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108.26 PWW: A property of triangular numbers
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108.27 More on the Euler limit for e
The well-known Euler limit is defined as

(see for example [1]). Recently, in [2], appeared the following generalisation
of the Euler limit.

lim
n → ∞

(n +1
n )n = e = 2.71828…
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Theorem 1: Let  be a strictly increasing sequence of positive reals
satisfying . Then 

An
An + 1� An

lim
n → ∞ (An + 1

An
)

An
An + 1 − An

= e.

Note that the symbol “ ” means asymptotic equivalence, i.e.,  if
.

� xn� yn
lim

n → ∞

xn
yn

= 1

Here, we offer the following generalisation.

Theorem 2: Let  be a strictly monotone sequence of positive reals
satisfying . Let  be any sequence of reals satisfying .
Then

An
An + 1� An Bn Bn�

An
An + 1 − An

lim
n → ∞ (An + 1

An
)Bn

= e.

Proof: First, we consider the case of  monotone increasing. Theorem 1
gives

An

lim
n → ∞ (An + 1

An
)Bn

= lim
n → ∞

((An + 1

An
)

An
An + 1 − An)

Bn(An + 1 − An)
An

= e1 = e.

Now we consider the other case, of  monotone decreasing. We set
 and  to get

An
An′ = 1

An
B′n = Bn

lim
n → ∞ (An + 1

An
)Bn

= lim
n → ∞ ( A′n

A′n + 1
)B′n

.

We conclude by observing that ,

and applying the first case to  and the monotone increasing . Theorem 2
is proved.

Bn�
An

An+ 1 − An
= −

A′n+ 1

A′n+ 1 − A′n
� −

A′n
A′n+ 1 − A′n

B′n A′n

Theorem 2 allows us to compare the speed of convergence of

towards  as  increases by choosing different sequences  and . For

example, let , , . This gives . If

, , , then , which is a much

better estimate. However, for these two examples, it can be seen that when
increases, the speeds of convergence in the two cases approach each other.

(An + 1

An
)Bn

e n An Bn

An = n Bn = n n = 100 (An + 1

An
)Bn

�2.7048

An = n Bn = n + 1
2 n = 100 (An + 1

An
)Bn

�2.7183

n

By changing  and , we can further generalise Theorem 2. We take
, where . Our previous assumptions of

monotone increasing (decreasing)  now correspond to  positive

An Bn
An + 1 = An (1 + εn) εn → 0

An εn
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(negative). We have .  Set  to be a positive sequence with .
Now, Theorem 2 is equivalent to

Bn�
1
εn

rn rn → 1

lim
n → ∞

(1 + εn)
rn
εn = e. (1)

The sign of  does not matter for this limit, so we can generalise the left-
hand side of (1). For any constant  and  a sequence with  monotone
decreasing to 0, we have

εn
k δn |δn|

lim
n → ∞

(1 + εn)δn + k = 1. (2)

Multiplying (1) by (2) we obtain

lim
n → ∞

(1 + εn)
rn
εn

+ δn + k = e. (3)

This allows the reader to choose parameters to optimise convergence.
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108.28  is a mean of 2 and 4π
A series of Mathematical Gazette contributions, [1, 2, 3, 4], deals with

limits of infinite sequences where the first  entries are specified and where
latter entries correspond to a specified type of average of the  preceding
entries. To the list of recursively defined averages may be added also the
more well-known arithmetic-geometric mean, the arithmetic-harmonic mean
and the geometric-harmonic mean. We are not aware of studies of
recursions where some property of the index  dictates what average to

n
n

k
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