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Abstract

We study a renewal risk model in which the surplus process of the insurance company
is modelled by a compound fractional Poisson process. We establish the long-range
dependence property of this nonstationary process. Some results for ruin probabilities
are presented under various assumptions on the distribution of the claim sizes.
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1. Introduction

Increasing interest has recently been paid to anomalous diffusion, i.e. processes whose
variances increase in time according to a power law tγ with γ �= 1. This is effectively the case
in seismology (see [21]) where power-law functions are used to model earthquake interarrival
times. We refer the reader to [7] for other geophysical applications of such power-law interarrival
times.

One of the models of random processes that demonstrates such a phenomenon was inves-
tigated by Repin and Saichev [22], who were the first to introduce the so-called fractional
Poisson process. In the differential equations governing the Poisson process they replaced
the time derivative with a fractional derivative (see also [5], [6], [14], and [16] for similar
approaches). They also considered the characterization of the Poisson process as a sum of
independent, nonnegative random variables. We assume that these random variables have the
Mittag-Leffler distribution instead of the exponential distribution. This is the so-called renewal
approach that has been studied in [17]. This will be the approach that we adopt in our article.
Note, however, that Meerschaert et al. [20] proved that the fractional Poisson process (defined
as a renewal process) coincides with the fractal time Poisson process which is defined as the
time-changed usual Poisson process with the right-continuous inverse of a standard h-stable
subordinator.

The power law that governs the time evolution of the variance is often related to the notion
of long-range dependence. The long-range dependence is well defined for stationary processes
and little seems to be known about the extension of the long-range dependence to nonstationary
processes. Such an extension has been proposed in [13] and this will be our starting point for
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a new result concerning the fractional Poisson process. Indeed, we establish the long-range
dependence property of the fractional Poissonian noise (see Proposition 1 below). This is the
main result of this work and it is the subject of Section 3. This property clearly justifies the use
of the fractional Poisson process in many concrete models and gives some precisions about the
intuitive approach using the power decay of the variance. For practical purposes, we mention
that simulations of the waiting times and parameter estimation for the fractional Poisson process
have been carried out in [9] and [25].

Our main motivation behind studying the fractional Poisson process is its application in
actuarial sciences, in particular, as mentioned above, its use in modelling extreme events, such
as earthquakes or storms. The long-range dependence of the fractional Poisson process, as well
as the fact that the expectations of the interarrivals are infinite, are other admissible arguments
to consider the following model.

We shall work with the renewal risk model in which the surplus process of the insurance
company is modelled by

Rt = u+ ct −
Nh(t)∑
i=1

Xi, t ≥ 0, (1)

where u is the initial capital, c is the constant premium rate, and the sequence of independent
and identically distributed random variables (Xi)i≥1 models the sizes of the successive claims
(hence, these random variables are supposed to be nonnegative). To the best of our knowledge,
only the work of Beghin and Macci [4] deals with a fractional model for insurance. In that
work, the authors established a large deviation principle for the fractional Poisson process and
proved asymptotic results for the ruin probabilities of an insurance model like the one given
by (1). To complete the review of the existing literature on the fractional compound Poisson
process, we also mention [3] and [24].

In the second part of this work, we give an overview of the known results that apply to this
context. Some are easy, but strengthened by the fact that our investigations are a first step toward
the description of fractional Poisson models of surplus processes. Let us briefly describe the
properties we establish.

In Section 4 we use the duality relation between our model and a compound Poisson model
with arbitrary claim size distribution. This allows us to establish a closed-form formula for
the density of the time to ruin when the claim sizes are exponentially distributed. The ruin
probabilities in finite and infinite time are also studied.

The ruin probability in the context of heavy-tailed claim sizes is the topic of Section 5. The
properties that we establish are a consequence of the light-tailed distribution of the fractional
Poisson process.

Finally, a Lundberg inequality is proposed in Section 6 in which a bound for the ruin
probability is proposed when the claim sizes have a light-tailed distribution.

Some preliminary results on the fractional Poisson process are gathered in Section 2 and the
proof of a technical inequality is given in Appendix A. Section 3 is devoted to the long-range
dependence property.

2. Preliminaries on the fractional Poisson process

The fractional Poisson process was first defined in [22] as a renewal process with Mittag-
Leffler waiting times. This means that it has independent and identically distributed waiting
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times (�Tk )k≥1, with distribution given by

P(�Tk > t) = Eh(−λth)
for λ > 0 and 0 < h ≤ 1, where

Eh(z) =
∞∑
k=0

zk

�(1 + hk)

is the Mittag-Leffler function (� denotes the Euler gamma function) which is defined for any
complex number z. We can also characterize the distribution of the waiting times by their
Laplace transform

Lh(ξ) = E(exp(−ξ�Tk )) = λ

λ+ ξh
.

With Tn = �T1 + · · · +�Tn the time of the nth jump, the process (Nh(t))t≥0 defined by

Nh(t) = max{n ≥ 0 : Tn ≤ t} =
∑
k≥1

1{Tk≤t}

is a renewal process with Mittag-Leffler waiting times. It is called a fractional Poisson process
of parameter h. When necessary, we write�Tk = Tk−Tk−1 with the convention that Tk−1 = 0
if k = 0 (hence,�T1 = T1). Of course, when h = 1, the Mittag-Leffler function with parameter
1 is the exponential function, and the waiting times become exponential. Thus, a fractional
Poisson process of parameter h = 1 is the usual Poisson process. As in the classical case, we
do not specify the dependence on λ in the notation of the fractional Poisson process Nh. Since
the parameter λ plays a minor role in the properties of the process, this eases the notation for
the reader.

In [22], it was proved that there exists a constant C such that

P(�Tk > t) ∼ Ct−h as t → +∞.

Consequently, the interarrivals�Tk have heavy tails and infinite mean for 0 < h < 1. We shall
assume in the sequel that the fractional Poisson process is light tailed, that is, E(eξNh(t)) < ∞
for any ξ > 0. This is a consequence of the existence of the probability generating function,
which is given by

E(zNh(t)) = Eh(λt
h(z− 1)) (2)

for any z > 0 (see [9], [14], and [16]). The above result has been proved using fractional
differential equations and fractional calculus. We note that an alternative approach is feasible
using the fractional Poisson process representation (see [20]) as the fractal time Poisson process
(N1(Eh(t)))t≥0. This process is defined as the time-changed usual Poisson process (N1(t))t≥0
with (Eh(t))t≥0 the right-continuous inverse of a standard h-stable subordinator (Dh(t))t≥0.
This means that Eh(t) = inf{r > 0 : Dh(r) > t}, where E(e−sDh(t)) = exp(−tsh). In the rest
of this work we will use the renewal approach. However, it is worth mentioning the fractal
time approach because it is a powerful tool that will be useful for obtaining new properties of
both ruin problems and Poisson process studies. For example, one may deduce a diffusion-type
approximation of the risk process using h-stable processes. This will be the subject of future
work.
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3. Long-range dependence

In this section we aim to prove that the fractional Poissonian noise (Xhj )j≥1 defined for
j ≥ 1 by

Xhj = Nh(j)−Nh(j − 1)

has a long-range dependence property. Long-range dependence is frequently understood in
terms of the power-law decay of the correlation function, and in the theory of stochastic
processes it is standard to apply the notion of long-range dependence to only stationary pro-
cesses. This is also the case for renewal processes (Nt )t≥0 for which the notion of long-range
dependence is defined as

lim sup
t→∞

var(Nt )

t
= ∞ (3)

when the process is assumed to be stationary. It is known that condition (3) is then equivalent
to the infiniteness of the second moment of the interarrivals. This holds for the interarrivals
�Tk of the process Nh and, thus, the fractional Poisson process is said to have the long-range
dependence property. We refer the reader to [10], [11], and [12] for further information about
long-range dependence for stationary point processes.

The stationarity assumption is not always fulfilled in certain areas of application and this
is effectively the case in our study. So the above comments cannot justify the long-range
dependence property. In this section we therefore aim to determine an appropriate notion of
long-range dependence for nonstationary processes. Heyde andYang [13] suggested modifying
existing second-order definitions of long-range dependence so that they apply to nonstationary
processes as well. Specifically, they proposed the following definition.

Definition 1. A second-order process (Xm)m≥1 (not necessarily stationary) has the property of
long-range dependence if the block mean process

Y
(m)
t =

∑j=tm
j=tm−m+1Xj∑j=tm

j=tm−m+1 var(Xj )

defined for an integer t ≥ 1 satisfies

lim
m→∞

( j=tm∑
j=tm−m+1

var(Xj )

)
var(Y (m)t ) = +∞. (4)

Remark 1. If the process (Xm)m≥1 is centred then it has the long-range dependence property
if

lim
m→∞

( j=tm∑
j=tm−m+1

E(X2
j )

)
var(Y (m)t ) = +∞

with

Y
(m)
t =

∑j=tm
j=tm−m+1Xj∑j=tm

j=tm−m+1 E(X2
j )
.

This leads to the formulation proposed in [13].
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Remark 2. In the above definition, if the process (Xm)m≥1 is centred and stationary then (4)
implies that

lim
m→∞

var(
∑m
j=1Xj)

m
= ∞. (5)

Thus, the variance of the sample mean of m consecutive observations grows more slowly
asymptotically than a sequence of independent and identically distributed random variables.
We recall that a sufficient condition for (5) is limm→∞

∑m
j=1 cov(X0,Xj ) = ∞. Consequently,

formulation (4) is in accordance with the heuristic approaches and the usual definitions of long-
range dependence. We refer the reader to [13] for further discussion.

Using the notion of long-range dependence stated in Definition 1, we have the following
result.

Theorem 1. The fractional Poissonian noise (Xhj )j≥1 has the long-range dependence property
for any h ∈ (0;1).

Before proving this result we show that convergence (4) holds. For a fixed integer t ≥ 1,
define

�
(m)
t = var(

∑j=tm
j=tm−m+1X

h
j )∑j=tm

j=tm−m+1 var(Xhj )
.

We note that

�
(m)
t = var(Nh(tm)−Nh(tm−m))∑j=tm

j=tm−m+1 var(Nh(j)−Nh(j − 1))
. (6)

We thus need the variances of the increments of the fractional Poisson process, which do not
follow easily from the expression of the moment generating functions. We therefore use the fact
that the fractional Poisson process is a renewal process and a known result about the factorial
moments of a renewal process.

Lemma 1. Let 0 ≤ s ≤ t . We have

E[(Nh(t)−Nh(s))× (Nh(t)−Nh(s)− 1)] = 2h

(
λ

�(1 + h)

)2 ∫ t

s

(t − r)hrh−1 dr. (7)

Proof. The proof follows from the renewal function

Mh(t) = E(Nh(t)) = λth

�(1 + h)
(8)

and Proposition 1 of [15] (see also [10]).

Proof of Theorem 1. For a fixed integer t ≥ 1, we investigate the asymptotic behaviour of
�
(m)
t defined in (6) as m goes to ∞. By (7) and (8), we have

E((Nh(j)−Nh(j − 1))2)

= 2h

(
λ

�(1 + h)

)2 ∫ j

j−1
(j − r)hrh−1 dr + λ

�(1 + h)
(jh − (j − 1)h).

Since ∫ j

j−1
(j − r)hrh−1 dr ≤

∫ j

j−1
rh−1 dr = 1

h
(jh − (j − 1)h),
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we deduce that

j=tm∑
j=tm−m+1

E((Nh(j)−Nh(j − 1))2) ≤ λ

�(1 + h)

(
2λ

�(1 + h)
+ 1

)
[th − (t − 1)h]mh

≤ th
λ

�(1 + h)

(
2λ

�(1 + h)
+ 1

)
mh.

Using similar arguments, we have

j=tm∑
j=tm−m+1

(E(Nh(j)−Nh(j − 1)))2 =
j=tm∑

j=tm−m+1

(
λ

�(1 + h)
h

∫ j

j−1
rh−1 dr

)2

≥
(

h λ

�(1 + h)

)2 j=tm∑
j=tm−m+1

j2h−2

≥
(

h λ

�(1 + h)

)2

m(tm)2h−2

≥
(
h λ th−1

�(1 + h)

)2

m2h−1.

Consequently, there exists a constant Ct,λ,h such that the denominator of �(m)t satisfies

j=tm∑
j=tm−m+1

var(Nh(j)−Nh(j − 1))

≤ th
λ

�(1 + h)

(
2λ

�(1 + h)
+ 1

)
mh(1 − Ct,λ,hm

h−1). (9)

In the same way, by (7) and (8), we also may write that

var(Nh(tm)−Nh(tm−m))

= 2h

(
λ

�(1 + h)

)2 ∫ tm

tm−m
(tm− r)hrh−1 dr + λ

�(1 + h)
((tm)h − (tm−m)h)

−
{

λ

�(1 + h)
((tm)h − (tm−m)h)

}2

.

Since

∫ tm

tm−m
(tm− r)hrh−1 dr = (tm)2h

∫ 1

1−1/t
(1 − u)huh−1 du ≥ (tm)2hB(1 + h, h),

where B denotes the beta function, defined for a > 0 and b > 0 by

B(a, b) =
∫ 1

0
ua−1(1 − u)b−1 du = �(a)�(b)

�(a + b)
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with � the gamma function, we obtain

var(Nh(tm)−Nh(tm−m))

≥
(

λ

�(1 + h)

)2

[2ht2hB(1 + h, h)− {th − (t − 1)h}2]m2h

+ λ

�(1 + h)
(th − (t − 1)h)mh

≥
(

λ

�(1 + h)

)2

t2h[2hB(1 + h, h)− 1]m2h

+ λ

�(1 + h)
(th − (t − 1)h)mh, (10)

where we have used the inequality (th− (t−1)h)2 ≤ t2h. For sufficiently largem, substituting
(9) and (10) into (6) yields

�
(m)
t ≥

{
th

λ/�(1 + h)

2λ/�(1 + h)+ 1
[2hB(1 + h, h)− 1]mh + 1

2λ/�(1 + h)+ 1

}
1

1 − Ct,λ,hmh−1

≥
{

thλ

2λ+ �(1 + h)
[2hB(1 + h, h)− 1]mh + �(1 + h)

2λ+ �(1 + h)

}
1

1 − Ct,λ,hmh−1 .

We employ the technical inequality

2hB(1 + h, h)− 1 > 0, (11)

which is valid for any h ∈ (0,1); see Appendix A for its proof. Thus, limm→∞�
(m)
t = +∞

and, consequently, the long-range dependence property holds.

4. Probability of ruin with exponential claim sizes

In this section we restrict our attention to the case of exponential claims. To be more precise,
we consider the model defined by (1), where the random variables (Xi)i≥1 are assumed to be
nonnegative, independent, and identically distributed as E(μ) forμ > 0. We again assume that
the sequence of claim sizes is independent of the fractional Poisson process Nh. Note that the
ruin problem is nontrivial in infinite time for any c > 0 because E(X1 − cT1) = −∞.

4.1. Closed-form representation for the distribution of the ruin time

We derive an explicit formula for the distribution of the ruin time τ defined by

τ = inf{t > 0 : Rt < 0}.
This formula is a direct application of the main result stated in Borovkov and Dickson [8], who
studied the ruin time distribution for a Sparre Andersen process with exponential claim sizes.

Proposition 1. Under the above assumptions on the model described by (1), the distribution
of the ruin time τ has a density pτ given by

pτ (t) = e−μ(u+ct)
∞∑
n=0

μn(u+ ct)n−1

n!
(
u+ ct

n+ 1

)
f

∗(n+1)
h (t)
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with f ∗n
h the n-fold convolution of the function fh defined for t ≥ 0 by

fh(t) = uth−1Eh,h(−λth), (12)

where

Eα,β(z) =
∞∑
k=0

zk

�(αk + β)

is the generalized two-parameter Mittag-Leffler function.

Proof. We apply Theorem 1 of [8] with fh the density of the interarrivals �Tn . For a proof
of (12), see [9].

4.2. Ruin probability in finite time

In this subsection we are interested in the Laplace transform of the probability ψ(u, t) of
ruin with finite time 0 < t < ∞, defined by

ψ(u, t) = P(Rs < 0 for some s ≤ t).

Proposition 2 below is a straightforward application of Theorem 1 of [18] (see also [26]). In
[18] the author used a duality between the classical risk process in which the aggregate claims
up to time t are modelled as a compound Poisson process and the dual risk process in which the
claim sizes are exponential and the interarrival times follow another law. We refer the reader
to [19] for further details about this duality.

Proposition 2. For any x > 0, it holds that

ξ

∫ ∞

0
e−ξ tψ(u, t) dt = 1 − y(ξ) exp{−uμ(1 − y(ξ))}, ξ > 0,

where y(ξ) is the unique solution of

y(ξ) = λ

λ+ (ξ + cμ(1 − y(ξ)))h
, ξ > 0. (13)

Proof. See Theorem 1 of [18].

Remark 3. It is well known that (13) has a unique solution. Indeed, since we have ξ 
→
Lh(ξ) = λ/(λ+ξh), the Laplace transform of the waiting times�Tk , solving (13) is equivalent
to solving

Lh(ξ + C − Cs)− s = 0

for a fixed ξ > 0 with C = cμ. Since the left-hand side is a convex function with a negative
value at s = 1 and a positive value at s = 0, it follows that there exists a unique root y(ξ).

Of course, for practical purposes, the above proposition requires the numerical inversions
of the Laplace transform. Numerical examples of such inversions will not be given here.

4.3. Ruin probability in infinite time

In this subsection we are interested in the infinite-time ruin probability, defined by

ψ(u) = P(Rs < 0 for some s ≥ 0).

The following result holds.
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Proposition 3. Under the assumptions of this section, we have

ψ(u) =
(

1 − γ

μ

)
e−γ u,

where γ > 0 is the unique solution of

γ h − μγ h−1 + λ

ch
= 0. (14)

Proof. Since the fractional Poisson process is a renewal process and μE(�T1) = +∞, the
result is a consequence of Theorem VI.2.2 of [2].

Remark 4. Equation (14) can be explicitly solved for some h ∈ (0, 1] (e.g. h = 1
2 ,

1
3 , or 2

3 )
and easily worked out numerically in the general case. For h = 1, we retrieve the Poisson case
γ = μ− λ/c.

5. Ruin probability in the presence of heavy-tailed claim sizes

In this section we are concerned with distributions of the claim sizes (Xi)i≥1 having a heavy
right tail F̄ (t) = 1 − F(t) with F(t) = P(X1 ≤ t). In order to be more precise, we need the
following definition.

Definition 2. A distribution F is said to be subexponential if it is concentrated on (0,∞) and
if limt→∞ F ∗2(t)/F (t) = 2, where F ∗2 is the convolution square.

In this section we shall work with the model given by (1), where we now assume that the
distribution of X1 is subexponential. Since X1 is now heavy tailed, its mean is not necessarily
finite. Our result will state an equivalent of the probability

ψ(u, t) = P(Rs < 0 for some s ≤ t)

of ruin at time t , as the initial capital u tends to ∞. This will be a consequence of the behaviour
of the tail of a random sum, when the random number of terms is light tailed and the heavy-
tailed independent random variables in the sum are subexponential. This is stated in the next
well-known lemma, which is Lemma X.2.2 of [2]. We recall it for the sake of conciseness.

Lemma 2. Let (Yi)i≥1 be a sequence of independent and identically distributed random
variables with a common subexponential distribution F, and letK be an independent, integer-
valued random variable satisfying E(zK) < ∞ for some z > 1. Then it holds that

P

( K∑
i=1

Yi > x

)
∼ E(K)F (x) as x → ∞. (15)

Now we can state the following proposition.

Proposition 4. Let (Rt )t≥0 be the risk process given by (1). If the distribution F of the claim
sizes is subexponential then

ψ(u, t) ∼ E(Nh(t))F (u) (16)

as u goes to +∞.
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We note that we also have

ψ(u, t) ∼ λthF (u)

�(1 + h)
as u → ∞,

thanks to the explicit expression on the mean of Nh(t) given in (8).

Proof of Proposition 4. We start from the inequalities

P

(Nh(t)∑
i=1

Xi > u+ ct

)
≤ ψ(u, t) ≤ P

(Nh(t)∑
i=1

Xi > u

)
(17)

and we apply (15) to P(
∑Nh(t)
i=1 Xi > x) with x = u or x = u + ct . By (2) we know that

E(zNh(t)) is finite for any z > 1, so by Lemma 2 we deduce that

P

(Nh(t)∑
i=1

Xi > x

)
∼ E(Nh(t))F (x) as x → ∞.

Moreover, it holds that F(u+ t) ∼ F(u) as u → ∞. Therefore, (17) yields (16).

An extension of the previous result can be achieved for a k-dimensional risk process

Rt = u + ct −
Nh(t)∑
i=1

Xi , t ≥ 0. (18)

In (18), the process (Rt )t≥0 is defined by Rt = (R1
t , . . . , R

k
t ), where the processes Rj satisfy

R
j
t = uj + cj t −

Nh(t)∑
i=1

X
j
i , t ≥ 0, 1 ≤ j ≤ k.

Clearly, u = (u1, . . . , uk) is the initial capital vector, c = (c1, . . . , ck) is the premium intensity
vector, and the claim vectors Xi are equal to (X1

i , . . . , X
k
i ) for i ≥ 1. The sequence (Xn)n≥1 is

a sequence of independent and identically distributed random vectors with a joint distribution
satisfying

F(x1, . . . , xk) = P(X1 ≤ x1, . . . , X
k ≤ xk) =

k∏
j=1

P(Xj ≤ xk) :=
k∏
j=1

Fj (xj )

with obvious notation. Since the number of claims Nh(t) in model (18) is light tailed (recall
that E(zNh(t)) < ∞ for any z > 0), following the same lines as the proof of Proposition 9.4 of
[2], we obtain the next result.

Proposition 5. Assume that the distributions of the claim sizes Fj are subexponential for 1 ≤
j ≤ k. For an initial capital vector u, we denote by τmax(u) the first time all the components
of R are negative:

τmax(u) = inf{s > 0 : max{R1
s , . . . , R

k
s } < 0}.

Then, for any t > 0, it holds that

P(τmax(u) ≤ t) ∼ E[(Nh(t))k]
k∏
j=1

Fj (uj )

when uj → ∞ for any 1 ≤ j ≤ k.
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6. Ruin probability with light-tailed claim sizes

Now, in model (1), we assume that the common distribution of Xi is light tailed (hence,
E(eξX1) < ∞ for any ξ > 0). Since the fractional Poisson process has a light-tailed distribution,
we are interested in the tails of random sums of a light-tailed number of light-tailed terms.
Using large deviations for the fractional process, asymptotic results for ruin probabilities of an
insurance model with a fractional Poisson claim number process have been studied by Beghin
and Macci [4]. Their results also apply in our situation.

In this section we aim to provide nonasymptotic results in the same spirit as the celebrated
Lundberg inequality. We denote by (Sh(t))t≥0 the compound fractional Poisson process, which
is naturally defined as

Sh(t) =
Nh(t)∑
i=1

Xi.

The independence of the processNh and the sequence (Xi)i≥1 allows us to calculate the moment
generating function of Sh. Indeed, it was proved in [16] that, for any ξ > 0,

E(eξSh(t)) = Eh(λt
h(g(ξ)− 1)), (19)

where the function g is the Laplace transform of the random variables Xi defined by g(ξ) =
E(eξX1) for any ξ > 0. We have the following bound on the ruin probability in finite time.

Proposition 6. Let (Rt )t≥0 be the risk process given by (1) under the assumption that the
common distribution ofXi is light tailed. Then, for any t > 0, there exists ξ0(t, h, λ) such that,
for any u ≥ 0, we have

ψ(u, t) ≤ 2e−ξ0(t,h,λ)u. (20)

Remark 5. The constant ξ0(t, h, λ) is explicitly given by (23). Of course, (20) is meaningless
unless

u ≥ u0 := ln(2)

ξ0(t, h, λ)
.

Proof of Proposition 6. By (17), we only have to estimate P(
∑Nh(t)
i=1 Xi > u). Using the

Chebyshev exponential inequality and (19), we deduce that, for any ξ > 0,

P

(Nh(t)∑
i=1

Xi > u

)
= P(exp(ξSh(t) > eξu)) ≤ e−ξuEh(λth(g(ξ)− 1)). (21)

Now we prove an upper bound for the Mittag-Leffler function. We recall that

Eh(x) =
∞∑
k=0

xk

�(1 + hk)
.

The minimum value of x 
→ �(x) is achieved for positive values in a point denoted by x0
(which is approximatively equal to 1.462). We have �(x0) � 0.8856. Thus, if g̃ is the function
defined for h ∈ (0,1) by g̃(h) = �(1 + hk), g̃ has a minimum in h0 = (x0 − 1)/k. Thus,

g̃(h) ≥ g̃

(
x0 − 1

k

)
= �

(
1 + x0 − 1

k
k

)
= �(x0),
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and we obtain, for any |x| < 1,

Eh(x) ≤ 1

�(x0)

∞∑
k=0

xk ≤ 1

�(x0)(1 − x)
. (22)

Now we briefly study the function g defined for ξ ≥ 0 by g(ξ) = E(eξX1). Since X1 is a
positive random variable, g is strictly increasing. Hence, g is one to one from [0, + ∞) to
[1,+ ∞). So we may define ξ0(t, h, λ) as the unique positive real such that

g(ξ0) = 1 + 2�(x0)− 1

2λth�(x0)
. (23)

We start from (21) and use (22) with 0 < x = λth(g(ξ0(t, h, λ)) − 1) = (2�(x0) −
1)/(2�(x0)) < 1. We obtain

P

(Nh(t)∑
i=1

Xi > u

)
≤ e−ξ0(t,h,λ)u

�(x0)(1 − λth(g(ξ0(t, h, λ))− 1))
= 2e−ξ0(t,h,λ)u,

and (20) is proved.

Remark 6. We note that estimation (21) is more accurate. For example, one may use it to
plot the function ξ 
→ e−ξuEh(λth(g(ξ) − 1)) for small values of ξ and numerically check
the eventual minimum. Such a procedure is feasible since the Mittag-Leffler function is now
evaluated using scientific software.

Appendix A. Proof of inequality (11)

We denote by f the function defined by x 
→ ln(2xB(1 + x, x)) for x ∈ (0,1). We follow
a technical trick used in [23]. Inequality (11) will be a consequence of the positivity of f on
the interval (0,1). Since x�(x) = �(x + 1), we have

2xB(1 + x, x) = 2x�(x)�(x + 1)

�(2x + 1)
= 2�(x + 1)2

�(2x + 1)
,

and, consequently,
f (x) = ln(2)+ 2 ln�(x + 1)− ln�(2x + 1).

We denote by� the function (ln�)′ = �′/� (usually called the digamma function). We obtain

f ′(x) = 2(�(x + 1)−�(2x + 1)).

Since � ′(x) = ∑∞
k=0 1/(x + k)2 (see [1, p. 13]), we deduce that

f ′′(x) = 2(� ′(x + 1)− 2� ′(2x + 1))

= 2
∞∑
k=0

1

(x + 1 + k)2
− 1

2(x + (k + 1)/2)2

=
∞∑
k=0

1

(x + 1 + k)2
+

∞∑
k=0

1

(x + 1 + k)2
− 1

(x + (k + 1)/2)2
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=
∞∑
k=0

1

(x + 1 + k)2
+

∞∑
j=0

− 1

(x + (2j + 1)/2)2

=
∞∑
k=0

1

(x + 1 + k)2
+

∞∑
k=0

− 1

(x + k + 1/2)2

= � ′(x + 1)−� ′(x + 1
2

)
.

Moreover, � ′ is a decreasing function because � ′′(x) = −2
∑∞
k=0(x + k)−3. It follows that

f ′′ ≤ 0 on (0,1). As a decreasing function, f ′ satisfies f ′(x) ≤ f ′(0) = 0 and, consequently,
f is itself a decreasing function. Finally, we deduce that

f (x) ≥ f (1) = ln

(
2�(2)2

�(3)

)
= 0,

and the proof is complete.

Acknowledgement

We would like to thank an anonymous referee for helpful remarks.

References

[1] Andrews, G. E., Askey, R. and Roy, R. (1999). Special Functions (Encyclopedia Math. Appl. 71). Cambridge
University Press.

[2] Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities (Adv. Ser. Statist. Sci. Appl. Prob. 14), 2nd edn.
World Scientific, Hackensack, NJ.

[3] Beghin, L. and Macci, C. (2012). Alternative forms of compound fractional Poisson processes. Abstr. Appl.
Anal. 2012, 747503.

[4] Beghin, L. and Macci, C. (2013). Large deviations for fractional Poisson processes. Statist. Prob. Lett. 83,
1193–1202.

[5] Beghin, L. and Orsingher, E. (2009). Fractional Poisson processes and related planar random motions.
Electron. J. Prob. 14, 1790–1827.

[6] Beghin, L. and Orsingher, E. (2010). Poisson-type processes governed by fractional and higher-order recursive
differential equations. Electron. J. Prob. 15, 684–709.

[7] Benson, D. A., Schumer, R. and Meerschaert, M. M. (2007). Recurrence of extreme events with power-law
interarrival times. Geophys. Res. Lett. 34, L16404.

[8] Borovkov, K. A. and Dickson, D. C. M. (2008). On the ruin time distribution for a Sparre Andersen process
with exponential claim sizes. Insurance Math. Econom. 42, 1104–1108.

[9] Cahoy, D. O., Uchaikin, V. V. and Woyczynski, W. A. (2010). Parameter estimation for fractional Poisson
processes. J. Statist. Planning Infer. 140, 3106–3120.

[10] Daley, D. J. (1999). The Hurst index of long-range dependent renewal processes. Ann. Prob. 27, 2035–2041.
[11] Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, Vol. I, Elementary

Theory and Methods, 2nd edn. Springer, New York.
[12] Daley, D. J. and Vesilo, R. (1997). Long range dependence of point processes, with queueing examples. Stoch.

Process. Appl. 70, 265–282.
[13] Heyde, C. C. and Yang, Y. (1997). On defining long-range dependence. J. Appl. Prob. 34, 939–944.
[14] Jumarie, G. (2001). Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos

Solitons Fractals 12, 2577–2587.
[15] Lagerås, A. N. (2005). A renewal-process-type expression for the moments of inverse subordinators. J. Appl.

Prob. 42, 1134–1144.
[16] Laskin, N. (2003). Fractional Poisson process. Chaotic transport and complexity in classical and quantum

dynamics. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213.
[17] Mainardi, F., Gorenflo, R. and Scalas, E. (2004). A fractional generalization of the Poisson processes.

Vietnam J. Math. 32, 53–64.
[18] Malinovskii, V. K. (1998). Non-Poissonian claims’arrivals and calculation of the probability of ruin. Insurance

Math. Econom. 22, 123–138.

https://doi.org/10.1239/jap/1409932670 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932670


740 R. BIARD AND B. SAUSSEREAU

[19] Mazza, C. and Rullière, D. (2004). A link between wave governed random motions and ruin processes.
Insurance Math. Econom. 35, 205–222.

[20] Meerschaert, M. M., Nane, E. and Vellaisamy, P. (2011). The fractional Poisson process and the inverse
stable subordinator. Electron. J. Prob. 16, 1600–1620.

[21] Musson, R. M. W., Tsapanos, T. and Nakas, C. T. (2002). A power-law function for earthquake interarrival
time and magnitude. Bull. Seismol. Soc. Amer. 92, 1783–1794.

[22] Repin, O. N. and Saichev, A. I. (2000). Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741.
[23] Saussereau, B. (2012). Transportation inequalities for stochastic differential equations driven by a fractional

Brownian motion. Bernoulli 18, 1–23.
[24] Scalas, E. (2012). A class of CTRWs: compound fractional Poisson processes. In Fractional Dynamics, World

Scientific, Hackensack, NJ, pp. 353–374.
[25] Uchaikin, V. V., Cahoy, D. O. and Sibatov, R. T. (2008). Fractional processes: from Poisson to branching

one. Internat. J. Bifur. Chaos Appl. Sci. Eng. 18, 2717–2725.
[26] Wang, R. and Liu, H. (2002). On the ruin probability under a class of risk processes. Astin Bull. 32, 81–90.

https://doi.org/10.1239/jap/1409932670 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932670

	1 Introduction
	2 Preliminaries on the fractional Poisson process
	3 Long-range dependence
	4 Probability of ruin with exponential claim sizes
	4.1 Closed-form representation for the distribution of the ruin time
	4.2 Ruin probability in finite time
	4.3 Ruin probability in infinite time

	5 Ruin probability in the presence of heavy-tailed claim sizes
	6 Ruin probability with light-tailed claim sizes
	A Proof of inequality (11)
	Acknowledgement
	References

