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This paper provides nonparametric specification tests for the commonly used
homogeneous and stable coefficients structures in panel data models. We first obtain
the augmented residuals by estimating the model under the null hypothesis and then
run auxiliary time series regressions of augmented residuals on covariates with time-
varying coefficients (TVCs) via sieve methods. The test statistic is then constructed
by averaging the squared fitted values, which are close to zero under the null and
deviate from zero under the alternatives. We show that the test statistic, after being
appropriately standardized, is asymptotically normal under the null and under a
sequence of Pitman local alternatives. A bootstrap procedure is proposed to improve
the finite sample performance of our test. In addition, we extend the procedure to test
other structures, such as the homogeneity of TVCs or the stability of heterogeneous
coefficients. The joint test is extended to panel models with two-way fixed effects.
Monte Carlo simulations indicate that our tests perform reasonably well in finite
samples. We apply the tests to re-examine the environmental Kuznets curve in the
United States, and find that the model with homogenous TVCs is more appropriate
for this application.

1. INTRODUCTION

A panel dataset follows a given sample of entities over time, and it possesses
several advantages over a cross-sectional or time series dataset (see, e.g., Hsiao,
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1985, 1995). Panel data models are widely used in applied works. We refer readers
to standard textbooks, such as Wooldridge (2010) and Hsiao (2014), for its history
and a comprehensive review. In the last few decades, both econometricians and
statisticians propose and study various forms of panel data models that are more
reasonable in certain scenarios. For instance, entities observed in the panel data
could respond to certain covariates differently from each other, and one may need
to consider heterogeneous panel data models. In this direction, Lombardia and
Sperlich (2008) estimate and conduct inference for a partial linear panel data model
with some group structures. Other related and more recent studies include Su
et al. (2016) and Lumsdaine et al. (2023). The heterogeneity may possess other
forms. Kneip et al. (2012) study a panel data model with heterogeneous time
trends. Boneva et al. (2015) propose a semiparametric model for heterogeneous
panel data. Gao et al. (2020) study heterogeneous panel data models with cross-
sectional dependence. Furthermore, a common source for heterogeneity in panels
is that entities may exhibit cross-sectional dependence. To accommodate this
feature, researchers study panels with interactive fixed effects (FEs) or latent factor
structures. To name a few, Pesaran (2006) proposes a common correlated effects
estimator; Bai (2009) considers an iterative principal components estimator; and
Hsiao et al. (2022) propose a transformed estimator for panel interactive effects
models. See also Moon and Weidner (2015), Hsiao (2018), and the references
therein.

Another feature we observe in some data is that entities might respond differ-
ently across time. One possibility is that entities may experience structural breaks
at certain times. We refer readers to Bada et al. (2022) and the references therein
for a review in this direction. One other possibility is that entities’ responses vary
across time continuously. This behavior can be modeled as TVC semiparametric
models. This strand of literature has been studied extensively. To name a few, Li
et al. (2011) propose a local linear dummy variable approach for estimating panel
models with TVCs, which is a panel data extension of Cai et al. (2000) and Cai
(2007); Robinson (2012) studies the kernel estimation of nonparametric trending
panel data models with cross-sectional dependence; Chen et al. (2012) include
exogenous regressors in Robinson’s (2012) nonparametric panel trending model
with a partially linear structure; and Atak et al. (2011) adopt a semiparametric
unbalanced panel data model with common smoothing time trends to study climate
change in the United Kingdom. For other related works on time-varying or
functional coefficients panel data models, see Chen and Hong (2012), Feng et al.
(2016), and Zhao et al. (2018), among many others.

Almost all the aforementioned papers in the TVC literature assume that all
cross-sectional units share the same vector of constant coefficients and that the
heterogeneity among individual units is captured by additive unobservable indi-
viduals FEs. Even if the homogeneity assumption (i.e., that the slope coefficients
are homogeneous) greatly reduces the dimension of the parameter space, and thus
significantly simplifies the processes of estimation and inference, this assumption
may be inappropriate in practice, and the constrained estimator with homogeneity
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may result in a biased estimator for panels with heterogeneity. This may further
lead to misleading conclusions (see, e.g., Hsiao and Tahmiscioglu, 1997; Lee
et al., 1997). A conservative specification is to allow individual-specific or group-
specific slope coefficients. For example, Ma et al. (2020) consider testing empirical
asset-pricing models with individual-specific time-varying factor loadings and
intercepts; Su et al. (2019) propose a panel data model with grouped TVCs and
apply the classified Lasso in Su et al. (2016) to estimate the TVCs and group
memberships jointly; and Liu et al. (2020) study a class of panel data models with
individual-specific TVCs in the presence of common factors.

Since the specification of stability and/or homogeneity of coefficients plays a
critical role in obtaining a consistent estimation and a valid statistical inference
for panel data models, it is necessary and prudent for researchers to carry out
certain specification or diagnostic tests for the structure of parameters. However,
there are only a few tests for the homogeneity of parameters either along time
or across individuals in the literature of panel data models. For example, Pesaran
and Yamagata (2008) consider testing slope homogeneity in large linear panels;
Zhang et al. (2012) and Hidalgo and Lee (2014) propose nonparametric tests for
the common time trends in a semiparametric panel data model with homogeneous
linear slopes; Bartolucci et al. (2015) study the test for time-invariant (against
time-variant) unobserved heterogeneity in generalized linear models for panel
data; Jin and Su (2013) provide a nonparametric poolability test for panel data
models with cross-sectional dependence; Chen and Huang (2018) suggest a
nonparametric Wald-type test for the stability of coefficients while assuming that
all the coefficients are common among individuals; Gao et al. (2020) provide a
test for homogeneity of constant slopes while allowing for individual-specific and
nonparametric time trends; and Ma et al. (2020) test whether all the individual-
specific time trends are equal to zero jointly for the asset-pricing model with
heterogeneous time-varying factor loadings.

Yet there is no test available in the literature for the joint structure of homo-
geneity and stability on the coefficients for panel data models. The joint structure
implies that all the coefficients in panels are fixed constants along both the time
series and the cross-sectional dimensions, that is, the usual homogeneous linear
panel data model. To fill this gap, in this paper, we provide a nonparametric test
for the joint structure on the heterogeneous TVC panel data model. We show that
the test statistic, after being appropriately standardized, is asymptotically normally
distributed under both the null and a sequence of Pitman local alternatives when
both cross-sectional and time dimensions tend to infinity. A bootstrap procedure
is proposed to improve the finite sample performance of the test.

More importantly, we provide a unified approach to examine the commonly
used panel data model specifications. The basic idea underlying our approach is to
estimate the model under the null hypothesis, and then to explore the information
in the generalized residuals using further parametric or nonparametric regressions.
Consequently, the approach of testing variation of parameters along time or among
individuals is quite flexible and not restricted to the joint test. Indeed, as explored
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in Section 4, this idea can be extended to constructing tests of the homogeneity
of coefficients among individuals or the stability of coefficients along time. This
has been illustrated in our application to environmental Kuznets curve (EKC)
estimation. The EKC is a hypothesis that suggests that environmental degradation
initially increases with economic growth, but eventually decreases as income levels
rise. Based on our proposed tests, both the structure of joint homogeneity and
stability and the structure of stability are rejected. We reach the conclusion that
the model with homogeneous TVCs is more appropriate for the application.

The rest of the paper is organized as follows. In Section 2, we introduce the basic
framework, including the model, the hypothesis of interest, and the proposed test
based on the estimation under the null hypothesis. The large sample theory for the
proposed test is provided in Section 3. In Section 4, we consider the extensions
of the test to panel models with homogeneous TVCs, stable heterogeneous
coefficients, and two-way FEs. In Section 5, a set of Monte Carlo simulations is
conducted to investigate the finite sample performance of our test. We apply
our proposed test to study the EKC in the United States in Section 6. Section 7
concludes. The proofs of the main theorems and used lemmas are collected in the
Appendix. The proofs of lemmas and some additional theoretical and simulation
results are relegated to the Supplementary Material.

Notation. We use λmin (A), λmax (A), and tr(A) to denote the smallest eigenvalue,
the largest eigenvalue, and the trace of a matrix A, respectively. For any n × m
matrix A, let A′ be its transpose, and let ‖A‖ = [tr(A′A)]1/2 be its Frobenius norm.
We use p.s.d. (p.d.) for the abbreviation for “positive semidefinite (positive defi-

nite).” The symbols
p→ and

d→ denote convergence in probability and distribution,
respectively. (N,T) → ∞ signifies that N and T tend to infinity jointly.

2. BASIC FRAMEWORK

In this section, we first introduce the heterogeneous TVC panel data model and the
main hypothesis of interest, then discuss the motivation of our testing approach
with constrained estimation under the null hypothesis, and finally propose a
feasible test statistic based on auxiliary time series regressions with a TVC
structure.

2.1. The Model and Hypothesis

We consider the following heterogeneous TVC panel data model with FEs and
time trends:

Yit = X′
itβit + fit +αi + εit, i = 1, . . . ,N,t = 1, . . . ,T, (2.1)

where Yit is a scalar dependent variable, Xit is a d-vector of time-varying exogenous
explanatory variables, αi represents the individual-specific unobservable effect that
may be arbitrarily correlated with the regressors Xit, and εit is the idiosyncratic
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error. The parameters of interest are the unknown vector of TVCs βit and the time
trends fit.1

Following the literature of nonparametric time-varying regressions (e.g., Cai,
2007; Li et al., 2011; Chen et al., 2012; Robinson, 2012; Zhang et al., 2012; Chen
and Huang, 2018), we assume that both βit and fit change slowly over a long time
span as follows:

βit = βi (τt) and fit = fi (τt) for t = 1, . . . ,T, (2.2)

where τt ≡ t/T is the time regressor and βi (·) : [0,1] → Rd and fi (·) : [0,1] → R

are all unknown smooth functions. We note that the value of τt depends on T . This
fact is important for deriving the asymptotics. We keep using τt for convenience.
To identify fi (·) and αi in (2.1), we impose that

∫ 1
0 fi (τ )dτ = 0, for i = 1, . . . ,N.2

Denote the component in Yit explained by regressors (Xit and 1) with TVCs as

git ≡ gi (Xit,τt) ≡ X′
itβit + fit. (2.3)

The models specified in (2.1) and (2.2) are quite general and include various
existing panel data models as special cases when different structures are imposed
on the unknown functions βi (·)’s and fi (·)’s:

1. If βi (·) = β and fi (·) = 0 for all i’s, then model (2.1) reduces to the standard
homogeneous linear panel data model with FEs found in many textbooks (see
Baltagi, 2012; Hsiao, 2014; Pesaran, 2015): Yit = X′

itβ +αi + εit.
2. When βi (·) = βi and fi (·) = 0 for each i, then model (2.1) becomes the

heterogeneous linear panel data model with FEs (see Hsiao, 2014; Pesaran,
2015; Hsiao and Pesaran, 2008): Yit = X′

itβi +αi + εit.
3. When βi (·) = β (·) and fi (·) = f (·) for i = 1, . . . ,N, then model (2.1) is the

panel data model with homogeneous TVCs studied by Li et al. (2011), Chen
et al. (2012), Silvapulle et al. (2016), and Chen and Huang (2018): Yit = f (τt)+
X′

itβ (τt)+αi + εit.
4. When βi (·) = βi or β and fi (·) �= 0 or fi (·) = f (·) �= 0, then model (2.1) becomes

the following homogeneous or heterogeneous linear panel data models with
homogeneous or heterogeneous nonparametric time trends:

Yit = f (τt)+X′
itβ +αi + εit, (2.4)

Yit = fi (τt)+X′
itβ +αi + εit, (2.5)

Yit = f (τt)+X′
itβi +αi + εit, (2.6)

Yit = fi (τt)+X′
itβi +αi + εit, (2.7)

1The setup in (2.1) can be easily generalized to allow for a mixture structure such as Yit = X′
1,itβ1,it + X′

2,itβ2,i +
X′

3,itβ3,t +X′
4,itβ4 +αi + εit with time trends (fit or ft) being absorbed in the first or third component, respectively.

2Another identification restrictions can be fi (c∗) = 0 for some c∗ ∈ [0,1], i = 1, . . . ,N.
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where models (2.4)–(2.7) have been studied by Chen et al. (2012), Zhang et al.
(2012), Atak et al. (2011), and Gao et al. (2020), respectively.

5. When there are no regressors (βi (·) = 0 for all i’s), then model (2.1) becomes
the nonparametric trending panel data models:

Yit = f (τt)+αi + εit or Yit = fi (τt)+αi + εit,

where the homogeneous trending model has been studied by Robinson (2012)
and the later model allows for individual-specific trending behavior.

6. When there exists an unknown group structure for coefficients βit’s (i.e.,
βit = βjt when i and j lie in the same group), model (2.1) becomes the het-
erogeneous linear panel data model with time-invariant coefficients in Su et al.
(2016) or the heterogeneous panel data model with slowly varying coefficients
in Su et al. (2019).

In this paper, we are interested in the joint test of homogeneity and stability of
parameters in model (2.1). The null hypothesis is

H0 : (βit,fit) = (β0,0) for some β0 ∈ Rd and all (i,t) ’s (2.8)

against the alternative hypothesis

H1 : (βit,fit) �= (
βjs,fjs

)
for some (i,t) �= (j,s) . (2.9)

When the null hypothesis holds, all the cross-sectional units share the same time-
invariant slopes for regressors Xit and do not have time trends. Then model (2.1)
becomes the usual homogeneous linear panel data model with FEs, which is the
most widely used setup in empirical applications. We can estimate the model either
by the usual FE estimator or the first-difference (FD) estimator. When Xit include
the lags of the dependent variable or endogenous variables, we can estimate the
model by the generalized method of moments or instrumental variables approach,
and the proposed test statistics to be discussed are still valid with extra assumptions
and more laborious derivation.

For the above hypothesis testing problem, the test statistic can be constructed
in the spirit of Wald, Lagrange multiplier, or likelihood ratio tests. In this paper,
we propose a nonparametric test for the structure in (2.8) based on the residuals
from estimation under the null hypothesis for several reasons: first, constrained
estimation under H0 usually estimates fewer parameters and is much simpler than
estimation without restriction; second, parsimonious models with restrictions on
parameters (homogeneity across individuals and stability along time) are usually
the starting point of many empirical studies; third, our proposed test provides
a diagnostic check when a simple and popular model is fitted by exploring the
information underlying the residuals; and finally, the testing strategy provides a
unified approach to testing other commonly used structures such as homogeneity,
stability, or group pattern on parameters in panel data models.
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2.2. The Test Statistic

We first consider the estimation of the model under the null hypothesis H0. The
model (2.1) reduces to

Yit = X′
itβ0 +αi + εit, (2.10)

then we can estimate β0 either by the FE or the FD estimator. For illustrative
purposes, we adopt the FE estimator

β̂FE =
(

N∑
i=1

X′
iMTXi

)−1 N∑
i=1

X′
iMTYi, (2.11)

where MT ≡ IT − ιT ι′T/T , ιT is a T × 1 vector of ones, Xi = (Xi1, . . . ,XiT)′, and
Yi = (Yi1, . . . ,YiT)′. Then git in (2.3) is estimated by ĝit = X′

itβ̂FE.

Denote gP,it = X′
itβP with βP =

[∑N
i=1 E

(
X′

iMTXi
)]−1∑N

i=1 E
(
X′

iMTYi
)
. Let

ûit = Yit − ĝit be the augmented residual and ηit = ĝit −gP,it the “estimation error”
when using ĝit to estimate gP,it. We decompose ûit as follows:

ûit = (
git −gP,it

)+ (
gP,it − ĝit

)+αi + εit ≡ g†
it −ηit +uit, (2.12)

where uit = αi + εit is the generalized error. Note that ηit is asymptotically
negligible under either the null or the alternative hypotheses,3 and g†

it(≡ git −gP,it)

can be rewritten as

g†
it = fi (τt)+X′

it [βi (τt)−βP] ≡ fi (τt)+X′
itβ

†
i (τt) . (2.13)

Clearly, under H0, we have g†
it = 0 for all i and t because of βi (·) = β0 = βP and

fi (·) = 0 for all i’s; however, βit and fit have variation either across i or over t under
H1, and then in general β

†
i (τt) �= 0 or fi (τt) �= 0. It follows that g†

it’s are generally
away from 0 when H1 holds.

The opposite behavior of g†
it under H0 and H1 motivates us to consider the

average of squared g†
it’s:4

	0
NT = 1

NT

N∑
i=1

T∑
t=1

g†2
it .

Clearly, by construction, 	0
NT equals 0 under H0 but is greater than 0 under H1.

However, 	0
NT is infeasible because g†

it’s are unknown to the researchers. Therefore,
we need a consistent estimation of g†

it.

3The statement holds under Assumptions 1 and 2 in Section 3.1.
4Alternatively, we can consider a weighted version 	0

NT = 1
NT

∑N
i=1

∑T
t=1 g†2

it wit , where wit ≡ wi (τt) and wi (·)’s are
some user-specified nonnegative weighting functions. In practice, we can use wi (τ ) = 1(c ≤ τ ≤ 1− c) with a small
c > 0 to remove the boundary observations to improve the finite sample performance.
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Noting that ûit is a consistent estimator for uit under H0 and for g†
it + uit under

H1, we can estimate {g†
it}T

t=1 from
{
ûit
}T

t=1 by the regression of ûit on Xit and 1 with
TVCs. To be specific, for each i = 1, . . . ,N, we run the following auxiliary time
series regression with TVCs:

ûit = fi (τt)+X′
itβ

†
i (τt)+αi + ε

†
it, t = 1, . . . ,T, (2.14)

where ε
†
it ≡ εit −ηit. Noting that fi (·) and β

†
i (·) are all unknown functions defined

on [0,1], which can be estimated either by the kernel method (e.g., Li et al., 2011;
Chen and Huang, 2018) or by the sieve method (e.g., Su and Zhang, 2016; Dong
and Linton, 2018; Zhang and Zhou, 2021). In this paper, we consider the sieve
estimation of the unknown functions in (2.14).

Let L2 [0,1] = {m(τ ) :
∫ 1

0 m2 (τ )dτ < ∞}, in which 〈m1,m2〉 = ∫ 1
0 m1 (τ )m2 (τ )

dτ is the inner product and the induced norm is ‖m‖ = 〈m,m〉1/2. Following Dong
and Linton (2018), we choose cosine functions as basis functions.5 Let B0 (τ ) = 1,
and Bj (τ ) = √

2cos(jπτ), for j ≥ 1. Then
{
Bj (τ )

}∞
j=1 forms an orthonormal basis

for the Hilbert space L2 [0,1] such that
〈
Bi,Bj

〉 = δij, where δij is the Kronecker
delta. For any unknown continuous function m ∈ L2 [0,1], it can be written as

m(τ ) =
∞∑

j=0

πjBj (τ ) , where πj ≡ 〈
m,Bj

〉
.

For model (2.14), we further assume β
†
il (·) ∈ L2 [0,1], for l = 1, . . . ,d, and

fi (·) ∈ L2 [0,1], for each i. Let BK (·) = (B0 (·),B1 (·), . . . ,BK−1 (·))′ and BK
−1 (·) =

(B1 (·), . . . ,BK−1 (·))′ be two sequences of basis functions to approximate unknown
functions β

†
il (·) (l = 1, . . . ,d) and fi (·), respectively. The constant term is excluded

from BK
−1 (·) because of the identification restriction on fi (·)’s. Then, for each i, we

obtain6

β
†
il (·) =

∞∑
j=0

ϑβ,il,jBj (·) = ϑ ′
β,ilB

K (·)+ r(K)

β
†
il

(·) , l = 1, . . . ,d, (2.15)

fi (·) =
∞∑

j=1

ϑf,i,jBj (·) = ϑ ′
f,iB

K
−1 (·)+ r(K)

f †
i

(·), (2.16)

where ϑβ,il,j =
〈
β

†
il,Bj

〉
and ϑf,i,j = 〈

fi,Bj
〉

for integer j ≥ 1, ϑβ,il = (
ϑβ,il,0, . . . ,

ϑβ,il,K−1
)′

, ϑf,i = (
ϑf,i,1, . . . ,ϑf,i,K−1

)′
, r(K)

β
†
il

(·) = ∑∞
j=K ϑβ,il,jBj (·), and r(K)

fi
(·) =

∑∞
j=K ϑf,i,jBj (·). By Assumption 3 in Newey (1997), supτ∈[0,1]

∣∣∣∣r(K)

β
†
il

(τ )

∣∣∣∣= O
(
K−κ

)
5As mentioned in Dong and Linton (2018), cosine functions can be replaced by other orthonormal bases in the Hilbert
space. The use of a specific basis other than some general ones simplifies the assumptions on basis functions and leads
to simpler calculation.
6Different numbers of basis functions can be adopted in estimating different functions. For simplicity, we use the
same number K in the sieve approximation of different functions.
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and supτ∈[0,1]

∣∣∣r(K)
fi

(·)
∣∣∣ = O

(
K−κ

)
, for i = 1, . . . ,N, as K → ∞ when β

†
il (·) and

fi (·) have κth-order continuous derivatives. Then we can approximate β
†
il (·) by

ϑ ′
β,ilB

K (·) and fi (·) by ϑ ′
f,iB

K
−1 (·), respectively.

Let Bt ≡ BK (τt) and B−1,t ≡ BK
−1 (τt), where the dependence on K is suppressed

to simplify the notation. Using the approximations in (2.15) and (2.16) yields

g†
it = X′

itβ
†
it + fit ≈

d∑
l=1

Xit,lB
′
tϑβ,il +B′

−1,tϑf,i = Z′
itϑi,

where ϑi ≡ (ϑ ′
f,i,vec(ϑβ,i)

′)′, ϑβ,i =
(
ϑβ,i1, . . . ,ϑβ,id

)
, and Zit ≡ (B′

−1,t, (Xit ⊗Bt)
′)′

with ⊗ being the Kronecker product. As a result, the linearized time series
regression model based on the sieve approximation is given by

ûit = Z′
itϑi +αi + vit, t = 1, . . . ,T, (2.17)

where vit = εit −ηit + r†
it, and r†

it ≡ g†
it −Z′

itϑi =∑d
l=1 r(K)

β
†
il

(τt)Xit,l + r(K)
fi

(τt) comes

from the sieve approximation error of g†
it. Rewrite the model (2.17) in vector form

ûi = Ziϑi + ιTαi + vi, (2.18)

where ûi = (
ûi1, . . . ,ûiT

)′
, Zi = (

Z′
i1, . . . ,Z

′
iT

)′
, and vi = (vi1, . . . ,viT)′. The usual

ordinary least-squares (OLS) estimator for ϑi and the corresponding estimator for
g†

it are, respectively, given by

ϑ̂i = (
Z′

iMTZi
)−1

Z′
iMTûi and ĝ†

it = Z′
itϑ̂i. (2.19)

On the basis of the sieve estimator ĝ†
it for g†

it in (2.19), we estimate 	0
NT by7

	NT = 1

NT

N∑
i=1

T∑
t=1

ĝ†2
it = 1

NT

N∑
i=1

ϑ̂ ′
i Z

′
iZiϑ̂i (2.20)

= 1

NT

N∑
i=1

û′
iMTZi

(
Z′

iMTZi
)−1

Z′
iZi

(
Z′

iMTZi
)−1

Z′
iMTûi. (2.21)

Note that ûit = uit + X′
it(β0 − β̂FE) ≈ ui under H0. Then 	NT ≈ 	∗

NT ≡
1

NT

∑N
i=1 ε′

iAiεi with Ai ≡ MTZi
(
Z′

iMTZi
)−1

Z′
iZi

(
Z′

iMTZi
)−1

Z′
iMT . Note that

	∗
NT is a cross-sectional average of quadratic form of εi. When Xit are strictly

exogenous, we can easily derive E
(
	∗

NT

)
and Var

(
	∗

NT

)
as the asymptotic bias and

variance, respectively.

7Instead of taking the average in (2.20), one may adopt statistics taking the maximum of the absolute deviation
from H0 over individual i = 1,2, . . . ,N. The techniques of this kind of test statistics are more involved, and the
limiting distribution and the associated inference procedure can be nonstandard (see, for example, Chernozhukov
and Fernández-Val, 2011). We leave this interesting direction to future research.
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In the next section, we show that after being appropriately centered and scaled,
	NT follows a standard normal distribution asymptotically under H0 and a set of
regular conditions.

3. ASYMPTOTIC THEORY

In this section, we study the large sample properties for the above test statistics.

3.1. Assumptions

Let maxi,t and mini,t denote max1≤i≤N max1≤t≤T and min1≤i≤N min1≤t≤T , respec-
tively.

To study the asymptotic properties for 	NT under the null hypothesis, we make
the following assumptions:

Assumption 1. (i) {(Xi,εi)}N
i=1 are independent across i, where Xi = (Xi1, . . . ,

XiT)′ and εi = (εi1, . . . ,εiT)′ .
(ii) For each i, {(Xit,εit)}T

t=1 is strong mixing with mixing coefficients αi(l)
satisfying α(l) = max1≤i≤N {αi(l)} ≤ Cαρ l for some Cα < ∞ and ρ ∈ [0,1).

(iii) {εit}T
t=1 is a martingale difference sequence (MDS) with respect to (w.r.t.)

filtrations {Ft}T
t=1 such that E(εit|Ft) = 0, where Ft is the σ -field generated

by
{(

Xit,Xi,t−1,εi,t−1, . . . ,Xi1,εi1
)}N

i=1 .
(iv) maxi,t E |εit|16(1+η) < ∞ and maxi,t E‖Xit‖16(1+η) < ∞ for some constant

η > 0.
(v) Var(Xit) = �

(x)
i (τt), where �

(x)
i (·) is a d × d matrix of piecewise continuous

functions on [0,1] with countable discontinuities. There exist some positive
constants cxx and c̄xx such that

0 < cxx ≤ min
1≤i≤N

inf
τ∈[0,1]

[λmin(�
(x)
i (τ ))] ≤ max

1≤i≤N
sup

τ∈[0,1]
[λmax(�

(x)
i (τ ))] ≤ c̄xx < ∞.

(vi) Let X̃(ε)
it ≡ (

1,X′
it

)′
εit and Var(X̃(ε)

it ) = �
(ε)
i (τt), where �

(ε)
i (·) is a (d +1)×

(d +1) matrix of piecewise continuous functions on [0,1] with countable
discontinuities. There exist some positive constants c(ε)

xx and c̄(ε)
xx such that

0 < c(ε)
xx ≤ min

1≤i≤N
inf

τ∈[0,1]
[λmin(�

(ε)
i (τ ))] ≤ max

1≤i≤N
sup

τ∈[0,1]
[λmax(�

(ε)
i (τ ))] ≤ c̄(ε)

xx < ∞.

Assumption 2. As (N,T) → ∞, K → ∞, K2/N → 0, NK/T2 → 0, and
K2 (logT)4 /T → 0.

Several remarks can be made about the above assumptions. Assumption 1(i)
requires the cross-sectional independence of {(Xi,εi)}N

i=1, which is also used in Lee
and Robinson (2016) and Su et al. (2019); the assumption can be relaxed to allow
for weak cross-sectional dependence among error terms as in Bai (2009), Chen
et al. (2012), and Lee and Robinson (2016) with more complicated arguments
in the proofs; and for models with two-way FEs, it can be replaced by the
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cross-sectional independence of (Xi,εi) conditional on the σ -field generated by
all FEs. Assumption 1(ii) assumes that {(Xit,εit),t = 1, . . . ,T} is strong mixing
with a geometric decay rate, which can be easily satisfied by many well-known
linear processes such as autoregressive–moving-average processes and nonlinear
processes. Note that the mixing coefficient αi(l) is defined as

αi (l) = sup
k∈Z

αi
(
F i

−∞,k,F i
k+l,∞

) = sup
k∈Z

sup
A∈F i−∞,k,B∈F i

k+l,∞
2 |P(A∩B)−P(A)P(B)|,

(3.1)

where F i
n,m is the σ -field generated by {(Xit,εit),n < t ≤ m} (Bosq, 1998, p. 19).

Assumption 1(iv) imposes a martingale difference structure on {εit} with filtrations
{Ft}T

t=1, which is also adopted in Chen and Huang (2018). The MDS assumption
is suitable when lagged dependent variables are included in Xit, and can be
relaxed with more complicated proofs. Assumption 1(iv) specifies some high-
order moment conditions on εit and Xit in testing. They are required to verify a key
condition involving fourth-order moments of a quadratic form of Zitεit (or Xitεit).
There is no need to impose such high-order moments in estimation. Assumption
1(v) and (vi) allows the variance of Xit and X̃(ε)

it to be time-varying and requires
that their eigenvalues be bounded and bounded away from 0. It is possible to
weaken the current mixing condition to α (l) ≤ Cl−θ for some positive θ . With the
weaker mixing condition, we need to face some trade-off of θ and some moment
conditions, similar to those in Lemma A.8 in the Appendix.

Assumption 2 provides conditions on the relative rate of the sample size (N,T)

and the number of sieve basis terms K. Note that K2/N → 0 is used to show
the consistency of the asymptotic variance term estimator (V̂NT in Section 3.2);
NK/T → 0 and K2 (logT)4 /T → 0 are used in the establishment of central limit
theorem (CLT) in the proofs of Proposition A.10. These requirements are quite
mild and include various combinations of (N,T , K). It allows for T/N → c ∈
[0,∞]. To see that, if the K ∝ T1/5 (as chosen in the simulations) is used, the
condition on the relationship between T and N is reduced to N/T1.8 → 0 and
T0.4/N → 0. Clearly, it permits N = Tb with b ∈ (0.4,1.8) . Note that we can let
K be fixed under H0 because there is no sieve approximation error under H0. It
implies that both Theorems 3.1 and 4.1(i) (to be introduced) hold when K is fixed.

3.2. Asymptotic Distribution under the Null

We first introduce some notations. Let Q̂i, żż = T−1∑T
t=1 ŻitŻ′

it and Q̂i,zz =
T−1∑T

t=1 ZitZ′
it, where Żit = Zit − Z̄i and Z̄i = T−1∑T

t=1 Zit. Denote Qi, żż ≡
T−1∑T

t=1 E
(
ŻitŻ′

it

)
, Qi,zz ≡ T−1∑T

t=1 E
(
ZitZ′

it

)
, and �i ≡ T−1∑T

t=1 E(Z̊itZ̊′
itε

2
it),

where Z̊it ≡ Zit − E
(
Z̄i
)

. Further, let Q̂i = Q̂−1
i, żżQ̂i,zzQ̂

−1
i, żż and Qi = Q−1

i, żżQi,zzQ
−1
i, żż.

To obtain the asymptotic distribution of 	NT, we define

BNT = 1√
N

N∑
i=1

tr(Qi�i) and VNT = 2

N

N∑
i=1

tr(Qi�iQi�i) . (3.2)
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Note that Qi and �i are both well-defined matrices. It is easy to show that
BNT = Op

(
N1/2K

)
and VNT = Op (K), and they can be estimated by sample

analogs:

B̂NT = 1√
N

N∑
i=1

tr
(
Q̂i�̂i

)
and V̂NT = 2

N

N∑
i=1

tr
(
Q̂i�̂iQ̂i�̂i

)
, (3.3)

where �̂i = T−1∑T
t=1 ŻitŻ′

itε̂
2
r,it, ε̂r,it = ûit − ûi and ûi = T−1∑T

t=1 ûit.8 Finally, we
propose the normalized test statistic:

ĴNT = N1/2T	NT − B̂NT√
V̂NT

. (3.4)

The following theorem provides the asymptotic distribution of ĴNT under the
null hypothesis H0.

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. Under H0, ĴNT
d→

N (0,1) as (N,T) → ∞.

Remark 1. (i) The proof is complicated and relegated to the Appendix. The
above theorem indicates that our test statistic ĴNT is asymptotically pivotal
under H0. In principle, we can compare ĴNT with the one-sided critical value zα ,
that is, the upper αth percentile from the standard normal distribution, and reject
the null when ĴNT > zα at the α significance level. (ii) Note that under the null H0,
fi (·) = 0 and β

†
i (·) = 0, which can be exactly expressed as a linear combination of

any K basis functions. The limiting distribution in Theorem 3.1 still holds when K
is fixed, but in practice a diverging number of basis functions is used to increase
the power of the test. (iii) We can modify the test statistics to test the structure of
a subvector of coefficients or only time trends.

3.3. Asymptotic Distribution under Local Alternatives

To study the local power properties of the proposed test, we consider the following
Pitman local alternatives:

H1,γNT : βit = β0 +γNT�β,it and fit = γNT�f,it, (3.5)

where γNT → 0 as (N,T) → ∞, �β,it = �β,i (τt), �f,it = �f,i (τt), �β,i (·): [0,1] →
Rd, and �f,i (·): [0,1] → R are all nonzero and continuous functions. Clearly, γNT

controls the speed at which the local alternatives converge to the null hypothesis.
Let g�,it ≡ X′

it�β,it +�f,it, g�,i =
(
g�,i1, . . . ,g�,iT

)′
and ḡ�,it = X′

it�̄β , where �̄β =[∑N
i=1 E

(
X′

iMTXi
)]−1∑N

i=1 E
(
X′

iMTg�,i
)
. Then we define

8Alternatively, we can use ε̂r,it = ûit − ĝ†
it − (ûi − ĝ

†
i ), where ĝ

†
i = T−1 ∑T

t=1 ĝ†
it .
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ğ�,it = g�,it − ḡ�,it = X′
it

(
�β,it − �̄β

)+�f,it and ��,NT ≡ 1

NT

N∑
i=1

T∑
t=1

ğ2
�,it.

Before we establish the limiting behavior of ĴNT under the local alternative
H1,γNT , we need some additional assumptions on the functions �β,i (·) and �f,i (·).

Assumption 3. For each i, �β,il (·), for l = 1, . . . ,d, and �f,i (·) are all continu-
ously differentiable up to the κth order for some κ ≥ 2.

Assumption 4. As (N,T) → ∞, lim(N,T)→∞ �̄β exists and �� = plim(N,T)→∞
��,NT > 0.

The following theorem gives the asymptotic distribution of ĴNT under H1,γNT .

Theorem 3.2. Suppose that Assumptions 1–4 hold. As (N,T) → ∞,

ĴNT
d→ N (��,1)

under H1,γNT with γNT ≡ N−1/4T−1/2V
1/4
NT , where �� is defined in Assumption 4.

Remark 2. (i) Theorem 3.2 implies that our test has nontrivial asymptotic power
against alternatives that diverge from the null at rate O

(
N−1/4T−1/2K1/4

)
by noting

that VNT = Op (K) (see Lemma A.6 in the Appendix). The power increases with
the magnitude of ��. Clearly, as either N or T increases, the power increases
and increases faster as T → ∞ than as N → ∞. Similar patterns have been
found in the testing literature of panel data models, such as Su et al. (2019). (ii)
The local alternative H1,γNT includes the deviations from H0 only along time or
across individuals, which means that our proposed test can detect the instability of
homogeneous coefficients or the heterogeneity of TVCs. (iii) Our test may have
low or no power against the “sparse” alternatives with the majority of ğ�,it being
close to 0 such that the probability limit of ��,NT is 0 or is close to 0. We do need
a nonnegligible proportion of individuals that deviate from the null significantly
so that our test can detect this deviation. We note that the low power problem
happens for almost all average-type tests in large panel data models. The power
enhancement device in Fan et al. (2015) can be adopted to boost the power when
the alternative has a sparse structure.

To study the global consistency of ĴNT under H1, let γNT = 1 in (3.5). Note
that we impose Assumption 3 for γNT = 1 in the corollary followed. That is
equivalent to assuming that βi (·) and fi (·) are κth-order continuously differentiable
under H1. Under Assumptions 1–4, we can show that plim(N,T)→∞ 	NT = ��,

B̂NT = Op
(
N1/2K

)
, and V̂NT = Op (K) under H1. The following corollary gives

the global consistency of ĴNT under H1.

Corollary 3.3. Suppose that Assumptions 1–4 hold. Then, under H1,

N−1/2T−1V̂
1/2
NT ĴNT

p→ �� as (N,T) → ∞.
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Remark 3. Corollary 3.3 establishes that ĴNT diverges to ∞ at rate Op(N1/2T/

K1/2) under H1, which means that P(ĴNT > dNT) → 1 as (N,T) → ∞ for any
sequence dNT = o(N1/2T/K1/2) provided �� > 0. Note under H1 : βit = β0 +�β,it

and fit = �f,it, the power of our test comes from the magnitudes of
∥∥�β,it

∥∥ and∥∥�f,it

∥∥ . The bias of estimating �β,it is a small order term of
∥∥�β,it

∥∥, and thus the
bias term is asymptotically negligible compared to

∥∥�β,it

∥∥. This also applies to
the estimation of �f,it. The consistency of the estimates is enough to guarantee the
power. Therefore, we do not need the bias to be smaller than the standard deviation
(mathematically N1/2TK−(1/2+2κ) → 0 in this case) that is typically needed in
nonparametric estimations for inferences.

Remark 4. Choosing the optimal number of sieve terms is important in practice.
To the best of our knowledge, there is no existing work on the optimal K in
nonparametric testing using the sieve regression method. One possible solution
is to maximize the power when the size is controlled by following the optimal
choice of bandwidth in kernel testing such as Horowitz and Spokoiny (2003), Gao
and King (2004), or Gao and Gijbels (2008). We do not pursue the optimal choice
of K theoretically and leave it to future research; instead, we propose to choose
K based on some unique features of our test. Theorem 3.1 implies that the results
underH0 hold as long as K does not diverge too fast (hold even under fixed K). This
suggests that the size of the test should not be very sensitive to the choice of K. In
terms of power, intuition suggests that the test should be more powerful when βi (·)
and fi (·) are estimated more precisely. Theoretically, we should set K ∝ T1/(2κ+1) to
minimize the root-mean-square error (RMSE). In practice, we may choose K by
the leave-one-out cross-validation (LOOCV) method (see Section 5 for details).
The simulation results in Section 5 basically confirm these findings; the size of the
test is not very sensitive to the choice of K, and the test is relatively more powerful
using the K chosen by the LOOCV method.

Remark 5.9 The test statistic in one single step may be constructed as follows.
We directly regress the demeaned Yit on the demeaned Zit for each i and obtain
the fitted coefficients ϑ̃i = (

Z′
iMTZi

)−1
Z′

iMTYi. Note that Xit is a subvector of

Zit ≡ (B′
−1,t,X

′
it,
(
Xit ⊗B−1,t

)′
)′. Then, under H0, the coefficients of Xit should be

constants across i and the coefficients for the rest component in Zit are 0. Using
this observation, we can proceed to study the statistic

	̃NT = 1

NT

N∑
i=1

T∑
t=1

[
X′

it

(
ϑ̃Xi −

1

N

N∑
i=1

ϑ̃Xi

)
+Z′

−X,itϑ̃−Xi

]2

,

where ϑ̃Xi denotes the estimated coefficients of Xit in ϑ̃i, Z−X,it denotes the
vector Zit after removing Xit, and ϑ̃−Xi picks the corresponding coefficients for
Z−X,it from ϑ̃i. We can show that this one-step procedure is equivalent to ours

9We thank a referee for pointing this out.
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as (N,T) → ∞ (for details, see Appendix E of the Supplementary Material). This
paper focuses on the two-step procedure to provide a unified approach for testing
the structure in panel data models.

Remark 6. Our proof can be applied to unbalanced panels when only a fixed
number of observations for each i are missing. Suppose, for each i, that there
are ci (ci ≥ 0) missing observations. Specifically, we need max1≤i≤N ci ≤ C < ∞
uniformly for all t for our proof to go through. For each i, only a fixed number
of observations are missing. In this case, missing observations are asymptotically
negligible for the estimation for each i, as T → ∞. As a result, all the proofs are
expected to go through. For other cases when the number of missing observations
diverges for some i, a careful and tedious treatment is needed. We leave this for
future work.

3.4. Bootstrap Procedure

It is well known that tests based on nonparametric estimation usually suffer severe
size distortion in finite samples if standard normal critical values are used (see Li
and Wang, 1998; Su and Hoshino, 2016). The empirical size of these tests can be
quite sensitive to the choice of basis number or highly distorted in finite samples.
Therefore, we suggest using a bootstrap method to obtain bootstrap p-values. We
follow Hansen (2000) and propose a fixed-regressor bootstrap procedure to obtain
bootstrap p-values.

The bootstrap procedure is as follows:

1. Obtain β̂FE and ûit under H0. For each i, run auxiliary time series regressions
of ûit on Xit and 1 with TVCs to obtain fitted values ĝ†

it, residuals ε̂r,it, and then
calculate ĴNT .

2. For each i, obtain the wild bootstrap errors {ε∗
r,it} : ε∗

r,it = ε̂r,it�it, where �it’s
are i.i.d. N (0,1) across i and t. Then generate the bootstrap analog Y∗

it of Yit

by holding the regressors Xit as fixed: Y∗
it = X′

itβ̂FE + α̂i + ε∗
r,it, where α̂i =

T−1∑T
t=1(ûit − ĝ†

it).
3. Given the bootstrap resample {Y∗

it,Xit}, estimate the linear homogeneous panel
data model using all data and run N auxiliary time series regressions as Step 1.
Obtain the fitted value ĝ∗

it and residual ε̂∗
r,it. Calculate the bootstrap test statistic

Ĵ∗
NT based on {ĝ∗

it,ε̂
∗
r,it}.

4. Repeat Steps 2 and 3 B times and index the bootstrap statistics as {Ĵ∗
NT,b}B

b=1.

Calculate the bootstrap p-value by p∗ = B−1∑B
b=1 1(Ĵ∗

NT,b ≥ ĴNT).

It is straightforward to implement the above bootstrap procedure. Note that for
the bootstrap resample, we impose the null hypothesis of linearity and homogene-
ity on parameters in Step 2.

Let WNT ≡ {(Xit,Yit) : i = 1, . . . ,N,t = 1, . . . ,T} be the observed sample. Recall
that �̂i = T−1∑T

t=1 ŻitŻ′
itε̂

2
r,it. The next theorem establishes the asymptotic validity

of the above bootstrap procedure.
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Theorem 3.4. Suppose that the assumptions in Theorem 3.1 or 3.2 hold. Assume
that 0 < min1≤i≤N λmin(�̂i) ≤ max1≤i≤N λmax(�̂i) < ∞. Then, as (N,T) → ∞,

Ĵ∗
NT

d∗→ N (0,1)

in probability, where d∗ denotes the weak convergence under the bootstrap
probability measure conditional on WNT .

Remark 7. (i) The proof of Theorem 3.4 is given in the Appendix. Note
that �it’s are i.i.d. N (0,1) across i and t, and the proof is much simpler than
that of Theorem 3.1. (ii) We provide a set of low-level conditions for 0 <

min1≤i≤N λmin(�̂i) ≤ max1≤i≤N λmax(�̂i) < ∞ to hold uniformly after some large
T almost surely, and show its validity in Lemma A.9.

4. SEVERAL EXTENSIONS

In this section, we consider several extensions. We provide a test for the stability
of heterogeneous coefficients (Section 4.1) and a test for homogeneity of TVCs
(Section 4.2). These two specifications of parameters are also commonly used
in empirical studies. After that, we consider the panel data models with both
the individual and the time FEs in Section 4.3. In the following, we provide
an overview of the results in this section for an easier reference for applied
researchers.

In Section 4.1, we consider the test of

Hs0 : (βi (·), fi (·)) = (βi,0) for some vector βi ∈ Rd and all i’s

against the alternative hypothesis Hs1 : (βi (·), fi (·)) �= (βi,0) for some i’s. The
model under Hs0 is linear with heterogeneous coefficients:

Yit = X′
itβi +αi + εit, i = 1, . . . ,N, t = 1, . . . ,T .

In Section 4.2, we consider the test of

Hh0 : (βi (·), fi (·)) = (β0 (·), f0 (·)) for some (β0 (·), f0 (·)) and all i’s

against the alternative hypothesisHh1 : (βi (·), fi (·)) �= (
βj (·), fj (·)

)
for some i �= j.

Under the null, the model is a panel data model with homogeneous TVCs:

Yit = X′
itβ0 (τt)+ f0 (τt)+αi + εit, i = 1, . . . ,N, t = 1, . . . ,T .

For both cases, we propose test statistics, establish their theoretical properties, and
investigate their finite sample properties via simulations.

In Section 4.3, we extend our results to the panel data model with two-way FEs.
The model under consideration becomes

Yit = X′
itβit +αi +λt + εit, i = 1, . . . ,N, t = 1, . . . ,T
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with an additional time FE λt added to model (2.1). The null hypothesis is still the
joint test of homogeneity and stability of parameters in model:

H0 : (βit,fit) = (β0,0) for some β0 ∈ Rd and all i’s and t’s

against the alternative hypothesis H1 : (βit,fit) �= (
βjs,0

)
for some (i,t) �= (j,s) . We

propose a test statistic, discuss the examination of its limiting distributions, and
demonstrate its finite sample properties via simulations.

4.1. Testing for the Stability of Heterogeneous Coefficients

In addition to the homogenous linear panel data model in H0, estimating a
panel data model with heterogeneous constant slope coefficients (e.g., Hsiao and
Pesaran, 2008) may be of interest. For this model, the hypothesis testing problem is

Hs0 : (βi (·),fi (·)) = (βi,0) for some βi ∈ Rd and all i’s (4.1)

against the alternative hypothesis Hs1 : (βi (·),fi (·)) �= (βi,0) for some i’s and all
βi ∈Rd. To examine the local power property of the proposed test, we consider the
following local Pitman alternatives:

Hs1,γNT : βit = β0i +γNT�β,it and fit = γNT�f,it, (4.2)

where γNT → 0 as (N,T) → ∞, �β,it = �β,i (τt), �f,it = �f,i (τt), and �β,i (·) and
�f,i (·) are nonzero continuous functions of the time regressor for some i’s.

Under Hs0, the model (2.1) becomes the usual heterogeneous linear panel data
model

Yit = X′
itβi +αi + εit. (4.3)

We note that βi in (4.3) can be estimated by linear regression of Yit on 1 and Xit,
and the resulting estimators of βi and git are, respectively, given by

β̂i = (
X′

iMTXi
)−1

X′
iMTYi and ĝit = X′

itβ̂i. (4.4)

The augmented residuals are ûit = Yit − ĝit, for t = 1, . . . ,T . As in Section 2.2, we
can run N auxiliary time series regressions and construct 	NT as (2.20). Define
B̂NT = N−1/2∑N

i=1tr(Q̂i�̂i) and V̂NT = 2N−1∑N
i=1tr(Q̂i�̂iQ̂i�̂i). The test statistic

for Hs0 versus Hs1 is given by

ĴNT =
(

N1/2T	NT − B̂NT

)
/

√
V̂NT . (4.5)

Let g�,it ≡ X′
it�β,it +�f,it and g�,i =

(
g�,i1, . . . ,g�,iT

)′
. Let β̄�i =

[
E
(
X′

iMTXi
)]−1

×E
(
X′

iMTg�,i
)

and ḡ�,it = X′
itβ̄�i. Then we define ğ�,it = g�,it − ḡ�,it and ��,NT ≡

1
NT

∑N
i=1

∑T
t=1 ğ2

�,it.
Assumption 4∗. As (N,T) → ∞, limT→∞ β̄�i exists and �� = plim(N,T)→∞

��,NT > 0.
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The following theorem gives the asymptotic distributions of ĴNT under Hs0 and
Hs1,γNT .

Theorem 4.1. (i) Suppose that Assumptions 1 and 2 hold. As (N,T) → ∞,
under Hs0,

ĴNT
d→ N (0,1) .

(ii) Suppose that Assumptions 1–3 and 4∗ hold. As (N,T) → ∞,

ĴNT
d→ N (��,1),

under Hs1,γNT with γNT = O
(

N−1/4T−1/2V
1/4
NT

)
.

To study the consistency of ĴNT under H1s, we let γNT = 1. The following
corollary gives the global consistency of ĴNT under H1s.

Corollary 4.2. Suppose Assumptions 1–3 and 4∗ hold. As (N,T) → ∞,

V̂
1/2
NT N−1/2T−1ĴNT

p→ �� under H1s.

4.2. Testing for the Homogeneity of TVCs

Another natural specification for the panel data model assumes homogeneous
TVCs (see, for example, Li et al., 2011; Chen and Huang, 2018). Then testing
for the homogeneity of TVCs may be of interest. To be specific, we now consider
testing the null hypothesis

Hh0 : (βi (·), fi (·)) = (β0 (·), f0 (·)) for some (β0 (·), f0 (·)) and all i’s (4.6)

against the alternative hypothesis Hh1 : (βi (·),fi (·)) �= (
βj (·),fj (·)

)
for some i �= j.

To conduct the local power analysis, we also consider the Pitman local alternatives

Hh1,γNT : βit = β0 (τt)+γNT�β,it, and fit = f0 (τt)+γNT�f,it, (4.7)

where γNT → 0 as (N,T) → ∞, �β,it = �β,i (τt), �f,it = �f,i (τt), and
(�′

β,i (·),�f,i (·)) �= (�′
β,j (·),�f,j (·)) for some i �= j, �β,i (·) and �f,i (·) are all

nonzero continuous functions of the time regressor.
When Hh0 holds, model (2.1) reduces to

Yit = X′
itβ (τt)+ f (τt)+αi + εit. (4.8)

Noting that β (·) and f (·) are all unknown, as before, we consider the sieve
estimation of the above model (4.8). Let BL

t ≡ BL (τt), BL
−1,t ≡ BL

−1 (τt), and

ZL
it ≡ (BL

−1,t,
(
Xit ⊗BL

t

)′
)′. Also, let �f = (

�f,1, . . . ,�f,L−1
) ∈ RL−1 with �f,k =

https://doi.org/10.1017/S026646662300018X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662300018X


SPECIFICATION TESTS FOR TIME-VARYING COEFFICIENT PANEL DATA MODELS 19

〈f (·),Bk (·)〉 and �β,l = (
�β,l0, . . . ,�β,l,L−1

)′
with �β,lk = 〈βl (·),Bk (·)〉, for

k = 1, . . . ,L−1, such that

f (·) ≈ BL
−1 (·)′ �f and βl (·) ≈ �β,lB

L (·) for l = 1, . . . ,d. (4.9)

Denote � ≡ (�′
f ,vec(�β)′)′, where �β ≡ (�β,1, . . . ,�β,d) ∈ RL×d. Using the

approximations in (4.9), we have git = X′
itβt + ft ≈ ZL′

it � and the induced linearized
panel data model is given by

Yit = ZL′
it �+αi + ε

†
r,it, (4.10)

where ε
†
r,it = εit + rg,it, and rg,it = git − ZL′

it � is the sieve approximation error of
git. The usual FE sieve estimator for � is

�̂FE =
(

N∑
i=1

ZL′
i MTZL

i

)−1 N∑
i=1

ZL′
i MTYi. (4.11)

On the basis of (4.11), the sieve estimators for �f and �β are denoted by �̂f and
�̂β , respectively. Then f (·), β (·), and git are estimated by

f̂ (·) = BL
−1 (·)′ �̂f , β̂ (·) = �̂βBL (·), and ĝit = ZL′

it �̂FE. (4.12)

The augmented residuals are now given by ûit = Yit − ĝit. As in Section 2.2, we
can run the auxiliary time series regressions and construct the test statistic 	NT as

(2.20). On the basis of ε̂r,it = ûit − ûi, we calculate B̂NT and V̂NT as (3.3). Then the
feasible test statistic for (4.6) is given by

ĴNT =
(

N1/2T	NT − B̂NT

)
/

√
V̂NT . (4.13)

Let g�,it ≡ X′
it�β,it +�f,it and g�,i =

(
g�,i1, . . . ,g�,iT

)′
. Also, let ḡ�,it = ZL′

it �̄β ,

where �̄� =
[∑N

i=1 E
(
ŻL′

i ŻL
i

)]−1∑N
i=1 E

(
ŻL′

i g�,i
)
. We further define

ğ�,it = g�,it − ḡ�,it = X′
it

(
�β,it − �̄β

)+�f,it and ��,NT ≡ 1

NT

N∑
i=1

T∑
t=1

ğ2
�,it.

Then, for ĴNT in (4.13), we have the following theorem.

Theorem 4.3. (i) Suppose that Assumptions 1 and 2 and Assumptions 3∗ and 5
in Appendix D of the Supplementary Material hold. Then, under Hh0, as
(N,T) → ∞,

ĴNT
d→ N (0,1) .
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(ii) Suppose that Assumptions 1 and 2 and Assumptions 3∗, 4∗∗, and 5 in
Appendix D of the Supplementary Material hold. As (N,T) → ∞,

ĴNT
d→ N (��,1),

under Hh1,γNT with γNT = N−1/4T−1/2V
1/4
NT .

To study the consistency of ĴNT under H1h, we let γNT = 1. The following
corollary gives the global consistency of ĴNT under Hh1.

Corollary 4.4. Suppose that Assumptions 1, 2, 4, and 5 and Assumption 3∗ in
Appendix D of the Supplementary Material hold. As (N,T) → ∞, under Hh1,

V
1/2
NT N−1/2T−1ĴNT

p→ ��.

The above result establishes that ĴNT diverges to ∞ at rate Op
(
N1/2T/K1/2

)
under Hh1, which means that P(ĴNT > dNT) → 1 as (N,T) → ∞ for any sequence
dNT = o(N1/2T/K1/2) provided �� > 0.

4.3. Test Panel Data Models with Two-Way Fixed Effects

In empirical studies, two-way FEs are often used to capture the individual-specific
and period-specific heterogeneity. Our method can be used to test the structure
underlying the parameters in panel data models with two-way FEs. Now we
consider the following model:

Yit = X′
itβit +αi +λt + εit, i = 1, . . . ,N,t = 1, . . . ,T, (4.14)

where λt is time effect. In addition, it is possible to incorporate heterogeneous
smoothing time trends fit with some additional identification restrictions on trend-
ing functions and time FEs.

The null hypothesis is the same joint test of homogeneity and stability of
parameters as in model (4.14):

H2W,0 : βit = β0 for some β0 ∈ Rd and all (i,t) ’s (4.15)

against the alternative hypothesis

H2W,1 : βit �= βjs for some (i,t) �= (j,s) . (4.16)

To facilitate the study of the local power property, we consider the following
Pitman local alternatives:

H2W,1,γNT : βit = β0 +γNT�β,it,

where γNT → 0 as (N,T) → ∞, �β,it = �β,i (τt), and �β,i (·) �= �β,j (·) for some
i �= j with �β,i (·) being nonzero continuous functions of the time regressor.
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Let äit = ait − āi − ā·t + ā, where ā·t = N−1∑N
j=1 ajt and ā = (NT)−1∑N

j=1

∑T
s=1 ajs

for a = X or Y. The two-way FE estimator for β0 is given by

β̂2WFE =
(

N∑
i=1

T∑
t=1

ẌitẌ
′
it

)−1 N∑
i=1

T∑
t=1

ẌitŸit.

Similarly, we define the augmented residuals

ûit = Yit −X′
itβ̂2WFE = X′

itβ
†
it +ηit +αi +λt + εit,

where β
†
it = βit −β, βP =

[∑N
i=1

∑T
t=1 E(ẌitẌ′

it)
]−1∑N

i=1

∑T
t=1 E

(
ẌitŸit

)
and ηit =

X′
it(βP − β̂2WFE). Under H2W,0, βit = βP and β̂2WFE = βP +Op[(NT)−1/2], and these

imply that ûit ≈ αi +λt + εit; under H2W,1, β
†
it = βit −βP is a nonzero function of

the time regressor, and in general g†
it = X′

itβ
†
it �= 0. Then we can construct a test

statistic by

	0
NT = 1

NT

N∑
i=1

T∑
t=1

g†2
it .

To obtain the quantity 	0
NT , we need the estimation of g†

it. Note that the
augmented residual has two-way FEs:10

ûit ≈ X′
itβ

†
it +αi +λt + εit.

We cannot estimate g†
it by N auxiliary time series regressions without modification

because of the presence of time FEs. If λt can be treated as a function of time
trends, we can still estimate β

†
it and λt using TVC time series regression as before.

Without a smoothing structure on λt’s, we can assume that Xit = μ
(x)
i (τt)+Vit and

E (Vit) = 0. Denote μ
(x)
it = μ

(x)
i (τt). Then the cross-sectional mean of Xit and git

can be, respectively, written as

X̄·t = 1

N

N∑
i=1

μ
(x)
it + 1

N

N∑
i=1

Vit = μ̄(x) (τt)+Op
(
N−1/2

)
and

ḡ·t = 1

N

N∑
i=1

μ
(x)′
it β

†
it +

1

N

N∑
i=1

V ′
itβ

†
it = G(τt)+Op

(
N−1/2

)
,

where μ̄(x) (τt) = limN→∞ N−1∑N
i=1 μ

(x)
it and G(τt) = limN→∞ N−1∑N

i=1 μ
(x)′
it β

†
it .

One method is to use the cross-sectional demeaning to remove λt and
obtain

10We can also consider the joint estimation of {g†
it}, {αi}, and {λt} by minimizing the least-squares objective function

under some identification restrictions (see Lu and Su, 2022). To unify our testing approach in this paper, we adopt
the demeaned method to remove time FEs and then can run N time series regressions to estimate {g†

it}.
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ûc
it = Xc′

it β
†
it + X̄′

·tβ
†
it − ḡ·t +αc

i + εc
it +ηc

it

≈ Xc′
it β

†
it + [μ̄(x) (τt)β

†
i (τt)−G(τt)]+αc

i + εc
it

≡ Xc′
it β

†
it + fit +αc

i + εc
it, say,

where ac
it = ait − N−1∑N

j=1 ajt for A = û, X, ε, and η, αc
i = αi − N−1∑N

j=1 αj.

Clearly, as model (2.14), the above model has TVCs (β†
it) and smoothing time

trends (fit). Then we can still estimate β
†
i (·) and fit by running nonparamet-

ric regressions of ûc
it on Xc

it and 1 with TVCs as before. Let Zc
it ≡ Xc

it ⊗ Bt,
Zc

i = (
Zc′

i1, · · · ,Zc′
iT

)′
, and ûc

i = (
ûc

i1, · · · ,ûc
iT

)′
. The linearized model is given by

ûc
it = vec(ϑβ,i)

′Zc
it +B′

−1,tϑf,i +αc
i + ε∗

it,

where ε∗
it includes εc

it and the sieve approximation errors. The usual OLS estimator

for sieve coefficients ϑβ,i is given by vec(ϑ̂β,i) = (
Zc′

i MBZc
i

)−1
Zc′

i MBûc
i , where

MB = IT − B
(
B′B

)−1
B′ with B = (B1, . . . ,BT)′ . Then ĝ†

it = Zc′
it vec(ϑ̂β,i) and we

can estimate 	0
NT by

	NT = 1

NT

N∑
i=1

T∑
t=1

ĝ†2
it .

Let Q̂c
i,1 = Zc′

i MBZc
i /T , Q̂c

i,0 = Zc′
i Zc

i /T , Q̂c
i = (Q̂c

i,1)
−1Q̂c

i,0(Q̂
c
i,1)

−1, and �̂c
i =

T−1∑T
t=1 Z̆c

itZ̆
c′
it ε̂

2
r,it, where ε̂r,it = ûit − ûi − û·t + û and Z̆c′

it is the tth row of MBZc
i .

To obtain the asymptotic distribution of 	NT, we define

B̂c
NT = 1√

N

N∑
i=1

tr
(
Q̂c

i �̂
c
i

)
and V̂c

NT = 2

N

N∑
i=1

tr
(
Q̂c

i �̂
c
i Q̂

c
i �̂

c
i

)
.

Then a feasible test statistic for H2W,0 versus H2W,1 is given by

ĴNT =
(

N1/2T	NT − B̂c
NT

)
/

√
V̂c

NT .

Let g�,it ≡ X′
it�β,it and g�,i = (

g�,i1, . . . ,g�,iT
)′

. Also, let ḡ�,it = X′
it�̄β ,

where �̄β =
[∑N

i=1

∑T
t=1 E(ẌitẌ′

it)
]−1∑N

i=1

∑T
t=1 E(Ẍitg̈�,it). We further define

ğ�,it = g�,it − ḡ�,it and ��,NT ≡ 1
NT

∑N
i=1

∑T
t=1 ğ2

�,it. We can follow Section 3
to establish the large sample properties for the above test statistic under some
suitable conditions. Here, we only provide the main results and leave the rigorous
justification for future work. As (N,T) → ∞, we have

(i) ĴNT
d→ N (0,1) under H2W,0;

(ii) ĴNT
d→ N (��,1) under H2W,1,γNT with γNT = N−1/4T−1/2

(
Vc

NT

)1/4
, where

Vc
NT is the population version of V̂c

NT, and �� = plim(N,T)→∞ ��,NT ;

(iii)
(
Vc

NT

)1/2
N−1/2T−1ĴNT

p→ �� under H2W,1, where γNT = 1.
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5. MONTE CARLO SIMULATIONS

5.1. Simulations for Testing H0 versus H1

In this section, we conduct a set of Monte Carlo simulations to evaluate the finite
sample performance of our proposed joint test for homogeneity and stability of
coefficients. We consider the following six data generating processes (DGPs):
DGP 1. Homogeneous constant coefficients: Yit = 2Xit +αi + εit.
DGP 2. Homogeneous TVCs: Yit = f0 (τt)+β0 (τt)Xit +αi + εit.
DGP 3. Heterogeneous constant coefficients: Yit = βiXit +αi +εit, where βi ∼i.i.d.
U [0.7,1.3].
DGP 4. Fully heterogeneous TVCs: Yit = δ1if0 (τt)+δ2iβ0 (τt)Xit +αi +εit, where
δ1i ∼i.i.d. U [0.5,1.5] and δ2i ∼i.i.d. U [−0.5,0.5].
DGP 5. Grouped heterogeneous TVCs:

Yit =
⎧⎨
⎩

0.5f0 (τt)+0.5β0 (τt)Xit +αi + εit, i = 1, . . . , �N/3�,

0.75f0 (τt)+0.75β0 (τt)Xit +αi + εit, i = �N/3�+1, . . . , �2N/3�,

f0 (τt)+β0 (τt)Xit +αi + εit, i = �2N/3�+1, . . . ,N.

DGP 6. Homogeneous constant coefficients with an abrupt structural break:

Yit =
{

0.25Xit +αi + εit, t < T/2,
−0.25Xit +αi + εit, t ≥ T/2.

Among all DGPs, the FEs αi’s follow i.i.d. N (0,1), the regressors Xit’s are
generated according to

Xit = 0.5αi + 2exp[(τt −μi)/0.1]

1+ exp[(τt −μi)/0.1]
+ εx,it

with εx,it ∼i.i.d. N (0,1) and μi ∼i.i.d. U [0.05,0.1], and the error εit’s are condi-

tional heteroskedastic as εit =
√

0.05X2
it +0.5εit with εit ∼i.i.d. N (0,1). In DGPs

2, 4, and 5, we set

f0 (υ) = υ2 −υ +1/6 and β0 (υ) = exp[(υ −0.5)/0.4]

1+ exp[(υ −0.5)/0.4]
,

which are used to generate the smooth trend functions and TVC functions. A
similar function form for β0 (·) is adopted in Su et al. (2019).

DGP 1 is for size study, and the other five DGPs are for power study for the joint
test of homogeneity and stability. In the implementation of the specification test,
we use the cosine functions as our basis functions in the sieve approximation of
unknown functions. We choose K following the discussion in Remark 4. Note that
d = 1 (we estimate βi (·) and fi (·) additively), and we assume that κ ≥ 2. In theory,
we should set K ∝ T1/5 taking care of the least smooth functions we assumed
(i.e., κ = 2) to minimize the RMSE. For practice, we propose to adopt the data-
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Table 1. Simulation results for DGPs 1–6 using K from LOOCV

DGP 1 DGP 2 DGP 3

T N 10% 5% 1% 10% 5% 1% 10% 5% 1%

25 25 0.104 0.057 0.012 0.533 0.370 0.143 0.721 0.602 0.369

50 0.108 0.060 0.017 0.724 0.556 0.267 0.859 0.775 0.540

50 25 0.099 0.052 0.011 0.978 0.945 0.766 0.985 0.966 0.866

50 0.116 0.061 0.014 1.000 0.998 0.976 1.000 0.998 0.988

DGP 4 DGP 5 DGP 6

10% 5% 1% 10% 5% 1% 10% 5% 1%

25 25 0.658 0.537 0.306 0.639 0.481 0.232 0.668 0.496 0.246

50 0.819 0.710 0.474 0.808 0.680 0.421 0.840 0.715 0.412

50 25 0.978 0.941 0.813 0.988 0.957 0.835 0.997 0.991 0.927

50 0.999 0.998 0.975 1.000 0.998 0.988 1.000 1.000 0.996

Note: DGP 1 is for the size study, and DGPs 2–6 are for the power comparison.

driven Kcv chosen by the LOOCV method.11 This choice of Kcv works well for all
DGPs and is recommended for practice. To investigate the sensitivity of our test to
different choices of number of basis functions, we consider a sequence of numbers
Kc = ⌈

CT1/5
⌉

with C = 1,1.5,2.
Different combinations of sample sizes are used: T = 25,50 and N = 25,50. For

each combination of sample sizes, the number of replications is 1,000 times. For
the bootstrap, we consider 299 resamples for size studies and power comparisons.

The simulation results for the joint test of homogeneity and stability in DGPs 1–
6 with the proposed Kcv are summarized in Table 1. The results using Kc = ⌈

CT1/5
⌉

for the size study (DGP 1) and the power study (DGPs 2–6) are reported in
Table 2 and Table 5 in Appendix F of the Supplementary Material, respectively.
We summarize the results as follows. First, for DGP 1, the empirical sizes of
our test statistic are very close to their corresponding nominal values (1%, 5%,
and 10%) either when we use a sequence of numbers for the sieve terms or the
LOOCV to choose the number of sieve terms during the estimation. This fits
our intuition because our size results hold even under fixed K, as discussed in
Remark 4. Second, the proposed test has good power for DGPs 2–6: (i) in general,
the test is more powerful or stable when using Kcv (as discussed in Remark 4), but
the power can be sensitive to Kc (see Table 5 in Appendix F of the Supplementary
Material); (ii) for all six DGPs, the empirical power tends to 1 as either N or T
increases, and has a larger speed when T increases than when N increases, which
confirms that ĴNT diverges to infinity faster as T increases than N increases under
H1 as shown in Corollary 3.3; (iii) the empirical powers for DGP 6 are close to 1

11Kcv = argminK∈[1,Kmax]
∑N

i=1
∑T

t=1(ûit − ĝ†
i(−t) (K) − α̂i(−t) (K))2 where ĝ†

i(−t) (K) and α̂i(−t) (K) come from the
ith auxiliary regression of ûit on Xit with TVCs and trends without using the tth observation and K or K − 1 basis
functions are adopted in the sieve approximations.
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Table 2. Size sensitivity studies: DGP 1 using different K

K1 K2 K3

T N 10% 5% 1% 10% 5% 1% 10% 5% 1%

25 25 0.099 0.057 0.019 0.092 0.048 0.018 0.114 0.060 0.010

50 0.108 0.052 0.023 0.109 0.062 0.020 0.090 0.044 0.012

50 25 0.125 0.055 0.009 0.107 0.051 0.007 0.099 0.043 0.012

50 0.102 0.034 0.007 0.097 0.053 0.008 0.108 0.053 0.011

Note: K1 = �T1/5�, K2 = �1.5T1/5�, and K3 = �2T1/5�.

when T = 50, where the parameters are homogeneous but have jumps along time,
although Corollary 3.3 does not cover the case with jump in parameters along
time. A final remark is that the size results using normal critical values are worse
than they are using critical values based on the bootstrap (for details, see Table 4
in Appendix F of the Supplementary Material). Overall, we can observe that our
proposed test statistic performs very well in all scenarios in simulations.

5.2. Simulations for Extensions in Section 4

We consider the same DGPs as those in testing H0 for the tests Hs0 versus Hs1 and
Hh0 versus Hh1 in Section 4. For testing the stability of heterogeneous coefficients,
DGPs 1 and 3 are for size study and DGPs 2 and 4–6 are for power analysis. For
testing the homogeneity of time-varying coefficients, DGPs 1, 2, and 6 are for size
study and DGPs 3–5 are for power comparison. Note that DGP 6 satisfies Hh0, but
they come with nonsmooth β0 (·) and f0 (·) . So we expect some size distortion for
DGP 6 in testing Hh0 against Hh1 because the sieve approximation errors are not
asymptotically negligible.

For the joint test in the presence of both the individual and the time FEs in
Section 4.3, we add time FEs λt and remove time trending functions in all DGPs.
For example, DGPs 1 and 2 become

Yit = 2Xit +αi +λt + εit and Yit = β0 (τt)Xit +αi + εit,

respectively. Other DGPs are modified similarly. The distribution of individual
FEs αi’s is changed to i.i.d. N(0,1/

√
2). The distribution of time FEs λt’s is i.i.d.

N(0,1/
√

2). The regressors Xit’s are changed to

Xit = 0.5αi +0.5λt + 2exp[(τt −μi)/0.1]

1+ exp[(τt −μi)/0.1]
+ εx,it

with εx,it ∼i.i.d. N (0,1) and μi ∼i.i.d. U [0.05,0.1], and the error εit’s are

conditional heteroskedastic as εit =
√

0.05X2
it +0.5εit with εit ∼i.i.d. N (0,1).

αi,λt,εx,it,μi, and εit are independent of each other. As before, DGP 1 is for
size study, and DGPs 2–6 are for power study.
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We report the results in Tables 6–8 in Appendix F of the Supplementary Material
to save space. The tuning parameter is set to Kcv, chosen by the LOOCV. We also
study the sensitivity of the tuning parameters by setting Kc = ⌈

CT1/5
⌉

with C =
1,1.5,2. The number of replications and the number of resamples are the same as in
the last section. From Tables 5–7 in Appendix F of the Supplementary Material, we
can see that our tests perform rather well in terms of size results, and are insensitive
to the choice of K. Of course, we see some size distortions for DGP 6 when testing
Hh0 versus Hh1. The reason is that β and f are nonsmooth in this DGP and do
not satisfy the smoothness conditions required for our test. Our tests also perform
very well in terms of power, especially when using Kcv, but power can be sensitive
to the choice of K. To summarize, our extended tests perform reasonably well in
small samples.

6. APPLICATION TO ENVIRONMENTAL KUZNETS CURVE

In this section, we apply our proposed test to study the EKC for the data of
emissions published in the U.S. Environmental Protection Agency’s National Air
Pollutant Emission Trends, 1900–1994. We are mainly interested in testing the
validity of homogeneity and stability restrictions in the panel data model, which is
widely used for EKC estimation.

The EKC hypothesis dates back to the seminal work of Grossmann and Krueger
(1993, 1995) and becomes popular at the World Bank. Both the theoretical
literature and the empirical literature on the topic is voluminous and continues to
grow, and so do the controversial findings. Many empirical studies seek to estab-
lish an inverted U-shaped nexus between income per capita and environmental
degradation, which implies that the level of pollution increases until some level of
prosperity is obtained. However, the inverted U-shaped relationship is questioned
by Millimet et al. (2003), who use a semiparametric partially linear panel model
to fit the data, and reject the parametric specification. Recently, Li et al. (2016)
detect multiple structural breaks in EKC. These findings show that the regression
relationship between income per capita and environmental degradation may be
misspecified and vary along time. Note that the test in Li et al. (2016) assumes
homogeneity, and it might suffer from the possibility that the coefficients are
heterogeneous across individuals. To alleviate this problem, we reinvestigate the
parametric specification of EKC using our proposed test.

We consider the following regression model:

ln Polit = β1,it ln Incit +β2,it (ln Incit)
2 + fit +αi + εit, (6.1)

where i = 1, . . . ,N, t = 1, . . . ,T , lnPolit is the logarithm of pollutant emission of
sulfur dioxide (SO2) measured by metric tons per capita, ln Incit represents the
logarithm of income for state i at time t, αi is the unobserved state-specific FE;
β1,it and β2,it are time-varying slope coefficients for the ith individual, and fit is
the heterogeneous time trend. Presumably, the time trend fit is related to pollution
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Table 3. Bootstrap p-values for three tests

Tests C = 1 C = 1.5 C = 2 Kcv

H0 vs. H1 0.000 0.027 0.048 0.009

Hs0 vs. Hs1 0.000 0.000 0.000 0.001

Hh0 vs. Hh1 0.093 0.175 0.212 0.258

emission across countries. We test the homogeneity and stability of (β1,it,β2,it,fit)
jointly. The data used in our paper are from Millimet et al. (2003), which includes
48 states (N = 48) and ranges from year 1929 to year 1994 (T = 66). We transform
the metric ton measurement for SO2 emission into kilograms to achieve variables
of magnitude comparable to those of the per-capita income series.

To apply the joint test of homogeneous and stable coefficients along both time
and individual dimensions, we first estimate the model under the null hypothesis,
which is

lnPolit = β1 ln Incit +β2 (ln Incit)
2 +αi + εit. (6.2)

The estimation and testing procedures are similar to those discussed in Section 2.
The FE estimation of model (6.2) gives us the following:

β̂1 = 9.5706
∗∗∗

(0.4358) and β̂2 = −0.5608
∗∗∗

(0.0247), (6.3)

where the standard error is reported in parentheses. The estimators for β1 and
β2 are both significant at the 1% significance level, and we obtain an inverted
U-shaped EKC. In the testing, we run N auxiliary regressions of augmented resid-
uals on ln Incit and (ln Incit)

2 with TVCs and smoothing time trends. For the sieve
approximation of unknown functions, we adopt the cosine functions as the bases
and consider a sequence of numbers for different functions. Consistently with the
setting in the simulations, we set K1 = K2 = ⌊

C ·661/5
⌋

and K3 = max {2,K1 −1},
with C = 1,1.5,2, where K1, K2, and K3 are the number of sieve terms for
β1i (·), β2i (·), and fi (·), respectively. We also consider Kcv by the LOOCV. In
search of the Kcv, we set the minimum of Kcv as 2 and maximum of Kcv as 6,
considering that T is only 66. We report the bootstrap p-values with 2,000 bootstrap
resamples.

The results for testing homogeneity and stability are reported in the second row
of Table 3. We can find that almost all the p-values are smaller than 0.05, which
provides strong evidence for rejecting homogeneity and stability restrictions on
parameters in model (6.1). We also apply our tests for Hs0 and Hh0 developed in
Section 4, and we report the results in the third and fourth rows of Table 3. Hs0 is
rejected at the 5% level for all K’s, whereas Hh0 is not rejected at the 5% level for
all K’s. With the evidence reported in Table 3, we conclude that the model with
homogeneous but TVCs are more appropriate for this application.
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Based on the test results, we conduct the estimation under Hh0, where

lnPolit = β1 (τt) ln Incit +β2 (τt)(ln Incit)
2 + f (τt)+αi + εit.

We report the estimates with 95% confidence intervals (CIs) in Figure 1 in
Appendix F of the Supplementary Material. The 95% CIs are obtained using
the fixed-regressor bootstrap procedure. We only report the results using Lcv

obtained by LOOCV, and the results using other numbers of sieve terms are very
similar. We can see that the averages of estimated β̂1 (·) and β̂2 (·) over t are
indeed consistent with the FE estimates in equation (6.3), but the estimates differ
over time. Noticeably, one of the estimates of β’s at T = 28 exhibits different
signs. We run the regression of the demeaned Y on the demeaned X for T = 28,
and find that β̂1 and β̂2 are of the opposite signs of the FE estimates and are
significant.12

7. CONCLUSION

This paper provides a nonparametric test of homogeneity and coefficient stability
in panel data models. We establish the theoretical properties for the test and gener-
alize it to test homogeneity across individuals and stability over time in large panel
data models with one-way or two-way FEs. We suggest using bootstrap p-values
for better finite sample performance. Through simulation, we have demonstrated
that the proposed tests have excellent finite sample properties in various designs.
In addition, we have illustrated the usefulness of the tests in analyzing the EKC.
It should be noted that we impose cross-sectional independence of errors only
for convenience. Our approach could accommodate cross-sectional dependence
straightforwardly with more laborious derivations and some extra conditions. Fur-
thermore, our tests may have low power under some sparse alternative hypotheses,
as they are based on the average of squared fitted values. Finally, we draw readers’
attention to the fact that while the number of sieve terms by LOOCV works well in
simulations and applications, it lacks theoretical justification and is not generally
optimal for hypothesis testing. We leave these topics—constructing more powerful
tests for detecting sparse alternatives and the optimal number of sieve terms in
test—as future research.

APPENDIX

The appendix provides some facts, lemmas, and the proofs of the main results in Section 3.
Notation. Given sequences {an} and {bn}, let an � bn denote that an/bn is bounded,

and an � bn denote that both an/bn and bn/an are bounded. When {an} and {bn} are
stochastic sequences, an � bn denotes that an/bn is stochastically bounded, and an � bn
means that both an/bn and bn/an are stochastically bounded. For a random variable X, let

‖X‖p = E
(|X|p)1/p, for p ≥ 1. To simplify the notation, we use maxi, maxt , and maxi,t to

12The cross-sectional estimates for T = 28 are β̂1 = −39.264 (13.905) and β̂2 = 2.281 (0.764).
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denote max1≤i≤N , max1≤t≤T , and max1≤i≤N,1≤t≤T , respectively; mini, mint, and mini,t
are defined similarly.

A.1. Some Facts and Lemmas

We first state some facts related to basis functions and several technical lemmas that are
used in the proofs of the main results in Section 3. The proofs of these lemmas are given in
the Supplementary Material.

Note that we use the cosine basis BK−1 (τ ) = (21/2 cos(πτ), . . . ,21/2 cos(K1πτ))′ and

BK (τ ) = (1,21/2 cos(πτ), . . . ,21/2 cos(K1πτ))′ to approximate fi (·) and β
†
i (·) in the

auxiliary regressions, respectively. Recall that Bt = BK (τt), B−1,t = BK−1 (τt), Zit =
(B′−1,t,X

′
it ⊗ B′

t)
′, Zi = (

Zi1, . . . ,Zi,T
)
, Q̂i,zz = ZiZ

′
i/T , Qi,zz = E(Q̂i,zz), Żit = Zit − Z̄i,

Żi = MT Zi, Q̂i, żż = ŻiŻ
′
i/T , Z̊it = Zit − E

(
Z̄i
)
,Z̊i = (Z̊i1, . . . ,Z̊iT )′, and Qi, żż = (EQ̂i, żż).

DenoteKi ≡ ŻiQ̂
−1
i, żżQ̂i,zzQ̂−1

i, żżŻ′
i = ŻiQ̂iŻ

′
i and K̊i ≡ Z̊iQ

−1
i, żżQi,zzQ−1

i, żżZ̊′
i = Z̊iQiZ̊

′
i . We have

the following facts.

(i) ||T−1∑T
t=1 BtB′

t − IK ||2 = O
(
K2/T2

)
(see Dong and Linton, 2018, Lem. C.4);

(ii) CB,K ≡ supτ∈[0,1]

∥∥BK (τ )
∥∥2 = ∥∥BK (0)

∥∥2 � K;
(iii) ‖Zit‖2 = ∥∥B−1,t

∥∥2 +‖Xit‖2 ‖Bt‖2 ≤ CB,K ||X̃it||2 for all i,t, where X̃it ≡ (
1,X′

it

)′ ;
(iv) ‖E (Zit)‖2 = ∥∥B−1,t

∥∥2 +‖E (Xit)‖2 ‖Bt‖2 ≤ CB,K(1+‖E (Xit)‖2) ≤ CXCB,K for all
i,t, where CX ≡ 1+maxi,t(‖E (Xit)‖2);

(v) ||Żit||2 ≤ 2(‖Zit‖2 +∥∥Z̄i
∥∥2

) ≤ 2(‖Zit‖2 +T−1∑T
s=1 ‖Zis‖2) ≤ 2CB,KAit for all i,t,

where Ait ≡ ||X̃it||2 +T−1∑T
s=1 ||X̃is||2;

(vi) ||Z̊it||2 ≤ 2(‖Zit‖2 +∥∥E
(
Z̄i
)∥∥2

) ≤ 2CB,K(||X̃it||2 +CX) ≤ 2CB,KÅit for all i,t, where

Åit ≡ ||X̃it||2 +CX;
(vii) |Ki,ts| = |Ż′

itQ̂iŻis| ≤ λmax(Q̂i)||Żit|||Żis|| ≤ λmax(Q̂i)2CB,KA1/2
it A1/2

is for all i,t,s.

Next, we give some lemmas. The first two lemmas are for cosine basis functions, and
their proofs are similar to Lemmas A1 and A2 in Su et al. (2019), where splines are used as
basis functions. Lemmas A.1.3–A.1.7 are some intermediate results needed in the proofs of
our main theorems. Lemma A.8 is Theorem 4.1 in Shao and Yu (1996), which is the main
tool for showing Lemma A.9. We refer readers to the original paper for the detailed proof.
Note that we apply results in the second part of Lemma A.8 with a stronger mixing condition
in Assumption 1. Lemma A.9 gives a set of low-level sufficient conditions to ensure that

0 < mini λmin

(
�̂i

)
≤ maxi λmax

(
�̂i

)
< ∞ holds uniformly after some large T almost

surely. This condition is used in the proof of asymptotic validity of bootstrap procedure of
our test.

Lemma A.1. Suppose that Assumption 1 holds. Let g = (g0,g1, . . . ,gd)′, where gl =
θ ′

l BK (·) ∈ G ≡ {g(·) = θ ′BK (·) : θ ∈ RK}, for l = 1, . . . ,d, and g0 = θ ′
l BK−1 (·) ∈

G−1 ≡ {g(·) = θ ′BK−1 (·) : θ ∈ RK−1}. Then ‖g‖2
i ≡ E{T−1∑T

t=1[g(τt)
′ X̃it][X̃

′
itg(τt)]} =∑d

l=0 ‖gl‖2
2 � ‖θ‖2 , where X̃it = (

1,X′
it

)′ and θ = (
θ ′

0,θ
′
1, . . . ,θ

′
d

)′.
Lemma A.2. Suppose that Assumptions 1 and 2 hold. Let G ≡ {g(·) = θ ′BK (·) : θ ∈RK}.

Let G−1 ×G⊗d denote the function space of g = (g0,g1, . . . ,gd)′ with g0 ∈ G−1 and gl ∈ G
for l = 1, . . . ,d. Then, for any ε > 0,
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(i) P

(
maxi supg∈G−1×G⊗d

∣∣∣∣∣ T−1 ∑T
t=1

[
g′(τt)X̃it

]s

T−1
∑T

t=1 E
[
g′(τt)X̃it

]s −1

∣∣∣∣∣ > ε

)
= o

(
N−1

)
for s = 1,2;

(ii) P

(
supg∈G−1×G⊗d

∣∣∣∣∣ (NT)−1 ∑N
i=1

∑T
t=1

[
g′(τt)X̃it

]2

(NT)−1 ∑N
i=1

∑T
t=1 E

[
g′(τt)X̃it

]2 −1

∣∣∣∣∣ > ε

)
= o

(
N−1

)
.

Lemma A.3. Suppose that Assumption 1 holds. Then:

(i) maxi ||Q̂i, żż −Qi, żż|| = Op[K (T/ lnN)−1/2];
(ii) maxi ||Q̂i,zz −Qi,zz|| = Op[K (T/ lnN)−1/2];
(iii) maxi ||Q̂i −Qi|| = Op[K (T/ lnN)−1/2];
(iv) maxi ||Q̂i, żε|| = Op[K1/2(T/ lnN)−1/2];
(v) maxi ||�̊i −�i|| = Op[K (T/ lnN)−1/2];

(vi) maxi ||�̇i −�i|| = Op[K (T/ lnN)−1/2],

where Q̂i, żε = T−1Z′
iMTεi, �̊i = T−1∑T

t=1 Z̊itZ̊
′
itε

2
it, and �̇i = T−1∑T

t=1 ŻitŻ
′
itε

2
it.

Lemma A.4. Suppose that Assumptions 1 and 2 hold. Then:

(i) P
(

c ≤ mini λmin(Q̂i, żż) ≤ maxi λmax(Q̂i, żż) ≤ c̄
)

= 1−o
(
N−1

)
;

(ii) P
(

c ≤ mini λmin(Q̂i,zz) ≤ maxi λmax(Q̂i,zz) ≤ c̄
)

= 1−o
(
N−1

)
;

(iii) P
(

c ≤ mini λmin(Q̂i) ≤ maxi λmax(Q̂i) ≤ c̄
)

= 1−o
(
N−1

)
;

(iv) P(c ≤ mini λmin(�̊i) ≤ maxi λmax(�̊i) ≤ c̄) = 1−o
(
N−1

)
,

where c and c̄ are some finite positive constants.

Lemma A.5. Suppose Assumptions 1–3 hold. Then (NT)−1∑N
i=1

∥∥r�,i
∥∥2 = O

(
K−2κ

)
.

Lemma A.6. Suppose Assumptions 1–3 hold. Then (i) VNT � K and (ii) BNT � N1/2K.

Lemma A.7. Suppose Assumptions 1–3 hold. Then (i) 1
N1/2T

∑N
i=1 ε′

i

(
Ki − K̊i

)
εi =

op

(
K1/2

)
and (ii) 1

N1/2T

∑N
i=1

∑T
t=1

(
Ki,tt − K̊i,tt

)
ε2

it = op

(
K1/2

)
.

Lemma A.8. Let r > 2, δ > 0, 2 < v ≤ r + δ, and {Xt,t ≥ 1} be an α-mixing sequence of
random variables with E (Xt) = 0 and ‖Xt‖r+δ < ∞. Assume that α (l) ≤ Cl−θ , for some
C > 0 and θ > 0. Then, for any ε > 0, there exists C∗ < ∞ such that

E
∣∣∣∑T

t=1Xt

∣∣∣r ≤ C∗
[
(TCT )r/2 max

1≤t≤T

(‖Xt‖v
)r +T(r−δθ/(r+δ))∨(1+ε) max

1≤t≤T

(‖Xt‖r+δ

)r
]
,

where CT =
[∑T

t=1 (t +1)2/(v−2) α (t)
](v−2)/v

. In particular, for any ε > 0,

E
∣∣∣∑T

t=1Xt

∣∣∣r ≤ C∗
[

Tr/2 max
1≤t≤T

(‖Xt‖v
)r +T1+ε max

1≤t≤T

(‖Xt‖r+δ

)r
]
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if θ > v/(v−2) and θ ≥ (r −1)(r + δ)/δ, and

E
∣∣∣∑T

t=1Xt

∣∣∣r ≤ C∗Tr/2 max
1≤t≤T

(‖Xt‖r+δ

)r
,

if θ ≥ r (r + δ)/(2δ) .

Lemma A.9. Suppose Assumptions 1 and 2 hold. Further, assume that NK6+9η/40(lnT)2/

T1+9η/80 = O(1), and βi (·) and fi (·) are uniformly bounded on [0,1] for all i’s. Then

0 < min
i

λmin(�̂i) ≤ max
i

λmax(�̂i) < ∞

holds after some large T almost surely, where �̂i = T−1∑T
t=1 ŻitŻ

′
it ε̂

2
r,it.

A.2. Proofs of the Main Results in Section 3

Proof of Theorem 3.1. The limiting distribution of ĴNT under H0 is a special case of
Theorem 3.2 with �β,i (·) = 0 and �f,i (·) = 0 for all i’s, or γNT = 0. See the proof of
Theorem 3.2. �

Proof of Theorem 3.2. We first investigate the behavior of augmented residual ûit

under H1,γNT . Recall that �̄β =
[∑N

i=1 E
(
X′

iMT Xi
)]−1∑N

i=1 E
(
X′

iMT g�,i
)
. Let ν�,NT ≡(∑N

i=1 X′
iMT Xi

)−1∑N
i=1 X′

iMT g�,i − �̄β and νNT ≡
(∑N

i=1 X′
iMT Xi

)−1∑N
i=1 X′

iMTεi.

Under H1,γNT , we can rewrite βP = β0 +γNT �̄β by the definition of βP (see Section 2.2).

Then β̂FE − βP = γNTν�,NT + νNT ≡ ν̆NT and βit − βP = γNT�c
β,it, where �c

β,it ≡
�β,it − �̄β . It follows that g�,it − ḡ�,it = X′

it (βit −βP) + γNT�f,it = γNT ğ�,it, where
ğ�,it ≡ X′

it�
c
β,it +�f,it. Then ûit = γNT ğ�,it −X′

itν̆NT +αi + εit and

ûi = γNT ğ�,i −Xiν̆NT + ιTαi + εi. (A.1)

Using (A.1), we have

	NT = 1

NT2

N∑
i=1

(
εi +γNT ğ�,i −Xiν̆NT

)′Ki
(
εi +γNT ğ�,i −Xiν̆NT

) =
6∑

l=1

	
(l)
NT , (A.2)

where

	
(1)
NT ≡ 1

NT2

N∑
i=1

ε′
iKiεi, 	

(2)
NT ≡ γ 2

NT
NT2

N∑
i=1

ğ′
�,iKiğ�,i, 	

(3)
NT ≡ 1

NT2

N∑
i=1

ν̆′
NT X′

iKiXiν̆NT,

	
(4)
NT ≡ 2γNT

NT2

N∑
i=1

ε′
iKiğ�,i, 	

(5)
NT ≡ −2

NT2

N∑
i=1

ε′
iKiXiν̆NT, 	

(6)
NT ≡ −2γNT

NT2

N∑
i=1

ğ′
�,iKiXiν̆NT .

Using (A.2), ĴNT can be decomposed as follows:

ĴNT =
⎛
⎝JNT +

6∑
l=2

N1/2T	
(l)
NT

V
1/2
NT

+ BNT − B̂NT

V
1/2
NT

⎞
⎠ V

1/2
NT

V̂
1/2
NT

,
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where JNT ≡ (N1/2T	
(1)
NT −BNT )/V

1/2
NT and J(l)

NT ≡ N1/2T	
(l)
NT/V

1/2
NT , for l = 2, . . . ,6. We

complete the proof by showing that, as (N,T) → ∞: (i) JNT
d→ N (0,1) ; (ii) J(2)

NT = �� +
op (1) ; (iii) J(l)

NT ≡ N1/2T	
(l)
NT/V

1/2
NT = op (1), for l = 3,4,5,6; (iv) B̂NT −BNT = op(K1/2);

and (v) V̂NT/VNT = 1 + op (1). The proofs of (iv) and (v) are given in Propositions A.11
and A.12, respectively. We are left to show (i)–(iii). �

Proof of (i). Write 	
(1)
NT = 1

NT2

∑N
i=1

∑
1≤t �=s≤T K̊i,tsεisεit + 1

NT2

∑N
i=1

∑T
t=1 K̊i,ttε

2
it +

1
NT2

∑N
i=1 ε′

i(Ki − K̊i)εi ≡ 	
(1a)
NT +	

(1b)
NT +	

(1c)
NT , say. We can decompose JNT as follows:

JNT = N1/2T	
(1a)
NT

V
1/2
NT

+ N1/2T	
(1b)
NT −BNT

V
1/2
NT

+ N1/2T	
(1c)
NT

V
1/2
NT

≡ JNT,a + JNT,b + JNT,c.

Then we want to show that (ia) JNT,a →d N (0,1); (ib) JNT,b = op (1); and (ic) JNT,c =
op (1). The proof of (ia) is given in Proposition A.10. (ic) holds by the fact that VNT = O(K)

by Lemma A.6(i) and 	
(1c)
NT = op

(
N−1/2T−1K1/2

)
by Lemma A.7(i). We are only left to

show (ib). Noting that VNT = O(K) by Lemma A.6(i) and the definition of BNT in (3.2),

we want to verify that J̊(b)
NT ≡ N1/2T(	

(1b)
NT −BNT ) = N−1/2T−1∑N

i=1
∑T

t=1[K̊i,ttε
2
it −

E(K̊i,ttε
2
it)] = op

(
K1/2

)
. Clearly, E(J̊(b)

NT ) = 0 and

Var
(

J̊(b)
NT

)
= 1

NT2

N∑
i=1

T∑
t=1

Var
(
K̊i,ttε

2
it

)
+ 2

NT2

N∑
i=1

∑
1≤t<s≤T

Cov
(
K̊i,ttε

2
it,K̊i,ssε

2
is

)
≡ VJ1 +VJ2.

By the fact (vi), we have Var(K̊i,ttε
2
it) ≤ E(K̊2

i,ttε
4
it) ≤ λ2

max(Qi)E(||Z̊it||4ε4
it) � K2E(Å2

itε
4
it).

Then VJ1 ≤ Op

(
K2/T

)
. For VJ2, noting that {K̊i,ttε

2
it}T

t=1 are strong mixing by Assump-

tion 1(ii), using the Davydov inequality (Bosq 1998), we have |Cov(K̊i,ttε
2
it,K̊i,ssε

2
is)| ≤

8αη/(4+η) (s− t) ×||K̊i,ttε
2
it||2+η/2||K̊i,ssε

2
is||2+η/2, where ||K̊i,ttε

2
it||2+η/2 ≤ ||2CB (K)

λmax(Qi)ε
2
itÅit||(4+η)/2 ≤ CK||ε2

itÅit||(4+η)/2 � CK by Assumption 1(iv). Then, for VJ2,
we have

|VJ2| ≤ 16

NT2

N∑
i=1

∑
1≤t<s≤T

α
η

4+η (s− t)
∥∥∥K̊i,ttε

2
it

∥∥∥
2+η/2

∥∥∥K̊i,ssε
2
is

∥∥∥
2+η/2

≤ C2K2 1

T2

∑
1≤t<s≤T

α
η

4+η (s− t) � CK2

T

by Assumption 1(ii). Then we have VJ2 = O
(

K2/T
)

. It follows that Var(J̊(b)
NT ) =

O
(

K2/T
)

. By the Chebyshev inequality and Assumption 2, we have J̊(b)
NT =Op

(
K/T1/2

)
=

op

(
K1/2

)
. �

Proof of (ii). By Assumption 3, for given BK (·), there exist �
(β)
�,i ∈ RKd and �

(f )
�,i ∈

RK−1 such that
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ğ�,it = X′
it
(
�β,it − �̄β,NT

)+�f,it = Z′
it��,i + r�,it, (A.3)

using the decomposition of �β,i (·)−�̄β,NT and �f,i (·) similar to (2.15) and (2.16), where

��,i ≡ (�
(f )′
�,i,vec(�(β)′

�,i ))′ and r�,it is the error coming from the sieve approximation.

We have J(2)
NT ≡ 1

NT2

∑N
i=1

(
�′

�,iZ
′
iKiZi��,i + r′

�,iKir�,i +2r′
�,iKiZi��,i

)
≡ J(2a)

NT +
J(2b)

NT + J(2c)
NT , say, where r�,i = (

r�,i1, . . . ,r�,iT
)′. First, noting that Z′

iKiZi/T2 =
Z′

iZi/T and using (A.3), we have J(2a)
NT = 1

NT
∑N

i=1
∑T

t=1 ğ2
�,it + 1

NT
∑N

i=1
∑T

t=1 r2
�,it −

2
NT

∑N
i=1

∑T
t=1 ğ�,itr�,it ≡ J(2a)

NT1 + J(2a)
NT2 − 2J(2a)

NT3, say. Clearly, J(2a)
NT1 = �� + op (1).

By Lemma A.5, J(2a)
NT2 = Op

(
K−2κ

)
, and further J(2a)

NT3 = Op
(
K−κ

)
by the Cauchy–

Schwarz inequality. It follows that J(2a)
NT = �� + op (1). Second, by the definition of

Ki and the repeated use of x′Ax ≤ λmax (A)x′x for any symmetric matrix A and con-

formable vector x, we have J(2b)
NT = 1

NT2

∑N
i=1 r′

�,iMT ZiQ̂iZ
′
iMT r�,i ≤ maxi λmax(Q̂i,zz)

maxi λmax(Q̂−1
i, żż)

1
NT2

∑N
i=1 r′

�,iŻiQ̂
−1
i, żżŻ′

i r�,i ≤ c̄wc−1
ż maxi λmax(T−1ŻiQ̂

−1
i, żżŻ′

i)
1

NT
∑N

i=1∥∥r�,i
∥∥2 = Op

(
K−2κ

)
by Lemma A.5 and the fact that T−1ŻiQ̂

−1
i, żżŻ′

i has the largest

eigenvalue 1 because it is a projection matrix. By the Cauchy–Schwarz inequality, we have

J(2c)
NT = Op

(
K−κ

) = op (1). It follows that J(2)
NT = �� +op (1). �

Proof of (iii). When l = 3, by the repeated use of x′Ax ≤ λmax (A)x′x for any symmetric
matrix A and conformable vector x, we have

	
(3)
NT = 1

NT2

N∑
i=1

ν̆′
NT X′

iMT ZiQ̂
−1
i, żżQ̂i,zzQ̂−1

i, żżZ′
iMT Xiν̆NT

≤ maxi λmax

(
Q̂i,zz

)
maxi λmax

(
Q̂−1

i, żż

) 1

NT2

N∑
i=1

ν̆′
NT X′

iMT ZiQ̂
−1
i, żżZ′

iMT Xiν̆NT

≤ c̄wc−1
ż maxi λmax

(
T−1ŻiQ̂

−1
i, żżŻ′

i

)
‖ν̆NT‖2 1

NT

N∑
i=1

T∑
t=1

∥∥Ẋit
∥∥2

=
[
Op((NT)−1)+op

(
γ 2

NT

)]
Op (1) = op

(
N−1/2T−1K1/2

)

because of ν̆NT = γNTν�,NT +νNT = op (γNT )+Op[(NT)−1/2]. Noting that V1/2
NT � K1/2

by Lemma A.6(i), we have J(3)
NT = N1/2T	

(3)
NT/V

1/2
NT = op (1).

When l = 4, we can follow the proof of Lemma A.7 to show that 	(4)
NT = 2γNT

NT
∑N

i=1
∑T

t=1

εitŻ
′
itQ̂i × (Z′

iMT ğ�,i/T) = 	̃
(4)
NT +op

(
N−1/2T−1K1/2

)
,where 	̃

(4)
NT ≡ 2γNT

NT
∑N

i=1
∑T

t=1

εitZ̊
′
itQiGi and Gi ≡ T−1E[Z′

iMT ğ�,i]. Note that E(	̃
(4)
NT ) = 0 by Assumption 1(ii) and

Var(	̃(4)
NT ) = 4γ 2

NT

N2T2

N∑
i=1

T∑
t=1

E
(

Z̊′
itQiGiG

′
iQiZ̊itε

2
it

)
+ 8γ 2

NT

N2T2

N∑
i=1

∑
1≤t<s≤T

E
(

Z̊′
itQiGiG

′
iQiZ̊isεitεis

)

≡ V	
(4a)
NT +V	

(4b)
NT , say.
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For V	
(4a)
NT , we have

V	
(4a)
NT = 4γ 2

NT

N2T2

N∑
i=1

T∑
t=1

tr
{
QiGiG

′
iQiE(Z̊itZ̊

′
itε

2
it)
}

≤ maxi λmax
(
QiGiG

′
iQi

) 4γ 2
NT

NT

1

NT

N∑
i=1

T∑
t=1

E

(∥∥∥Z̊it

∥∥∥2
ε2

it

)
= Op

(
γ 2

NT K2

NT

)
,

where we use λmax{QiGiG
′
iQi} ≤ λ2

max(Qi)maxi ‖Gi‖2 ≤ CK2 in the last equation. For

V	
(4b)
NT , by Assumption 1(ii) and the Davydov inequality (Bosq 1998) again, we have

V	
(4b)
NT ≤ 8γ 2

NT

N2T2

N∑
i=1

∑
1≤t<s≤T

E
(

Z̊′
itGiG

′
iZ̊isεitεis

)

�
γ 2

NT K2

N2T3

N∑
i=1

∑
1≤t<s≤T

α
η

1+η (t − s) = Op

(
γ 2

NT K2

NT

)
.

By the Chebyshev inequality, 	̃
(4)
NT = Op[γNT K/(NT)1/2] = op

(
N−1/2T−1K1/2

)
. It fol-

lows that J(4)
NT = op (1).

When l = 5, we can write 	
(5)
NT = Fν̆NT , where F ≡ N−1T−2∑N

i=1 ε′
iKiXi. Following

the proof of 	
(4)
NT , we can show that F = Op[K1/2/(NT)1/2]. Then we have |	(5)

NT | ≤
Op[K1/2/(NT)1/2][op (γNT ) + Op((NT)−1/2)] = op

(
N−1/2T−1K1/2

)
. It follows that

J(5)
NT = op (1). When l = 6, we have J(6)

NT = op (1) by the Cauchy–Schwarz inequality. �

Proposition A.10. Suppose Assumptions 1–4 hold. We have JNT,a = N1/2T	
(1a)
NT /

V
1/2
NT →d N (0,1) as (N,T) → ∞.

Proof. Write JNT,a = 1√
T

∑T
t=2ZNT,t, whereZNT,t ≡ 2√

NTVNT

∑t−1
s=1

∑N
i=1 K̊i,tsεitεis.

Noting that
{
ZNT,t

}T
t=1 is an MDS w.r.t.Ft ≡σ

{(
Xit, . . . ,Xi1,εi,t−1, . . . ,εi1

)
, i=1, . . . ,N

}
,

we prove the proposition by applying the martingale CLT. By Corollary 5.26 of White
(2000), it suffices to show that: (i) E[Z4

NT,t] < C < ∞ for some constant C and all t and

(ii) T−1∑T
t=2Z2

NT,t −1 = oP (1) . We first show (i). For 2 ≤ t ≤ T , decompose

Z2
NT,t = 4

NTVNT

t−1∑
s=1

t−1∑
s2=1

N∑
i1=1

N∑
i2=1

K̊i1,ts1εi1tεi1s1K̊i2,ts2εi2s2εi2t

= 4

NTVNT

t−1∑
s=1

N∑
i1=1

N∑
i2=1

χi1,tsχi2,ts + 8

NTVNT

∑
1≤s1<s2≤t−1

N∑
i1=1

N∑
i2=1

χi1,ts1χi2,ts2

= Z1t +Z2t, say,
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where χi,ts ≡ K̊i,tsεitεis. Then E(Z4
NT,t) = E (Z1t +Z2t)

2 ≤ 2
[
E
(
Z2

1t

)
+E

(
Z2

2t

)]
≡

2(Z1t +Z2t), say. We show that Zlt < C < ∞, for l = 1,2 and all t’s. For Z1t, we have

Z1t = 16

N2T2V2
NT

t−1∑
s=1

N∑
i=1

E
(
χ4

i,ts

)
+ 48

N2T2V2
NT

t−1∑
s=1

∑
1≤i �=j≤N

E
(
χ2

i,ts

)
E(χ2

j,ts)

+ 32

N2T2V2
NT

∑
1≤s1<s2≤t−1

N∑
i=1

E(χ2
i,ts1

χ2
i,ts2

)+ 32

N2T2V2
NT

∑
1≤s1<s2≤t−1

∑
1≤i �=j≤N

E(χ2
i,ts1

)E(χ2
j,ts2

)

+ 64

N2T2V2
NT

∑
1≤s1<s2≤t−1

∑
1≤i �=j≤N

E(χi,ts1χi,ts2 )E(χj,ts1χj,ts2 )

= Z1t,a +Z1t,b +Z1t,c +Z1t,d +Z1t,e, say.

Note that E(χ4
i,ts) = E[(Z̊′

itQiZ̊is)
4ε4

itε
4
is] ≤ λ4

max(Qi)E(||Z̊it||4||Z̊is||4ε4
itε

4
is) ≤ K4C∗,

where C∗ ≡256λ4
max(Qi)[maxi,t E(Å8

it)]
1/2

[
maxi,t E

(
ε16

it

)]1/2
<∞ by Assumption 1(iv).

Noting that VNT � K by Lemma A.6(i), we have Z1t,a � 16
N2T2V2

NT

∑t−1
s=1

∑N
i=1 K4C∗ =

O(K2/(NT)). Similarly, Z1t,b � O
(

K2/T
)

and Z1t,c � O
(

K2/N
)

. For Z1t,d , noting that

E(χ2
i,ts) = E[(Z̊′

itQiZ̊is)
2ε2

itε
2
is] � K2, we have

Z1t,d �
[ ∑T

s=1
∑N

i=1 E(χ2
i,ts)

T−1∑T
t=1

∑T
s=1

∑N
i=1 E(χ2

i,ts)

]2

< C

using VNT = 2
NT2

∑
1≤s,t≤T

∑N
i=1 E(χ2

i,ts). Let m ≡ mT = �C lnT�, where �·� is the
integer part of “·”For Z1t,e, we consider two cases for time indices s1,s2: (a1) d1 ≡
max {s2 − s1,t − s2} ≥ m and (a2) d1 < m. For Case (a1), when d1 = s2 − s1, by Lemma
2.1 of Sun and Chiang (1997), we have

∣∣E (
χi,ts1χi,ts2

)∣∣ = ∣∣E (
χi,ts1χi,ts2

)−Es2tEs1

(
χi,ts1χi,ts2

)∣∣ ≤ 4M1/(1+η)
3a αη/(1+η) (m),

where Es2tEs1

(
χi,ts1χi,ts2

) ≡ ∫
χi,ts1χi,ts2 dF(1)

i,s1
dF(2)

i,s2t = 0, F(1)
i,s1

and F(2)
i,s2t denote the

marginal CDF of ξis1 ≡ (
Xis1,εis1

)
and the joint CDF of ξis2 and ξit, respectively, and

M3a ≡ maxi max1≤s1<s2<t≤T
∫ ∣∣χi,ts1χi,ts2

∣∣1+η dF(1)
i,s1

dF(2)
i,s2t; when d1 = t − s2, we have

∣∣E (
χi,ts1χi,ts2

)∣∣ = ∣∣E (
χi,ts1χi,ts2

)−Es1s2 Et
(
χi,ts1χi,ts2

)∣∣ ≤ 4M1/(1+η)
3b αη/(1+η) (m),

where Es1s2 Et
(
χi,ts1χi,ts2

) = 0 and M3b ≡ maxi max1≤s1<s2<t≤T
∫ ∣∣χi,ts1χi,ts2

∣∣1+η

dF(2)
i,s1s2

dF(1)
i,t . Clearly, M3a � K2(1+η) maxi λ

2+2η
max (Qi)maxi,s1,s2,t

∫ |Åis1εis1 Åis2εis2

Å2
itε

2
it|1+ηdF(1)

i,s1
dF(2)

i,s2t � CK2(1+η). Similarly, we have M3b � CK2(1+η). It fol-

lows that M3 ≡ max {M3a,M3b} � CK2(1+η) and
∣∣E (

χi,ts1χi,ts2

)∣∣ � K2αη/(1+η) (m)

for Case (a1). For Case (a2), for each expectation in summation, we have∣∣E (
χi,ts1χi,ts2

)∣∣ � K2λ2
max(Qi)maxi,s1,s2,t E

∣∣∣Åis1εis1 Åis2εis2 Å2
itε

2
it

∣∣∣1+η = O
(

K2
)

. Then
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it follows

∣∣Z1t,e
∣∣ ≤ 64

N2T2V2
NT

∑
1≤i �=j≤N

{∑
(a1)

+
∑

(a2)

}∣∣E (
χi,ts1χi,ts2

)∣∣ ∣∣E (
χj,ts1χj,ts2

)∣∣
� 64

N2T2V2
NT

(
N2t2K4α

2η
1+η (m)+N2m2K4

)
= O

(
K2α

2η
1+η (m)+m2K4T−2

)
.

Under Assumption 1(ii), K2α2η/(1+η) (m) → 0 holds for a choice of m with a large
constant C. It follows that |Z1t| ≤ C < ∞. Now we consider Z2t. Write

Z2t = 64

N2T2V2
NT

∑
1≤s1<s2≤t−1

∑
1≤s3<s4≤t−1

N∑
i=1

E
(
χi,ts1χi,ts2χi,ts3χi,ts4

)

+ 64

N2T2V2
NT

∑
1≤s1<s2≤t−1

∑
1≤s3<s4≤t−1

∑
1≤i �=j≤N

E
(
χi,ts1χi,ts2

)
E
(
χj,ts3χj,ts4

)

+ 64

N2T2V2
NT

∑
1≤s1<s2≤t−1

∑
1≤s3<s4≤t−1

∑
1≤i �=j≤N

E
(
χi,ts1χi,ts3

)
E
(
χj,ts2χj,ts4

)

+ 64

N2T2V2
NT

∑
1≤s1<s2≤t−1

∑
1≤s3<s4≤t−1

∑
1≤i �=j≤N

E
(
χi,ts1χi,ts4

)
E
(
χj,ts2χj,ts3

)
≡ Z2t,a +Z2t,b +Z2t,c +Z2t,d , say.

First, rewrite Z2t,a as

Z2t,a = 16

N2T2V2
NT

∑
1≤s1<s2≤t−1

N∑
i=1

E(χ2
i,ts1

χ2
i,ts2

)

+ 16

N2T2V2
NT

∑
1≤s1<s2<s4≤t−1

N∑
i=1

E(χ2
i,ts1

χi,ts2χi,ts4 )

+ 16

N2T2V2
NT

∑
1≤s1<s2<s4≤t−1

N∑
i=1

E(χi,ts1χ
2
i,ts2

χi,ts4 )

+ 16

N2T2V2
NT

∑
1≤s1 �=s2 �=s3 �=s4≤t−1

N∑
i=1

E(χi,ts1χi,ts2χi,ts3χi,ts4)

= Z2t,a1 +Z2t,a2 +Z2t,d3 +Z2t,a4, say.

Similar to the proof of Z1t,a, we can show Z2t,a1 ≤ O
(

K2/N
)

. For Z2t,a2, let d1 ≥ d2 ≥ d3

be the decreasing ranked increments among four different time indices: s1,s2,s4, and
t. We consider two cases: (a1) d2 ≥ m and (a2) d2 < m. For Case (a1), it must be
d2 = s2 − s1, s4 − s2, or t − s4. By Lemma 2.1 in Sun and Chiang (1997) again,
we have |E(χ2

i,ts1
χi,ts2χi,ts4)| = |E(χ2

i,ts1
χi,ts2χi,ts4) − Es2s4tEs1(χ

2
i,ts1

χi,ts2χi,ts4)| ≤
M1/(1+η)

4 αη/(1+η) (d2) when d2 = s2 − s1; similarly, |E(χ2
i,ts1

χi,ts2χi,ts4)| ≤ M1/(1+η)
4
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αη/(1+η) (d2) when d2 = s4 − s2 or t − s4, where M4 ≡ max {M4a,M4b,M4c} with

M4a ≡ max
1≤i≤N

max
1≤s1<s2<s4<t≤T

∫ ∣∣∣χ2
i,ts1

χi,ts2χi,ts4

∣∣∣1+η
dF(1)

i,s1
dF(3)

i,s2s4t,

M4b ≡ max
1≤i≤N

max
1≤s1<s2<s4<t≤T

∫ ∣∣∣χ2
i,ts1

χi,ts2χi,ts4

∣∣∣1+η
dF(2)

i,s1s2
dF(2)

i,s4t,

M4c ≡ max
1≤i≤N

max
1≤s1<s2<s4<t≤T

∫ ∣∣∣χ2
i,ts1

χi,ts2χi,ts4

∣∣∣1+η
dF(3)

i,s1s2s4
dF(1)

i,t .

It is easy to show that M4 � CK2(1+η) and |E(χ2
i,ts1

χi,ts2χi,ts4)| � K2αη/(1+η) (m).

Note the total number of these terms in Case (a1) is bounded by t3; for Case (a2),
|E(χ2

i,ts1
χi,ts2χi,ts4)| ≤ CK4 and the total number of these terms is bounded by tm2. Then

we have

∣∣Z2t,a2
∣∣ � 16

N2T2V2
NT

(K4Nt3α
η

1+η (m)+ tm2NK4) = O

(
K2T

N
α

η
1+η (m)+ m2K2

NT

)
.

Similarly,
∣∣Z2t,al

∣∣ ≤ O(N−1K2αη/(1+η) (m)+ m2K2

NT ), for l = 3,4. It follows that
∣∣Z2t,a

∣∣ ≤
C < ∞. For Z2t,b, we have

∣∣Z2t,b
∣∣ ≤ 16

N2T2V2
NT

⎧⎨
⎩

∑
1≤s1<s2≤t−1

N∑
i=1

∣∣E (
χi,ts1χi,ts2

)∣∣
⎫⎬
⎭

2

� O

(
T2K2α

2η
1+η (m)+m4K2T−2

)
.

Similarly, we can write Z2t,c as follows:

Z2t,c = 64

N2T2V2
NT

∑
1≤s1<s2≤t−1

∑
1≤i �=j≤N

E(χ2
i,ts1

)E(χ2
j,ts2

)

+ 64

N2T2V2
NT

∑
1≤s1<s2 �=s4≤t−1

∑
1≤i �=j≤N

E(χ2
i,ts1

)E
(
χj,ts2χj,ts4

)

+ 64

N2T2V2
NT

∑
1≤s1 �=s3<s2≤t−1

∑
1≤i �=j≤N

E
(
χi,ts1χi,ts3

)
E(χ2

j,ts2
)

+ 64

N2T2V2
NT

∑
1≤s3<s1<s2≤t−1

∑
1≤i �=j≤N

E
(
χi,ts1χi,ts3

)
E
(
χj,ts2χj,ts1

)

+ 64

N2T2V2
NT

∑
1≤s1<s2<s4≤t−1

∑
1≤i �=j≤N

E
(
χi,ts1χi,ts2

)
E
(
χj,ts2χj,ts4

)

+ 64

N2T2V2
NT

∑
1≤s1<s2≤t−1,1≤s3<s4≤t−1

s1 �=s2 �=s3 �=s4

∑
1≤i �=j≤N

E
(
χi,ts1χi,ts3

)
E
(
χj,ts2χj,ts4

)

= Z2t,c1 +Z2t,c2 +Z2t,c3 +Z2t,c4 +Z2t,5 +Z2t,6, say.

We have
∣∣Z2t,c1

∣∣ ≤ C < ∞ as the determination of the upper bound for

Z1t,d . Similarly, we can show that
∣∣Z2t,cl

∣∣ � O[K2Tα
η

1+η (m) + K2m2/T], for

l = 2,3,
∣∣Z2t,cl

∣∣ � O[K2Tα
2η

1+η (m) + K2mα
η

1+η (m) + K2m3/T], for l = 4,5, and
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∣∣Z2t,c6
∣∣� O[K2T2α

2η
1+η (m)+K2m2α

η
1+η (m)+K2m4/T]. It follows that

∣∣Z2t,c
∣∣≤ C < ∞.

Similarly, we have
∣∣Z2t,d

∣∣ ≤ C < ∞. Thus, |Z2t| ≤ C < ∞ for all t’s.

Proof of (ii). First, note that T−1∑T
t=2 E

[
Z2

NT,t

]
= 1

NT2VNT

∑T
t=1

∑T
s=1

∑N
i=1

E
(
χ2

i,ts

)
+O

(
K2/T

)
= 1+o(1) . Then we decompose

E

⎡
⎢⎣
⎛
⎝ 1

T

T∑
t=2

Z2
NT,t

⎞
⎠

2
⎤
⎥⎦

= 1

T2

T∑
t=2

E
(
Z4

NT,t

)
+ 2

T2

∑
2≤t<s≤T

E
(
Z2

NT,tZ
2
NT,s

)
≡ Z1NT +Z2NT , say.

Clearly, Z1NT = O(1/T) = o(1) ; for Z2NT , we have

Z2NT = 2

T2

∑
2≤t<s≤T

E (Z1tZ1s +Z2tZ2s +Z1tZ2s +Z2tZ1s) ≡
4∑

l=1

Z2NT,l, say.

Write Z2NT,1 as follows:

Z2NT,1 = 32

N2T4V2
NT

∑
2≤t1<t2≤T

t1−1∑
s1=1

t2−1∑
s2=1

⎧⎨
⎩

N∑
i=1

E(χ2
i,t1s1

χ2
i,t2s2

)+
∑

1≤i �=j≤N

E(χ2
i,t1s1

)E(χ2
j,t2s2

)

⎫⎬
⎭

�
[

1

NT2VNT

T∑
t=1

T∑
s=1

N∑
i=1

E
(
χ2

i,ts

)]2

+O
(

K2/N
)

.

For Z2NT,2, we have

Z2NT,2 = 2

N2T4V2
NT

∑
2≤t1<t2≤T

∑
1≤s1<s2≤t1−1

∑
1≤s3<s4≤t2−1

N∑
i=1

E(χi,t1s1χi,t1s2χi,t2s3χi,t2s4 )

+ 2

N2T4V2
NT

∑
2≤t1<t2≤T

∑
1≤s1<s2≤t1−1

∑
1≤s3<s4≤t2−1

∑
1≤i1 �=i3≤N

E(χi1,t1s1χi1,t1s2 )E(χi3,t2s3χi3,t2s4 )

= Z2NT,2a +Z2NT,2b, say.

For Z2NT,2a, we consider three cases with two, three, and four different elements in
{s1,s2,s3,s4} and accordingly decompose Z2NT,2a into Z2NT,2a = Z2NT,2a2 +Z2NT,2a3 +
Z2NT,2a4. For Z2NT,2a2, each expectation E

(
χi,t1s1χi,t1s2χi,t2s1χi,t2s2

)
is of order K2 and

we have Z2NT,2a2 = O
(

K2/N
)

. For Z2NT,2a3, we consider two subcases with d3 ≥ m

or d3 < m, where d3 is the third largest increment among five different time indices.
When d3 ≥ m, each expectation is bounded by CK4αη/(1+η) (m) and the total number

of such terms is of order O
(

T5
)
; when d3 ≤ m, each expectation is of order K4 and

the total number is of order O(m2T3). Then
∣∣Z2NT,2a3

∣∣ = O[K2Tαη/(1+η) (m)/N +
K2m2/(NT)] = o(1). Similarly,

∣∣Z2NT,2a4
∣∣ = O[K2T2αη/(1+η) (m)/N + K2m3/(NT)].

Lastly, we can show that
∣∣Z2NT,2b

∣∣ = O[T2K2α2η/(1+η) (m) + m4K2/T2] analogously.
It follows that Z2NT,2 = o(1) . Finally, following the proof for Z2NT,2, we can show that
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Z2NT,l = O[TK2αη/(1+η) (m)/N + K2m2/(NT) + TK2αη/(1+η) (m) + m2K2/T] = o(1)

for l = 3,4. It follows that

E

⎡
⎢⎣
⎛
⎝ 1

T

T∑
t=2

Z2
NT,t

⎞
⎠

2
⎤
⎥⎦ =

⎡
⎣ 1

NT2VNT

T∑
t=1

T∑
s=1

N∑
i=1

E
(
χ2

i,ts

)⎤⎦
2

+o(1) and

Var

⎛
⎝ 1

T

T∑
t=2

Z2
NT,t

⎞
⎠ = E

⎡
⎢⎣
⎛
⎝ 1

T

T∑
t=2

Z2
NT,t

⎞
⎠

2
⎤
⎥⎦−

⎡
⎣E

⎛
⎝ 1

T

T∑
t=2

Z2
NT,t

⎞
⎠
⎤
⎦

2

= o(1) .

Consequently, (ii) holds by the Chebyshev inequality. �

Proposition A.11. Under Assumptions 1–4, B̂NT −BNT = op(K1/2).

Proof. Note that ε̂r,it = ûit − ûi = εit − ε̄i + γNT ğ(c)
�,it − Ẋ′

itν̆NT under H1,γNT , where

ğ(c)
�,it = ğ�,it − ğ�,i, Ẋit = Xit − X̄i, and ε̄i,ğ�,i, and X̄i are the time series average of εit’s,

ğ�,it’s, and Xit’s for the ith individual, respectively. Then we can write

B̂NT = 1√
NT

N∑
i=1

T∑
t=1

Ki,tt

(
εit − ε̄i +γNT ğ(c)

�,it − Ẋ′
itν̆NT

)2 =
10∑

l=1

B̂NTl,

where

B̂NT1 ≡ 1√
NT

∑N
i=1

∑T
t=1Ki,ttε

2
it, B̂NT2 ≡ 1√

NT

∑N
i=1

∑T
t=1Ki,tt ε̄

2
i ,

B̂NT3 ≡ γ 2
NT√
NT

∑N
i=1

∑T
t=1Ki,tt

(
ğ(c)
�,it

)2
, B̂NT4 ≡ 1√

NT

∑N
i=1

∑T
t=1Ki,tt ν̆

′
NT ẊitẊ

′
itν̆NT,

B̂NT5 ≡ −2√
NT

∑N
i=1

∑T
t=1Ki,ttεit ε̄i, B̂NT6 ≡ 2γNT√

NT

∑N
i=1

∑T
t=1Ki,ttεitğ

(c)
�,it,

B̂NT7 ≡ 2√
NT

∑N
i=1

∑T
t=1Ki,ttεitẊ

′
itν̆NT, B̂NT8 ≡ −2γNT√

NT

∑N
i=1

∑T
t=1Ki,tt ε̄iğ

(c)
�,it,

B̂NT9 ≡ −2√
NT

∑N
i=1

∑T
t=1Ki,tt ε̄iẊ

′
itν̆NT, B̂NT10 ≡ γ 2

NT√
NT

∑N
i=1

∑T
t=1Ki,ttğ

(c)
�,itẊ

′
itν̆NT .

We complete the proof by showing that B̂NT1 −BNT = op

(
K1/2

)
, and B̂NTl = op

(
K1/2

)
,

for l = 2, . . . ,10.
First, write

B̂NT1 −BNT = 1√
NT

N∑
i=1

T∑
t=1

[
K̊i,ttε

2
it −E

(
K̊i,ttε

2
it

)]
+ 1√

NT

N∑
i=1

T∑
t=1

(
Ki,tt − K̊i,tt

)
ε2

it

≡ J̃(b)
NT + J̃(�b)

NT , say.

We can show that E[J̃(b)
NT ] = 0 and Var(J̃(b)

NT ) = O
(

K2/T
)

= o(1). By the Cheby-

shev inequality, J̃(b)
NT = Op

(
K/T1/2

)
= op

(
K1/2

)
. Following the proof of Lemma

A.7, we can show that J̃(�b)
NT = op

(
K1/2

)
. Second, B̂NT2 ≤ 1

N1/2T

∑N
i=1 ε̄2

i tr(Ki) ≤
C

N1/2T

∑N
i=1 ε̄2

i ‖Zi‖2 = O(N1/2K/T) = op

(
K1/2

)
by the Markov inequality. Third,
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B̂NT3 ≤ Cγ 2
NT K

N1/2T

∑N
i=1

∑T
t=1 Ait[ğ

(c)
�,it]

2 = Op

(
KN1/2γ 2

NT

)
= op

(
K1/2

)
. Fourth, B̂NT4 ≤

C∗K‖ν̆NT‖2

N1/2T

∑N
i=1

∑T
t=1 Ait||Ẋit||2 = Op(N1/2K ‖ν̆NT‖) = op

(
K1/2

)
. Lastly, by the

Cauchy–Schwarz inequality, we can show that B̂NTl = op

(
K1/2

)
, for l = 5, . . . ,10. �

Proposition A.2. Under Assumptions 1–4, we have V̂NT/VNT = 1+op (1) .

Proof. We consider the following decomposition:

V̂NT −VNT = 2

NT2

N∑
i=1

∑
1≤s,t≤T

K2
i,ts

(
ε̂2

r,it ε̂
2
r,is − ε2

itε
2
is

)

+ 2

NT2

N∑
i=1

∑
1≤s,t≤T

[
K̊2

i,tsε
2
itε

2
is −E

(
K̊2

i,tsε
2
itε

2
is

)]

+ 2

NT2

N∑
i=1

∑
1≤s,t≤T

(
K2

i,ts − K̊2
i,ts

)
ε2

itε
2
is + 2

NT2

N∑
i=1

∑
1≤s,t≤T

E
[(

K̊2
i,ts −K2

i,ts

)
ε2

itε
2
is

]

≡ �V̂
(a)
NT +�V̂

(b)
NT +�V̂

(c)
NT +�V̂

(d)
NT , say.

We first show that �V̂
(a)
NT = op (K). Let ε̆R,it = ε̄i −γNT ğ(c)

�,it + Ẋ′
it ν̆NT . Then write ε̂r,it =

εit + ε̆R,it. It is straightforward to verify that

(i)
1

NT

N∑
i=1

T∑
t=1

ε̆2
R,it = Op

(
T−1

)
and (ii)

1

NT

N∑
i=1

T∑
t=1

ε̆4
R,it = Op

(
T−2

)
. (A.4)

We rewrite �V̂
(a)
NT as

�V̂
(a)
NT = 2

NT2

N∑
i=1

∑
1≤s,t≤T

K2
i,ts

(
ε̂r,it ε̂r,is − εitεis

)(
ε̂r,it ε̂r,is + εitεis

)

= 2

NT2

N∑
i=1

∑
1≤s,t≤T

K2
i,ts

(
ε̆R,itεis + ε̆R,isεit + ε̆R,isε̆R,it

)(
2εitεis + ε̆R,itεis + ε̆R,isεit + ε̆R,isε̆R,it

)

= 2

NT2

N∑
i=1

∑
1≤s,t≤T

K2
i,ts

(
4ε2

isεit ε̆R,it +4ε̆R,it ε̆R,isεitεis +4ε̆2
R,isε

2
it +4ε̆R,it ε̆

2
R,isεit + ε̆2

R,isε̆
2
R,it

)

≡
5∑

s=1

�V̂
(a)
NT,s, say,
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by the symmetry between time indices t and s. First, decompose �V̂
(a)
NT,1 as follows:

�V̂
(a)
NT,1 = 8

NT2

N∑
i=1

T∑
s=1

T∑
t=1

K2
i,tsε

2
isεit ε̄i − 8γNT

NT2

N∑
i=1

T∑
s=1

T∑
t=1

K2
i,tsε

2
isεitğ

(c)
�,it

+ 8

NT2

N∑
i=1

T∑
s=1

T∑
t=1

K2
i,tsε

2
isεitẊ

′
itν̆NT

= �V̂
(a)
NT,11 +�V̂

(a)
NT,12 +�V̂

(a)
NT,13, say.

Define �̇i = T−1∑T
s=1 ŻisŻ′

isε
2
is and V̇i = T−1/2∑T

t=1 ŻitŻ
′
itεit. For �V̂

(a)
NT,11, then we

have

∣∣∣�V̂
(a)
NT,11

∣∣∣ =
∣∣∣∣∣∣

8

NT2

N∑
i=1

T∑
s=1

T∑
t=1

K2
i,tsε

2
isεit ε̄i

∣∣∣∣∣∣
=
∣∣∣∣∣∣

8

NT2

N∑
i=1

T∑
s=1

T∑
t=1

tr
(
Q̂iŻisŻ′

isε
2
isQ̂iŻitŻ

′
itεit

)
ε̄i

∣∣∣∣∣∣
= 8

T

∣∣∣∣∣∣
1

N

N∑
i=1

tr
(
Q̂i�̇iQ̂iV̇i

)
T1/2ε̄i

∣∣∣∣∣∣
≤ 8

TN

N∑
i=1

∥∥∥Q̂i�̇iQ̂i

∥∥∥∥∥V̇i
∥∥∣∣∣T1/2ε̄i

∣∣∣

≤ 8

T

⎛
⎝ 1

N

N∑
i=1

∥∥∥Q̂i�̇iQ̂i

∥∥∥2 ∣∣∣T1/2ε̄i

∣∣∣2
⎞
⎠

1/2⎛
⎝ 1

N

N∑
i=1

∥∥V̇i
∥∥2

⎞
⎠

1/2

≡ 8T−1
(
�V̂

(a)
NT,111

)1/2 (
�V̂

(a)
NT,112

)1/2
, say.

By Lemma A.3(iii) and (v) and Lemma A.4(iii)–(iv), we have |�V̂
(a)
NT,111| = 1

NT
∑N

i=1

tr
(
Q̂i�̂iQ̂iQ̂i�̂iQ̂i

)
ε̄2

i ≤ K maxi λ
4
max

(
Q̂i

)
maxi λ

2
max

(
�̂i

)
1

NT
∑N

i=1 ε̄2
i = Op (K).

Second, E[�V̂
(a)
NT,112] = 1

NT
∑N

i=1
∑T

t=1 E(||Z̊it||4ε2
it) = O

(
K2

)
implies that �V̂

(a)
NT,112 =

Op

(
K2

)
by the Markov inequality. It follows that �V̂

(a)
NT,11 = Op

(
K3/2/T

)
= op (K). For

�V̂
(a)
NT,12, we have

∣∣∣�V̂
(a)
NT,12

∣∣∣ =
∣∣∣∣∣∣
8γNT

NT2

N∑
i=1

T∑
s=1

T∑
t=1

K2
i,tsε

2
isεitğ

(c)
�,it

∣∣∣∣∣∣
= 8γNT

∣∣∣∣∣∣
1

NT2

N∑
i=1

T∑
s=1

T∑
t=1

tr
(
Q̂iŻisŻ′

isε
2
isQ̂iŻitŻ

′
itğ

(c)
�,itεit

)∣∣∣∣∣∣
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≤ 8γNT T−1/2 1

N

N∑
i=1

∥∥∥Q̂i�̇iQ̂i

∥∥∥
∥∥∥∥∥∥T−1/2

T∑
t=1

ŻitŻ
′
itğ

(c)
�,itεit

∥∥∥∥∥∥
≤ 8γNT T−1/2 max

i

∥∥∥Q̂i�̇iQ̂i

∥∥∥ 1

N

N∑
i=1

∥∥∥∥∥∥
1

T1/2

T∑
t=1

ŻitŻ
′
itğ

(c)
�,itεit

∥∥∥∥∥∥
2

= 8γNT T−1/2Op (K)Op

(
K2

)
= op (K) .

Similarly, we can show that �V̂
(a)
NT,13 = Op

(
K2T−1/2 ‖νNT‖

)
= op (K) . It follows that

�V̂
(a)
NT,1 = op (K).

Second, for �V̂
(a)
NT,2, by the Cauchy–Schwarz inequality, we have

�V̂
(a)
NT,2 = 8

NT2

N∑
i=1

∑
1≤s�=t≤T

K2
i,tsε̆R,it ε̆R,isεitεis

≤
⎛
⎝ 8

NT2

N∑
i=1

∑
1≤s�=t≤T

K4
i,tsε

2
itε

2
is

⎞
⎠

1/2⎛
⎝ 8

NT2

N∑
i=1

∑
1≤s�=t≤T

ε̆2
R,it ε̆

2
R,is

⎞
⎠

1/2

≤
⎛
⎝CK4

NT2

N∑
i=1

∑
1≤s�=t≤T

A2
itA

2
isε

2
itε

2
is

⎞
⎠

1/2
⎡
⎢⎣C

N

N∑
i=1

⎛
⎝ 1

T

T∑
t=1

ε̆2
R,it

⎞
⎠

2
⎤
⎥⎦

1/2

= Op

(
K2

)
Op

(
T−1

)
= op (K) .

Similarly, we can show �V̂
(a)
NT,s = op (K), for s = 3,4,5, by the Cauchy–Schwarz

inequality. Hence, �V̂
(a)
NT = op (K) . For �V̂

(b)
NT , we have E(�V̂

(b)
NT ) = 0 and Var(�V̂

(b)
NT1) =

16
N2T4

∑N
i=1

∑
1≤s1 �=t1≤T

∑
1≤s2 �=t2≤T Cov(K̊2

i,t1s1
ε2

it1
ε2

is2
,K̊2

i,t2s2
ε2

it2
ε2

is2
) = O

(
K4/N

)
by Assumption 1(ii). It follows that �V̂

(b)
NT = Op(K2/

√
N) = op (K) . For �V̂

(c)
NT and �V̂

(d)
NT ,

we can follow the proof of Lemma A.7 to show that they are both of order op (K) . �

Proof of Corollary 3.3. Under the global alternative H1, we have ν̆NT = ν�,NT +νNT =
o(1)+Op((NT)−1/2) = op (1). Then

	NT = 1

NT2

N∑
i=1

(
εi + ğ�,i −Xiν̆NT

)′Ki
(
εi + ğ�,i −Xiν̆NT

)

= 1

NT2

N∑
i=1

ε′
iKiεi + 1

NT2

N∑
i=1

ğ′
�,iKiğ�,i + 1

NT2

N∑
i=1

ν̆′
NT X′

iKiXiν̆NT

+ 1

NT2

N∑
i=1

2ε′
iKiğ�,i − 1

NT2

N∑
i=1

2ğ′
�,iKiXiν̆NT − 1

NT2

N∑
i=1

2ε′
iKiXiν̆NT

≡
6∑

l=1

	NT,l, say.
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Clearly, we have (i) 	NT,1 = 1
NT2

∑N
i=1

{∑
1≤s=t≤T +∑T

t=1
∑T

s=1, �=t

}
εisεitKi,ts =

Op

(
T−1K

)
+ Op

(
N−1/2T−1K1/2

)
; (ii) 	NT,2 = �� + op (1); and (iii) 	NT,3 ≤

‖ν̆NT‖2 = Op((NT)−1) + op (1). Then, by the Cauchy–Schwarz inequality, we have∣∣	NT,l
∣∣ = op (1), for l = 4,5,6. It follows that 	NT = �� + op (1) and P(	NT ≥

��/2) → 1. In addition, we can still show that V̂NT = V0 + op (K) for some V0 = O(K)

and B̂NT = Op

(
N1/2K

)
under H1. It follows that

ĴNT = N1/2T	NT − B̂NT

V̂
1/2
NT

=
(
V̂NT

V0

)1/2
N1/2T	NT − B̂NT

V
1/2
0

= (
1+op (1)

)[
N1/2TOp (1)+Op

(
N1/2K

)]
O
(

K−1/2
)

= Op

(
N1/2TK−1/2

)
.

Consequently, we have P(ĴNT > dNT ) → 1 as (N,T)→ ∞ for any dNT = o
(

N1/2TK−1/2
)

.

Proof of Theorem 3.4. Let P∗ denote the probability measure induced by the wild
bootstrap conditional on the original sample WNT ≡ {(Xit,Yit) : i = 1, . . . ,N, t = 1, . . . ,T}.
Let E∗ and Var∗ denote the expectation and variance w.r.t. P∗. Let OP∗ (·) and oP∗ (·) denote
the probability order under P∗; e.g., bNT = oP∗ (1) if, for any ε > 0, P∗ (‖bNT‖ > ε) =
oP (1). We will use the fact that bNT = oP (1) implies that bNT = oP∗ (1).

Observing that Y∗
it = X′

itβ̂FE + α̂i + ε∗
r,it, the null hypothesis of homogenous and time-

invariant coefficients is maintained in the bootstrap world. Given WNT , ε∗
r,it = ε̂r,it�it are

independent across i and t, and independent of Xjs for all i, t, j, and s, because the latter
objects are fixed in the fixed-design bootstrap world. Note that in the bootstrap world, we

have E∗ (ε∗
r,it

)
= ε̂r,itE (�it) = 0, E∗[

(
ε∗

r,it

)2
] = ε̂2

r,itE
(
�2

it

)
= ε̂2

r,it, û∗
it = −X′

itν
∗
NT +αi +

ε∗
r,it where ν∗

NT = [
∑N

i=1 X′
iMT Xi]

−1∑N
i=1 X′

iMTε∗
r,i and ε∗

r,i =
(
ε∗

r,i1, . . . ,ε
∗
r,iT

)′
. These

observations greatly simplify the proofs for the test in bootstrap world.
Let 	∗

NT , B∗
NT , V∗

NT , B̂∗
NT, and V̂∗

NT be the bootstrap analogs of 	NT , BNT , VNT , B̂NT,

and V̂NT, respectively. Then

	∗
NT = 1

NT2

N∑
i=1

(
ε∗

r,it −Xiν
∗
NT

)′
Ki

(
ε∗

r,it −Xiν
∗
NT

)

= 1

NT2

N∑
i=1

ε∗′
r,iKiε

∗
r,i −

2

NT2

N∑
i=1

ε∗′
r,iKiXiν

∗
NT + 1

NT2

N∑
i=1

ν∗′
NT X′

iKiXiν
∗
NT

≡ 	
(∗1)
NT −2	

(∗2)
NT +	

(∗3)
NT , say.

We decompose Ĵ∗
NT as follows:

Ĵ∗
NT=

N1/2T	∗
NT − B̂∗

NT

V̂
∗1/2
NT

=
(

J∗
NT − 2N1/2T	

(∗2)
NT

V
∗1/2
NT

+ N1/2T	
(∗3)
NT

V
∗1/2
NT

+ B∗
NT − B̂∗

NT

V
∗1/2
NT

)
V

∗1/2
NT

V̂
∗1/2
NT

.

In particular, we can show that: (i) J∗
NT = (N1/2T	

∗(1)
NT −B∗

NT )/V
∗1/2
NT

d∗→ N (0,1), where d∗
denotes the weak convergence under bootstrap probability measure conditional on WNT ;
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(ii) N1/2T	
(∗s)
NT /V

∗1/2
NT = oP∗ (1), for s = 2,3; (iii) B̂∗

NT −B∗
NT = oP∗(K1/2); and (iv)

V̂∗
NT/V∗

NT = 1+oP∗ (1).
We only outline the proof for (i) as we can follow the proof of Theorem 3.2 to show (ii)–

(iv). Write 	
(∗1)
NT = 1

NT2

∑N
i=1

∑
1≤t �=s≤T Ki,tsε

∗
r,isε

∗
r,it + 1

NT2

∑N
i=1

∑T
t=1Ki,tt

(
ε∗

r,it

)2 ≡
	

(∗1a)
NT +	

(∗1b)
NT , say. Then J∗

NT can be further decomposed as follows:

J∗
NT = N1/2T	

(∗1a)
NT√

V∗
NT

+ N1/2T	
(∗1b)
NT −B∗

NT√
V∗

NT

≡ J(∗a)
NT + J(∗b)

NT , say.

We complete the proof by showing that (ia) J(∗a)
NT

d∗→ N (0,1) and (ib) J(∗b)
NT = op (1). For

(ia), we write J(∗a)
NT = 1√

N

∑N
i=1Z∗

i with Z∗
i = 2

TV∗1/2
NT

∑
1≤t<s≤T K̆i,ts�it�is and K̆i,ts ≡

Ki,tsε̂r,it ε̂r,is. Noting that Z∗
i ’s are independent but not identically distributed (i.n.i.d.)

across i conditional on WNT , we prove (ia) by the Linderberg–Feller CLT conditional on
WNT . The proof of (ib) is simple and is omitted here. To show (ia), it suffices to show that

(ia.1) σ̄∗2
N = NVar∗(N−1∑N

i=1Z∗
i ) =Var(J(∗a)

NT |WNT ) = 1; and (ia.2) E∗ (Z4
i

)
≤ C < ∞

for all i. For (ia.1), noting that �it’s are i.i.d. across i and along t, we have

Var∗
(

J(∗a)
NT

)
= 4

NT2V∗
NT

Var∗
⎛
⎝ N∑

i=1

∑
1≤t<s≤T

Ki,tsε̂r,it ε̂r,is�it�is

⎞
⎠

= 4

NT2V∗
NT

N∑
i=1

∑
1≤t1<s1≤T

∑
1≤t2<s2≤T

K̆i,t1s1K̆i,t2s2 E∗ (�it1�it2�is1�is2

)

= 4

NT2V∗
NT

N∑
i=1

∑
1≤t<s≤T

K̃2
i,ts = 1

by noting that V∗
NT = 2

NT2

∑N
i=1

∑
1≤t<s≤T K2

i,tsε̂
2
r,it ε̂

2
r,is. For (ia.2), note that

E∗ [(Z∗
i

)4
]

= 16

T4V∗2
NT

∑
1≤t1<t2≤T,1≤t5<t6≤T
1≤t3<t4≤T,1≤t7<t8≤T

K̆i,t1t2 K̆i,t3t4 K̆i,t5t6 K̆i,t7t8 E∗ (�it1 �it2 �it3 �it4 �it5 �it6 �it7 �it8

)

≡ DJ∗
i2 +DJ∗

i3 +DJ∗
i4, say,

where DJ∗
i2, DJ∗

i3, and DJ∗
i4 denote the summation of terms with two, three, and

four different time indices in the expectation, respectively. For DJ∗
i2, we have DJ∗

i2 �
1

T4V∗2
NT

∑
1≤t<s≤T K4

i,tsε̂
4
r,it ε̂

4
r,isE∗ (�4

it

)
E∗ (�4

is

)
= OP∗

(
K2/T

)
by noting that V∗

NT =
OP∗ (K); for DJ∗

i4, we have

DJ∗
i4 � 1

T4V∗2
NT

∑
t �=s�=l �=q

(
K̆2

i,tsK̆
2
i,lq + K̆i,tsK̆i,tlK̆i,lqK̆i,qs

)
≡ DJ∗

i4a +DJ∗
i4b, say.

https://doi.org/10.1017/S026646662300018X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662300018X


SPECIFICATION TESTS FOR TIME-VARYING COEFFICIENT PANEL DATA MODELS 45

First, DJ∗
i4a can be written as

DJ∗
i4a = 1

T4V∗2
NT

(∑
1≤t,s≤T K̆2

i,ts

)2 = 1

T4V∗2
NT

(∑
1≤t,s≤T ŻitQ̂

−1
i, żżQ̂i,zzQ̂−1

i, żżŻisε̂r,it ε̂r,is

)2

= 1

V∗2
NT

[
tr
(
�̂iQ̂

−1
i, żżQ̂i,zzQ̂−1

i, żż�̂iQ̂
−1
i, żżQ̂i,zzQ̂−1

i, żż

)]2

≤ 1

V∗2
NT

[
λ2

max

(
Q̂−1

i, żżQ̂i,zzQ̂−1
i, żż

)
λmax

(
�̂i

)
tr
(
�̂i

)]2

� 1

K2λ4
min

(
�̂i

) {[
λ2

max

(
Q−1

i, żżQi,zzQ−1
i, żż

)
+op (1)

]
λ2

max

(
�̂i

)
K
}2

� OP∗
(

K−2
)

Op

(
K2

)
= OP∗ (1) .

Second, we have

DJ∗
i4b = 1

T4V∗2
NT

∑
t �=s�=l �=q

K̃i,tsK̃i,tlK̃i,lqK̃i,qs

� 1

T4V∗2
NT

∑
t �=s�=l �=q

ε̂r,isŻ′
isQ̂iε̂

2
r,itŻitŻ

′
itQ̂iε̂

2
r,ilŻilQ̂iε̂

2
r,iqŻiqQ̂iŻisε̂r,is

� 1

V∗2
NT

tr
(
�̂iQ̂i�̂iQ̂i�̂iQ̂i�̂iQ̂i

)
≤ 1

V∗2
NT

λ3
max

(
�̂i

)
λ4

max

(
Q̂i

)
tr
(
�̂i

)

≤ 1

K2λ4
min

(
�̂i

)λ3
max

(
�̂i

)
Kλmax

(
�̂i

)
λ4

max

(
Q̂i

)
= OP∗

(
K−1

)
< ∞.

It follows that DJ∗
i4 = OP∗ (1)+OP∗

(
K−1

)
= OP∗ (1). Similarly, we can show that DJ∗

i3 <

C ≤ ∞ conditional on WNT . It follows that (ia.2) holds. Then we have shown (ia).
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