
/ Austral. Math. Soc. (Series A) 47 (1989), 186-210

CONTINUITY PROPERTIES
OF THE SUPERPOSITION OPERATOR

JURGEN APPELL and PJOTR P. ZABREJKO

(Received 4 March 1987; revised 18 November 1987)

Communicated by R. O. Vyborny

Abstract

Various continuity conditions (in norm, in measure, weakly etc.) for the nonlinear superposition
operator Fx{s) = f(s,x(s)) between spaces of measurable functions are established in terms of
the generating function / = f(s, u). In particular, a simple proof is given for the fact that, if
F is continuous in measure, then / may be replaced by a function / which generates the same
superposition operator F and satisfies the Caratheodory conditions. Moreover, it is shown that
F is weakly continuous if and only if / is affine in u. Finally, some continuity results for the
integral functional associated with the function / are proved.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47 H 15, 46 E 30,
26 B 40, 28 A 20.

Let Q be an arbitrary set, ^ some tr-algebra of subsets of Q (called "measur-
able subsets" in what follows), and ft a nonnegative countably additive and
(T-finite measure on J£. Let / = f(s, u) be a function denned on Q x R and
taking values in R (the real line). Given an arbitrary real function x = x(s)
on Q, by applying / we get another real function y = y(s) on Q denned
by y(s) = f(s,x(s)). In this way, the function / generates a superposition
operator

(1) Fx(s) = f(s,x(s)).

This operator arises very often in applications, as the right-hand side of ordi-
nary differential equations, as a mathematical model for the so-called func-
tional link in control theory, as a generating element for some operators in the

© 1989 Australian Mathematical Society 0263-6115/89 $A2.00 + 0.00

186

https://doi.org/10.1017/S1446788700031633 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031633


[2] Continuity properties 187

theory of nonlinear oscillations, as a particularly simple example of so-called
hysteresis nonlinearities, and in other fields of nonlinear analysis.

When such a problem is dealt with, one usually has to choose appropriate
spaces such that the superposition operator (1) is denned and "well behaved"
between these spaces. One of the most important properties of F which one
hardly can dispense with in applications is its continuity. One basic problem
is therefore that of finding conditions on the nonlinearity / (possibly both
necessary and sufficient) which guarantee that the corresponding operator F
is continuous between the spaces under consideration. In some cases, this is
very easy. For instance, the operator F is obviously continuous in the space
C of continuous functions (over a compact domain Q without isolated points
in Euclidean space) if, and only if, the generating function / is continuous
on i l x R.

In many other cases it turns out, however, that the problem of character-
izing continuity properties of F by means of elementary properties of / is
surprisingly difficult. Consider, for example, the superposition operator F in
the space S of measurable functions over Q. A classical result [5] states that
the so-called Caratheodory conditions for / (that is f(s, •) is continuous on R
for almost all s e f l , and /(•, M) is measurable on Q for all u e R) are suffi-
cient for the continuity of F in the space S. It was an open problem for more
than 40 years (called the "Nemytskij conjecture" by some people) to decide
whether or not the Caratheodory conditions are also necessary. This conjec-
ture was disproved by two famous counter-examples due to Krasnosel'skij
and Pokrovskij [19], [20] and, independently, to Grande and Lipiriski [10].
Nevertheless, later on it was shown by Vrkoc [46] and Ponosov [27] that
a function / which generates a continuous superposition operator F in the
space S, although not being necessarily a Caratheodory function, is always
equivalent (in a sense to be made precise below) to a Caratheodory function.
The proofs in both Vrkoc's and Ponosov's papers, however, are rather cum-
bersome and technical. It turns out that, by means of an appropriate modifi-
cation of an approximation scheme proposed in another context by Buttazzo
and DalMaso [4], one can obtain another proof which gives a clearer insight
into the problem and is much simpler (and even proves a more general fact).

The purpose of the present paper is three-fold. First, we shall give a sim-
ple proof of a slightly generalized version of Vrkoc's and Ponosov's results
(Theorems 1 and 2); in addition, we provide a complete characterization of
continuous superposition operators between so-called ideal spaces which em-
brace many function spaces arising in applications (Theorem 3). Second, we
shall discuss various properties of weak continuity of F in ideal spaces; in
particular, it turns out that if the operator F is weakly continuous between
two ideal function spaces, then the function / must be linear in u (Theorem
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188 Jurgen Appell and Pjotr P. Zabrejko [3]

4). By combining several types of convergence (strong, weak, in measure) in
the domain and range of F, we obtain further continuity conditions for F
in terms of the function / (Theorems 5 and 6); such results are useful, for
example, in the theory of nonlinear integral equations. Third, we shall be
concerned with semi-continuity properties of the integral functional

(2) 4>(x)= I f(s,x(s))ds
Ja

which is obviously closely related to the operator (1) (Theorems 7, 8 and 9).

1. The superposition operator

Let Q, J? and n be denned as at the beginning, and let A be a normalized
("probability") measure on JK which is equivalent to n (that is, has the same
null sets). Recall (Saks' lemma) that the set Q, can be divided into two parts
flc and Q</ such that n is atomic-free ("continuous") on Qc and purely atomic
("discrete") on Q,/. This makes it possible to consider very general sets Q;
in "natural" examples, however, one usually has Q = Qc (that is, one deals
with "functions") or Q = £ld (that is, one deals with "sequences").

As usual, we denote by S the set of all (equivalence classes of) almost
everywhere finite measurable functions x on Q. Equipped with the metric
p(x,y) = [x-y], where

(3) [z]= inf {h + X({s\ssa,\z(s)\>h})}
0<h«x>

or

the set 5" becomes a complete metric space, and convergence with respect
to this metric coincides with convergence in measure on subsets of finite
measure (that is, with respect to X) [7].

Besides the metric structure, the space S has a natural partial ordering:
x < y means that x(s) < y(s) a.e. on Q. Consequently, one can consider
convergence with respect to this ordering [11]; this type of convergence coin-
cides with convergence almost everywhere on Q. It is well known (Lebesgue's
theorem) that convergence a.e. implies convergence in measure; the converse
is true only if the measure fi is discrete (that is, Qc = 0) . Nevertheless
(Riesz' theorem), each sequence which is convergent in measure admist an
a.e. convergent subsequence.

Given a subset D e J?', we denote by XD the characteristic function of D
and by PD the multiplication operator

(5) PDx(s) = XD(S)X(S).
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[4] Continuity properties 189

Finite linear combinations of characteristic functions are usually called sim-
ple functions on Q; they form a dense subspace of S.

Let / be a real function on Q x R, and consider the corresponding super-
position operator (1). To make life easier, we shall always tacitly assume that
f{s,0) = 0 (hence F6 = 8, where 6 is the a.e. zero function); this implies,
in particular, that F PD — PpF for any D e J(, that is, F commutes with the
operator (5). Of course, the condition f(s, 0) = 0 is not really restrictive, be-
cause one can pass from the operator (1) to the operator Fx(s) = f(s,x(s))
generated by f(s,u) = f(s,xo(s) + M) - f(s,xo(s)), where xo is any fixed
function on Q (e.g. XQ - 6).

The fact that F commutes with the operator (5) implies, in particular, that
F maps equivalent functions into equivalent ones, that is, acts actually on
classes. It is now natural to ask for acting conditions for F, that is, conditions
on the function / which ensure that the operator F maps the space S into
itself. (If this is the case, the function / is usually called superpositionally
measurable [23] or sup-measurable, for short.) Surprisingly enough, this is
a very hard problem; the basic difficulty in this connection lies in the fact
that a sup-measurable function / is by no means uniquely determined by
the corresponding operator F, but two functions f\ and fi may generate the
same superposition operator and nonetheless may be "essentially different".

This gives rise to the following definition: given two functions f\ and fi
on a subset A c Q x R, we call f\ and fa superpositionally equivalent (or
sup-equivalent, for short) on A, and write

(6) A(s,u)*f2(s,u) ((*,«)€ A),

if the corresponding superposition operators F\ and F2 coincide on the set
of all x e S whose graphs belong to A. Note that sup-measurability is then
invariant under the equivalence relation (6), that is, if / is a sup-measurable
function then so is every function / which is sup-equivalent to / .

It is very striking that already functions / which are sup-equivalent to the
zero function f(s, u) = 0 may exhibit a very pathological behaviour; such
function which are nowadays called monsters in the literature (for example,
in [19], [20]), will be discussed below.

Before doing so, however, we still must consider another class of functions
which were introduced under the name "standard functions" in [36] and are
located "between" Caratheodory functions and sup-measurable functions. A
function / is called a standard function if there exists a negligible set Do € J?
(that is, D C Do implies D e ^) with the property that, for any Borel subset
C of R, the set f~l(C)\(D0 x R) belongs to the minimal a -algebra which
contains all products A x B with A 6 ^ and B a Borel subset of R. For
further reference, we summarize some information on this class of functions
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as a lemma. The first assertion was proved in [36], the second one in [36],
[38], and the third one in [41], [42]. In particular, the proof of the last
statement builds essentially on Sainte-Beuve's selection theorem [29].

LEMMA 1. Every Caratheodory function and, more general, the pointwise
limit of a family of Caratheodory functions is a standard function. Every
standard function is sup-measurable. If f is standard and the superposition
operator F generated by f is continuous in measure, then f is actually a
Caratheodory function.

We are now going to consider normed spaces of measurable functions; all
concepts and results presented below can be found in [49]. A Banach space
X of measurable functions on Q is called ideal space if the relations |x| < \y\,
x e S and y € X imply that also x e X and ||x|X|| < \\y\X\\ (\\x\X\\ is the
norm of the element x in the space X). An important property of ideal spaces
X is that of being continuously imbedded into the space S. This means that
every convergent sequence in X is also convergent in S; equivalently, every
ball Br{X) = {x : \\x\X\\ < r} is a bounded set in S.

Typical examples of ideal spaces are the Lebesgue spaces Lp, defined by
the norm

||x|L,|| = {jf |x(j)|><fr} "
for 1 < p < oo, and

H-xl-LooH = ess sup|x(5)|

for p — oo, respectively, or, more generally, the Orlicz spaces LM defined by
the (Luxemburg) norm

\\x\LM\\ = inf(k\k>O,f M[s,x(s)/k] ds < 1 j ,

where M = M(s, u) is a Young function on Q x R (see, for example, [21]).
Given a sup-measurable function / with f(s, 0) = 0, consider the func-

tional

(7) <Kx,D)= f f(s,x(s))ds
JD

. Obviously, <\>{Q, D) — 0 for all D € JK', and Ppx = Ppy implies that
(f){x, D) = <j)(y, D). Moreover, for any x € S, <j>(x, •) is a countably additive
measure on the cr-algebra ^f'.

Given n > 0, apart from (7) we define a functional <t>n by

(8) (t>n{x,D) = inf \<t>{w,D) + n [ \w(s) - x(s)\ ds\ .
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Obviously,

(9) Mx,D)<if>(x,D),

and the functional <Pn{x, D) is monotonically increasing in n. The next lemma
gives a relation between the functionals (7) and (8).

LEMMA 2. Let X be an ideal space over some domain Q with /u(Q) < oo,
where the measure n is atomic-free. Let f be a sup-measurable function, and
suppose that the corresponding superposition operator F maps a ball Br{X)
into the Lebesgue space L\. Assume, moreover, that the functional (7) has the
following continuity property: if a sequence xn € Br{X) converges in S to some
x and is bounded by some element in Br{X) then

(10) I f(s,xn(s))ds - f f(s,x(s))ds
JD JD

as n —» oo. Under these assumptions,

(11) Km<l>i(x,D) = 4>(x,D),
r]—>oo

with <pn defined by (8).

PROOF. Let us first assume that, for almost all s € fi, the function f(s, •)
is constant for \u\ > «o(s), where «o is an arbitrary (but fixed) unit in the
space X (see [47]). This means that we actually consider the superposition
operator F from the "order interval" [-Wo>"o] into the space L\. By gen-
eral boundedness results on the superposition operator (see, for example, [2,
Theorem 4]), the operator F is then bounded on [-«o, «o]> and hence

(12) \4>(x,D)\ < f \f(s,x(s))\ds < c < oo,
JD

where the constant c depends, in general, on D and UQ. But the constancy
assumption on / for \u\ > uo(s) implies that the functional 0 is bounded (by
c) even on the whole space S. In fact, given any x e S, the function

(13) x(s) = mm{\x(s)\,uo(s)}sgnx(s)

belongs to [-Mo>"o] and satisfies |0(x, D)\ = \<j>{x,D)\. Now, by definition of
the infimum (8), for x e [-Mo, «o] we may find a w e S such that

<f>(w, D) + ti f \w(s) - x{s)\ ds < 4>n{x, D) + { c - <t>n{x, D)) = c,
JD

and hence w e B{x;2c/n), where

B{x;p) = lw\weS, I \w(s)-x(s)\ds< p \ .
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Consequently,

4>n{x,D) = inf 14>(w,D) + rj f \w(s) - x(s)\ds\w G B(x;2c/ri)}
(14) I JD )

> inf{<f>{w,D)\w e B(x;2c/ri)}.
As n -* oo, the "ball" B(x;2c/n) shrinks to the singleton {x}. We claim that
this implies (11). In fact, if wn is any sequence such that

f \wn(s)-x(s)\ds^0 (n^oo)
JD

and wn is denned through wn in the same way as x in (13) through x, then
also

/ \wn(s) -x(s)\ds —• 0 (n -» oo).
JD

Moreover, since wn belongs to [-Mo."ol and \(j>(wn,D)\ - \(f>(wn,D)\, we get

4(wn,D)-+<Kx,D) (n^oo)
as claimed. This proves the assertion in case when f(s,) is constant for
\u\ > UQ(S). If / is a general function satisfying the above hypotheses, we
may replace / by the sequence of functions

(15) fn{s,u) = f{s,uo{s)rmn{uQ{{s)\u\,n}s%nu)

and pass to the limit as n —> oo.
As a consequence of Lemma 2, we get the following lemma which will be

fundamental in what follows.

LEMMA 3. Let X be an ideal space, let f be a sup-measurable function,
and suppose tht the corresponding superposition operator F maps a ball Br{X)
into the Lebesgue space L\. Assume, moreover, that the functional (7) has the
continuity property indicated in Lemma 2. Then f is sup-equivalent to some
Caratheodory function.

PROOF. Without loss of generality we may assume that £1 has finite mea-
sure (since any general fl may be represented as a countable union of subsets
Qn of finite measure), and that ju is atomic-free on Q (since the continuity
of f(s, •) is evident for 5 e Qrf). Thus, the hypotheses of Lemma 2 are ful-
filled, and the relation (11) holds. We claim that the functional 0, satisfies a
"Lipschitz-type" condition (D e Jt)

(16) \<t>,{x,D) - <j>r,(y,D)\ <n f \x(s)-y(s)\ds.
JD

In fact, if x - y is integrable on D, we get by (8),

(17) <t>,{x,D) < 4>(w,D) + ri\\PD(w - x ) | L , | | .
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On the other hand, given S > 0, we find ws € S such that

<l>n(y,D) > <t>{wd,D) + ti\\PD{ws -y)\Li\\ -S.

Putting w = w$ in (17) yields

4>,(x,D) -<j>n{y,D) < ri\\PD{ws-x)\Lx\\ - ri\\PD{ws -y)\Lx\\ + S

Since 8 > 0 is arbitrary and this expression is symmetric in x and y, we
have (16). Consider now the restriction t//^(-,D) of <f>n(-,D) to R (that is, we
identify the real number u with the constant function xu(s) = u). Condition
(16) then reads

(18) \Vn{u,D) - y/,(v,D)\ < TJH{D)\U - v\.

By the Radon-Nikodym theorem, the measure y/n(u,-) can be represented as
an integral

y/n[u,D)= I gn{s,u)ds,
JD

where the function gn(-,u) is integrable over Q. Note that this function is
defined only for 5 e Cl\Du, where Du is some null set depending, in general,
on M. If we set

Do = U Du,
u€Q

however, Do is also a null set, and the function gn extends to a function gn

whose domain of definition (fl\A)) x R does not depend any more on u. By
the continuity of y/,,(-,D) on R and by Lebesgue's theorem we have

(19) y/n{u,D)= f gn{s,u)ds,
JD

and hence

\j[gr,{S,U)-grl{S,V)]dS < t]fi(D)\u-v\,

by (18). Since D e - # is arbitrary, this yields \g^(s,u) - g,,(s,v)\ < t]\u - v\;
consequently, gn is a Caratheodory function for each r\ > 0. The equality
(19) shows that

(20) 4>n(x,D)= [ Bv{s,x{s))ds
JD

for any constant function x = xu (M e R). Since superposition operators
commute with the multiplication operator (5), (20) holds also for all simple
functions JC, and hence just for each x e S, since the simple functions are
dense in S, and both sides of (20) are continuous functionals of x.
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Now let f(s, u) be the limit of the (monotonically increasing) family
grf{s, u) as r\ —> oo. Clearly, the function / is measurable, and by Levi's
theorem we have

<t>(x,D)= lim <f>Jx,D) = lim / gn(s,x(s))ds
i?-"°o rf^oo JD

= / lim gv(s,x(s))ds = / f(s,x(s))ds,
JD I-*°° JD

and hence
[ f(s,x(s))ds= f f(s,x(s))ds,
D JD

which means that f(s, u) ~ / ( s , M).
It remains to show that / is a Caratheodory function. Since all gr, are

Caratheodory functions, / is a standard function; moreover, / generates the
continuous superposition operator F, and thus the assertion follows from
Lemma 1.

We remark that the idea of the approximation scheme (8) is contained
implicitly in the paper [4].

Observe that Lemma 3 can be strengthened in the following sense: since
(f>q(x,D) < </>(x,D) for all r\ > 0, only lower semicontinuity of the functional
4>(-,D) is required to ensure the relation lim,_+oo^(x,£>) = <p(x,D) in the
proof of Lemma 3. In this case, / becomes sup-equivalent to some function
/ which is measurable in 5 and lower semicontinuous in u; we shall deal with
such functions in the last part (see Theorems 7, 8, and 9).

2. Continuity in the space 5

As already pointed out at the beginning, the Caratheodory conditions are
sufficient for the sup-measurability of a function / , and even for the continu-
ity of the corresponding operator F in the space S (with respect to the metric
(3) or (4)). The Nemytskij conjecture states that the converse is also true:
if the operator F is continuous in S, the generating function / must satisfy
the Caratheodory conditions. This conjecture remained open for many years
and was disproved recently by two counterexamples, due to Krasnosel'skij
and Pokrovskij [19], [20], and, independently, due to Grande and Lipinski
[10]. Both counterexamples use the continuum hypothesis and provide con-
structions of extremely exotic functions / on Q = [0,1] with the following
two properties: on the one hand, for any fixed 5 € [0,1], the function f(s, •)
is equal to 1 for almost all u e R (more precisely, for all except countably
many M); on the other hand, for any fixed x e S, the function f(s,x(s)) is
equal to 0 almost everywhere on [0,1 ] (that is, the function / generates the
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zero operator)! Thus, the Nemytskij conjecture is false, since monsters gen-
erate continuous superposition operators, but certainly are not Caratheodory
functions. Moreover, monsters can serve as examples of functions which are
sup-measurable, but not measurable on Q x R, this answers a question raised
by Z. Grande at the end of his monograph [9].

Now the question arises as "to what extent" the Nemytskij conjecture fails
to be true; in other words, "how far" are the Caratheodory conditions for
/ from being necessary for the continuity of F. In this connection, the fol-
lowing remarkable result was proved by Vrkoc ([46], see also [12], [13], [39],
[40], [41], [42]): if a sup-measurable function / generates a superposition
operator F which is continuous in the space S (over the interval Q = [0,1]),
then there exists a Caratheodory function / which is sup-equivalent to / .
For example, if / is a monster, one may choose f(s, u) = 0. Vrkoc's result
was later generalized by Ponosov [27] to more general sets Q, and even to
functions / f rom Q x l into Y, with X and Y being complete metric spaces.
Both Vrkoc's and Ponosov's proofs, however, are rather cumbersome. We
give now a slight generalization of their results whose proof builds on Lemma
3 and is extremely simple:

THEOREM 1. Let X be an ideal space, let f be a sup-measurable func-
tion, and suppose that the corresponding superposition operator F maps a ball
Br{X) into the space S and is continuous. Then f is sup-equivalent to some
Caratheodory function.

PROOF. Define a function g by

f(s,u)
g(s, u) =

Since F is continuous from Br(X) into S, the superposition operator G gen-
erated by g maps Br(X) into L\ and satisfies the hypotheses of Lemma 3.
Consequently, g is sup-equivalent to some Caratheodory function g. Since
\g(s,x(s))\ < 1 for all x e Br(X), the same holds for g; passing, if necessary,
from g to the function

(21) ~g(s,u) = lim^minKl - ^,\g(s,u)\}sgng(s,u),

we may even assume that \g(s, u)\ < 1 on Q x R. Setting

f(s u) = S(s,u)
J(s'u) i-i*(5,ior

we obtain a Caratheodory function / which is sup-equivalent to / as claimed.
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Since continuity of F in the space S implies the continuity condition (10),
Theorem 1 implies, in particular, the above mentioned result: every function
/ with the property that F is continuous in measure is sup-equivalent to a
Caratheodory function.

It is a remarkable fact that an analogous statement holds if one restricts
the operator F to continuous functions: every function / which generates a
continuous superposition operator from the space C of continuous functions
into the space S of measurable functions is sup-equivalent to a Caratheodory
function. This follows from the fact that, by Lusin's theorem, a superposition
operator in the space S is completely determined by its values on the space
C.

Besides convergence in measure, another important type of convergence
is convergence a.e. on Q (see the previous section). The following theorem
deals with "mixed" continuity properties of the superposition operator in the
space S:

THEOREM 2. Let f be a sup-measurable function, and suppose that the
corresponding superposition operator F maps every sequence which converges
a.e. on Q into a sequence which converges in measure. Then f is sup-equivalent
to some Caratheodory function. The same holds if F maps a.e. convergent
sequences into a.e. convergent sequences. On the other hand, suppose that
F maps every sequence which converges in measure into a sequence which
converges a.e. on Q. Then the function f(s, •) is constant for s e fic and
continuous for s € Q</.

PROOF. The first part follows from Theorem 1, since every superposition
operator which maps a.e. convergent sequences into measure-convergent se-
quences is continuous in S, and every sequence which converges with respect
to the measure k contains an a.e. convergent subsequence.

To prove the second statement, suppose that the function f(s, •) is not
constant for 5 e £lc, in this case we can find a u ^ O such that f(s, u) # 0
for s G D, where D C Qc is some set of positive measure. In the usual
way, considering partitions {Df,D!l,...,D"n} of D (n = 1,2,...) of mesh
tending to zero, one obtains a sequence Xn of characteristic functions which
tend to zero in measure, but not a.e. on D. By hypothesis, the sequence
zn(s) - f(s,uxn(s)) tends to zero almost everywhere, contradicting the fact
that zn(s) = f(s, u) on a subset of D of positive measure. The continuity of
f{s, •) for j e Qrf follows from the fact that convergence a.e. on fl</ coincides
with both pointwise convergence and convergence with respect to the measure
L
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3. Continuity in ideal spaces

Given an ideal space X, denote by X° the subspace of all functions x e X
with absolutely continuous norm, that is,

(22) lim \\PDx\X\\ = 0.

The subspace X° has some remarkable properties. In particular, convergent
sequences in X° admit an easy characterization: a sequence xn in X° con-
verges to x e X (actually, x € X°) if and only if xn converges to x in measure
and the elements xn have uniformly absolutely continuous norms

(23) \i^*Q\\PDxn\X\\ = 0.

Unfortunately, the subspace X° may be considerably "smaller" than the whole
space X. An ideal space X is called regular if X° = X, quasi-regular if X° is
dense in X with respect to convergence in measure, and completely irregular
if X° = {d}.

For example, in the case Q = fic the Lebesgue space Lp is regular for
1 < p < oo, and completely irregular for p = oo. More generally, if X is the
Orlicz space LM, the space X° consists of all functions x € X for which

LM[s,x(s)/k]ds < oo
ia

for all k > 0; consequently, the space LM is regular if and only if the Young
function M satisfies a A2 condition.

The aim of this section is to give continuity conditions (possibly necessary
and sufficient) for the superposition operator between ideal spaces. To this
end, some auxiliary notions are in order. If X is an ideal space, let

(24) <5(5)

where the least upper bound is taken with respect to the partial ordering
in the space S. In general, the function (24) may be infinite on subsets of
positive measure; for instance, S(s) = oo for 5 e flc if X is quasi-regular. An
illustrative example is given by the Orlicz space LM with Luxemburg norm
(see above); in this case,

(25) S(s) = sup{«|M(s, u) < oo}.

Given an open subset G of X, let

(26) 5{G) = U {(s, u)\s e Q, u e R, \u - xo(s)\ < rd(s)},
(xo,r)

where the union is taken over all pairs (xo, r) e G x (0, oo) such that the ball
||JC - XQ\X\\ < r lies in G. It is clear that 8{G) contains the graphs of all

https://doi.org/10.1017/S1446788700031633 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031633


198 Jiirgen Appell and Pjotr P. Zabrejko [13]

functions x e G (more precisely, the set {J | ( J ,X(J ) ) <£ S(G)} has measure
zero for each x € G). Obviously,

(27) S(G) = Q x R

if G = X; on the other hand, equality (27) holds also for any nonempty
G C X if X is quasi-regular.

It is clear from the definition that there is a close "interaction" between
the behaviour of the superposition operator F on a set G c X and that of
the generating function / on the set d{G) C Q x R. For instance, if G is the
interior of the domain of definition D(F) of F, the analytical properties of
F do not depend on the properties of / outside 5{G).

We are now in a position to prove our basic result on the continuity of the
superposition operator between ideal spaces.

THEOREM 3. Let f be a sup-measurable function and suppose that the inte-
rior G of the domain of definition D{F) of the superposition operator F, con-
sidered between two ideal spaces X and Y, is non-empty. Then, if the operator
F is continuous on G, the function f is sup-equivalent to some Caratheodory
function on 8{G). Conversely, if the function f is sup-equivalent to some
Caratheodory function on S(G) and the space Y is regular, the operator F is
continuous on G.

PROOF. The first part follows from Theorem 1, since convergence in the
norm of an ideal space implies convergence in measure. To prove the second
part, we may assume, without loss of generality, that / is a Caratheodory
function on S(G) and that Br(X) c G for some r > 0; we show that F is
continuous at XQ = 6.

If this is not so, we can find a sequence xn such that ||xn|X|| < 2~"r and
> e for some e > 0. The function

oo

* ~ / , |-*7l|

n=\

belongs then to Br(X); by the Krasnosel'skij-Ladyzhenskij lemma [18], there
exists a function z e 5 such that \z\ <xt (hence z e Br(X)) and

\f(s,z(s))\ = sup{\f(s,u)\\\u\<x,(s)},

(hence \Fz\ € Y), because the set of all (s, u) with \u\ < x*(s) is contained in
S(G) and / is a Caratheodory function on S(G). Since xn converges in X to 0,
xn converges also in measure to 0, and hence, by the classical Caratheodory
theorem [5], Fxn converges in measure to 6. But

JimQ\\PDFz\Y\\ = 0,
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since \Fz\ e Y and Y is regular; consequently, Fxn converges in Y to 6, a
contradiction, and so we are done.

We remark that the second assertion of Theorem 3 was proved for Cara-
theodory functions on 8{G) — Q x R in [22]. Simple examples show that
Theorem 3 is false without the regularity assumption on the space Y [21].
Moreover, it may happen that F is not continuous on the boundary of D{F).

General necessary and sufficient conditions for the continuity of F at some
point Xo € D(F) can be found in [25] and [26]. These conditions imply, in
particular, the following somewhat surprising result: if F maps some quasi-
regular space X into a completely irregular space Y and is continuous at some
point XQ e D(F), then F is constant (that is, the function / does not depend
on u) [3]; in the case X = Lp (1 < p < oo) and Y = L^ this is well known
[50].

In special function spaces, Theorem 3 has a long history. For Lebesgue
spaces, it goes back to Krasnosel'skij [16], [17] and Vajnberg [43], [44]. For
Orlicz spaces, similar results can be found in [21], [28], [32], [33], [34], [35],
and [45]. Finally, continuity results in abstract ideal spaces are given in [14],
[15], [24], [25], [26], [37] and [48].

4. Weak continuity in ideal spaces

In some fields of nonlinear analysis one must consider types of convergence
other than convergence in norm or in measure. In the theory of nonlinear
integral equations, for example, the arising superposition operators need not
be continuous in norm between two ideal spaces X and Y, but just should map
any sequence xn which converges in norm into a sequence which converges,
say, in measure or weakly. Thus, in this and the following sections we shall
provide an answer to the following question: suppose that the superposition
operator F acts between two ideal spaces X and Y and has the property that,
whenever a sequence xn in D(F) converges in a certain sense (in norm, in
measure, weakly etc.) to some x e D(F), then the sequence Fxn converges
in a certain sense (the same or another) to Fx; what can be said about the
generating function / ?

Recall that, given an ideal space X, the associate space X' is, by definition,
the linear space of all functions x e S for which

(x,y) = I x(s)y(s) ds < oo (ye X),
Jo.

equipped with the natural norm

(28) ||JC|A"|| = suv{{x,y)\y e X, \\y\X\\ < 1}.
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Obviously, the associate space X' is a closed (in general, strict) subspace of
the usual dual space X* of continuous linear funtionals on X. One can show
that X' = X* if and only if X° = X (that is, X is regular). In general,
functional q> G X' can be described by special continuity properties; for
instance, a functional q> & X* belongs to X' if and only if

lim sup \<p{PDx)\ - 0

for any nonnegative function z G X.
It follows from the definition that £«, = L\ (= L\) and Lx = L'^ (^ L^).

More generally, if X is the Orlicz space LM, then X' is the Orlicz spae LM>,
where the "associate" Young function M' is defined by

M'(s,u)= sup {|«|t> - M(s,v)}
0<u<oo

(note that Af'(s,u) = W /p1 if A/(.S,M) = \u\p/p, (l/p) + (1/p1) = 1). Let
F be a total subspace of the associate space X' (see, for example, [49]). A
sequence xn in X is said to be Y-weakly convergent to x G X if

lim (xn,z) = {x,z} (zeT).
n—>oo

For example, the relation (10) in Lemma 2 means nothing else but the F-
weak convergence of Fxn to Fx in L\, where F c £<» is the linear hull of all
characteristic functions XD{D € Jt). We point out that F-weak convergence
does not imply convergence in measure, and the converse is not true either.
Nevertheless, both types of convergence are compatible (in the sense that, if
xn converges F-weakly to x' and in measure to x", then x' - x").

In what follows, we shall make use of a special F-weakly convergent se-
quence of measurable functions. Let D be a subset of fic of positive (finite)
measure, and construct a sequence of partitions of D into sets D(e\,. ..,en)
(e, G {0,1}) as follows: first, let {D(O),D{1)} be a partition of D such that
pi(D(0)) = n(D(l)) = \n{D) (recall that D C QC). Further, if {Z)(e,,...,en)|
e, G {0,1}} is the «-th partition of D, divide each D(e\,...,en) into two
parts D(ei,...,en,en+i) such that /z(Z)(e,,...,en,0)) = fi(D(eu...,en,l)) =
jfi{D(e\,...,en))\ this defines the (n + l)-st partition {£>(ei,...,en+1)|e, e
{0,1}}. Now let

D°n= | J D(eu...,en,0), Dl
n = \J 0 ( e , , . . . , « „ , 1 ) ,

£,£{0,1} £,£{0,1}

and observe that n{D^) = /z(Z> )̂ = j//(/>). Obviously, the functions
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satisfy the orthogonality relation

Lla I U, j ,£ ic.
Consequently, we may consider Fourier series expansions with respect to the
system {6n\n = 1,2,.. .}: given x e L2(D), (that is, x is square-integrable
and vanishes outside D), we have

x(s) = z(s) + -̂ — f^lf en(s)x(s)ds\ 6n(s),
rt= 1

where z is orthogonal to all 6n. Since Li{D) is dense in L\(D), and every
function x e L\ can be written as sum x = PDX + Pn\Dx, we get

lim I 6n{s)x(s) ds = 0

for all xe Lx.
The following result will be useful in the sequel:

LEMMA 4. Let X be an ideal space, and suppose that x\ and x2 are two
functions in X such that the set D = {s: x\ (s) ^ X2(s)} is contained in Q.c and
has finite measure. Then the sequence

i + en(s) I -en(s)
Zn\S) — -z X\\S) + » X2\S)

converges X'-weakly to the function

_ X^+Xijs)
2

PROOF. The assertion is almost obvious: given y e X', we have X\y e L\,
€ L\, and

2

Let X and Y be two ideal spaces. Recall [47] that the set Y/X consists
of all functions z e S such that xz € Y for each x € X; equipped with the
natural norm

(29) | |z|y/*| | = sup{||xz|r | | : | |xMf||<l},

the set Y/X becomes an ideal space, the multiplicator space of X and Y
(observe that X' = Li/X, as can be seen by a comparison of (28) and (29)).

For example, if X — LM and Y — LN are two Orlicz spaces generated by
the Young functions M = M{u) and ./V = N(u), respectively, the space Y/X
contains only the zero function if LM is not imbedded into LN, coincides
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with Loo if LM is imbedded into Lyv, but the imbedding is not absolutely
continuous, and is isomorphic to the Orlicz space LR generated by the Young
function

R(u)= sup {N(\u\v)-M(v)}
0<ti<oo

if LM is absolutely continuously imbedded into LN (see [1], [47]). In partic-
ular, if X = Lp and Y = Lq are two Lebesgue spaces (that is, M(u) = \u\p/p
and N(u) = \u\q/q), the three cases mentioned above correspond to the cases
p < q, p = q and p > q, and R(u) - \u\r/r with 1/r = (l/q) - (1/p) in the
third case.

We are now ready to formulate a condition (both necessary and sufficient)
for the (F, A)-weak continuity of F between two ideal spaces X and Y (which
means that F and A are total subspaces of X' and Y', respectively, and F maps
F-weakly convergent sequences into A-weakly convergent sequences.)

THEOREM 4. Let X and Y be two ideal spaces and let T and A be total
subspaces of X' and Y', respectively. Let f be a sup-measurable function,
and denote by D(F) the domain of definition of the superposition operator F,
considered between X and Y. Then F is (T,A)-weakly continuous if and only
if the following two conditions hold:

(a) the restriction off to Qc x R satisfies

(30) f(s,u)~a(s) + b(s)u ((s, u) e S(D(F)) n (12, x R)),

where a eY and be (Y/X) n (r/A);
(b) the restriction off to Qj x R is a Caratheodory function.

PROOF. Without loss of generality, we can treat the two cases fi = Qc and
ft = &</ separately.

Let first Q = Qc. If / has the form (30) and xn converges F-weakly to x,
then for any y e A

lim (Fxn - Fx,y) = lim (b(xn - x),y) = lim {xn - x, by) = 0,
n—>oo n—>oo n—KXJ

and hence Fxn converges A-weakly to Fx.
The proof of the necessity of (a) is somewhat harder. First, we claim that

the function / is sup-equivalent to an affine function on S(D(F)). If this is
not so, we can find two functions xi, xi € D(F) such that

(31) f(s,±[xl(s) + x2(s)])-±[f(s,xl(s)) + f(s,x2(s))]^0 (seD)

on a set D c Qc of positive measure. By Lemma 4, the sequence

I -en(
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converges T-weakly to the function z = \[x\ + X2]. By hypothesis, F is
(F,A)-weakly continuous, and thus the sequence Fzn converges A-weakly to
the function Fz = F(j[x\ + X2]). On the other hand, again by Lemma 4,
Fxn converges A-weakly to the function \\Fx\ + Fx2], contradicting (31).
Consequently, the function / is affine on d(D(F)). Moreover, the acting
condition F{D(F)) C Y and the (r, A)-weak continuity of F imply that a e Y
andbe(Y/X)n(T/A).

It remains to show that / is a Caratheodory function on £ld x R. But this
is obvious, since F weak convergence implies pointwise convergence.

In the case of a Caratheodory function / , Theorem 4 was proved by Shra-
gin for Lebesgue spaces in [30] and for Orlicz spaces in [31]. Moreover, the
first part of Theorem 4 is mentioned (without proof) at the end of [31] in the
case when Q is a bounded domain in Euclidean space (with Lebesgue mea-
sure), / is a Caratheodory function, and X is regular. Obviously, all these
assumptions are not necessary.

5. Other continuity properties

Now we shall deal with "mixed" continuity properties of the superposition
operator between ideal spaces. To be specific, we shall consider the operator
F between two ideal spaces X and Y, and suppose that F maps any sequence
in Br{X) which converges in measure into a sequence in Y which converges
}"-weakly, or, vice versa, that F maps any sequence in Br(X) which converges
^'-weakly into a sequence in Y which converges in measure; in the first case
F will be called (S, Y')-continuous, in the second case (X1 ,S)-continuous.

At first glance, such continuity concepts may seem to be somewhat arti-
ficial, but they arise rather often in the theory of integral equations and in
variational methods of nonlinear analysis (see the remark after Theorem 5).

THEOREM 5. Let X and Y be two ideal spaces, and suppose that f is a
sup-measurable function which generates an (S, Y')-continuous superposition
operator F from Br(X) into Y. Then f is sup-equivalent to some Caratheodory
function. Moreover, for each y e Y7 one has

(32) lim sup (PDFx,y) = 0.
MD)>0 xeBr(X)

PROOF. Suppose first that Y = L\. If xn is a sequence in Br(X) which
converges in measure to x, the sequence Fxn converges, by assumption, Loo-
weakly to Fx; in particular, <j>{Fxn,D) — (Fxn,Xo) converges to <f>(Fx,D) =
{Fx, XD) for any D e d? (see (10)). By Lemma 3, / is sup-equivalent to some
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Caratheodory function. Moreover, by the Hahn-Saks-Vitali theorem [7], we
have

i sup /
-0 n \JD

lim sup / Fxn(s)ds = 0;
k(D)-

this shows that (32) holds, and thus the assertion is proved in case Y — L\.
Now, if Y is an arbitrary ideal space, F is (S, Y')-continuous from Br(X)

into Y, and y e Y' is a unit in Y' (see [49]), the superposition operator Fy

generated by fy(s, u) = f(s, u)y{s) is (S, L^-continuous from Br(X) into L\.
By what has been proved above, there exists a Caratheodory function fy which
is sup-equivalent to fy, and hence f(s, u) = fu(s, u)y(s)~l is a Caratheodory
function which is sup-equivalent to / . The assertion (32) follows from the
definition of fy.

A comparison of Theorem 1 and Theorem 5 shows that the hypothesis
of (5, 7')-continuity is reflected in the additional property (32). We point
out that (32) in the case Y — L\ is equivalent to the absolute boundedness
of F(Br(X)), that is, the elements of F(Br(X)) have uniformly absolutely
continuous norms (cf. (23)):

lim sup \\PDFx\Li\\ = 0.

A classical result ([6], see also [7]) states that this in turn is equivalent to the
weak compactness of F(Br(X)) in L\.

The following example shows how (32) may be useful in applications.
Suppose, for instance, that

Kx(s)= f k(s,t)x(t)dt
Jn

is a linear integral operator between L\ and Lp with the property that the
operator

\K\x(s)= f \k(s,t)\x(t)dt
Jn

also maps L\ into Lp. Then K maps every absolutely bounded subset of L\
into a relatively compact subset of Lp (see [47], [51]). On the other hand,
if (32) holds for X = Lp and Y = L\, then F maps every bounded subset
of Lp into an absolutely bounded subset of L\ (in [51] such operators are
called "improving"). Thus, the Schauder fixed point principle applies to the
Hammerstein integral equation x - KFx in Lp, although, in general, neither
of the "factors" K or F is compact.

To conclude, we present a result analogous to Theorem 5, where only the
sense of continuity is "reversed". It shows that there are "very few" (X',S)-
continuous operators; the proof is very similar to that of Theorem 3, and
therefore we shall not present it.
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THEOREM 6. Let X and Y be two ideal spaces, and suppose that f is a
sup-measurable function which generates an (X',S)-continuous superposition
operator F from Br{X) into Y. Then the function f(s, •) is constant for s e ftc

and continuous for s e Qj.

6. Continuity properties of integral functional

In this section we shall discuss some continuity properties of the integral
functional

(33) 4>{x)= I f(s,x(s))ds
Ja

generated by some sup-measurable function / . Obviously, this functional is
denned on a subset of some ideal space X if the corresponding superposition
operator

(34) Fx(s) = f(s,x(s))

maps this subset into the space L\. Our aim is therefore to find relations
between the continuity properties of the functional (33) and the operator
(34).

Much general information on such integral functionals can be found, for
example, in the monograph [8]. We begin with a general continuity result.

LEMMA 5. The functional (33) is continuous in the norm ofX (in measure,
V-weakly, respectively) on the interior G of its domain of definition in X if
and only if the corresponding superposition operator (34) maps any bounded
sequence in X which converges in norm (in measure, T-weakly, respectively)
into a Loo-weakly convergent sequence in L\.

PROOF. Since the "if" part is trivial, we shall prove only the "only i f part.
All three statements are proved similarly; therefore we shall restrict ourselves
to the case when <fi is, say, F-weakly continuous.

Thus, suppose that xn is a bounded sequence (without loss of generality,
Il-Xnl̂ ni < 1) in X which converges F-weakly to x e X. Since (Pox,y) =
{x,Poy), every sequence PoXn converges F-weakly to PDX, and hence

lim / f(s,xn(s))dx= / f(s,x(s))ds.

By the Hahn-Saks-Vitali theorem, this means that the sequence Fxn converges
LQO-weakly to Fx in L\.
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When dealing with functionals like (33) in applications, it often suffices to
prove the lower semi-continuity of <f>, that is, the convergence of xn to x (in
some sense) implies that

(35) 4>{x) < l im <t>(xn).
n—*oo

The methods developed above allow us to study also semicontinuity prop-
erties of this functionals. The corresponding results will be given in the
following three theorems. Suppose first that (35) holds if xn converges to x
in norm. In this case, with the same reasoning as in Lemma 3, we get that the
function / constructed there is lower semi-continuous in u. For shortness, we
call / a lower semi-Caratheodory function if f{s, •) is lower semi-continuous
on R for almost all j g f l , and /(•, u) is measurable on Q for all ueR. Thus
we have

THEOREM 7. Let X be an ideal space, and suppose that the domain of
definition D{<j>) of the functional <j> has non-empty interior. Then <f> satisfies
(35) for any bounded sequence xn in X which converges in norm to x if and
only if(f> is generated by some lower semi-Caratheodory function f.

Some more must be required if we consider convergence in measure.

THEOREM 8. Let X be an ideal space, and suppose that the domain of
definition D(4>) of the functional <f> has non-empty interior. Then 4> satisfies
(35) for any bounded sequence xn in D(<p) which converges in measure to x if
and only if<f> is generated by some lower semi-Caratheodory function f, and
the superposition operator F- generated by the function

f-(s,u) = min{f(s,u),0}

maps bounded subsets of X into absolutely bounded subsets ofL\.

PROOF. The " i f part follows from the "Fatou-property" of the integral.
To prove the "only i f part, let xn be a bounded sequence in D(<f>) which
converges in measure to x. Let

Xn[S) lO iff(s,xn(s))>0,

and define x through x analogously. The sequence xn is also bounded in
norm and converges in measure to x; consequently, <j>(xn) converges to <j>{x).
But

<Kxa) = 4>-(xn), <j>{x) = 4>_(x),
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where

4>.(x)= f f-(s,x(s))ds.

This shows that (f>- is also lower semi-continuous (with respect to conver-
gence in measure). On the other hand, by Fatou's lemma <j>- is upper semi-
continuous, and hence continuous in X. The statement follows now from
Lemma 5.

It remains to analyze the lower semi-continuity of the functional (33) with
respect to F-weak convergence; here we shall restrict ourselves to F = X'.

THEOREM 9. Let X be an ideal space, and suppose that the domain of
definition D{<f>) of the functional <f> has non-empty interior G. Then $ satisfies
(35) for any bounded sequence xn in X which converges X'-weakly to x if and
only if<f> is generated by some lower semi-Caratheodory function f which is
convex on S(G) with respect to u, and the superposition operator F generated
by the derivative

f(s,u) = fi(s,u)
maps G into X'.

PROOF. TO prove the "if" part, let xn be a bounded sequence in X which
converges X'-weakly to x. By the convexity of f(s, •),

Fxn(s) - Fx(s) > Fx(s)[xn(s) - x(s)],

and hence
lim (j>(xn) - <f>(x) > lim {Fx,xn - x) = 0

n—oo "-*°°

since Fx e X'.
To prove the "only if" part, we show first that the function f(s, •) is convex.

If this is not so, we can find two functions x\, x2 € X whose graphs lie in
d{G) and which satisfy

(36) f(s,±[xl(s) + x2(s)])>{[f(s,xl(s)) + f(s,x2(s))] (seD)

on a set D c Q of positive measure (outside D we may put xi — x2 = 6). The
sequence zn constructed in Lemma 4 converges X'-weakly to z = \[x\ + x2\,
by assumption,

Again by Lemma 4, <p(zn) converges to ^[^(xi) + (/>(*2)]> contradicting (36).
This shows that f{s, •) is a convex function.

It remains to prove that F maps G into X'. Let x EG and h e X be such
that x + h belongs to the domain of definition of <f>. The inequality

f(s,x(s))h(s) < f(s,x(s) + h(s)) - f(s,x(s)),
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implies that
{Fx, h) < 4>{x + h ) - <(>{x) < o o ,

hence Fx e X' as claimed.
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