uk
∗ Pk

⊥Uk
∗ 0 . . .

0 0 Pk Uk
∗ Pk

⊥Uk
∗ . . .

. . . . . . . . . . . . . . .

 , 1 ≤ k ≤ n.

We prove that VTk,Uk,Pk
VTk+1,Uk+1,Pk+1

= VTk+1,Uk+1,Pk+1
for all 1 ≤ k ≤ n− 1.

Note that for all 1 ≤ k ≤ n, VTk,Uk,Pk
has the following block matrix form with

respect to the decomposition K0 = H ⊕ l2(DT ):

VTk,Uk,Pk
=

[
Tk 0

Ck Sk

]
,

where

Ck =


Pk Uk

∗DT

0

0
...

 : H → l2(DT ) and

Sk =


Pk

⊥Uk
∗ 0 0 · · ·

Pk Uk
∗ Pk

⊥Uk
∗ 0 · · ·

0 Pk Uk
∗ Pk

⊥Uk
∗ · · ·

...
...

...
. . .

 : l2(DT ) → l2(DT ).

It is clear from the definition that Uk+1 = UkUk+1 and Pk+1 = Pk + Uk
∗Pk+1Uk.

Hence, Lemma 3.4 tells us that Sk+1 = SkSk+1. From the construction, it
is clear that Tk+1 = TkTk+1. Hence, for proving VTk,Uk,Pk

VTk+1,Uk+1,Pk+1
=

VTk+1,Uk+1,Pk+1
, it suffices to prove CkTk+1 + SkCk+1 = Ck+1. Here,

CkTk+1 + SkCk+1 =


Pk Uk

∗DTTk+1 + Pk
⊥Uk

∗Pk+1U
∗
k+1DT

Pk Uk
∗Pk+1U

∗
k+1DT

0
...

 .

Note that Sk+1 = SkSk+1 gives

Pk Uk
∗Pk+1U

∗
k+1 = 0 Pk

⊥Uk
∗Pk+1U

∗
k+1 + Pk Uk

∗P⊥
k+1U

∗
k+1 = Pk+1 U∗

k+1.
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Using these two equations and condition (1) of this theorem, we obtain the
following:

Pk Uk
∗DTTk+1 + Pk

⊥Uk
∗Pk+1U

∗
k+1DT

= Pk Uk
∗DTTk+1 + Pk+1 Uk+1

∗DT − Pk Uk
∗P⊥

k+1U
∗
k+1DT

= Pk Uk
∗(DTTk+1 − P⊥

k+1U
∗
k+1DT ) + Pk+1 Uk+1

∗DT

= Pk Uk
∗Pk+1U

∗
k+1DTT + Pk+1 Uk+1

∗DT

= Pk+1 Uk+1
∗DT . (3.7)

This proves that CkTk+1+SkCk+1 = Ck+1, and hence, VTk,Uk,Pk
VTk+1,Uk+1,Pk+1

=

VTk+1,Uk+1,Pk+1
for all 1 ≤ k ≤ n − 1. Therefore, by induction, we have that

VTn,Un,Pn = V1 . . . Vn. Note that we have Tn = T , Un = U1 . . . Un = I. Also, it
follows from condition (5) that Pn = I. Therefore, VTn,Un,Pn = V , where V is the

Schäffer’s minimal isometric dilation. Hence,
∏n

i=1 Vi = V .
Step-4. We now show that such an isometric dilation (V1, . . . , Vn) is minimal. Note
that V =

∏n
i=1 Vi is a minimal isometric dilation of T =

∏n
i=1 Ti. Therefore,

K = Span {V kh : h ∈ H , k ∈ N ∪ {0} } = Span {V k
1 . . . V k

n h : h ∈ H , k ∈ N ∪ {0} }.

Again

Span {V k1
1 . . . V kn

n h : h ∈ H , k1, . . . , kn ∈ N ∪ {0} } ⊆ K .

Therefore,

K = Span {V k
1 . . . V k

n h : h ∈ H , k ∈ N ∪ {0} }

= Span {V k1
1 . . . V kn

n h : h ∈ H , k1, . . . , kn ∈ N ∪ {0} },

and consequently, (V1, . . . , Vn) is a minimal isometric dilation of (T1, . . . , Tn).
(The ⇒ part). Let (W1, . . . ,Wn) on K be an isometric dilation of (T1, . . . , Tn)
such that W = Πn

i=1Wi is the minimal isometric dilation of T. Then, K = H ⊕
H ⊥. Suppose W ′

i =
∏

j 6=i Wj for 1 ≤ i ≤ n. So,

K = span {Wnh : h ∈ H , n ∈ N ∪ {0}}.

Since V on K0 = H ⊕ l2(DT ) is the minimal Schäffer’s isometric dilation of T, it
follows that

K0 = span{V nh : h ∈ H , n ∈ N ∪ {0}}.

Therefore, the map τ : K0 → K defined by τ(V nh) = Wnh is a unitary
which is identity on H . Thus, H is a reducing subspace for τ , and consequently,
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τ =

(
I 0

0 τ1

)
for some unitary τ1. Then, W = τV τ∗ =

[
T 0

τ1C τ1Sτ
∗
1

]
, where

V =

[
T 0

C S

]
with

C =


DT

0

0
...

 : H → l2(DT ) and S =


0 0 0 · · ·
I 0 0 · · ·
0 I 0 · · ·
...

...
...

. . .

 : l2(DT ) → l2(DT ).

Let us consider the commuting tuple of isometries (V̂1, . . . , V̂n) =

(τ∗W1τ, . . . , τ
∗Wnτ). Note that

∏n
i=1 V̂i = τ∗Wτ = V . Define V̂ ′

i =
∏

j 6=i V̂j for

1 ≤ i ≤ n. Evidently, each V̂ ′
i is an isometry and V̂i, V̂

′
j , V commute for all i, j.

Also, V̂i = V̂ ′∗
i V for i = 1, . . . , n. Suppose the block matrix of V̂i with respect to

the decomposition H ⊕ l2(DP ) be V̂i =

[
Ti Ai

Ci Si

]
. Now by the commutativity of

V̂i and V̂ , we have [
Ti Ai

Ci Si

][
T 0

C S

]
=

[
T 0

C S

][
Ti Ai

Ci Si

]

i.e.

[
TiT +AiC AiS

CiT + SiC SiS

]
=

[
TTi TAi

CTi + SCi CAi + SSi

]
. (3.8)

Since Ti and T commute, considering the (1, 1) position, we have AiC = 0. We
now show that Ai = 0. Suppose Ai = (Ai1, Ai2 . . .) on DT ⊕ DT ⊕ . . .. Then, the
fact that AiC = 0 implies Ai1 = 0 on DT . Again AiS = TAi gives

[
0 Ai2 Ai3 · · ·

]

0 0 . . .

I 0 . . .

0 I . . .
...

... . . .

 =
[
0 TAi2 TAi3 · · ·

]
,

which further implies that Ai2 = 0 and Aik = TAi(k−1) for all k ≥ 3. Hence, induc-
tively, we have Aik = 0. This proves that Ai = 0. A similar argument holds if we
consider the commutativity of V̂ ′

i and V. Thus, with respect to the decomposition

K = H ⊕ l2(DT ), V̂i and V̂ ′
i have the following block matrix forms:

V̂i =

[
Ti 0

Ci Si

]
, V̂ ′

i =

[
T ′
i 0

C ′
i S′

i

]
with T ′

i =
∏
i6=j

Tj (1 ≤ i ≤ n), (3.9)

for some bounded operators Ci, C
′
i and Si, S

′
i. It follows from the commutativity

of V̂i, V̂
′
i with V that Si, S

′
i commute with S. Evidently, S = Mz on H2(DT ) and
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by being commutants of S, Si = Mφ and S′
i = Mφ′

i
for some φi, φ

′
i ∈ H∞(B(DT )).

The relation V̂i = V̂ ′∗
i V gives[

Ti 0

Ci Si

]
=

[
T ′∗
i C ′∗

i

0 S′∗
i

][
T 0

C S

]
=

[
T ′∗
i T + C ′∗

i C C ′∗
i S

S′∗
i C S′∗

i S

]
, (3.10)

where T ′
i is as in (3.9). Form here, we have the following identities for each i =

1, . . . , n:

(a) Ti − T ′∗
i T = C ′∗

i C,
(b) Ci = (Mφ′

i
)∗C,

(c) Mφi
= (Mφ′

i
)∗Mz.

Again, V̂ ′
i = V̂ ∗

i V leads to[
T ′
i 0

C ′
i S′

i

]
=

[
T ∗
i C∗

i

0 S∗
i

][
T 0

C S

]
=

[
T ∗
i T + C∗

i C C∗
i S

S∗
i C S∗

i S

]
, (3.11)

and hence, we have, for each i = 1, . . . , n,

(a’) T ′
i − T ∗

i T = C∗
i C,

(b’) C ′
i = (Mφi

)∗C,
(c’) Mφ′

i
= (Mφi

)∗Mz.

From (c) above and considering the power series expansions of φi and φ′
i, we have

that φi(z) = Fi + F ′∗
i z and φ′

i(z) = F ′
i + F ∗

i z for some Fi, F
′
i ∈ B(DT ). Therefore,

Si = Mφi
=


Fi 0 0 · · ·
F ′∗
i Fi 0 · · ·
0 F ′∗

i Fi · · ·
...

...
...

. . .

 and S′
i = Mφ′

i
=


F ′
i 0 0 · · ·

F ∗
i F ′

i 0 · · ·
0 F ∗

i F ′
i · · ·

...
...

...
. . .

 .

From (b) and (b′), we have that

Ci = S′∗
i C =


F ′∗
i DT

0

0
...

 and C ′
i = S∗

i C =


F ∗
i DT

0

0
...

 .

The fact that V̂i and V̂ ′
i are isometries gives us F ′

iFi = FiF
′
i = 0, F ∗

i Fi + F ′
iF

′∗
i =

F ′∗
i F ′

i + FiF
∗
i = I and DTF

′
iF

′∗
i DT = D2

Ti
for 1 ≤ i ≤ n. Again, by the commu-

tativity of V̂i, V̂j and considering the (2, 2) entries of their 2 × 2 block-matrices,
we have the commutativity of φi and φj. From here, we have [Fi, Fj ] = 0 and
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[F ∗
i , F

′
j ] = [F ∗

j , F
′
i ], and they hold for all 1 ≤ i, j ≤ n. Similarly, by the commuta-

tivity of V̂ ′
i , V̂

′
j , we have that [F

′
i , F

′
j ] = 0 for each i, j. Thus, combining all together,

we have the following identities for 1 ≤ i, j ≤ n:

(i) FiFj = FjFi [F ∗
i , F

′
j ] = [F ∗

j , F
′
i ] (3.12)

(ii) F ′
iF

′
j = F ′

jF
′
i (3.13)

(iii) F ′
iFi = FiF

′
i = 0 (3.14)

(iv) F ∗
i Fi + F ′

iF
′∗
i = F ′∗

i F ′
i + FiF

∗
i = I (3.15)

(v) DTF
′
iF

′∗
i DT = D2

Ti
. (3.16)

For 1 ≤ i ≤ n, let us define Ui = F ∗
i +F ′

i , U ′
i = F ∗

i −F ′
i , and Pi =

1
2 (I−U ′∗

i Ui).
Applying the above identities involving Fi and F ′

i , we have that Ui, U
′
i are unitaries.

Note that Fi = (U∗
i + U ′∗

i )/2 and F ′
i = (Ui − U ′

i)/2. Hence, F
′
iFi = 0 implies that

UiU
′∗
i = U ′

iU
∗
i , and FiF

′
i = 0 implies that U∗

i U
′
i = U ′∗

i Ui. Thus, Pi =
1

2
(I −U∗

i U
′
i).

It follows from here that Pi is a projection. It can be verified that F ′
i = UiPi and

Fi = P⊥
i U∗

i . From (3.8), we have CiT+SiC = CTi+SCi for each i and substituting
the values of Ci, Si and C we have

F ′∗
i DTT + FiDT = DTTi (3.17)

We now show that the unitaries U1, . . . , Un commute. For each i, j we have

UiUj =(F ∗
i + F ′

i )(F
∗
j + F ′

j)

=F ∗
i F

∗
j + (F ∗

i F
′
j + F ′

iF
∗
j ) + F ′

iF
′
j

=F ∗
j F

∗
i + (F ∗

j F
′
i + F ′

jF
∗
i ) + F ′

jF
′
i [by the second part of (3.12)]

=UjUi.

Thus, substituting F ′
i = UiPi and Fi = P⊥

i U∗
i , we have from (3.17), (3.12)-part-1,

(3.13), and (3.16)

(1) DTTi = P⊥
i U∗

i DT + PiU
∗
i DTT ,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
(4) DTUiPiU

∗
i DT = D2

Ti
,

respectively, where U1, . . . , Un ∈ B(DT ) are commuting unitaries and

P1, . . . , Pn ∈ B(DT ) are orthogonal projections. Since
∏n

i=1 V̂i = V , the (2, 2)
entry of the block matrix gives

∏n
i=1 Si = S. Note that Si = Mφi

for each i, where

φi = Fi + zF ′∗
i = P⊥

i U∗
i + zPiU

∗
i . So, we have

∏n
i=1 MP⊥

i
U∗
i
+zPiU

∗
i
= Mz. Thus,

by Lemma 3.3,
∏n

i=1 Ui = I and (5) holds.
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Uniqueness. From (a) and (a′) we haveD2
T ′
i
Ti = DTF

′
iDT andD2

Ti
T ′
i = DTFiDT ,

respectively. If there is G′
i ∈ B(DT ) such that D2

T ′
i
Ti = DTG

′
iDT , then DT (F

′
i −

G′
i)DT = 0, and thus, for any h, g ∈ H , we have

〈(F ′
i −G′

i)DTh,DT g〉 = 〈DT (F
′
i −G′

i)DTh, g〉 = 0.

This shows that F ′
i = G′

i and hence F ′
i is unique. Similarly one can show that Fi

is unique. Now Fi = P⊥
i Ui and F ′

i = UiPi and thus Ui = F ∗
i + F ′

i and Pi = F ′∗
i F ′

i .
Evidently the uniqueness of Fi, F

′
i gives the uniqueness of Ui, Pi for 1 ≤ i ≤ n.

(b). The minimality of the dilation follows from the fact that V =
∏n

i=1 Vi is the
minimal isometric dilation of the product T =

∏n
i=1 Ti. Following the proof of the

(⇒) part of (a) we see that any commuting isometric dilation (W1, . . . ,Wn) of
(T1, . . . , Tn) on a minimal isometric dilation space K1 of T is unitarily equivalent
to the isometric dilation (V1, . . . , Vn) on the Schäffer’s minimal space K0. The rest
of the argument follows and the proof is complete. �

Remark 3.6. Note that Theorem 3.5 actually provides a commutant lifting in
several variables. In Theorem 3.5, the isometric dilation (V1, . . . , Vn) of a commuting
contractive tuple (T1, . . . , Tn) is constructed in such a way that the product V =∏n

i=1 Vi becomes the minimal isometric dilation of the contraction T =
∏n

i=1 Ti.
Also, it is evident from the block matrix form of Vi as in (3.3) that H is co-
invariant under each Vi and V ∗

i |H = T ∗
i . Thus, each Ti is a commutant of T and

is being lifted to Vi, which is a commutant of the minimal isometric dilation V of
T.

Note 3.7. Ando’s theorem tells us that every pair of commuting contractions
(T1, T2) dilates to a pair of commuting isometries (V1, V2), but (T1, T2) may not
have such an isometric dilation (V1, V2) such that V = V1V2 is the minimal isomet-
ric dilation of T = T1T2. The following example shows that there are commuting
contractions T1, T2 that violate the conditions of Theorem 3.5.

Example 3.8. Let us consider the following contractions on C3:

T1 =

 0 0 0

1/3 0 0

0 1/3
√
3 0

 T2 =

 0 0 0

0 0 0

−1/
√
3 0 0

 .

Evidently, T = T1T2 = 0, and thus, DT = I. We show that (T1, T2) does not
dilate to a commuting pair of isometries acting on the minimal dilation space of T.
Suppose it happens. Then, there exist projections P1, P2 and commuting unitaries
U1, U2 in B(DT ) with U1U2 = I satisfying conditions (1)–(5) of Theorem 3.5.
Following the arguments in the (⇒) part of the proof of Theorem 3.5, we see that
T1, T2 satisfy (a) for i = 1, 2 (see the first display after (3.10)), i.e.,

DTU1P1DT = T2, DTU2P2DT = T1.
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Since DT = I, we have that U1P1 = T2 and U2P2 = T1. Now we have

DTU1P1U
∗
1DT = U1P1U

∗
1 = T2T

∗
2

=

 0 0 0

0 0 0

−1/
√
3 0 0


0 0 −1/

√
3

0 0 0

0 0 0

 =

0 0 0

0 0 0

0 0 1/3

 .

Also,

D2
T1

= I − T ∗
1 T1 =

1 0 0

0 1 0

0 0 1

−

0 1/3 0

0 0 1/3
√
3

0 0 0


 0 0 0

1/3 0 0

0 1/3
√
3 0

 .

Thus,

D2
T1

=

8/9 0 0

0 26/27 0

0 0 1

 .

Hence, DTU1P1U
∗
1DT 6= D2

T1
, which contradicts condition (4) of Theorem 3.5.

Hence (T1, T2) does not dilate to a pair of commuting isometries (V1, V2) acting on
the minimal isometric dilation space of T = T1T2.

It is evident from the first part of the proof of Theorem 3.5 that such an isometric
dilation (V1, . . . , Vn) can be constructed for (T1, . . . , Tn) with the help of conditions
(1)–(4) of Theorem 3.5 and without even assuming that

∏n
i=1 Ui = I. Condition (5)

was to make the product
∏n

i=1 Vi the minimal isometric dilation of
∏n

i=1 Ti. Thus,
a different version of Theorem 3.5 can be presented based on a weaker hypothesis
in the following way. Needless to mention that a proof to this follows naturally from
the proof of Theorem 3.5.

Theorem 3.9 Let T1, . . . , Tn ∈ B(H ) be commuting contractions and let T =∏n
i=1 Ti. Then, (T1, . . . , Tn) possesses an isometric dilation on the minimal isomet-

ric dilation space of T if there are projections P1, . . . , Pn and commuting unitaries
U1, . . . , Un in B(DT ) such that the following hold for i = 1, . . . , n:

(1) DTTi = P⊥
i U∗

i DT + PiU
∗
i DTT ,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
(4) DTUiPiU

∗
i DT = D2

Ti
.

Conversely, if (T1, . . . , Tn) possesses an isometric dilation (V̂1, . . . , V̂n) with V =∏n
i=1 Vi being the minimal isometric dilation of T, then there are unique projections

P1, . . . , Pn and unique commuting unitaries U1, . . . , Un in B(DT ) satisfying the
conditions (1)–(4) above.
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4. Minimal isometric dilation and functional model when the product
is a C.0 contraction

In this section, we consider a tuple of commuting contractions (T1, . . . , Tn) with the
product T =

∏n
i=1 Ti being a C.0 contraction, i.e., T ∗n → 0 strongly as n → ∞.

Such a tuple dilates (on the minimal isometric dilation space of T ) with a weaker
hypothesis than that of Theorem 3.5 as the following theorem shows. This is another
main result of this article.

Theorem 4.1 Let T1, . . . , Tn be commuting contractions on a Hilbert space H such
that their product T =

∏n
i=1 Ti is a C.0 contraction. Then, (T1, . . . , Tn) possesses

an isometric dilation (V1, . . . , Vn) with V =
∏n

i=1 Vi being a minimal isometric
dilation of T if and only if there are unique orthogonal projections P1, . . . , Pn and
unique commuting unitaries U1, . . . , Un in B(DT∗) with

∏n
i=1 Ui = I such that the

following conditions hold for i = 1, . . . , n:

(1) DT∗T ∗
i = P⊥

i U∗
i DT∗ + PiU

∗
i DT∗T ∗,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
(4) P1+U∗

1P2U1+U∗
1U

∗
2P3U2U1+ . . .+U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 = IDT∗ .

Proof. First, we assume that there exist orthogonal projections P1, . . . , Pn and
commuting unitaries U1, . . . , Un in B(DT∗) such that

∏n
i=1 Ui = I and the above

conditions (1)–(4) hold. Since T is a C.0 contraction, H2(DT∗) is a minimal iso-
metric dilation space for T. We first construct an isometric dilation (V1, . . . , Vn)
for (T1, . . . , Tn) on the minimal isometric dilation space H2(DT∗) of T with the
assumptions (1) − (3) only. Condition (4) will imply that

∏n
i=1 Vi = V , the mini-

mal isometric dilation of T. Let us consider the following multiplication operators
acting on H2(DT∗):

Vi = M
UiP

⊥
i

+zUiPi
(1 ≤ i ≤ n).

Since Ui is a unitary and Pi is a projection, it follows that

(P⊥
i U∗

i + z̄PiU
∗
i )(UiP

⊥
i + zUiPi) = P⊥

i + Pi = I,

and thus, Vi is an isometry for each i. Now we show that (V1, . . . , Vn) is a commuting
tuple. Note that for any 1 ≤ i < j ≤ n, ViVj = VjVi if and only if

(UiP
⊥
i + zUiPi)(UjP

⊥
j + zUjPj) = (UjP

⊥
j + zUjPj)(UiP

⊥
i + zUiPi),

which happens if and only if the given conditions (2) and (3) hold along with

UiPiUjP
⊥
j + UiP

⊥
i UjPj = UjP

⊥
j UiPi + UjPjUiP

⊥
i , (4.1)

which we prove now. From the given condition (2), we have [UiP
⊥
i , UjP

⊥
j ] = 0, and

this implies that

UiUj − UiUjPj − UiPiUj + UiPiUjPj − UjUi + UjUiPi + UjPjUi − UjPjUiPi = 0.
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From here we have that

UiPiUj + UiUjPj = UjUiPi + UjPjUi (4.2)

We now prove that

(UiPiUjP
⊥
j + UiP

⊥
i UjPj) = (UjP

⊥
j UiPi + UjPjUiP

⊥
i ). (4.3)

We have that

(UiPiUjP
⊥
j + UiP

⊥
i UjPj)− (UjP

⊥
j UiPi + UjPjUiP

⊥
i )

= UiPiUjP
⊥
j − UjP

⊥
j UiPi − UjPjUiP

⊥
i + UiP

⊥
i UjPj

= UiPiUj − UiPiUjPj − UjUiPi + UjPjUiPi − UjPjUi

+ UjPjUiPi + UiUjPj − UiPiUjPj

= UiPiUj − UjUiPi − UjPjUi + UiUjPj

= 0. [by (4.2)]

Therefore, (4.1) is proved, and consequently, (V1, . . . , Vn) is a tuple of commuting
isometries. We now embed H inside H2(DT∗). Let us define W : H → H2(DT∗)
by

W (h) =
∞∑
0

znDT∗T ∗nh. (4.4)

It can be found in the literature (e.g., [17]) that the mapW is an isometry. However,
we include a proof here for the sake of completeness and for the convenience of a
reader.

‖Wh‖2 = ‖
∞∑

n=0

znDT∗T ∗nh‖2 =

〈 ∞∑
n=0

znDT∗T ∗nh,
∞∑

m=0

zmDT∗T ∗mh

〉

=
∞∑

m,n=0

〈zn, zm〉〈DT∗T ∗nh,DT∗T ∗mh〉

=
∞∑

n=0

〈TnD2
T∗T ∗nh, h〉

=
∞∑

n=0

〈Tn(I − TT ∗)T ∗nh, h〉

=
∞∑

n=0

(〈TnT ∗nh, h〉 − 〈Tn+1T ∗(n+1)h, h〉)

= lim
m→∞

m∑
n=0

(‖T ∗nh‖2 − ‖T ∗n+1h‖2)

= ‖h‖2 − lim
m→∞

‖T ∗mh‖2

= ‖h‖2.
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The second last equality follows from the fact that lim
n→∞

‖T ∗nh‖2 = 0 as T is a C.0

contraction. Thus, W is an isometry. We now determine the adjoint of W. For any
n ≥ 0, ξ ∈ DT∗ , we have

〈W ∗(znξ), h〉 = 〈znξ,
∞∑

n=0

znDT∗T ∗nh〉 = 〈ξ,DT∗T ∗nh〉 = 〈TnDT∗ξ, h〉.

Therefore, W ∗(znξ) = TnDT∗ξ. Now for any 1 ≤ i ≤ n, for all k ∈ N∪ {0} and for
each ξ ∈ DT∗ , we have

W ∗Vi(z
kξ) = W ∗M

UiP
⊥
i

+zUiPi
(zkξ)

= W ∗(zkUiP
⊥
i ξ + zk+1UiPiξ) = T kDT∗UiP

⊥
i ξ + T k+1DT∗UiPiξ

= T k(DT∗UiP
⊥
i ξ + TDT∗UiPiξ)

= T k(TiDT∗ξ) [by condition (1)]

= Ti(T
kDT∗ξ)

= TiW
∗(zkξ).

Therefore, W ∗Vi = TiW
∗, i.e., V ∗

i W = WT ∗
i = WT ∗

i W
∗W , and hence,

V ∗
i |W (H ) = WT ∗

i W
∗|W (H ). This proves that (V1, . . . , Vn) is an isometric dilation

of (T1, . . . , Tn). Now (4.2) gives us Pi + U∗
i PjUi = Pj + U∗

j PiUj for 1 ≤ i < j ≤ n
and condition (4) yields Pi + U∗

i PjUi = Pj + U∗
j PiUj ≤ IDT∗ . Hence, by an appli-

cation of Lemma 3.2, we have that that
∏n

i=1 Vi = Mz, which is (up to a unitary)
the minimal isometric dilation of T.

Conversely, suppose (Y1, . . . , Yn) acting on K is an isometric dilation of
(T1, . . . , Tn), where Y =

∏n
i=1 Yi is the minimal isometric dilation of T. Let

Y ′
i =

∏
j 6=i Yj for 1 ≤ i ≤ n. Then,

K = span{Y nh : h ∈ H , n ∈ N ∪ {0}}.

We first show that Y ∗
i |H = T ∗

i for each i = 1, . . . , n. Note that for any i = 1, . . . , n,
k ∈ N∪{0} and h ∈ H , TiPH (Y kh) = TiT

kh = PH Yi(Y
kh), and as a consequence,

we have TiPH = PH Yi. Now, for any h ∈ H and k ∈ K ,

〈Y ∗
i h, k〉 = 〈h, Yik〉 = 〈h, PH Yik〉 = 〈h, TiPH k〉 = 〈T ∗

i h, PH k〉 = 〈T ∗
i h, k〉.

Hence, Yi|H = Ti for each i. Therefore, the block matrix form of each Yi with

respect to the decomposition K = H ⊕H ⊥ is Yi =

[
Ti 0

Ci Si

]
for some operators

Ci, Si. Also, since Y = Πn
i=1Yi, we have Y =

[
T 0

C S

]
for some operatorsC, S.
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Again V =
∏n

i=1 Vi = Mz on H2(DT∗) is also a minimal isometric dilation of T.
Therefore,

H2(DT∗) = span{V n(Wh) : h ∈ H , n ∈ N ∪ {0}}.

Now the map τ : H2(DT∗) → K defined by τ(V nWh) = Y nh is a unitary, which
maps Wh to h and τ∗ maps h to Wh for all h ∈ H . Therefore, with respect to the
decomposition K = H ⊕ H ⊥ and H2(DT∗) = W (H )⊕ (WH )⊥ the map τ has

block matrix form τ =

[
W ∗ 0

0 τ1

]
for some unitary τ1. Evidently, V = τ∗Y τ . Now

τ∗Yiτ =

[
W 0

0 τ∗1

][
Ti 0

Ci Si

][
W ∗ 0

0 τ1

]

=

[
WTi 0

τ∗1Ci τ∗1Si

][
W ∗ 0

0 τ1

]
=

[
WTiW

∗ 0

τ∗1CiW
∗ τ∗1Siτ1

]
.

Therefore, τ∗V ∗
i τ(Wh) = WT ∗

i W
∗(Wh) = WT ∗

i h. For each i = 1, . . . , n, let us

define V̂i := τ∗Viτ . Therefore,

V̂ ∗
i Wh = WT ∗

i h for all h ∈ H , (1 ≤ i ≤ n). (4.5)

Therefore, (V̂1, . . . , V̂n) = (τ∗Y1τ, . . . , τ
∗Ynτ) on H2(DT∗) is an isometric dilation

of (T1, . . . , Tn) such that
∏n

i=1 V̂i = V . We now follow the arguments given in the

converse part of the proof of Theorem 3.5. Since V̂i is a commutant of V (= Mz),

V̂i = Mφi
, where φi(z) = F ′∗

i + Fiz ∈ H∞(B(DT∗)). Evidently, Ui = F ∗
i + F ′

i and

U ′
i = F ∗

i −F ′
i are commuting unitaries and Pi =

1

2
(I−U ′∗

i Ui) is a projection for all

i = 1, . . . , n. A simple computation shows that Fi = UiPi and F ′
i = P⊥

i U∗
i . Also,

[Fi, Fj ] = [F ′
i , F

′
j ] = 0 for all i, j. Therefore,

V̂i = M
UiP

⊥
i

+UiPiz
(1 ≤ i ≤ n).

Obviously conditions (2) and (3) follow from the commutativity of Fi, Fj and F ′
i , F

′
j ,

respectively. It remains to show that conditions (1) and (4) hold. From (4.5), we

have V̂ ∗
i Wh = WT ∗

i h for every h ∈ H . Now for any h ∈ H , we have

https://doi.org/10.1017/prm.2024.95 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.95


24 S. Pal and P. Sahasrabuddhe

V̂ ∗
i Wh = V̂ ∗

i (
∞∑
k=0

zkDT∗T ∗kh)

= P⊥
i U∗

i DT∗h+
∞∑
k=1

zkP⊥
i U∗

i DT∗T ∗kh+ zk−1PiU
∗
i DT∗T ∗kh

=
∞∑
k=0

zk(P⊥
i U∗

i DT∗T ∗k + PiU
∗
i DT∗T ∗(k+1))h

=
∞∑
k=0

zk(P⊥
i U∗

i DT∗ + PiU
∗
i DT∗T ∗)T ∗kh.

Also,

W (T ∗
i h) =

∞∑
k=0

zkDT∗T ∗kT ∗
i h =

∞∑
k=0

zkDT∗T ∗
i T

∗kh.

Comparing the constant terms, we have DT∗T ∗
i = P⊥

i U∗
i DT∗ + PiU

∗
i DT∗T ∗.

This proves condition (1). Now, since we have
∏n

i=1 V̂i = V = Mz and

V̂i = M
UiP

⊥
i

+zUiPi
, condition (4) follows from Theorem 3.2. The uniqueness of

P1, . . . , Pn and U1, . . . , Un follows by an argument similar to that in the proof of
the (⇒) part of Theorem 3.5. The proof is now complete. �

Now we present an analogue of Theorem 3.9 when the product T is a C.0
contraction, and obviously, a proof follows from Theorem 4.1 and its proof.

Theorem 4.2 Let T1, . . . , Tn ∈ B(H ) be commuting contractions such that T =∏n
i=1 Ti is a C.0 contraction. Then, (T1, . . . , Tn) possesses an isometric dilation

on the minimal isometric dilation space of T if there are projections P1, . . . , Pn

and commuting unitaries U1, . . . , Un in B(DT∗) such that the following hold for
i = 1, . . . , n:

(1) DTTi = P⊥
i U∗

i DT + PiU
∗
i DTT ,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi.

Conversely, if a commuting tuple of contractions (T1, . . . , Tn), with the product

T =
∏n

i=1 Ti being a C.0 contraction, possesses an isometric dilation (V̂1, . . . , V̂n),
where V =

∏n
i=1 Vi is the minimal isometric dilation of T, then there are unique

projections P1, . . . , Pn and unique commuting unitaries U1, . . . , Un in B(DT∗)
satisfying the conditions (1)–(3) above.

4.1. A functional model when the product is a C.0 contraction

For a contraction T acting on a Hilbert space H , let ΛT be the set of all complex
numbers for which the operator I−zT ∗ is invertible. For z ∈ ΛT , the characteristic
function of T is defined as
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ΘT (z) = [−T + zDT∗(I − zT ∗)−1DT ]|DT
. (4.6)

Here, we recall a few definitions and terminologies from the initial part of § 3. The
operators DT and DT∗ are the defect operators (I − T ∗T )1/2 and (I − TT ∗)1/2,
respectively. By virtue of the relation TDT = DT∗T (section I.3 of [17]), ΘT (z)
maps DT = RanDT into DT∗ = RanDT∗ for every z in ΛT .

In [17], Sz.-Nagy and Foias proved that every C.0 contraction P acting on
H is unitarily equivalent to the operator T = PHT

Mz|HT
on the Hilbert space

HT = H2(DT∗) 	 MΘT
(H2(DT )), where Mz is the multiplication operator on

H2(DT∗) and MΘT
is the multiplication operator from H2(DT ) into H2(DT∗) cor-

responding to the multiplier ΘT . This is known as Sz. Nagy–Foias model for a C.0
contraction. Indeed, Mz on H2(DT∗) dilates T ∈ B(H ), and W : H → H2(DT∗)
as in (4.4) is the concerned isometric embedding. In an analogous manner by an
application of Theorem 4.1, we obtain a functional model for a tuple of commuting
contractions with C.0 product. A notable fact about this model is that the multi-
plication operators involved in this model have analytic symbols which are linear
functions in one variable.

Theorem 4.3 Let T1, . . . , Tn be commuting contractions on a Hilbert space H
such that their product T = Πn

i=1Ti is a C.0 contraction. If there are projections
P1, . . . , Pn and commuting unitaries U1, . . . , Un in B(DT∗) satisfying the following
for 1 ≤ i ≤ n:

(1) DT∗T ∗
i = P⊥

i U∗
i DT∗ + PiU

∗
i DT∗T ∗,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,

then (T1, . . . , Tn) is unitarily equivalent to (T̃1, . . . , T̃n) acting on the space HT =

H2(DT∗)	MΘT
(H2(DT )), where T̃i = PHT

(M
UiP

⊥
i

+zUiPi
)|HT

for 1 ≤ i ≤ n.

Proof. For a C.0 contraction T, we have from literature (e.g., [17] or lemma 3.3 in
[21]) that

WW ∗ +MΘT
M∗

ΘT
= IH2(DP∗ ).

It follows from here that W (H ) = HT , where W : H → H2(DT∗) is as
in (4.4). Since V ∗

i |W (H ) = T ∗
i , where Vi = (M

UiP
⊥
i

+zUiPi
), we have that Ti

∼=
PHT

(M
UiP

⊥
i

+zUiPi
)|HT

for i = 1, . . . , n. �

4.2. A factorization of a C.0 contraction

The model for commuting n-isometries, Theorem 3.2, can be restated in the
following way.

Theorem 4.4 Let V1, . . . , Vn be commuting isometries acting on a Hilbert space
H and let V =

∏n
i=1 Vi. Then, V =

∏n
i=1 Vi is a pure isometry if and only if

there are unique orthogonal projections P1, . . . , Pn and unique commuting unitaries
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U1, . . . , Un in B(DV ∗) with
∏n

i=1 Ui = I such that the following conditions hold for
i = 1, . . . , n:

(1) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(2) UiPiUjPj = UjPjUiPi,
(3) P1 +U∗

1P2U1 +U∗
1U

∗
2P3U2U1 + . . .+U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 = IDT
.

Moreover, (V1, . . . , Vn) is unitarily equivalent to
(M

U1P
⊥
1 +zU1P1

, . . . ,M
UnP⊥

n +zUnPn
) on H2(DV ∗).

Proof. First, suppose (V1, . . . , Vn) on Hilbert space H is a commuting n-tuple of
isometries with

∏n
i=1 Vi = V being a pure isometry. Thus, H can be identified

with H2(DV ∗) via a unitary τ : H → H2(DV ∗), and V can be identified with Mz

on H2(DV ∗). Let V̂i = τViτ
∗ for i = 1, 2 . . . , n. Hence, (V̂1, . . . , V̂n) is a commuting

n-tuple of isometries with
∏n

i=1 V̂i = Mz on H2(DV ∗). Therefore, (V̂1, . . . , V̂n) is
an isometric dilation of (V1, . . . , Vn) with Mz being the minimal isometric dilation
of V. Therefore, by Theorem 4.1, there are unique commuting unitaries U1, . . . , Un

and unique orthogonal projections P1, . . . Pn in B(DV ∗) such that
∏n

i=1 Ui = I and
that the conditions (1)–(3) are satisfied.

Conversely, suppose there are unique orthogonal projections P1, . . . , Pn and
unique commuting unitaries U1, . . . , Un in B(DV ∗) such that

∏n
i=1 Ui = I and that

the conditions (1)–(3) are satisfied. Let Vi = M
UiP

⊥
i

+zUiPi
for each i = 1, 2 . . . , n.

Then, as seen in the proof of Theorem 4.1, (V1, . . . , Vn) is a commuting n-tuple of
isometries with

∏n
i=1 Vi = Mz on H2(DV ∗). �

Also, Theorem 3.2 provides a factorization of a C.0 isometry (i.e., a pure isome-
try) in terms of n number of commuting isometries. Our result, Theorem 4.1, gives
a factorization of a C.0 contraction in the following way:

Theorem 4.5 Let T1, . . . , Tn be commuting contractions on a Hilbert space H
and let their product T =

∏n
i=1 Ti be a C.0 contraction. Then, (T ∗

1 , . . . , T
∗
n) ≡

(V ∗
1 |H , . . . , V ∗

n |H ) for a model n-isometry (V1, . . . , Vn) on H2(DT∗) if and only
if there exist unique orthogonal projections P1, . . . , Pn and unique commuting uni-
taries U1, . . . , Un in B(DT∗) such that

∏n
i=1 Ui = IDT∗ and the following conditions

are satisfied:

(1) DT∗T ∗
i = P⊥

i U∗
i DT∗ + PiU

∗
i DT∗T ∗,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
(4) P1 +U∗

1P2U1 +U∗
1U

∗
2P3U2U1 + . . .+U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 = IDT
.

Proof. First suppose there are projections P1, . . . , Pn and commuting unitaries
U1, . . . , Un in B(DT∗) such that

∏n
i=1 Ui = IDT∗ and that the conditions (1)–(4)

are satisfied. Then, Theorem 4.1 provides commuting n-isometries V1, . . . , Vn on
H2(DT∗) with Vi = M

UiP
⊥
i

+zUiPi
for each i such that
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(T ∗
1 , . . . , T

∗
n) ≡ (V ∗

1 |W (H ), . . . , V
∗
n |W (H )),

where W is the isometry as in (4.4).
Conversely, suppose (T ∗

1 , . . . , T
∗
n) is equivalent to (V ∗

1 |H , . . . , V ∗
n |H ) for some

model n-isometry (V1, . . . , Vn) on H2(DT∗). Then, by the (⇒) part of Theorem 4.1,
there are projections P1, . . . , Pn and commuting unitaries U1, . . . , Un in B(DT∗)
such that

∏n
i=1 Ui = IDT∗ and that the conditions (1)–(4) are satisfied. �

5. Examples

In this section, we present several examples to compare our classes of commuting
contractions admitting isometric dilation with the previously determined various
classes from the literature. We shall show that neither our classes are properly
contained in any of these classes from the literature nor any previously determined
classes are contained properly in our classes. However, there are always non-trivial
intersections. Note that our theory is one-dimensional in the sense that the operator
models that we obtained are all having multiplication operators with multipliers of
one complex variable.

Suppose (T1, T2) is a commuting pair of contractions admitting isometric dilation
(V1, V2) on the minimal dilation space of T = T1T2. If there are unitaries U1, U2 and
projections P1, P2 such that UiPj = UjPi for i = 1, 2 and that the condition (1) of
Theorem 3.9 holds, then it can be verified that the conditions (2),(3), and(4) hold
as a consequence. Hence, (T1, T2) has an isometric dilation on the minimal isometric
dilation space of T. Now one may ask a question: if (T1, T2) admits isometric dilation
on the minimal isometric dilation space of T, then will the corresponding unitaries
commute with the projections? The following example gives a negative answer to
this:

Example 5.1. Let T1 = T2 =

[
0 1

0 0

]
be commuting pair of contractions on C2.

Then, clearly, T = T1T2 = 0, and hence,DT = I. Hence, we need to find commuting
U1, U2 and projections P1, P2 such that DTTi = P⊥

i U∗
i DT +PiU

∗
i DTT for i = 1, 2.

Substituting DT = I and T =0, the above equations are equivalent to T1 = P⊥
1 U∗

1

and T2 = P⊥
2 U∗

2 . One can observe that P1 = P2 =

[
0 0

0 1

]
and U1 = U2 =

[
0 1

1 0

]
satisfy the above two equations. It is clear that U1, U2 are commuting unitaries and
P1, P2 are projections. Further as T1, T2 commute with each other, it follows that
P⊥
1 U∗

1 commutes with P⊥
2 U∗

2 . Simple calculation shows that U1P1 = T1 and U2P2 =
T2. Therefore, U1P1 commutes with U2P2. Further DTUiPiU

∗
i DT = UiPiU

∗
i =

UiPiPiU
∗
i = TiT

∗
i =

[
1 0

0 0

]
= D2

Ti
. Also P1 + U∗

1P2U1 = I. Hence, the conditions

(1)–(5) of Theorem 3.5 hold. But one can clearly observe that Ui do not commute

with Pj as UiPj =

[
0 1

0 0

]
and PjUi =

[
0 0

1 0

]
.
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Before going to the next example let us note down the following observation from
the proofs of the previously stated dilation theorems:

Note 5.2. Let T1, . . . , Tn ∈ B(H ) be commuting contractions. Suppose there are
projections P1, . . . , Pn ∈ B(DT ) and commuting unitaries U1, . . . , Un ∈ B(DT )
such that

∏n
i=1 Ui = I and conditions (1)–(5) of Theorem 3.5 are satisfied. Then,

by Theorem 3.5, (T1, . . . , Tn) possesses an isometric dilation (V1, . . . , Vn) on the
minimal isometric dilation space K of T such that

∏n
i=1 Vi = V is the minimal

isometric dilation of T. Without loss of generality, we can assume Vi to be as in
(3.3) and V to be the Schäffer’s minimal isometric dilation. So, if V ′

i =
∏

j 6=i Vj,
then

V ′
i = V ∗

i V =


T ′
i 0 0 0 . . .

UiP
⊥
i DT UiPi 0 0 . . .

0 UiP
⊥
i UiPi 0 . . .

0 0 UiP
⊥
i UiPi . . .

. . . . . . . . . . . . . . .

 .

Thus, (2, 1) entries of both sides of V ′
i V = V V ′

i give DTT
′
i = UiPiDT +UiP

⊥
i DTT

for 1 ≤ i ≤ n.

Let U n(H ) be the class of commuting n-tuples of contractions on H satisfy-
ing conditions (1)–(4) of Theorem 3.9 and let S n(H ) denote the class satisfying
conditions (1)–(5) of Theorem 3.5. The following example shows that S n(H ) is
properly contained in U n(H ).

Example 5.3. Let us consider the following doubly commuting contractions acting
on C3:

T1 =

1 0 0

0 0 0

0 0 0

 , T2 =

0 0 0

0 1 0

0 0 0

 , T3 =

0 0 0

0 0 0

0 0 1

 .

We show that (T1, T2, T3) /∈ S 3(C3) though it belongs to U 3(C3). Note that T ′
1 =

T2T3 = 0 and similarly T ′
2 = T ′

3 = 0. Also, it is clear that T = T1T2T3 = 0, and
hence, DT = I on C3. Thus, DT = C3. Now suppose there are commuting unitaries
U1, U2, U3 and projections P1, P2, P3 in B(C3) satisfying the hypotheses of Theorem
3.5. Then, for each i, we have that DTTi = P⊥

i U∗
i DT +PiU

∗
i DTT . Since T =0 and

DT = I, it reduces to Ti = P⊥
i U∗

i . Again, from Note 5.2, it is clear that the unitaries
and projections satisfying (1)–(5) must also satisfy DTT

′
i = UiPiDT +U∗

i P
⊥
i DTT ,

which is same as saying that T ′
i = UiPi. Thus, T

∗
i + T ′

i = UiP
⊥
i +UiPi = Ui. Since

T ′
i = 0, we have that Ui = T ∗

i + T ′
i = T ∗

i . This contradicts the fact that Ui is a
unitary. Hence, (T1, T2, T3) /∈ S 3(C3). Now if we take Ui = I and Pi = I − Ti for
i = 1, 2, 3, then one can easily verify that the conditions (1)–(4) of Theorem 3.9
hold.

In [15], Barik, Das, Haria, and Sarkar introduced a new class of commuting
contractions that admit isometric dilation. For each natural number n ≥ 3 and for
every number p, q with 1 ≤ p < q ≤ n, let T n

p,q(H ) be defined as follows:
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T n
p,q(H ) = {T ∈ T n(H ) : T̂p, T̂q ∈ Sn−1(H ), and T̂pis pure}, (5.1)

where for any natural number i ≤ n, T̂i = (T1, . . . , Ti−1, Ti+1, . . . Tn), Tn(H ) is a
set of commuting n-tuple of contractions on space H and

Sn(H ) = {T ∈ T n(H ) :
∑

k∈{0,1}n
(−1)|k|T kT ∗k ≥ 0}.

Note that Sn(H ) is the set of all those n-tuples of contractions on H that satisfy
Szego positivity condition, i.e.,

∑
k∈{0,1}n(−1)|k|T kT ∗k ≥ 0. The class obtained by

putting an additional condition ‖Ti‖ < 1 for each i on the elements of T n
p,q(H ) is

denoted by Pn
p,q(H ). This class has been studied in [36] by Grinshpan, Kaliuzhnyi,

Verbovetskyi, Vinnikov, and Woerdeman. In [15], it is shown that Pn
p,q(H ) (

T n
p,q(H ) for 1 ≤ p < q ≤ n. The following example shows that an element of our

class may not satisfy the Szego positivity condition.

Example 5.4. Let T1 = T2 =

[
0 0

1 0

]
and T3 = I. Then, T = T1T2T3 = 0, and

hence, DT = I. Let P1 = P2 =

[
1 0

0 0

]
, P3 = 0 and U1 = U2 =

[
0 1

1 0

]
, U3 = I.

Then U1, U2, U3 are commuting unitaries and P1, P2, P3 are projections satisfying
U1U2U3 = I and the conditions (1)–(5) of Theorem 3.5. Hence, (T1, T2, T3) belongs
to S 3(C3). Note that

I − T1T
∗
1 − T2T

∗
2 − T3T

∗
3 = I −

[
0 0

0 1

]
−

[
0 0

0 1

]
− I =

[
0 0

0 −2

]
� 0.

Also,

I − T2T
∗
2 − T3T

∗
3 = I −

[
0 0

0 1

]
− I =

[
0 0

0 −1

]
� 0

and

I − T1T
∗
1 − T3T

∗
3 = I −

[
0 0

0 1

]
− I =

[
0 0

0 −1

]
� 0.

Thus, if we consider T̂1 = (T2, T3), T̂2 = (T1, T3) and T̂3 = (T1, T2), then T̂1, T̂2

do not belong to S2(H ). So, for any p, q satisfying 1 ≤ p, q ≤ 3, we have that
(T1, T2, T3) /∈ T n

p,q(H ).

Note that example 5.4 does not satisfy Brehmer’s condition. Recall that T =
(T1, . . . , Tn) satisfies Brehmer’s conditions if∑

F⊆G

(−1)|F |T ∗
FTF ≥ 0
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for all G ⊆ {1, . . . n}. See (2.1) for the definition. For γ = (γ1, . . . , γn) ∈ Nn, Curto
and Vasilescu [27, 28] introduced a notion of γ contractivity. For γ = (1, . . . , 1) := e,
the notion agrees with Brehmer’s condition. The notion of γ contractivity is defined
in such a way that for each γ ∈ Nn, if an operator T = (T1, . . . , Tn) is γ contractive,
then it is e contractive. Since example 5.4 does not satisfy Brehmer’s condition, it
does not have a regular unitary dilation, and it is not e contractive. Hence, it cannot
be γ contractive, and consequently, it does not belong to the ‘Curto–Vasilescu’ class.

Example 5.5. As observed by Barik, Das, Haria, and Sarkar in [15], there
is an operator tuple (Mz1

, . . . ,Mzn) in T n
p,q(H

2(Dn)) that does not belong to

Pn
p,q(H

2(Dn)). This class was introduced in [36] by Grinshpan et al. Since T =

Mz1
. . .Mzn on H2(Dn) is an isometry, DT = 0. So the minimal isometric dilation

space of T is K0 = H2(Dn). Since each Mzi
= Ti is an isometry on H2(Dn), we

have that (Mz1
, . . . ,Mzn) is an isometric dilation of (T1, . . . , Tn) on the minimal

dilation space of T with the product being the minimal isometric dilation of T.
Thus, (Mz1

, . . . ,Mzn) ∈ U n(H ) by Theorem 3.5.

Example 5.6. Let us consider the following commuting self-adjoint scalar matrices
acting on C3:

T1 =

0 0 0

0 1 0

0 0 1

 , T2 =

1 0 0

0 0 0

0 0 1

 , T3 =

1 0 0

0 1 0

0 0 0

 .

Let Pi = I − Ti and Ui = I for i = 1, 2, 3. Note that DT = 0 and the projections
P1, P2, P3 satisfy P1 + P2 + P3 = I. Thus, the condition (5) holds. Also, it can be
easily verified that the conditions (1)–(4) hold. Therefore, this triple of commuting
contractions belongs to S 3(C3).

Example 5.7. Let us consider the commuting self-adjoint scalar matrices

T1 =

 0 1/3 0

1/3 0 0

0 0 0

 , T2 =

 1/2 1/3 0

−1/3 1/2 0

0 0 0

 , T3 =

0 0 0

0 0 0

0 0 1


acting on C3. Evidently, T = T1T2T3 = 0, and thus, DT = I. Now suppose there
are projections P1, P2, P3 and commuting unitaries U1, U2, U3 satisfying conditions
(1)–(4) of Theorem 3.5. So, in particular, we have

DTT1 = P⊥
1 U∗

1DT + P1U
∗
1DTT,

which implies that T1 = P⊥
1 U∗

1 . We also have DTU1P1U
∗
1DT = I − T ∗

1 T1, and this
gives P1 = U∗

1 (I − T ∗
1 T1)U1, and hence, we have

P⊥
1 = I − U∗

1 (I − T ∗
1 T1)U1 = U∗

1T
∗
1 T1U1 = U∗

1

1/9 0 0

0 1/9 0

0 0 0

U1.
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Therefore,

T1 = U∗
1

1/9 0 0

0 1/9 0

0 0 0

 .

Again 30
0

 = T1

09
0

 = U∗
1

1/9 0 0

0 1/9 0

0 0 0


09
0

 = U∗
1

01
0

 .

This contradicts the fact that U 1 is a unitary. Hence, (T1, T2, T3) /∈ U 3(C3).

Example 5.8. Let T1, T2 be as in example 3.8 and let T3 = I. Then, it is evident
that (T1, T2, T3) does not belong to our class S 3(C3). This can be verified using
an argument similar to that in example 5.7. However,

I − T2T
∗
2 − T3T

∗
3 + T2T3T

∗
2 T

∗
3 = I −

0 0 0

0 0 0

0 0 1/3

− I +

0 0 0

0 0 0

0 0 1/3

 = 0.

Alo,

I − T1T
∗
1 − T2T

∗
2 + T1T2T

∗
1 T

∗
2 = I −

0 0 0

0 0 0

0 0 1/3

−

0 0 0

0 1/9 0

0 0 1/27

+ 0

=

1 0 0

0 8/9 0

0 0 17/27

 ≥ 0.

Hence, T̂1 and T̂3 belong to S3(C3). Clearly T1, T2 are pure contractions, and hence,

T̂3 is pure. Thus, (T1, T2, T3) ∈ T 3
1,3(C3).

We now consider a few examples of contractions acting on infinite dimensional
Hilbert spaces and study their dilations.

Example 5.9. Let H = l2 and let T1, T2 be the following weighted shift operators
acting on H :

T1(h0, h1, . . . ) = (0, a0h0, 0, a1h2, 0, a2h4, . . . ),

T2(h0, h1, . . . ) = (0, b0h0, 0, b1h2, 0, b2h4, . . . ),

where {a0, a1, . . . } and {b0, b1, . . . } are bounded sequences of non-zero real numbers
with |an| < 1 and |bn| < 1 for every n ∈ N. Clearly, T = T1T2 = T2T1 = 0. Hence,
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DT = I and DT = l2 = H . We show that (T1, T2) does not possess isometric
dilation (V1, V2) on the minimal isometric dilation space of T with V = V1V2 being
the minimal isometric dilation of T. Let us assume the contrary. Then, by Theorem
3.5, there are projections P1, P2 commuting unitaries U1, U2 in B(DT ) = B(H ),
with U1U2 = I satisfying conditions (1)–(5). Condition (1) gives us Ti = P⊥

i U∗
i for

i = 1, 2. From condition (4), we have

U1P1U
∗
1 = I − T ∗

1 T1

=⇒ T ∗
1 T1 = U1(I − P1)U

∗
1

=⇒ T ∗
1 T1 = U1T1 [as T1 = P⊥

1 U∗
1 ].

Simple calculation shows that T ∗
1 T1 = diag(a20, 0, a

2
1, 0, a

2
2, . . . ). Hence,

U1T1(a
−1
0 , 0, . . . ) = T ∗

1 T1(a
−1
0 , 0, . . . )

=⇒ U1(0, 1, 0, 0, . . . ) = (a0, 0, 0, . . . ).

Since U 1 is a unitary, ‖U1(0, 1, 0, 0, . . . )‖ = ‖(0, 1, 0, 0, . . . )‖, and thus, it follows
from here that ‖(a0, 0, 0, . . . )‖ = ‖(0, 1, 0, 0, . . . )‖. This is a contradiction as |a0| <
1. Hence, we are done.

Example 5.10. Let H = l2 and let {e0, e1, . . . } be the standard orthonormal
basis of l2. For k = 1, . . . , n, let Tk be defined on H by Tk(em) = 0 if m ≡
(k − 1)modn and Tk(em) = em otherwise. We show that (T1, T2, . . . , Tn) possesses
an isometric dilation on the minimal isometric dilation space K of T =

∏n
i=1 Ti.

Evidently, T =0, and thus, DT = H . So, we have that K = H ⊕ H ⊕ . . . is
the minimal isometric dilation space of T. Now for each k, define Pk = I − Tk and
Uk = I on DT = H . Then, it follows that U1, . . . , Un are commuting unitaries
with U1U2 . . . Un = I and P1, . . . , Pn are projections. Also, the conditions (1)–(5)
of Theorem 3.5 are satisfied straightway. Therefore, Theorem 3.5 guaranties the
existence of an isometric dilation of (T1, . . . , Tn) as desired.

6. Sz. Nagy–Foias-type isometric dilation and functional model

Recall that a c.n.u. contraction T on a Hilbert space H is a contraction such that
there is no non-zero subspace H1 of H that reduces T and on H1 the operator
T acts as a unitary. In simple words, a c.n.u. contraction is a contraction without
any unitary part. Let T on H be a c.n.u. contraction and let V on K0 be the
minimal isometric dilation of T. By Wold decomposition, K0 splits into reducing
subspaces K01, K02 of V such that K0 = K01 ⊕ K02 and that V |K01

is unitarily
equivalent to a unilateral shift and V |K02

is a unitary. Then, K01 can be identified

with H2(DT∗) and K02 can be identified with ∆T (L2(DT )), where ∆T (t) = [IDT
−

ΘT (e
it)∗ΘT (e

it)]1/2 and ΘT being the characteristic function of the contraction T.
For further details, see chapter VI of [17]. Thus,K0 = K01 ⊕K02 can be identified
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with K+ = H2(DT∗) ⊕∆T (L2(DT )). Also, the isometry V on K0 can be realized
as Mz ⊕Meit |∆T (L2(DT ))

. Therefore, there is a unitary

τ = τ1 ⊕ τ2 : K01 ⊕ K02 → (H2 ⊗ DT∗)⊕∆T (L2(DT )) := K̃+ (6.1)

such that V on K0 can be realized as (Mz ⊗ IDT∗ )⊕Meit |∆T (L2(DT ))
on K̃+.

If (T1, . . . , Tn) is a tuple of commuting contractions acting on H satisfying the
hypotheses of Theorem 3.9, then it possesses an isometric dilation (V1, . . . , Vn) on
the minimal isometric dilation space K0 of T. ByWold decomposition of commuting
isometries, we have that K01 and K02 are reducing subspaces for each Vi and that

Vi2 = Vi|K02
(6.2)

is a unitary for 1 ≤ i ≤ n. Now we state our dilation theorem and functional model
in the Sz. Nagy–Foias setting. This is another main result of this article.

Theorem 6.1 Let (T1, . . . , Tn) be a tuple of commuting contractions acting on
H such that T = Πn

i=1Ti is a c.n.u. contraction. Suppose there are orthogonal
projections P1, . . . , Pn and commuting unitaries U1, . . . , Un in B(DT ) satisfying

(1) DTTi = P⊥
i U∗

i DT + PiU
∗
i DTT ,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
(4) DTUiPiU

∗
i DT = D2

Ti

for 1 ≤ i < j ≤ n. Then, there are projections Q1, . . . , Qn and commuting unitaries
Ũ1, . . . , Ũn in B(DT∗) such that (T1, . . . , Tn) dilates to the tuple of commuting

isometries (Ṽ11 ⊕ Ṽ12, . . . , Ṽn1 ⊕ Ṽn2) on K̃+ = H2 ⊗ DT∗ ⊕∆T (L2(DT )), where

Ṽi1 = I ⊗ ŨiQ
⊥
i +Mz ⊗ ŨiQi ,

Ṽi2 = τ2Vi2τ
∗
2 ,

for unitaries τ2 and Vi2 as in (6.1) and (6.2), respectively, for 1 ≤ i ≤ n.

Proof. By Theorem 3.9, we have that (T1, . . . , Tn) possesses an isometric dilation
(V1, . . . , Vn) on K0 = H ⊕ l2(DT ), which in fact satisfies V ∗

i |H = T ∗
i for 1 ≤ i ≤ n.

Now K0 has an orthogonal decomposition K0 = K01 ⊕ K02 such that K01 and
K02 are common reducing subspaces for V1, . . . , Vn, (V1|K01

, . . . , Vn|K01
) is a pure

isometric tuple, i.e.,
∏n

i= Vi|K01
is a pure isometry and (V1|K02

, . . . , Vn|K02
) is a

unitary tuple. Let
∏n

i=1 Vi = V , Vi|K01
= Vi1, and Vi|K02

= Vi2 for 1 ≤ i ≤ n.
Also, let

∏n
i=1 Vi1 = W1 and

∏n
i=1 Vi2 = W2. So W 1 on K01 is a pure isometry and

W 2 on K02 is a unitary. So,

(τV1τ
∗, . . . , τVnτ

∗) = (τ1V11τ
∗
1 ⊕ τ2V12τ

∗
2 , . . . , τ1Vn1τ

∗
1 ⊕ τ2Vn2τ

∗
2 )

is an isometric dilation of (T1, . . . , Tn) on K̃+, where τ = τ1⊕τ2 is as in (6.1). Thus,
the tuple (τ1V11τ

∗
1 , . . . τ1Vn1τ

∗
1 ) on H2 ⊗ DT∗ is a pure isometric tuple. Hence, by
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Theorem 3.1, there exist commuting unitaries Ũ1, . . . , Ũn and orthogonal projec-
tionsQ1, . . . , Qn in B(DT∗) (= B(DW∗

1
)) such that the tuple (τ1V11τ

∗
1 , . . . τ1Vn1τ

∗
1 )

is unitarily equivalent to

(I ⊗ Ũ1Q
⊥
1 +Mz ⊗ Ũ1Q1, . . . , I ⊗ ŨnQ

⊥
n +Mz ⊗ ŨnQn) on H2 ⊗ DT∗

via a unitary, say Z. For 1 ≤ i ≤ n, let us denote Ṽi1 = I ⊗ ŨiQ
⊥
i + Mz ⊗

ŨiQi and Ṽi2 = τ2Vi2τ
∗
2 . So, (τV1τ

∗, . . . , τVnτ
∗) is unitarily equivalent to (Ṽ11 ⊕

Ṽ12, . . . , Ṽn1⊕ Ṽn2) via the unitary Z⊕ I. Thus, (V1, . . . , Vn) is unitarily equivalent

to (Ṽ11 ⊕ Ṽ12, . . . , Ṽn1 ⊕ Ṽn2) via a unitary

Y = Zτ1 ⊕ τ2 : K01 ⊕ K02 → H2 ⊗ DT∗ ⊕∆T (L2(DT )).

Let Ṽi = Ṽi1 ⊕ Ṽi2 for i = 1, . . . n. Since for each i, V ∗
i |H = T ∗

i , we have, for any
h ∈ H ,

Ṽ ∗
i (Y h) = (Y ViY

∗)∗Y h = Y V ∗
i Y

∗Y h = Y V ∗
i h = Y T ∗

i h.

Therefore, Ṽ ∗
i |Y (H ) = Y T ∗

i Y
∗|Y (H ) for 1 ≤ i ≤ n. So, we have T

k1
1 . . . T kn

n =

Y ∗Ṽ
k1
1 . . . Ṽ kn

n Y . Thus, (Ṽ11 ⊕ Ṽ12, . . . , Ṽn1 ⊕ Ṽn2) is an isometric dilation of

(T1, . . . , Tn), where Ṽi1 = I ⊗ ŨiQ
⊥
i +Mz ⊗ ŨiQi and Ṽi2 = τ2Vi2τ

∗
2 for 1 ≤ i ≤ n.

This completes the proof. �

7. A model theory for a class of commuting contractions

In this section, we present a model theory for a tuple of commuting contractions
satisfying the conditions of Theorems 3.5 and 3.9.

Theorem 7.1 Let (T1, . . . , Tn) be commuting tuple of contractions on a Hilbert
space H and let T = Πn

i=1Ti. Suppose there are projections P1, . . . , Pn ∈ B(DT∗)
and commuting unitaries U1, . . . , Un ∈ B(DT∗) such that for each i = 1, . . . , n,

(1) DT∗T ∗
i = P⊥

i U∗
i DT∗ + PiU

∗
i DT∗T ∗,

(2) P⊥
i U∗

i P
⊥
j U∗

j = P⊥
j U∗

j P
⊥
i U∗

i ,
(3) UiPiUjPj = UjPjUiPi,
(4) DT∗UiPiU

∗
i DT∗ = D2

T∗
i
.

Let Z1, . . . , Zn on K = H ⊕ l2(DT∗) be defined as follows:

Zi =


Ti DT∗UiPi 0 0 . . .

0 UiP
⊥
i UiPi 0 . . .

0 0 UiP
⊥
i UiPi . . .

0 0 0 UiP
⊥
i . . .

. . . . . . . . . . . . . . .

 , (1 ≤ i ≤ n).
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Then,

(i) (Z1, . . . , Zn) is a commuting n-tuple of co-isometries, H is a common
invariant subspace of Z1, . . . , Zn, and Zi|H = Ti.

(ii) there is an orthogonal decomposition K = K1 ⊕ K2 into common
reducing subspaces of Z1, . . . , Zn such that (Z1|K1

, . . . , Zn|K1
) is a pure

co-isometric tuple, that is, Z|K1
= Πn

i=1Zi|K1
is a pure co-isometry and

(Z1|K2
, . . . , Zn|K2

) is a unitary tuple.

Additionally, if

(5) P1 + U∗
1P2U1 + U∗

1U
∗
2P3U2U1 + . . .+ U∗

1U
∗
2 . . . U∗

n−1PnUn−1 . . . U2U1 = IDT
,

then

(iii) K1 can be identified with H2(DZ), where DZ has same dimension as that

of DT . Also, there are projections P̂1, . . . , P̂n and commuting unitaries

Û1, . . . , Ûn such that the operator tuple (Z1|K1
, . . . , Zn|K1

) is unitarily
equivalent to the multiplication operator tuple(

M
Û1P̂1

⊥
+Û1P̂1z̄

, . . . ,M
ÛnP̂n

⊥
+ÛnP̂nz̄

)
acting on H2(DT ).

Proof. We apply Theorem 3.9 to the tuple (T ∗
1 , . . . , T

∗
n) of commuting contractions

to have an isometric dilation (X1, . . . , Xn) on K0 = H ⊕ l2(DT∗), where

Xi =


T ∗
i 0 0 0 . . .

PiU
∗
i DT∗ P⊥

i U∗
i 0 0 . . .

0 PiU
∗
i P⊥

i U∗
i 0 . . .

0 0 PiU
∗
i P⊥

i U∗
i . . .

. . . . . . . . . . . . . . .

 , (1 ≤ i ≤ n).

Clearly, Zi = X∗
i for each i, and it is evident from the block matrix that H is

a common invariant subspace for each Zi and Zi|H = Ti. This proves (i). Since
(X1, . . . , Xn) is a commuting tuple of isometry, X = Πn

i=1Xi is an isometry. By
Wold decomposition, K = K1 ⊕ K2 and that X|K1

is a pure isometry, X|K2
is a

unitary. Also, they are common reducing subspaces for each Xi. Indeed, if

Xi =

(
Ai Bi

Ci Di

)
X =

(
XK1 0

0 XK2

)

with respect to the decomposition K = K1 ⊕ K2, then XiX = XXi implies that

BiXK2 = XK1Bi CiXK1 = XK2Ci.
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Therefore, for all k ∈ N, we have

X∗k
K2B

∗
i = B∗

i X
∗k
K1 X∗n

K1C
∗
i = C∗

i X
∗k
K2.

Now XK1 is a pure isometry and XK2 is unitary, so on the one hand, we have
‖X∗k

K2B
∗
i ‖ = ‖B∗

i ‖, and on the other hand, ‖B∗
i X

∗k
K1‖ → 0 as k → ∞. Hence,

Bi = 0. Similarly, Ci = 0 for 1 ≤ i ≤ n. Thus, with respect to the decomposition
K = K1 ⊕ K2, the operator Xi takes form

Xi =

(
Xi1 0

0 Xi2

)
, (1 ≤ i ≤ n).

Now since Xi is an isometry, so will be Xi1, X ′
i1 = Πj 6=iXj1 and Xi2, X ′

i2 =
Πj 6=iXj2. Further from the block matrix of Xi and from the fact that X = Πn

i=1Xi,
it is clear that XK2 = Πn

i=1Xi2. Again, XK2 is a unitary, X ′
i2 is an isometry, and

X∗
i2′XK2 = Xi2. So, we have

Xi2X
∗
i2 = X∗

i2′XK2X
∗
K2Xi2′ = I, (1 ≤ i ≤ n).

Thus, Xi2 is a unitary on K2 for each i = 1, . . . , n. Further, (X11, . . . , Xn1) is a
pure isometric tuple as XK1 = Πn

i=1Xi1 is a pure isometry. Since Zi = X∗
i , we

have that (Z1|K1
, . . . , Zn|K1

) is pure co-isometric tuple and (Z1|K2
, . . . , Zn|K2

) is
a unitary tuple. Hence, (ii) holds.

Additionally, if (5) holds, then the dilation (X1, . . . , Xn) satisfies the condition
that X is the Schäffer’s minimal isometric dilation of T ∗ by Theorem 3.5. Let us
denote Z = X∗. Then, Z is a co-isometry as X is an isometry and

Z =


T DT∗ 0 0 . . .

0 0 IDT∗ 0 . . .

0 0 0 IDT∗ . . .
...

...
...

... . . .

 .

Note that the dimensions of DZ and DT are same. Indeed, if τ : DT → DZ is defined
by τDTh = DZh for all h ∈ H and extended continuously to the closure, then τ
is a unitary. We recall the proof here. Since X is the minimal isometric dilation of
T ∗, we have

K = span{Xkh : k ≥ 0, h ∈ H } = span{Z∗kh : k ≥ 0, h ∈ H }.

Now for n ∈ N and h ∈ H , we have

D2
ZZ

∗nh = (I − Z∗Z)Z∗nh = Z∗n − Z∗ZnZ∗h = 0.

Therefore, DZX
nh = 0 for any n ∈ N and h ∈ H . So, DZ = DZK = DZH . Also,

‖DZh‖2 = {(I − Z∗Z)h, h} = ‖h‖2 − ‖Zh‖2 = ‖h‖2 − ‖Th‖2 = ‖DTh‖2.
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Therefore, τ is a unitary. By Theorem 3.1, we have that

(X11, . . . , Xn1) ∼= (M
Ũ1Q

⊥
1 +zŨ1Q1

, . . . ,M
ŨnQ⊥

n +zŨnQn
),

where Q1, . . . , Qn are projections and Ũ1, . . . Ũn are commuting unitaries from
B(DX∗

K1
) satisfying

D2
X′∗
i1
X∗

i1 = DX∗
K1

Q⊥
i Ũ

∗
i DX∗

K1
(7.1)

and

D2
X∗
i1
X ′∗

i1 = DX∗
K1

ŨiQiDX∗
K2

(7.2)

for all i = 1, . . . , n. Using the fact that Xi2, . . . , Xn2 are unitaries on K2, it follows
that

D2
X′∗
i

= IK −

[
X ′

i1 0

0 X ′
i2

][
X ′∗

i1 0

0 X ′∗
i2

]

=

[
IK1

−X ′
i1X

′∗
i1 0

0 IK2
−X ′

i2X
′∗
i2

]
=

[
IK1

−X ′
i1X

′∗
i1 0

0 0

]
.

Therefore, DX′∗
i

= DX′∗
i1

⊕ 0. Similarly, we can prove that DX∗
i

= DX∗
i1

⊕ 0

for 1 ≤ i ≤ n, with respect to the above decomposition of K . So, DX∗ =

DX∗
K1

⊕ 0. Hence DX∗
K1

= DX∗ = DZ . Let us denote Ûi = τ∗Ũiτ and

Qi = P̂i for 1 ≤ i ≤ n. Thus, Û1, . . . , Ûn are commuting unitaries and

P̂1, . . . , P̂n are projections in B(D(T )) such that (Z1|K1
, . . . Zn|K1

) is unitar-

ily equivalent to
(
M

Ũ1Q
⊥
1 +zŨ1Q1

, . . . ,M
ŨnQ⊥

n +zŨnQn

)
, which can be realized as(

M
Û1P̂1

⊥
+Û1P̂1z̄

, . . . ,M
ÛnP̂n

⊥
+ÛnP̂nz̄

)
on H2(DT ) via the unitary τ . This proves

(iii) and the proof is complete. �

Apart from having the explicit constructions of isometric dilations and func-
tional model for a commuting contractive tuple, another interesting consequence of
Theorem 3.5 is that it gives a commutant lifting in several variables as discussed in
Remark 3.6. We conclude this article here. There will be two more articles in this
direction as sequels. One of them will describe explicit constructions of minimal
unitary dilations of commuting contractions (T1, . . . , Tn) on the minimal unitary
dilation spaces of T =

∏n
i=1 Ti. The other article will deal with dilations when the

defect spaces DT ,DT∗ are finite dimensional and their interplay with distinguished
varieties in the polydisc.
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2021).

[56] J. Stochel and F. H. Szafraniec. Unitary dilation of several contractions. Oper. Theory
Adv. Appl. 127 (2001), 585–598.

[57] B. Sz.-Nagy. Sur les contractions de I’espace de Hilbert. Acta Sci. Math. (Szeged). 15
(1953), 87–92.

[58] B. Sz.-Nagy. Transformations of Hilbert space, positive definite functions on a semigroup.
Usp. Mat. Nauk. 11 (1956), 173–182.

[59] D. Timotin. Regular dilations and models for multicontractions. Indiana Univ. Math. J.
47 (1998), 671–684.

[60] N. Varopoulos. On an inequality of von Neumann and an application of the metric theory
of tensor products to operator theory. J. Funct. Anal. 16 (1974), 83–100.

[61] F. H. Vasilescu. An operator-valued Poisson kernel. J. Funct. Anal. 110 (1992), 47–72.

[62] J. von Neumann. Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes.
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