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Abstract

Answer Set Planning refers to the use of Answer Set Programming (ASP) to compute plans, that
is, solutions to planning problems, that transform a given state of the world to another state.
The development of efficient and scalable answer set solvers has provided a significant boost to
the development of ASP-based planning systems. This paper surveys the progress made during
the last two and a half decades in the area of answer set planning, from its foundations to its
use in challenging planning domains. The survey explores the advantages and disadvantages of
answer set planning. It also discusses typical applications of answer set planning and presents a
set of challenges for future research.
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1 Introduction

Automated planning represents one of the core components in the design of autonomous

intelligent systems. The term refers to the task of finding a course of actions (i.e., a plan)

that changes the state of the world from a given state to another state. An automated

planner takes a planning problem as input, which consists of a domain description or an

action theory, the initial state description, and the goal state description, and computes a

solution of the problem if one exists. Automated planning has been an active research area

of Artificial Intelligence for many years. It has established itself as a mature research area

with its own annual conference, the International Conference on Automated Planning

and Scheduling (ICAPS)1 series starting from 1991, with several satellite workshops

related to planning and scheduling as well as the planning competition for many tracks.
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Consequently, the literature on planning is enormous. The textbooks by Ghallab et al .

(2004) and 2016 includes more than 500 and 600 references, respectively. The monograph

on planning with focus on abstraction and decomposition by Yang (1997) has more than

150 references. The survey on classical planning by Hendler et al . (1990) also referred to

more than 100 papers. Similar observation can be made about the survey by Weld (1994),

which mainly discusses partial order planning. There are also special collections or special

issues on planning such as (Allen et al . 1991; 1990). In addition, several planning systems

addressing different aspects of planning have been developed,2 which will be discussed in

more details in Sections 3–5. Our goal in this paper is to provide a survey on answer set

planning, a relatively late addition to the rich body of research in automated planning

that has not been comprehensively surveyed so far.

Answer set planning, a term coined by Lifschitz (1999), refers to the use of Answer

Set Programming (ASP) in planning. In this approach, planning problems are translated

to logic programs whose answer sets correspond to solutions of the original planning

problems. This approach is related to the early approach to planning using automated

theorem provers by Green (1969). Although similar in the emphasis of using a general

logical solver for planning, answer set planning and planning using automated theorem

provers differ in that the former computes an answer set (or a full model) to find a

solution whilst the latter identifies a solution with a proof of a query. Answer set planning

is more closely related to the prominent approach of planning using satisfiability solvers

(SAT-planning) proposed by Kautz and Selman (1992) and Kautz et al . (1996), who

showed, experimentally, that SAT-planning can reach the scalability and efficiency of

contemporary heuristic-based planning systems. This success is, likely, one of the driving

forces behind the research on using logic programs under the answer set semantics for

planning. The idea of answer set planning was first discussed by Subrahmanian and

Zaniolo (1995) and further developed by Dimopoulos et al . (1997), who also demonstrated

that answer set planning can be competitive with state-of-the-art domain-independent

planner at the time.

Answer set planning offers a number of features which are advantageous for researchers.

First, by virtue of the declarative nature of logic programming, answer set planning is

itself declarative and elaboration tolerant. This enables a modular development of plan-

ning systems with special features. For example, to consider a particular set of solutions

satisfying an user’s preferences, one only needs to develop rules expressing these prefer-

ences and adds them to the set of rules encoding the planning problem (Son and Pontelli

2006); to exploit the various types of domain knowledge in planning, one only needs to

develop rules expressing them to the set of rules encoding the planning problem (Son

et al . 2006). To the best of our knowledge, there exists no other planning system that

can simultaneously exploit all three well-known types of domain knowledge – temporal,

hierarchical, and procedural knowledge – as demonstrated by (Son et al . 2006). Other

features of logic programming such as the use of variables, constraints, and choice atoms

allow for a compact representation of answer set planners. For example, the basic code

for generating a plan in classical setting requires only 10 basic rules and one constraint

while a traditional implementation of a planning system in an imperative language may

require thousands of lines. Second, the expressiveness of logic programming facilitates the

2 Detailed references to these systems are provided in the subsequent sections.
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integration of complex reasoning, such as reasoning with static causal laws, into ASP-

based planners. To the best of our knowledge, only answer set planning systems deal

directly with unrestricted static causal laws (Son et al . 2005a; Tu et al . 2011). Third, as

demonstrated in several experimental evaluations (Gebser et al . 2013; Son et al . 2005a;

Tu et al . 2007; 2011), answer set planning systems perform well against other contempo-

rary planning systems in various categories. Finally, the large body of theoretical building

block results in logic programming supports the development of provably correct answer

set planners. This is an important feature of answer set planning that is mostly neglected

by the vast majority of work in planning, arguably difficult to obtain for planners real-

ized using traditional imperative programming techniques and valuable for foundational

research work.

Over the last 25 years, a variety of ASP-based planning systems have been developed,

for example Dimopoulos et al . (2019), Eiter et al . (2000), Eiter et al . (2003b), Gebser

et al . (2013), Son et al . (2005a), Tu et al . (2007), Tu et al . (2011), Morales et al . (2007),

Fandinno et al . (2021), Rizwan et al . (2020), Spies et al . (2019), Yalciner et al . (2017),

that address several challenges in planning, such as planning with incomplete information,

non-deterministic actions, and sensing actions. These systems, in turn, provide the basis

for investigation of ASP solutions to problems in areas like diagnosis (Balduccini and

Gelfond 2003), multi-agent path findings (Nguyen et al . 2017; Gómez et al . 2020), goal

recognition design (Son et al . 2016), planning with preferences (Son and Pontelli 2006),

planning with action cost (Eiter et al . 2003a), and robot task planning (Jiang et al . 2019).

This progress has been amplified by the development of efficient and scalable answer set

solvers, such as smodels (Niemelä and Simons 1997), dlv (Eiter et al . 1997; Alviano

et al . 2017; 2013), clasp (Gebser et al . 2007; 2019), and cmodels (Lierler and Maratea

2004), together with the invention of action languages for reasoning about actions and

change, such as the action languages A, B, and C (Gelfond and Lifschitz 1998), AK with

sensing actions (Lobo et al . 1997; Son and Baral 2001), and actions with nondeterminism

(Giunchiglia et al . 1997).

In this survey, we characterize planning problems using the three dimensions:

1. the type of action theories,

2. the degree of uncertainty about the initial state, and

3. the availability of knowledge-producing actions.

In particular, the literature has named the following classes of planning problems. Classi-

cal planning refers to planning problems with deterministic action theories and complete

initial states. Conformant planning deals with the incompleteness of the initial state

and nondeterministic action theories. Conditional planning considers knowledge produc-

ing actions and generates plans which might contain non-sequential constructs, such as

if-then or while loop.

This paper presents a survey of research focused on ASP-based planning and its

applications. It begins (Section 2) with a brief introduction of ASP and action language B,
the main representation language for planning problems. It describes different encodings

of answer set planning for problems with complete information and no sensing actions

(Section 3). The paper then introduces two different approaches to planning with

incomplete information (Section 4) and the description of a conditional planner, which

solves planning problems in domains with sensing actions and incomplete information
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(Section 5). The survey explores next the problems of planning with preferences (Section

6), diagnosis (Section 7), planning in multiagent environments (MAEs) (Section 8), and

planning and scheduling in real-world applications (Section 9). The paper concludes with

a discussion about open challenges for answer set planning (Section 10).

2 Background

2.1 Answer set programming

As usual, a logic program consists of rules of the form

a1 ∨ . . . ∨ am ← am+, . . . , an, not an+1, . . . , not ao,

where each ai is an atom of form p(t1, . . . , tk) and all ti are terms, composed of function

symbols and variables. Atoms a1 to am are often called head atom, while am+1 to an and

not an+1 to not ao are also referred to as positive and negative body literals, respectively.

An expression is said to be ground, if it contains no variables. As usual, not denotes

(default) negation. A rule is called a fact if m = o = 1, normal if m = 1, and an integrity

constraint if m = 0. Semantically, a logic program produces a set of stable models, also

called answers sets, which are distinguished models of the program determined by the

stable model semantics; see the paper by Gelfond and Lifschitz (1991) for details.

To ease the use of ASP in practice, several simplifying notations and extensions have

been developed. First of all, rules with variables are viewed as shorthands for the set of

their ground instances. Additional language constructs include conditional literals and

cardinality constraints (Simons et al . 2002). The former are of the form a : b1, . . . , bm,

the latter can be written as s{d1; . . . ; dn}t,3 where a and bi are possibly default-negated

(regular) literals and each dj is a conditional literal; s and t provide optional lower and

upper bounds on the number of satisfied literals in the cardinality constraint. We refer

to b1, . . . , bm as a condition. The practical value of both constructs becomes apparent

when used with variables. For instance, a conditional literal like a(X) : b(X) in a rule’s

antecedent expands to the conjunction of all instances of a(X) for which the correspond-

ing instance of b(X) holds. Similarly, 2 {a(X) : b(X)} 4 is true whenever at least two

and at most four instances of a(X) (subject to b(X)) are true. Finally, objective func-

tions minimizing the sum of a set of weighted tuples (wi, ti) subject to condition ci
are expressed as #minimize{w1@l1, t1 : c1; . . . ;wn@ln, tn : cn}. Analogously, objective
functions can be optimized using the #maximize statement. Lexicographically ordered

objective functions are (optionally) distinguished via levels indicated by li. An omitted

level defaults to 0. Furthermore, wi is a numeral constant and ti a sequence of arbitrary

terms. Alternatively, the above minimize statement can be expressed by weak constraints

of the form ←↩ ci[wi@li, ti] for 1 ≤ i ≤ n.
As an example, consider the following rule:

1{move(D,P, T ) : disk(D), peg(P )}1← ngoal(T − 1), T ≤ n.
This rule has a single head atom consisting of a cardinality constraint; it comprises all

instances of move(D,P, T ) where T is fixed by the two body literals and D and P vary

3 More elaborate forms of aggregates can be obtained by explicitly using function (e.g., #count) and
relation symbols (eg. <=).
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over all instantiations of predicates disk and peg , respectively. Given 3 pegs and 4 disks,

this results in 12 instances of move(D,P, T ) for each valid replacement of T , among

which exactly one must be chosen according to the above rule.

Full details of the input language of clingo, along with various examples and its

semantics, can be found in the papers by Gebser et al . (2015). The interested reader

is also referred to the work by Calimeri et al . (2019) for the description of the ASP Core

2 Language.

A logic program can have zero, one, or multiple answer sets. This distinguishes answer

set semantics from other semantics of logic programs such as the well-founded semantics

of Van Gelder et al . (1991) or perfect models semantics of Przymusinski (1988). Answer

set semantics, together with the introduction of choice rules and constraints, enables

the development of ASP as proposed by Lifschitz (1999). Following this approach, a

problem can be solved by a logic program whose answer sets correspond one-to-one to

the problem’s solutions. Choice rules are often used to generate potential solutions and

constraints are used to eliminate potential but incorrect solutions.

2.2 Reasoning about actions: The action description language B
We review the basics of the action description language B (Gelfond and Lifschitz 1998).

An action theory in B is defined over a set of actions A and a set of fluents F. A fluent

literal is a fluent f ∈ F or its negation ¬f . A fluent formula is a Boolean formula

constructed from fluent literals. An action theory is a set of laws of the form

caused(ϕ, f) (1)

causes(a, f, ϕ) (2)

executable(a, ϕ) (3)

initially(f), (4)

where f and ϕ are a fluent literal and a set of fluent literals, respectively, and a is an

action. A law of the form (1) represents a static causal law, that is, a relationship between

fluents. It conveys that whenever the fluent literals in ϕ hold then so is f . A dynamic

causal law is of the form (2) and represents the (conditional) effect of a while a law of the

form (3) encodes an executability condition of a. Intuitively, an executability condition of

the form (3) states that a can only be executed if ϕ holds. A dynamic law of the form (2)

states that f is caused to be true after the execution of a in any state of the world where

ϕ holds. When ϕ = ∅ in (3), we often omit laws of this type from the theory. Statements

of the form (4) describe the initial state. They state that f holds in the initial state. We

also often refer to ϕ as the “precondition” for each particular law.

An action theory is a pair (D,Γ) where Γ, called the initial state, consists of laws of the

form (4) and D, called the domain, consists of laws of the form (1)–(3). For convenience,

we sometimes denote the set of laws of the form (1) by DC .

Example 1

Let us consider a modified version of the suitcase s with two latches from the work by

Lin (1995). We have a suitcase with two latches l1 and l2. l1 is up and l2 is down. To

open a latch (l1 or l2), we need a corresponding key (k1 or k2, respectively). When the

two latches are in the up position, the suitcase is unlocked. When one of the latches is

https://doi.org/10.1017/S1471068422000072 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000072


Answer set planning: A survey 231

down, the suitcase is locked. In this domain, we have that

A = {open(li), close(li), get key(ki) | i ∈ {1, 2}}
and

F = {locked} ∪ {up(li), holding(ki) | i ∈ {1, 2}}.
The intuitive meaning of the actions and fluents is clear. The problem can be represented

using the laws

Ds =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

causes(open(li), up(li), ∅)
causes(close(li),¬up(li), ∅)
causes(get key(ki), holding(ki), ∅)
executable(open(li), {holding(ki)})
caused({¬up(li)}, locked)
caused({up(l1), up(l2)},¬locked),

where, in all laws, i = 1, 2. The first three laws describe the effects of the action of opening

a latch, closing a latch, or getting a key. The fourth law encodes that we can open the

latch only when we have the right key. Observe that the omission of executability laws

for close(li) or get key(ki) indicates that these actions can always be executed. The last

two laws are static causal laws encoding that the suitcase is locked when either of the

two latches is in the down position and it is unlocked when the two latches are in the up

position.

A possible initial state of this domain is given by

Γs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

initially(up(l1))

initially(¬up(l2))
initially(locked)

initially(¬holding(k1))
initially(holding(k2)).

	
A domain given in B defines a transition function from pairs of actions and states to

sets of states whose precise definition is given below. Intuitively, given an action a and

a state s, the transition function Φ defines the set of states Φ(a, s) that may be reached

after executing the action a in state s. The mapping to a set of states captures the fact

that an action can potentially be non-deterministic and produce different results (e.g., an

action open might be successful in opening a lock or not if we account for the possibility

of a broken lock). If Φ(a, s) is an empty set it means that the execution of a in s is

undefined. We now formally define Φ.

Let D be a domain in B. A set of fluent literals is said to be consistent if it does not

contain f and ¬f for some fluent f . An interpretation I of the fluents in D is a maximal

consistent set of fluent literals of D. A fluent f is said to be true (resp. false) in I if f ∈ I
(resp. ¬f ∈ I). The truth value of a fluent formula in I is defined recursively over the

propositional connectives in the usual way. For example, f ∧ g is true in I if f is true in
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I and g is true in I. We say that a formula ϕ holds in I (or I satisfies ϕ), denoted by

I |= ϕ, if ϕ is true in I.

Let u be a consistent set of fluent literals and K a set of static causal laws. We say

that u is closed under K if for every static causal law

caused(ϕ, f)

in K, if u |= ∧
p∈ϕ p then u |= f . By ClK(u) we denote the least consistent set of literals

from D that contains u and is also closed under K. It is worth noting that ClK(u) might

be undefined when it is inconsistent. For instance, if u contains both f and ¬f for some

fluent f , then ClK(u) cannot contain u and be consistent; another example is that if

u = {f, g} and K contains

caused({f}, h) and caused({f, g},¬h),
then ClK(u) does not exist because it has to contain both h and ¬h, which means that

it is inconsistent.

Formally, a state of D is an interpretation of the fluents in F that is closed under the

set of static causal laws DC of D.

An action a is executable in a state s if there exists an executability proposition

executable(a, ϕ)

in D such that s |= ∧
p∈ϕ p. Clearly, if ϕ = ∅, then a is executable in every state of D.

The direct effect of an action a in a state s is the set

e(a, s) =

⎧⎨⎩f | causes(a, f, ϕ) ∈ D, s |= ∧
p ∈ ϕ

p

⎫⎬⎭ .

For a domain D, the set of states Φ(a, s) that may be reached by executing a in s, is

defined as follows.

1. If a is executable in s, then

Φ(a, s) = {s′ | s′ is a state and s′ = ClDC
(e(a, s) ∪ (s ∩ s′))};

2. If a is not executable in s, then Φ(a, s) = ∅.
Intuitively, the states produced by Φ(a, s) are fixpoints of an equation, obtained by closing

(with respect to all static causal laws) the set which includes the direct effects e(a, s) of

action a and the fluents whose value does not change as we transition from s to s′ through
action a (i.e., s ∩ s′).
The presence of static causal laws introduces non-determinism to action theories, that

is, Φ(a, s) can contain more than one element. For instance, consider the theory with the

set of laws

{causes(a, f), caused({f,¬g},¬h), caused({f,¬h},¬g)}.
It is easy to check that

Φ(a, {¬f,¬g,¬h}) = {{f, g,¬h}, {f,¬g, h}}.
Every domain D in B has a unique transition function Φ, and we say Φ is the transition

function of D. We illustrate the definition of the transition function in the next example.
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Example 2

For the suitcase domain in Example 1, the initial state, given by the set of laws Γs, is

defined by

s0 = {up(l1),¬up(l2), locked,¬holding(k1), holding(k2)}.
In state s0, the three actions open(l2), close(l1), and close(l2) are executable. open(l2)

is executable since holding(k2) is true in s0 while close(l1) and close(l2) are executable

since the theory (implicitly) contains the laws

executable(close(l1), {}) and executable(close(l2), {})
which indicate that these two actions are always executable. The following transitions

are possible from state s0:

{ up(l1), up(l2),¬locked,¬holding(k1), holding(k2) } ∈ Φ(open(l2), s0).

{ up(l1),¬up(l2), locked,¬holding(k1), holding(k2) } ∈ Φ(close(l2), s0).

{ ¬up(l1),¬up(l2), locked,¬holding(k1), holding(k2) } ∈ Φ(close(l1), s0).

	
The transition function Φ is extended to define Φ̂ for reasoning about effects of action

sequences in the usual way. For a sequence of actions α = 〈a0, . . . , an−1〉 and a state s,

Φ̂(α, s) is a collection of states defined as follows:

• Φ̂(α, s) = {s} if α = 〈 〉;
• Φ̂(α, s) = Φ(a0, s) if n = 1;

• Φ̂(α, s) =
⋃

s′∈Φ(a0,s)
Φ̂(α′, s′) if n > 1, Φ(a0, s) �= ∅, and Φ̂(α′, s′) �= ∅ for every

s′ ∈ Φ(a0, s) where α
′ = 〈a1, . . . , an−1〉.

A domain D is consistent if for every action a and state s, if a is executable in s,

then Φ(a, s) �= ∅. An action theory (D,Γ) is consistent if D is consistent and s0 = {f |
initially(f) ∈ Γ} is a state of D. In what follows, we consider only consistent action

theories and refer to s0 as the initial state of D. We call a sequence of alternate states

and actions s0a0 . . . ak−1sk a trajectory if si+1 ∈ Φ(a, si) for every i = 0, . . . , k − 1.

A planning problem with respect to B is specified by a triple 〈D,Γ,Δ〉 where (D,Γ)

is an action theory in B and Δ is a set of fluent literals (or goal). A sequence of actions

α = 〈a0, . . . , an−1〉 is then called an optimistic plan for Δ if there exists some s ∈ Φ̂(α, s0)

such that s |= Δ where s0 is the initial state of D. Note that we use the term “optimistic

plan” to refer to α, as used by Eiter et al . (2003b), instead of “plan” because the non-

determinicity of D does not guarantee that the goal is achieved in every state reachable

after the execution of α. However, if D is deterministic, that is, |Φ(a, s)| ≤ 1 for every

pair (a, s) of actions and states, then the two notions of “optimistic plan” and “plan”

coincide.

3 Planning with complete information

Given a planning problem P = 〈D,Γ,Δ〉, answer set planning solves it by translating it

into a logic program Π(P, n) whose answer sets correspond one-to-one to optimistic plans

of length ≤ n of P. Intuitively, each answer set corresponds to a trajectory s0a0 . . . an−1sn
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such that sn |= Δ. As such, the choices that need to be made at each step k in program

Π(P, n) are either the action ak or the state sk. This leads to different encodings, referred

to as action-based and state-based, which emphasize the object of the selection process.

Over the years, several types of encodings have been developed. We present below

two of the most popular mappings of planning problems to logic programs. The first

encoding, presented in Subsection 3.1, views the problem P as a set of laws in the

language B (Subsection 2.2) while the second encoding, illustrated in Subsection 3.2,

views the problem as a set of facts. In both encodings, the program Π(P, n) contains the
atom4 time(0..n) to represent the set of facts {time(0), . . . , time(n)}.

3.1 A direct encoding

The rules of Π(P, n) in this encoding are described by Son et al . (2006). The main

predicates in the program are:

1. holds(F, T ) – the fluent literal F is true at time step T ;

2. occ(A, T ) – the action A occurs at time step T ; and

3. possible(A, T ) – the action A is executable at time step T .

The program contains two sets of rules. The first set of rules is domain dependent. The

rules in the second set are generic and common to all problems. For a set of literals ϕ,

we use holds(ϕ, T ) to denote the set {holds(L, T ) | L ∈ ϕ}.

3.1.1 Domain-dependent rules

For each planning problem P = 〈D,Γ,Δ〉, program Π(P, n) contains the following rules:

1. For each element initially(f) of form (4) in Γ, the fact

holds(f, 0)← (5)

stating that the fluent literal f holds at time step 0.

2. For each executability condition executable(a, ϕ) of form (3) in D, the rule

possible(a, T )← time(T ), holds(ϕ, T ) (6)

stating that it is possible to execute the action a at time step T if ϕ holds at time

step T .

3. For each dynamic causal law causes(a, f, ϕ) of form (2) in D, the rule

holds(f, T + 1) ← time(T ), occ(a, T ), holds(ϕ, T ) (7)

stating that if a occurs at time step T then the fluent literal f becomes true at

T + 1 if the conditions in ϕ hold.

4. For each static causal law caused(ϕ, f) of form (1) in D, the rule5

holds(f, T )← time(T ), holds(ϕ, T ) (8)

4 Throughout the paper, we will use the syntax implemented in the clingo system.
5 If f = false then the head of the rule is empty.
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which represents a straightforward translation of the static causal law into a logic

programming rule.

5. To guarantee that an action is executed only when it is executable, the constraint

← time(T ), occ(A, T ), not possible(A, T ). (9)

We demonstrate the above translation by listing the set of domain dependent rules for

the domain from Example 1.

Example 3

Besides the set of facts encoding actions and fluents and the initial state (for each a ∈ A,

f ∈ F and initially(l) ∈ Γs),

action(a)← fluent(f)← holds(l, 0)←
the encoding of the suitcase domain in Example 1 contains the following rules for i = 1, 2:

holds(up(li), T + 1) ← time(T ), occ(open(li), T )

holds(¬up(li), T + 1) ← time(T ), occ(close(li), T )

holds(holding(ki), T + 1) ← time(T ), occ(get key(ki), T )

possible(open(li), T ) ← time(T ), holds(holding(ki), T )

holds(locked, T ) ← time(T ), holds(¬up(li), T )
holds(¬locked, T ) ← time(T ), holds(up(l1), T ), holds(up(l2), T )

possible(close(li), T ) ← time(T )

possible(get key(ki), T ) ← time(T ).

Each of the first six rules corresponds to a law in Ds. The last two rules are

added because there is no restriction on the executability condition of close(li) or

get key(ki). �

3.1.2 Domain independent rules

The set of domain independent rules of Π(P, n) consists of rules for generating action

occurrences and encoding the frame axiom.

1. Action generation rule: To create plans, Π(P, n) must contain rules that generate

action occurrences of the form occ(a, t). This is encoded by the rule

1{occ(A, T ) : action(A)}1← time(T ), T < n (10)

stating that exactly one action must occur at each time step. It makes use of the

cardinality atom 1{occ(A, T ) : action(A)}1 which is true for a time step T iff

exactly one atom in the set {occ(A, T ) : action(A)} is true. The former atom can

be replaced by l{occ(A, T ) : action(A)}u where 0 ≤ l ≤ u to allow for different

types of plans, e.g., for parallel plans, l > 1.

2. Inertia rule: The frame axiom, which states that a property continues to hold unless

it is changed, is encoded as follows:

holds(F, T+1) ← time(T ), f luent(F ), holds(F, T ), not holds(¬F, T+1) (11)

holds(¬F, T+1) ← time(T ), f luent(F ), holds(¬F, T ), not holds(F, T+1) (12)
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3. Consistency constraint: To ensure that states encoded by answer sets are consistent,

Π(P, n) contains the following constraint:

← fluent(F ), holds(F, T ), holds(¬F, T ). (13)

Observe that this constraint is needed because holds(f, t) and holds(¬f, t) are

“consistent” for answer set solvers. It would not be needed if holds(¬f, t) is encoded
as ¬holds(f, t).

3.1.3 Goal representation

The goal Δ is encoded by rules defining the predicate goal, which is true whenever Δ is

true, and a rule that enforces that Δ must be true at time step n. For example, if Δ is

a conjunction of literals p1 ∧ . . . ∧ pk, then the rules

goal ← holds(p1, n), . . . , holds(pk, n) (14)

← not goal (15)

encode Δ and enforce that Δ must be true at time step n.

3.1.4 Correctness of the encoding

Let P = (D,Γ,Δ) and Π(P, n) be the logic program consisting of

• the set of facts encoding fluents and literals in D;

• the set of domain-dependent rules encoding D and Γ (rules (5)–(9)) in which the

domain of T is {0, . . . , n};
• the set of domain-independent rules (rules (10)–(12)) in which the domain of T is

{0, . . . , n}; and
• the rules (13)–(15).

The following result shows the equivalence between optimistic plans achieving Δ and

answer sets of Π(P, n). To formalize the theorem, we introduce some additional notation.

For an answer set M of Π(P, n), we define

si(M) = {f | f is a fluent literal and holds(f, i) ∈M}.

Theorem 1

For a planning problem 〈D,Γ,Δ〉 with a consistent action theory (D,Γ), s0a0 . . . an−1sn
is a trajectory achieving Δ iff there exists an answer set M of Π(P, n) such that

1. occ(ai, i) ∈M for i ∈ {0, . . . , n− 1} and
2. si = si(M) for i ∈ {0, . . . , n}.

Remark 1

1. The proof of Theorem 1 relies on the following observations: M is an answer set of

Π(P, n) iff
• for every i such that 0 ≤ i < n, there exists some ai ∈ A such that

occ(ai, i) ∈M and ai is executable in si(M);
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• s0(M) is the initial state of the action theory (D,Γ) and is consistent.

Furthermore, for every i such that 0 ≤ i < n, si+1(M) ∈ Φ(ai, si(M));

and

• Δ is true in sn(M).

The theorem is similar to the correspondence between histories and answer sets

explored by Lifschitz and Turner (1999) and by Son et al . (2006).

2. If (D,Γ) is deterministic then Theorem 1 can be simplified to “a0, a1, . . . , an−1 is a

plan achieving Δ iff there exists an answer set M of Π(P, n) such that occ(ai, i) ∈
M for i ∈ {0, . . . , n− 1}.”

3. A different variant of this encoding, which uses f(�x, t) and ¬f(�x, t) instead of

holds(f(�x), t) and holds(¬f(�x), t), respectively, can be found in several papers

related to answer set planning, for example, in the papers by Lifschitz (1999)

and (2002).

4. The action language B could be extended with various features such as default

fluents, effects of action sequences, etc. as discussed by Gelfond and Lifschitz (1998).

These features can be easily included in the encoding of Π(P, n). On the other

hand, such features are rarely considered in action domains used by the planning

community. For this reason, we do not consider such features in this survey.

5. Readers familiar with current answer set solvers such as clingo or dlv could be

wondering why holds(¬f, t) is used instead of a perhaps more intuitive ¬holds(f, t).
Indeed, the former can be replaced by the latter. The use of holds(¬f, t) is influ-

enced by early Prolog programs written for reasoning about actions and changes by

Michael Gelfond. A Prolog program that translates a planning problem to its ASP

encoding can be found at https://www.cs.nmsu.edu/~tson/ASPlan/Knowledge/

translate.pl.

6. Different approaches to integrate various types of knowledge to answer set planning

can be found in the work by Dix et al . (2005) and Son et al . (2006).

3.2 Meta encoding

The meta encoding presented in this section encodes a planning problem P = 〈D,Γ,Δ〉 as
a set of facts, in addition to a set of domain-independent rules for reasoning about effects

of actions. To distinguish this encoding from the previous one, we denote this encoding

with Πm(P, n). In this encoding, a set ϕ is represented using the atom set(sϕ), where sϕ
is a new atom associated to ϕ, and a set of atoms of the form {member(sϕ, p) | p ∈ ϕ}.
The laws in D are represented by the set of facts

caused(f, ssf ). set(ssf ). ssf is the identifier for ϕ in caused(f, ϕ) in D (16)

causes(a, f, sdf ). set(sdf ). sdf is the identifier for ϕ in causes(a, f, ϕ) in D (17)

executable(a, sa). set(sa). sa is the identifier for ϕ in executable(a, ϕ) in D (18)

and the set of facts encoding ssf , sdf , and sa.

In addition to the action generation rule (10), the inertial rules (11)–(12), the goal

representation rules (14)–(15), and the constraint stating that actions can occur only

when they are executable (9), the program Πm(P, n) contains the following rules for
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reasoning about effects of actions:

holds(S, T ) ← time(T ), set(S), (19)

holds(F, T ) : fluent(F ),member(S, F );

holds(¬F, T ) : fluent(F ),member(S,¬F ).
holds(L, T + 1) ← time(T ), causes(A,F, S), occ(A, T ), holds(S, T ) (20)

holds(L, T ) ← time(T ), caused(L, S), holds(S, T ) (21)

possible(A, T ) ← time(T ), executable(A,S), holds(S, T ) (22)

Rule (19) defines the truth of a set of fluents S at time step T , by declaring that S

holds at T if all of its members are true at T . The intuition behind the rules (20)–(22) is

clear. Similarly to Theorem 1, answer sets of Πm(P, n) correspond one-to-one to possible

solutions (optimistic plans) of P.
Remark 2

A similar encoding to Πm(P, n) is used in the system plasp version 3 by Dimopoulos

et al . (2019). A translation of planning problems from PDDL format to ASP facts can

be found at https://github.com/potassco/plasp.

3.3 Adding heuristics: Going for performance

By using ASP systems for solving planning problems, we employ general purpose systems

rather than genuine planning systems. In particular, the distinction between action and

fluent variables or fluent variables of successive states completely eludes the ASP system.

Pioneering work in this direction was done by Rintanen (2012), where the implementation

of SAT solvers was modified in order to boost performance of SAT planning. Inspired

by this research direction, Gebser et al . (2013) developed a language extension for ASP

systems that allows users to declare heuristic modifiers that take effect in the underlying

ASP system clingo.

More precisely, a heuristic directive is of form

#heuristic a : b1, . . . , bm. [w,m],

where a is an atom and b1, . . . , bm is a conjunction of literals; w is a numeral term andm a

heuristic modifier, indicating how the solver’s heuristic treatment of a should be changed

whenever b1, . . . , bm holds. Clingo distinguishes four primitive heuristic modifiers:

init for initializing the heuristic value of a with w,

factor for amplifying the heuristic value of a by factor w,

level for ranking all atoms; the rank of a is w,

sign for attributing the sign of w as truth value to a.

For instance, whenever a is chosen by the solver, the heuristic modifier sign enforces that

it becomes either true or false depending on whether w is positive or negative, respectively.

The other three modifiers act on the atoms’ heuristic values assigned by the ASP solver’s
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heuristic function.6 Moreover, for convenience, clingo offers the heuristic modifiers true

and false that combine level and sign statement.

With them, we can directly describe the heuristic restriction used in the work by

Rintanen (2011) to simulate planning by iterated deepening A∗ (Korf 1985) through

limiting choices to action variables, assigning those for time T before those for time T+1,

and always assigning truth value true (where n is a constant indicating the planning

horizon):

#heuristic occ(A, T ) : action(A), time(T ). [n− T, true].
Inspired by, and yet different from the work by Rintanen (2012), Gebser et al . (2013)

devise a dynamic heuristic that aims at propagating fluents’ truth values backwards in

time. Attributing levels via n-T+1 aims at proceeding depth-first from the goal fluents.

#heuristic holds(F, T − 1) : holds(F, T ). [n− T + 1, true]

#heuristic holds(F, T − 1) : fluent(F ), time(T ), notholds(F, T ). [n− T + 1, false].

In an experimental evaluation conducted by Gebser et al . (2013), this heuristic led to a

speed-up of up to two orders of magnitude on satisfiable planning problems.

3.4 Context: Classical planning

Classical planning has been an intensive research area for many years. The famous Shakey

robot7 used a planner for path planning. This project also led to the introduction of

the Stanford Research Institute Problem Solver (STRIPS) language (Fikes and Nilsson

1971), the first representation language for planning domain description. This language

has since evolved into the Planning Domain Definition Language (PDDL) (Ghallab et al .

1998), a major planning domain description language. We noted that PDDL with state

constraints is as expressive as B. It is worth noticing that state constraints are often

not considered by the planning community even though the benefit of dealing directly

with state constraints is known (Thiebaux et al . 2003). Furthermore, it is often assumed

that state constraints in PDDL are stratified, for example, the dependency graph among

fluent literals8 should be cycle free.

Several planning algorithms have been developed and implemented such as forward or

backward search over the state space (see, a survey by Hendler et al . 1990) and search

in the plans space (a.k.a. partial order planning, see, e.g. a survey by Weld 1994). Such

research also led to the development of domain-dependent planners which utilize domain

knowledge to improve their scalability and efficiency (e.g., hierarchical planning systems

Sacerdoti 1974). Researchers realized early on that systematic state space search would

not yield planning systems that are sufficiently scalable and efficient for practical appli-

cations. A significant milestone in the development of domain-independent planners is

the invention of GraphPlan by Blum and Furst (1997). The basic data structure of

6 See the paper by Gebser et al . (2013) and the user guide by Gebser et al . (2015) for a comprehensive
introduction to heuristic modifiers in clingo.

7 http://www.ai.sri.com/shakey/.
8 The dependency graph is a directed graph whose nodes are fluent literals and whose set of edges
contains (l, l′) if caused(ϕ, l) is a static causal law and l′ ∈ ϕ.
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GraphPlan, the planning graph, is an important resource for the development of plan-

ning heuristics (Kambhampati et al . 1997). It plays a key role in the success of heuristic

planners such as FF (Hoffmann and Nebel 2001) and HSP (Bonet and Geffner 2001)

which dominate several International Planning Competitions (Long et al . 2000; Bacchus

2001; Gerevini et al . 2004). This success is followed by several other systems (Helmert

2006; Richter and Helmert 2009; Helmert et al . 2011), whose impressive performance can

be attributed to advances in the representation language for planning (e.g., the language

SAS+ that supports a compact representation of states Bäckström and Nebel 1995) and

their underlying heuristics constructed via reachability analysis and techniques such as

landmarks recognition, abstraction, operator ordering, and decomposition (Bonet and

Helmert 2010; Zhu and Givan 2004; Helmert and Domshlak 2009; Helmert and Geffner

2008; Helmert and Mattmüller 2008; Hoffmann et al . 2004; Hoffmann 2005; Pommeren-

ing et al . 2020; Richter and Helmert 2009; Röger and Helmert 2010; Vidal and Geffner

2006). All of these planning systems implement a heuristic search algorithm. Therefore,

their scalability and efficiency are heavily dependent on the implemented heuristic, that

is, how discriminant is the heuristic and how efficient can it be computed. In most sys-

tems, completeness and efficiency have to be traded off. In some planner, an automatic

mechanism for returning to systematic search is established whenever the heuristic deems

not useful (e.g., the system FF).

The idea of using automated theorem solvers in planning can be traced back to the

work by Green (1969) who demonstrated that automated reasoning systems can be used

for planning. A significant step in this direction is proposed by Kautz and Selman (1992)

who introduced satisfiability planning and showed that with an improved satisfiability

solver, SAT-based planning can be competitive with search based planners (Kautz

et al . 1996). This approach was later advanced by several other researchers and results

in many SAT-based or logic programming-based planning systems (Chen et al . 2009;

Dimopoulos et al . 1997; Rintanen et al . 2006; Robinson et al . 2009; Rintanen 2012) that

are often competitive or more efficient comparing to search-based planners. Constraint

satisfaction techniques have also been employed in planning (Kautz and Walser 1999;

Do and Kambhampati 2003; Sideris and Dimopoulos 2010; Dovier et al . 2009). As we

have mentioned in the introduction, the success of SAT-base planning is likely the source

of inspiration for the use of logic programming with answer sets semantics for planning.

Indeed, there are several similarities between a SAT-based encoding of a planning

program proposed by Kautz and Selman (1992) and its ASP-encoding presented in this

section. They share the following features:

• the use of time steps in representing the planning horizon: SAT-based encoding

prefers to use f(�x, t) and ¬f(�x, t) instead of holds(f(�x), t) and holds(¬f(�x), t);
• the encoding of actions’ executability and the effects of actions;

• the encoding of the frame axioms; and

• the encoding for action generation.

In this sense, one can say that SAT-planning and answer set planning are cousins to each

other. Both relish the use of knowledge representation techniques and the development

of logical solvers in planning. The key difference between them lies in the underlying

representation language and solver.
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Green’s idea has also been investigated in event calculus planning. The main reasoning

system behind this approach is the event calculus, which is introduced by Kowalski and

Sergot (1986) for reasoning about narratives and database updates. An action theory (or

a planning problem) can be described by an event calculus program that is similar to the

program described in Section 3.1. In particular, this program consists of rules encoding

the initial state, effects of actions, and solution to the frame axiom. Earlier development

of event calculus does not consider static causal laws. This issue is addressed by Shanahan

(1999). Eshghi (1988) introduced a variant of the event calculus, called EVP (an event

calculus for planning), and combined it with abductive reasoning to create ABPLAN. We

believe that this is the first planning system that integrates event calculus and abduction.

Denecker et al . (1992) developed SLDNFA, a procedure for temporal reasoning with

abductive event calculus, and showed how this procedure can be used for planning. The

authors of SLDNFA continued this line of research and developed CHICA (Missiaen et al .

1995). The underlying algorithm of this system is a specialized version of the abductive

reasoning procedure for event calculus. An interesting feature of this system is that it

allows for the user to specify the search strategy and heuristics at the domain level,

allowing for domain dependent information to be exploited in the search for a solution.

Other proof procedures for event calculus planning can be founded in the work by Endriss

et al . (2004), Mueller (2006), and Shanahan (2000) and 1997. It is worth noting that a

major discussion in these work is the condition for the soundness and completeness of

the proof procedures, that is, the planning systems. To the best of our knowledge, most

of the event calculus based planning systems are implemented on a Prolog system and

no experimental evaluation against other planning systems has been conducted.

4 Conformant planning

The previous section assumes that the initial state Γ in the planning problem P =

〈D,Γ,Δ〉 is complete, that is, the truth value of each property of the world is known. In

practice, this is not always a realistic assumption.

Example 4 (Bomb-In-The-Toilet Example)

There may be a bomb in a package. The process of dunking the package into a toilet will

disarm the bomb. This action can be executed only if the toilet is not clogged. Flushing

the toilet will unclog it. This domain can be described by the following domain:

• Fluents: armed, clogged

• Actions: dunk, flush

• Domain description:

Db =

⎧⎪⎪⎨⎪⎪⎩
causes(dunk,¬armed, {armed})
causes(flush,¬clogged, {})
executable(dunk, {¬clogged}).

Suppose that our goal is to disarm the bomb. However, we are not sure whether the

toilet is clogged. In other words, the planning problem that we need to solve is Pbomb =

〈Dbomb, ∅,¬armed〉. �
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The problem Pbomb is an example of a planning problem with incomplete information.

It is easy to see that α = 〈dunk〉 is not a good solution for Pbomb since α is not executable

when the toilet is clogged. On the other hand, β = 〈flush, dunk〉 is executable and

achieves the goal in every possible initial state of the problem. Eiter et al . (2003b) refer

to β as a secure plan – a solution – for the conformant planning problem Pbomb.

Let D be an action theory and δ a set of fluent literals of D. We say that δ is a partial

state of D if there exists some state s such that δ ⊆ s. comp(δ), called the completion

of δ, denotes the set of all states s such that δ ⊆ s. A literal � possibly holds in δ if

δ �|= � where � denotes the complement of �. A set of literals λ possibly holds in δ if

every element of λ possibly holds in δ. In the following, we often use superscripts and

subscripts to differentiate partial states from states.

A conformant planning problem P is a tuple 〈D, δ0,Δ〉 where D is an action theory

and δ0 is a partial state of D.

An action sequence α = 〈a0, . . . , an−1〉 is a solution (or conformant/secure plan) of P
if for every state s0 ∈ comp(δ0), Φ̂(α, s0) �= ∅ and Δ is true in every state belonging to

Φ̂(α, s0) �= ∅.
Observe that conformant planning belongs to a higher complexity class than classical

planning (see, e.g., the work by Baral et al . 2000; Eiter et al . 2000; Haslum and Jonsson

2000, or Turner 2002). Even for action theories without static causal laws, checking

whether a conformant problem has a polynomially bounded solution is Σ2
P -complete.

Therefore, simply modifying the rules encoding the initial state (5) of Π(P, n) (e.g., by

adding rules to complete the initial state) is insufficient. Different approaches have been

proposed for conformant planning, each addressing the incomplete information in the

initial state in a different way. In this section, we discuss two ASP-based approaches

proposed by Eiter et al . (2003b), Son et al . (2005b), and Tu et al . (2011).

4.1 Conformant planning with a security check using logic program

Eiter et al . (2003b) introduced the system dlvK for planning with incomplete information.

The system employs a representation language that is richer than the language B, since
it considers additional features such as defaults and effects after a sequence of actions.

For simplicity of the presentation, we present the approach used in dlvK for conformant

planning problems specified in B. We note that the original dlvK employs the direct

encoding of planning problems as described in Remark 1, Item 3. We adapt it to the

encoding used in the previous section.

dlvK generates a conformant plan for a problem P in two steps. The first step consists

of generating an optimistic plan; the second step is the verification that such plan is a

secure plan, since an optimistic plan is not necessarily a secure plan. dlvK implements

Algorithm 1.

The two tasks in Lines 1 and 2 in Algorithm 1 are implemented using different ASP

programs. The generation step (Line 1) can be done using the program Πcdlv (P, n) which
consists of the program Π(P, n) together with the rules that specify the values of unknown

fluents in the initial state:

holds(f, 0) ∨ holds(¬f, 0)← (f is a fluent and {f,¬f} ∩ δ0 = ∅). (23)
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Algorithm 1: dlvK Algorithm

Input: Conformant planning problem P = 〈D, δ0,Δ〉
Output: A secure plan α for P

1 while there exists an optimistic plan α for P do

2 if α is a secure plan then

3 return α

4 return no-plan

It is easy to see that any answer set of Πcdlv (P, n) contains an optimistic plan (Theo-

rem 1). Assume that α = 〈a0, . . . , an−1〉 is the sequence of actions generated by program

Πcdlv (P, n), dlvK takes α and the action theory (D, δ0) and creates a program that checks

whether or not α is a secure plan. If it is, then dlvK returns α. Otherwise, it continues

computing an optimistic plan and verifying that the plan is secure, until there are no

additional optimistic plans available, which indicates that the problem has no solution.

We next discuss the main idea in the second step of dlvK (Line 2).

Intuitively, if α is a secure plan, then its execution in every possible initial state results

in a final state in which the goal is satisfied. In other words, α is not a secure plan if

there exists an initial state in which the execution of α is not possible. This can happen

in the following situations:

• the goal is not satisfied after the execution of α;

• some action ai in α is not executable, that is, possible(ai, i) is not true; or

• some constraints are violated.

Let Check(P, α, n) be the program obtained from Πcdlv (P, n) by introducing a new atom,

notex, which denotes that α is not secure and

• replacing (9) with the rule

notex← time(T ), occ(A, T ), not possible(A, T )

• replacing (10) with the set of action occurrences

{occ(ai, i) | i = 0, . . . , n− 1}
• replacing (13) with

notex ← fluent(F ), T > 0, holds(F, T ), holds(¬F, T )
← fluent(F ), holds(F, 0), holds(¬F, 0)

• replacing (8), for each constraint caused(ϕ, false), with the rule

notex← time(T ), T > 0, holds(ϕ, T )

• replacing (15) with

← goal, not notex.

If Check(P, α, n) has an answer set M then either the goal is not satisfied or notex ∈M .

Observe that the rules replacing (13) and (8) guarantee that {f | holds(f, 0) ∈M}∪{¬f |
holds(¬f, 0) ∈ M} is a state of the action domain in P. If the goal is not satisfied and
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notex �∈ M , then we have found an initial state from which the execution of α does not

achieve the goal. Otherwise, notex ∈M implies that

• an action ai is not executable in the state at time step i or

• there is some step j > 0 such that the state at time step j is inconsistent or violates

some static causal laws.

In either case, this means that there exists some initial state in which the execution of α

fails, that is, α is not a secure plan. On the other hand, if Check(P, α, n) has no answer

sets, then there are no possible initial states such that the execution of α fails, that is, α

is a secure plan.

4.2 Approximation-based conformant planning

Approximation-based conformant planning deals with the complexity of conformant plan-

ning by proposing a deterministic approximation of the transition function Φ, denoted

by Φa, which maps pairs of actions and partial states such that for every δ, δ′, and s

such that Φa(a, δ) = δ′ and s ∈ comp(δ), it holds that
• a is executable in s; and

• δ′ ⊆ s′ for every s′ ∈ Φ(a, s).

Intuitively, the above conditions require Φa to be sound with respect to Φ. We say that

Φa is sound approximation of Φ if the above conditions are satisfied.

The function Φa is extended to define Φ̂a in the similar fashion as Φ̂: for an action

sequence α = 〈a0, . . . , an−1〉,
• Φ̂a(α, δ) = δ if α = 〈 〉;
• Φ̂a(α, δ) = Φa(a0, δ) for n = 1; and

• Φ̂a(α, δ) = Φ̂a(α′,Φa(a0, δ)) where α′ = 〈a1, . . . , an−1〉, if Φ̂a(β, δ) is defined for

every prefix β of α.

Given a sound approximation Φa, we have that if Φ̂a(α, δ) = δ′ then for every s ∈
comp(δ), Φ̂(α, s) �= ∅ and for every s′ ∈ Φ̂(α, s), δ′ ⊆ s′. This means that a sound

approximation can be used for computing conformant plans. In the rest of this section,

we define a sound approximation of Φ and use if for conformant planning. Because the

program Π(P, n) implements Φ, we define the approximation by describing a program

Πa(P, n) approximating Φ.

Let a be an action and δ be a partial state. We say that a is executable in δ if a occurs

in an executability condition (3) and each literal in the precondition of the law holds in δ.

A fluent literal l is a direct effect (resp. a possible direct effect) of a in δ if there exists a

dynamic causal law (2) such that ψ holds (resp. possibly holds) in δ. Observe that if a is

executable in δ then it is executable in every state s ∈ comp(δ). Furthermore, the direct

effects of a in δ are also the direct effects of a in s, which in turn are the possible direct

effects of a in δ.

We next present the program Πa(P, n). Atoms of Πa(P, n) are atoms of Π(P, n) and
those formed by the following (sorted) predicate symbols:
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• de(l, T ) is true if the fluent literal l is a direct effect of an action that occurs at the

previous time step; and

• ph(l, T ) is true if the fluent literal l possibly holds at time step T .

Similar to holds(ϕ, T ), we write ρ(ϕ, T ) = {ρ(l, T ) | l ∈ ϕ} and not ρ(ϕ, T ) =

{not ρ(l, T ) | l ∈ ϕ} for ρ ∈ {holds, de, ph}. The rules in Πa(P, n) include most of the

rules from Π(P, n), except for the inertial rules, which need to be changed. In addition,

it includes rules for reasoning about the direct and possible effects of actions.

1. For each dynamic causal law (2) in D, Πa(P, n) contains the rule (7) and the next

rule

de(f, T + 1) ← time(T ), occ(a, T ), holds(ϕ, T ). (24)

This rule indicates that f is a direct effect of the execution of a. The possible effects

of a at T are encoded using the rule

ph(f, T + 1)← time(T ), occ(a, T ), not holds(ϕ, T ), not de(f, T + 1) (25)

which says that f might hold at T + 1 if a occurs at T and the precondition ϕ

possibly holds at T .

2. For each static causal law (1) in D, Πa(P, n) contains the rule (8) and the next

rule

ph(f, T ) ← time(T ), ph(ϕ, T ). (26)

This rule propagates the possible holds relation between fluent literals.

3. The rule (6) stating that a can occur if its executability condition is satisfied.

4. The inertial law is encoded as follows:

ph(L, T + 1) ← time(T ), f luent(L), not holds(¬L, T ), not de(¬L, T + 1) (27)

ph(¬L, T + 1) ← time(T ), f luent(L), not holds(L, T ), not de(L, T + 1) (28)

holds(L, T ) ← time(T ), f luent(L), not ph(¬L, T ), T �= 0. (29)

holds(¬L, T ) ← time(T ), f luent(L), not ph(L, T ), T �= 0. (30)

These rules capture the fact that L holds at time moment T > 0 if its negation

cannot possibly hold at T . Furthermore, L possibly holds at time moment T +1 if

its negation does not hold at T and is not a direct effect of the action occurring

at T . These rules, when used in conjunction with the rules (24)–(25), compute the

effects of the occurrence of action at time moment T .

5. Πa(P, n) also contains the rules of the form (9), (10), (13), and the rule encoding

the initial state and the goal state as in Π(P, n).
It can be shown that if δ is a partial state and x is an action executable in δ then

the program Πa(P, 1) ∪ {occ(x, 0)}, where P = 〈D, δ, ∅〉, has a unique answer set M

and {f | holds(f, 1) ∈ M} is a partial state of D. For this reason, Πa(P, n) can be

used to define a sound approximation Φa of Φ. The soundness of Φa is discussed in

details by Tu et al . (2011). This property indicates that Πa(P, n) can be used as an ASP

implementation of a conformant planner. The planner CPasp, as described by Tu et al .

(2011), employs this implementation.
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Remark 3

1. The key difference between CPasp and dlvK is the use of an approximation

semantics, which leads to the elimination of the security check in CPasp and

the use of a single call to the answer set solver to find a solution.

2. Eiter et al . (2003b) defined the notion of sound and complete security check that

can be used in the second step of dlvK algorithm. They also identified classes of

planning problems in which different security checks are sound and complete. The

security check described in Subsection 4.1 is an adaptation of the check SC1 in

the paper describing dlvK. It is sound and complete for domains called false-

committed planning domains. For consistent action theories considered in this

paper, SC1 is sound and complete. Observe that this security check could be used

together with the program Π(P, n) in the previous section to compute secure plans

for non-deterministic domains.

3. Alternative representation approaches may facilitate the search of solutions in

certain domains. For example, as discussed by Eiter et al . (2004), the knowledge-

state planning approach enables certain fluents to remain open (i.e., as three-valued

fluents), simplifying the state representation. Actions enable to either gain or forget

knowledge of such fluents. For example, in the bomb-in-the-toilet domain, encoded

in dlvK, this approach makes optimistic and secure plans equivalent.

4. CPasp, the conformant planner using Πa(P, n), performs well against logic-based

conformant planning systems (e.g., dlvK). Tu et al . 2011 shows that CPasp and

other logic-based systems are not as efficient and scalable in common benchmarks

used by the planning community. CPasp also does not consider planning problem

with disjunctive information. However, their performance is superior in domains

with static causal laws (Son et al . 2005a). In addition, logic-based planning systems

can generate parallel plans, while the existing heuristic search-based state-of-the-

art conformant planning systems do not.

5. Approximation has its own price. Approximation-based planning systems are in-

complete. CPasp, for example, cannot solve the problem P1
inc = 〈D1

inc, ∅, f〉 where
D1

inc consists of two dynamic laws:

causes(a, f, {g}) and causes(a, f, {¬g}).
More specifically, Πa(P1

inc, 1) has no answer sets, while Pinc has solution 〈a〉.
Similarly, CPasp cannot solve the problem P2

inc = 〈D2
inc, ∅, g〉 where D2

inc consists

of the following laws:

causes(a, f, ∅) caused({f, h}, g) caused({f,¬h}, g).
The main reason for the incompleteness of CPasp is that it fails to reason by cases.

Syntactic conditions that guarantee that the proposed approximation is complete

were proposed by Tu et al . (2011) and Son and Tu (2006). Those authors also

showed that the majority of planning benchmarks in the literature satisfy the

conditions. The reason why CPasp cannot solve some of the benchmarks is related

to the presence of a disjunctive formulae in the initial state.

6. Conformant planning using approximation is a successful approach in dealing with

incomplete information. Tran et al . (2013) have shown that, with additional tech-

niques to reduce the search space, such as goal splitting and combination of one-of
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clauses, approximation-based planners perform exceptionally well compared to

heuristic-based planning systems.

7. As with planning with complete information, ASP-based conformant planners such

as CPasp do not include any heuristics (e.g., as those discussed in Subsection 3.3).

This is a reason for the weak performance of CPasp compared to its search-based

counterparts.

The second reason that greatly affects the performance of ASP-based planners is

the need for grounding before solving. In many benchmarks used by the planning

community (see, e.g., the paper by Tran et al . 2013 for details), the initial belief

state of a small instance already contains 210 states and the minimal plan length

can easily reach 50. In most instances, grounding already fails. We believe that,

besides the use of heuristic, adapting techniques to reduce the search space such

as those proposed by Tran et al . (2013) and developing incremental grounding

technique for ASP solver (e.g., the work by Palù et al . 2009) could help to scale

up ASP-based conformant planners.

8. Various approximation semantics for action domains with static causal laws have

been defined (Son and Baral 2001; Son et al . 2005b; Tu et al . 2007). A discussion

on their strengths and weaknesses can be found in the paper by Tu et al . (2011). A

discussion of the performance of CPasp against other planning systems is included

in the next section.

4.3 Context: Conformant planning

As with classical planning, several search-based conformant planners have been developed

during the last three decades. Among them are GPT (Bonet and Geffner 2000), CGP

(Smith and Weld 1998), CMBT (Cimatti and Roveri 2000), Conformant-FF (CFF) (Hoff-

mann and Brafman 2006), KACMBP (Cimatti et al . 2004), POND (Bryce et al . 2006),

t0 (Palacios and Geffner 2007; 2009), t1 (Albore et al . 2011), CpA
9 (Son et al . 2005a;

Tran et al . 2009), CpLs (Nguyen et al . 2011), Dnf (To et al . 2009), Cnf (To et al . 2010a),

PIP (To et al . 2010b), GC[LAMA] (Nguyen et al . 2012), and CPCES (Grastien and

Scala 2020). With the exception of CMBT, KACMBP, t0, and GC[LAMA], the others

planners are forward search-based planners.

Differently from classical planning, a significant hurdle in the development of an effi-

cient and scalable conformant planner is the size of the initial belief state and the size

of the search space, which is double exponential in the size of the planning problem (see,

e.g., the work by Tran et al . 2013 for a detailed discussion on this issue). Each of the

aforementioned planners deals with this challenge in a different way. Different represen-

tations of belief states are used in CFF, Dnf, Cnf, and PIP. Specifically, CFF and

t1 make use of an implicit representation of a belief state as a sequence of actions from

the initial state to the belief state. KACMBP, CMBP, and POND use a BDD-based

representation (Bryant 1992). CpA approximates a belief state using a set of subsets of

states (partial states). t0 and GC[LAMA] translate a conformant planning problem to a

classical planning problem and use classical planners to compute solutions, avoiding the

9 Different versions of CpA have been developed. In this paper, whenever we refer to CpA, we mean
CpA(H), the version used in IPC 2008, http://ippc-2008.loria.fr/wiki/index.php/Main_Page.
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need to deal with an explicit belief state representation. Additional improvements have

been proposed in terms of heuristics (Bryce et al . 2006) and techniques to reduce the size

of the initial belief state, such as the oneof-combination technique (Tran et al . 2013).

Such a technique is useful for planners employing an explicit disjunctive representation

of belief states, as in CpA (Tran et al . 2013) and Dnf (To et al . 2009); a significant

amount of work is required to apply this technique to other planners, due to the differ-

ent representations they use. Likewise, the oneof-relaxation technique proposed by To

et al . (2010a) is useful in Cnf but is difficult to use in other planners. Additional tech-

niques proposed to improve performance include extensions of the GraphPlan to deal

with incomplete information, used in CGP, backward search algorithms, as in CMBT,

landmarks, used in CpLs, and sampling technique, used in CPCES.

SAT-based conformant planning is studied by several researchers (Castellini et al . 2003;

Palacios and Geffner 2005; Rintanen 1999). The system C-Plan (Castellini et al . 2003)

has similarities to dlvK, in that it starts with a translation of the planning problem into

a SAT-problem, identifies a potential plan, and then validates the plan. Palacios and

Geffner (2005) propose the system compile-project-sat, which uses a single call to

the SAT-solver to compute a conformant plan. They show that the validity check can be

done in linear time if the planning problem is encoded in a logically equivalent theory in

deterministic decomposable negation normal form (d-DNNF). As compile-project-sat

calls the SAT-solver only once, it is similar to CPasp. However, compile-project-sat is

complete, while CPasp is not. The system QBFPlan by Rintanen (1999) differs from C-

Plan and compile-project-sat in that it translates the problem into a QBF-formula

and uses a QBF-solver to compute the solutions. A detailed comparison between these

planning systems with CPasp, directly or indirectly, can be found in the paper by Tu

et al . (2011).

5 Planning with sensing actions

Conformant planning aims at addressing the completeness assumption of the initial state

in classical planning but there are planning problems that do not admit any conformant

plans as solution. The following example demonstrates this issue.

Example 5 (From the work by Tu et al. 2007)

Consider a security window with a lock that behaves as follows. The window can be in

one of the three states open, closed,10 or locked.11 When the window is closed or open,

pushing it up or down will open or close it, respectively. When the window is not open,

flipping the lock will bring it to either the close or locked status.

Let us consider a security robot that needs to make sure that the window is locked

after 9pm. The robot has been told that the window is not open (but whether it is locked

or closed is unknown).

Intuitively, the robot can achieve its goal by performing the following steps:

(1) It checks the window to determine the window’s status.

(2a) If the window is in the closed status, the robot will lock the window;

10 The window is closed and unlocked.
11 The window is closed and locked.
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(2b) otherwise (i.e., the window is already in the locked status) the robot will not need

to do anything.

Observe that no sequence of actions can achieve the goal from every possible initial

situation. In other words, there exists no conformant plan achieving the goal. �

5.1 Action language B with sensing actions and conditional plans

In order to solve the planning problem in Example 5, sensing actions are necessary.

Intuitively, the execution of a sensing action does not change the world; instead, it changes

the knowledge of the action’s performer. We extend the language B with knowledge laws

of the following form:

determines(a, θ), (31)

where θ is a set of fluent literals. An action occurring in a knowledge law is referred to as

a sensing action. The knowledge law states that the values of the literals in θ, sometimes

referred to as sensed literals, will be known after a is executed. It is assumed that the

literals in θ are mutually exclusive, that is,

1. for every pair of literals g and g′ in θ, g �= g′, the theory contains the static causal

law

caused({g},¬g′)
and

2. for every literal g in θ, the theory contains the static causal law

caused({¬g′ | g′ ∈ θ \ {g}}, g).
We refer to this collection of static causal laws as oneof(θ). We sometimes write

determines(a, f) as a shorthand for determines(a, {f,¬f}).
Example 6

The planning problem instance Pwindow = (Dwindow,Γwindow,Δwindow) in Example 5

can be represented as follows.

Dwindow =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

executable(push up, {closed})
executable(push down, {open})
executable(flip lock, {¬open})

causes(push down, closed, {})
causes(push up, open, {})
causes(flip lock, locked, {closed})
causes(flip lock, closed, {locked})

oneof({open, locked, closed})

determines(check, {open, closed, locked})

Γwindow =
{

initially(¬open) }
Δwindow = {locked}.
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It has been pointed out by several researchers (Warren 1976; Peot and Smith 1992;

Pryor and Collins 1996; Levesque 1996; Lobo et al . 1997; Son and Baral 2001; Turner

2002) that the notion of a plan needs to be extended beyond a sequence of actions, in

order to allow conditional statements such as if-then-else, while-do, or case-endcase to

deal with incomplete information and sensing actions. If we are interested in bounded-

length plans, then the following notion of conditional plans is sufficient.

Definition 1 (Conditional Plan)

1. The empty plan, that is, the plan 〈〉 containing no actions, is a conditional plan.

2. If a is a non-sensing action and p is a conditional plan then 〈a; p〉 is a conditional

plan.

3. If a is a sensing action with knowledge law (31), where θ = {g1, . . . , gn}, and pj ’s
are conditional plans then 〈a; cases({gj → pj}nj=1)〉 is a conditional plan.

4. Nothing else is a conditional plan.

Clearly, the notion of a conditional plan is more general than the notion of a plan as

a sequence of actions. We refer to the conditional plan in Item 3 of Definition 1 as a

case-plan and the gj → pj ’s as its branches. Under the above definition, the following are

two possible conditional plans in the domain Dwindow:

p1 = 〈push down; flip lock〉

p2 =

〈
check; cases

⎛⎜⎝ open → []

closed → [flip lock]

locked → []

⎞⎟⎠〉

The semantics of the language B with knowledge laws also needs to be extended to

account for sensing actions. Observe that, since it is possible that the initial state of the

planning problem is incomplete, we will continue using the approximation Φa proposed in

the previous section as well as other notions, such as partial states, a fluent literal holds

or possibly holds in a partial state, etc. To reason about the effects of sensing actions in

a domain D, we define

Φa(a, δ) = {ClD(δ ∪ {g}) | g ∈ θ and ClD(δ ∪ {g}) is consistent}, (32)

where a is a sensing action executable in δ and θ is the set of sensed literals of a. If a

is not executable in δ then Φa(a, δ) = ⊥ (undefined). The definition of Φa(a, δ) for a

non-sensing action is defined as in the previous section. Intuitively, the execution of a

can result in several partial states, in each of which exactly one sensed-literal in θ holds.

As an example, consider Dwindow in Example 5 and a partial state δ1 = {¬open}. We

have

ClDwindow
(δ1 ∪ {open}) = {open,¬open, closed,¬closed, locked,¬locked} = δ1,1

ClDwindow
(δ1 ∪ {closed}) = {¬open, closed,¬locked} = δ1,2

ClDwindow
(δ1 ∪ {locked}) = {¬open,¬closed, locked} = δ1,3.

Among those, δ1,1 is inconsistent. Therefore, we have Φa(check, δ1) = {δ1,2, δ1,3}.
The extended transition function Φ̂a for computing the result of the execution of

a conditional plan is defined as follows. Let α be a conditional plan and δ a partial

state.
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1. If α = 〈〉 then Φ̂a(α, δ) = δ.

2. If α = 〈a;β〉 and a is a non-sensing action and β is a conditional plan then

Φ̂a(α, δ) = Φ̂a(β,Φa(a, δ)).

3. if α = 〈a; cases({gj → αj}nj=1)〉 where a is a sensing action with the sensed-literals

θ = {g1, . . . , gn} and αj ’s are conditional plans then

(a) Φ̂a(α, δ) = Φ̂a(αk, δk) if there exists δk ∈ Φa(a, δ) such that δk |= gk.

(b) Φ̂a(α, δ) = ⊥ (undefined), otherwise.

4. Φ̂a(α,⊥) = ⊥ for every α.

Intuitively, the execution of a conditional plan progresses similarly to the execution of

an action sequence until it encounters a case-plan. In this case, the sensing action is

executed and the satisfaction of the formula in each branch is evaluated. If one of the

formulae holds in the state resulting after the execution of the sensing action then the

execution continues with the plan on that branch. Otherwise, the execution fails.

5.2 ASP-based conditional planning

Let us now describe an ASP-based conditional planner, called LCP, capable of generating

conditional plans. The planner is a simple variation of the one described by Tu et al .

(2007). As in the previous sections, we translate a planning problem P = (D,Γ,Δ) into

a logic program Πh,w(P) whose answer sets represent solutions of P. Before we present

the rules of Πh,w(P), let us provide the intuition underlying the encoding.

First, let us observe that each plan α (Definition 1) corresponds to a labeled plan tree

Tα defined as follows.

• If α = 〈 〉 then Tα is a tree with a single node.

• If α = 〈a〉, where a is a non-sensing action, then Tα is a tree with a single node

and this node is labeled with a.

• If α = 〈a;β〉, where a is a non-sensing action and β is a non-empty plan, then

Tα is a tree whose root is labeled with a and has only one subtree which is Tβ .

Furthermore, the link between a and Tβ ’s root is labeled with an empty string.

• If α = 〈a; cases({gj → αj}nj=1)〉, where a is a sensing action, then Tα is a tree

whose root is labeled with a and has n subtrees {Tαj
| j ∈ {1, . . . , n}}. For each j,

the link from a to the root of Tαj
is labeled with gj .

For example, the plan tree for the plan

α =

〈
check; cases

⎛⎜⎝ locked → 〈〉;
open → 〈push down; flip lock〉;
closed → 〈flip lock; flip lock; flip lock〉

⎞⎟⎠〉

is given in Figure 1 (shaded nodes indicate that there exists an action occurring at those

nodes, while white nodes indicate that there is no action occurring at those nodes).

For a plan p, let w(p) be the number of leaves of Tp and h(p) be the number of nodes

along the longest path from the root to the leaves of Tp. w(p) and h(p) are called the

width and height of Tp respectively. Suppose w and h are two integers that such that

w(p) ≤ w and h(p) ≤ h.
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Fig. 2. Possible mappings for the tree in Figure 1.

Let us denote the leaves of Tp by x1, . . . , xw(p). We map each node y of Tp to a pair

of integers ny = (ty,py), where ty, called the t-value of y, is the number of nodes along

the path from the root to y minus 1, and py, called the p-value of y, is defined in the

following way:

• For each leaf xi of Tp, pxi
is an arbitrary integer between 0 and w. Furthermore,

there exists a leaf x such that px = 0, and there exist no i �= j such that pxi
= pxj

.

• For each interior node y of Tp with children y1, . . . , yr, py = min{py1
, . . . , pyr

}.
For instance, Figure 2 shows some possible mappings with h = 3 and w = 3 for the tree

in Figure 1. It is easy to see that if w(p) ≤ w and h(p) ≤ h then such a mapping always

exists.

Furthermore, from the construction of Tα, independently of how the leaves of Tα are

numbered, we have the following properties.

1. For every node y, ty ≤ h and py ≤ w.
2. For a node y, all of its children have the same t-value. That is, if y has r children

y1, . . . , yr then tyi
= tyj

for every 1 ≤ i, j ≤ r. Furthermore, the p-value of y is the

smallest one among the p-values of its children.

3. The root of Tα is always mapped to the pair (0, 0).

The numbering schema of a plan tree provides a method for generating a conditional

plan on a two-dimensional coordinated system (or grid) where the x- and y-axis corre-

spond to the height and width of the plan tree, and where (0, 0) is the initial state. Along

a line of the same y-value is an action sequence and the execution of a sensing action

creates branches on different lines, parallel to the x-axis. For example, the execution of

the check action in the initial state of the plan tree in Figure 2 creates three branches, to

lines 0, 1, and 2. In the following, we use path to indicate the branch number and refer

to a coordinate (x, y) as a node.
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Let us next describe the rules in program Πh,w(P). Intuitively, the program is similar to

the program Πa(P, n) in that it implements the approximation Φa and extends it to deal

with sensing actions. Since a conditional plan is two-dimensional, all predicates holds,

ph, possible, occ, de, etc. need to extend with a third parameter. That is, holds(L, T, P )

– encoding that L holds at node (T, P ) (the time step T and the line number P on the

two-dimensional grid) – is used instead of holds(L, T ). In addition, Πh,w(P) uses the

following additional atoms and predicates.

• path(0..w).
• sense(a, g) if g is a sensed literal which belongs to θ in a knowledge law of the

form (31).

• br(G,T, P, P1) is true if there exists a branch from (T, P ) to (T + 1, P1) labeled

with G.

For example, in Figure 2 (left), we have br(open, 0, 0, 1), br(closed, 0, 0, 0), and

br(locked, 0, 1, 2).

• used(T, P ) is true if (T, P ) belongs to some extended branch of the plan tree. This

allows us to know which paths are used in the construction of the plan and allows

us to check if the plan satisfies the goal.

In Figure 2 (left), we have used(t, 0) for 0 ≤ t ≤ h, and used(t, 1) and used(t, 2)

for 1 ≤ t ≤ h.
The rules of Πh,w(P) are divided into two groups. The first group consists of rules from

Πa(P, n) adapted to the two dimensional array for conditional planning. The second

group consists of rules for dealing with sensing actions. We next describe the first group

of rules12 in Πh,w(P):
holds(Γ, 0, 0) ← (33)

possible(a, T, P ) ← holds(ϕ, T, P ) (34)

holds(f, T + 1, P ) ← occ(a, T, P ), holds(ϕ, T, P ) (35)

de(f, T + 1, P ) ← occ(a, T, P ), holds(ϕ, T, P ) (36)

ph(f, T + 1, P ) ← occ(a, T, P ), not h(ϕ, T, P ), not de(f, T + 1, P )(37)

ph(f, T, P ) ← ph(ϕ, T, P ) (38)

holds(f, T, P ) ← holds(ϕ, T, P ) (39)

ph(L, T + 1, P ) ← fluent(L), not holds(¬L, T ), not de(¬L, T, P ) (40)

ph(¬L, T + 1, P ) ← fluent(L), not holds(L, T ), not de(L, T, P ) (41)

holds(L, T + 1, P ) ← fluent(L), not ph(¬L, T, P ) (42)

holds(¬L, T + 1, P ) ← fluent(L), not ph(L, T, P ) (43)

1{occ(X,T, P ) : action(X)}1 ← used(T, P ), not goal(T, P ) (44)

← occ(A, T, P ), not possible(A, T, P ). (45)

12 We omit time(T ), path(P ) from the rules for brevity.
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(t,p) (t+1,p)g2

g1

g3

(t,q) (t+1,q)

(t,r) (t+1,r)

a

(t,p) (t+1,p)g2

g1

g3

(t,q) (t+1,q)

(t,r) (t+1,r)

a

q < p < r p< r < q

Fig. 3. Sensing action a that senses {g1, g2, g3} occurs at (t, p) - disallowed (Left) vs. allowed
(Right).

In the above rules, L is a fluent literal, T is a time moment in the range [0, h − 1], and

P is in the range [0, w]. Rule (33) encodes the initial state. The rules (34)–(43) are used

for computing the effects of the occurrence of a non-sensing action at the node (T, P ).

The rules (44) and (45) are used for generating action occurrences, similarly to the rules

for generating action occurrences in the previous sections. The difference is that the

selection restricts the generation of action occurrences to nodes marked as ‘used’ (see

below).

The key distinction between Πh,w(P) and Πa(P, n) lies in the rules for dealing with

sensing actions. We next describe this set of rules.

• Rules for reasoning about the effect of sensing actions: For each knowledge law (31)

in D, Πh,w(P) contains the following rules:

1{br(g, T, P,X):new br(P,X)}1 ← occ(a, T, P ), sense(a, g). (46)

← occ(a, T, P ), sense(a, g),

not br(g, T, P, P ) (47)

← occ(a, T, P ), sense(a, g),

holds(g, T, P ) (48)

new br(P, P1) ← P ≤ P1. (49)

When a sensing action occurs, it creates one branch for each of its sensed literals.

This is encoded in the rule (46). The constraint (47) makes sure that the current

branch P is continuing if a sensing action occurs at (T, P ). The rule (48) is a

constraint that prevents a sensing action to occur if one of its sensed literals is

already known. To simplify the selection of branches, rule (49) forces a new branch

at least at the same level as the current branch. The intuition behinds these rules

can be seen in Figure 3.

• Inertia rules for sensing actions: This group of rules encodes the fact that the

execution of a sensing action does not change the world. However, there is a one-to-

one correspondence between the set of sensed literals and the set of possible partial

states.

← P1 < P2, P2 < P, br(G1, T, P1, P ),

br(G2, T, P2, P ) (50)
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← P1 ≤ P,G1 �= G2, br(G1, T, P1, P ),

br(G2, T, P1, P ) (51)

← P1 < P, br(G,T, P1, P ), used(T, P ) (52)

used(T + 1, P ) ← P1 < P, br(G,T, P1, P ) (53)

holds(G,T + 1, P ) ← P1 ≤ P, br(G,T, P1, P ) (54)

holds(L, T + 1, P ) ← P1 < P, br(G,T, P1, P ), holds(L, T, P1) (55)

used(0, 0) ← (56)

used(T + 1, P ) ← used(T, P ). (57)

The first three rules, together with rule (49), make sure that branches are separate

from each other. The next rule is used to mark a node as used if there is a branch

in the plan that reaches that node. This allows us to know which paths on the

grid are used in the construction of the plan and allows us to check if the plan

satisfies the goal (see rule (58)). The two rules (54)–(55), along with rule (53),

encode the possible partial state corresponding to the branch denoted by literal G

after a sensing action is performed at (T, P1). They indicate that the partial state

at (T + 1, P ) should contain G (Rule (54)) and literals that hold in (T, P1) (Rule

(55)). The last two rules mark nodes that have been used in the construction of the

conditional plan.

• Goal representation: Checking for goal satisfaction needs to be done on all branches.

This is encoded as follows.

goal(T1, P ) ← holds(Δ, T1, P ) (58)

goal(T1, P ) ← holds(L, T1, P ), holds(¬L, T1, P ) (59)

← used(h+ 1, P ), not goal(h+ 1, P ). (60)

The first rule in this group says that the goal is satisfied at a node if all of its

subgoals are satisfied at that node. The last rule guarantees that if a path P is

used in the construction of a plan then the goal must be satisfied at the end of

this path, that is, at node (h, P ). The second rule provides an avenue to stop the

generation of actions when an inconsistent state is encountered – by declaring the

goal reached. As discussed by Tu et al . (2007), the properties of the encoding of

consistent action theories prevent this method from generating plans leading to

inconsistent states.

Remark 4

1. Πh,w(P) is slightly different from the program presented in the paper by Tu et al .

(2007) in that Φa is slightly different from the semantics used in that paper. By

setting w = 0, this program is a conformant planner. The experiments conducted

by Tu et al . (2007) show that Πh,w(P) performs reasonably well.

2. Extracting a conditional plan from an answer set S of Πh,w(P) is not as simple as

it is done in the previous sections because of the case-plan. For any pair of integers
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i and k such that 0 ≤ i ≤ h, 0 ≤ k ≤ w, we define pki (S) as follows:

pki (S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈〉 if i = h or occ(a, i, k) �∈ S for all a

〈a; pki+1(S)〉 if occ(a, i, k) ∈ S and

a is a non-sensing action

〈a; cases({gj → p
kj

i+1(S)}nj=1)〉 if occ(a, i, k) ∈ S,
a is a sensing action, and

br(gj , i, k, kj) ∈ S for 1 ≤ j ≤ n
Intuitively, pki (S) is the conditional plan whose corresponding tree is rooted at

node (i, k) on the grid h× w. Therefore, p00(S) is a solution to P.
3. The semantics of B with knowledge laws does not prevent a sensing action to

occur when some of its sensed literals is known. It is easy to see that in this

case, the branching, enforced by rule (46), is unnecessary. Rule (48) disallows such

redundant action occurrences. It is shown by Tu et al . (2007) that any solution of

P = 〈D,Γ,Δ〉 can be reduced to an equivalent plan without redundant occurrences

of sensing actions which can be found by Πh,w(P).
4. Because the execution of a sensing action creates multiple branches and some

of them might be inconsistent (equation (32)), rule (59) prevents any action to

occur at node (T, P ) when the partial state at (T, P ) is inconsistent. To mark

that the path ends at this node, we say that the goal is achieved. Tu et al . (2007)

showed that for a consistent planning problem, any solution generated by Πh,w(P)
corresponds to a correct solution.

5. The comparison between ASP-based systems, like CPasp and Πh,w(P), and con-

formant planning or conditional planning systems, such as CMBP (Cimatti and

Roveri 2000), dlvK (Eiter et al . 2003b), C-Plan (Castellini et al . 2003), CFF

(Brafman and Hoffmann 2004), KACMBP (Cimatti et al . 2004), t0 (Palacios and

Geffner 2007), and POND (Bryce et al . 2006), has been presented in the papers

by Tu et al . (2007) and 2011. The comparison shows that ASP-based planning

systems perform much better than other systems in domains with static causal

laws.

6. Πh,w(P), similar to CPasp, makes a single call to the ASP solver to compute a con-

ditional plan. This is possible because of it uses an approximation semantics that

reduces the complexity of conditional planning, for polynomially-bounded plan,

to NP-complete. Otherwise, this would not be possible because conditional plan-

ning for polynomially-bounded length plan is PSPACE-complete (Turner 2002).

Naturally, as with CPasp, this also implies that Πh,w(P) is incomplete.

5.3 Context: Conditional planning

As we mentioned earlier, the need for plans with conditionals and/or loops has been iden-

tified very earlier on by Warren (1976), who developed Warplan-C, a Prolog program that

can generate conditional plans and programs given the problem specification. Warplan-C

has only 66 clauses and is conjectured to be complete. The system was developed at

the same time as other non-linear planning systems, such as Noah by Sacerdoti (1974).
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These earlier systems do not deal with sensing actions. Other systems that generate plans

with if-then statements and can prepare for contingencies are Cassandra (Pryor and

Collins 1996) and CNLP (Peot and Smith 1992). These two systems extend partial order

planning algorithms for computing conditional plans.

XII (Golden et al . 1996) and PUCCINI (Golden 1998) are two systems that employ

partial order planning to generate conditional plans for problems with incomplete infor-

mation and can deal with sensing actions. SGP (Weld et al . 1998) and POND (Bryce

et al . 2006) are conditional planners that work with sensing actions. These systems extend

the planning graph algorithm (Blum and Furst 1997) to deal with sensing actions. The

main difference between SGP and POND is that the former searches solutions within

the planning graph, whereas the latter uses it as a means of computing the heuristic

function.

CoPlaS, developed by Lobo (1998), is a regression Prolog-based planner that uses

a high-level action description language, similar to the language BK described in this

section, to represent and reason about effects of actions, including sensing actions. Van

Nieuwenborgh et al . (2007) introduced Kc, an extension of language K, to deal with

sensing actions and compute conditional plans as defined in this section using dlvK.
Thielscher (2000) presented FLUX, a constraint logic programming based planner, which

is capable of generating and verifying conditional plans.QBFPlan is another conditional

planner, based on a QBF theorem prover, is described in the paper by Rintanen (1999).

This system, however, does not consider sensing actions.

Research in developing conditional planners, however, has not attracted as much

attention compared to other types of planning domains in recent years. Rather, the focus

has been on synthesizing controllers or reactive modules which exhibit specific behaviors

in different environments (Aminof et al . 2020; Camacho et al . 2019; 2018; Treszkai and

Belle 2020). This is similar to the effort of generating programs satisfying a specification

as discussed earlier (e.g., the work by Warren 1976) or attempts to compute policies

(see, e.g., the book by Bellman 1957) for Markov Decision Processes (MDP) or Partially

Observable Markov Decision Processes (POMDP). To the best of our knowledge, little

attention has been paid to this research direction within the ASP community. We present

this as a challenge to ASP in the last section of the paper.

6 Planning with preferences

The previous sections analyze answer set planning with the focus on solving differ-

ent classes of planning problems, such as planning with complete information, incom-

plete information, and sensing actions. In this section, we present another extension of

the planning problem, by illustrating the use of answer set planning in planning with

preferences.

The problem of planning with preferences arises in situations where the user not only

wants a plan to achieve a goal, but has specific preferences or biases about the plan.

This situation is common when the space of possible plans for a goal is dense, that is,

finding “a” plan is not difficult, but many of the plans may have features which are

undesirable to the user. This type of situations is very common in practical planning

problems.
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Example 7

Traveling from one place to another is a frequently considered problem (e.g., a traveler, a

transportation vehicle, an autonomous vehicle). A planning problem in the travel domain

can be represented by the following elements:

• a set of fluents of the form at(�), where � denotes a location, such as home, school,

neighbor, airport, etc.;

• an initial location �i;

• a destination location �f ; and

• a set of actions of the formmethod(�1, �2) where �1 and �2 are two distinct locations

and method is one of the available transportation methods, such as drive, walk,

ride train, bus, taxi, fly, bike, etc. The problem may include conditions that restrict

the applicability of actions in certain situations. For example, one can ride a taxi

only if the taxi has been called, which can be done only if one has some money;

one can fly from one place to another if one has a ticket; etc.

Problems in this domain are often rich in solutions because of the large number of actions

which can be used in the construction of a plan. For this reason, a user looking for a

solution to a problem often considers some additional features, or personal preferences, in

selecting a plan. For example, the user might be biased in terms of the distance to travel

using a transportation method, the overall cost, the time to destination, the comfort of

a vehicle, etc. However, a user would accept a plan that does not satisfy her preferences

if she has no other choice. �

Preferences can come in different shapes and forms. The most common types of prefer-

ences are:

• Preferences about a state: the user prefers to be in a state s that satisfies a property

φ rather than a state s′ that does not satisfy it, in case both lead to the satisfaction

of the goal; for example, being in a 5-star hotel is preferable to being in a 1-star

hotel, if the distance to the conference site is the same;

• Preferences about an action: the user prefers to perform (or avoid) an action a,

whenever it is feasible and it allows the goal to be achieved; for example, one might

prefer to walk to destination whenever possible;

• Preferences about a trajectory: the user prefers a trajectory that satisfies a certain

property ψ over those that do not satisfy this property; for example, one might

prefer plans that do not involve traveling through Los Angeles during peak traffic

hours;

• Multidimensional preferences: the user has a set of preferences, with an ordering

among them. A plan satisfying a more favorable preference is given priority over

those that satisfy less favorable preferences; for example, plans that minimize time

to destination might be preferable to plans minimizing cost.

Son and Pontelli (2006) proposed a general method for integrating diverse classes of

preferences into answer set planning. Their approach is articulated in two components:

• Development of a preference specification language: this language supports the spec-

ification of different types of preferences; its semantics should enable the definition

of a partial order among possible solutions of the planning problem.

https://doi.org/10.1017/S1471068422000072 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000072


Answer set planning: A survey 259

• Implementation: the implementation proposed by Son and Pontelli (2006) maps

preference formulae to mathematical formulae, representing the weight of each for-

mula, and makes use of the maximize statement in ASP to optimize the solution to

the planning problem. The original paper defines rules for computing the weights

of preference formulae in ASP.

We next introduce the preference specification language proposed by Son and Pontelli

(2006).

6.1 A preference specification language

The proposed preference specification language addresses the description of three classes

of preferences: basic desires, atomic preferences, and general preferences.

For a planning problem P = 〈D,Γ,Δ〉, a basic desire can be in of the following possible

forms:

(a) a state formula, which is a fluent formula ϕ or a formula of the form occ(a) for

some action a, or

(b) a goal preference, of the form goal(ϕ), where ϕ is a fluent formula.

Basic desire formula. A basic desire formula is a formula built over basic desires, the

traditional propositional operators (∧, ∨, and ¬), and the modalities next, always,

eventually, and until. The BNF for the basic desire formulae is

ψ
def
= ϕ | ψ1∧ψ2 | ψ1∨ψ2 | ¬ψ1 | next(ψ1) | until(ψ1, ψ2) | always(ψ1) | eventually(ψ),

where ϕ represents a state formula or a goal preference and ψ, ψ1, or ψ2 are basic desire

formulae.

Intuitively, a basic desire formula specifies a property that a user would like to see

satisfied by the provided plan. For example, to express the fact that a user would like to

take the taxi or the bus to go to school, we can write:

eventually(occ(bus(home, school)) ∨ occ(taxi(home, school))).
If the user’s desire is not to call a taxi, we can write

always(¬occ(call taxi(home))).
If the user’s desire is not to see any taxi around his home, we can use the basic desire

formula

always(¬available taxi(home)).
Note that these encodings have different consequences – the last formula prevents taxis

to be present, independently from whether the taxi has been called.

The following are several basic desire formulae that are often of interest to users.

• Strong Desire: For two formulae ϕ1 and ϕ2, ϕ1 < ϕ2 denotes ϕ1 ∧ ¬ϕ2.

• Weak Desire: For two formulae ϕ1 and ϕ2, ϕ1 <
w ϕ2 denotes ϕ1 ∨ ¬ϕ2.

• Enabled Desire: For two actions a1 and a2, a1 <
e a2 stands for

(executable(a1) ∧ executable(a2))⇒ (occ(a1) < occ(a2)) where

executable(a) =
∧

l∈ϕ l if executable(a, ϕ) ∈ D.
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• Action Class Desire: For actions with the same set of parameters and effects such

as drive or walk, we write drive <e walk to denote the desire∨
l1,l2∈S, l1 �=l2

(drive(l1, l2) <
e walk(l1, l2)) where S is a set of pre-defined locations.

Intuitively, this preference states that we prefer to drive rather than to walk between

locations belonging to the set S. For example, if S = {home, school} then this

preference says that we prefer to drive from home to school and vice versa.

Atomic preference. Basic desire formulae are expressive enough to describe a significant

portion of preferences that frequently occur in real-world domains. It is also often the

case that the user may provide a variety of desires, and some desires are stronger than

others; knowledge of such biases about desires becomes important when it is not possible

to concurrently satisfy all the provided desires. In this situation, an ordering among the

desires is introduced. An atomic preference formula is a formula of the form

ϕ1 � ϕ2 � · · ·� ϕn,

where ϕ1, . . . , ϕn are basic desire formulae. The atomic preference formula states that

trajectories that satisfy ϕ1 are preferable to those that satisfy ϕ2, etc.

Let us consider again the travel domain. Besides time and cost, users often have their

preferences based on the level of comfort and/or safety of the available transportation

methods. These preferences can be represented by the formulae13

cost = always(walk <e bus <e drive <e flight)

and

time = always(flight <e drive <e bus <e walk)

and

comfort = always(flight <e (drive ∨ bus) <e walk)

and

safety = always(walk <e flight <e (drive ∨ bus)).
These four desires can be combined to produce the following two atomic preferences

Ψt
1 = comfort � safety and Ψt

2 = cost� time.

Intuitively, Ψt
1 is a comparison between level of comfort and safety, while Ψt

2 is a com-

parison between affordability and duration.

General preference formulae. Suppose that a user would like to travel as comfortably and

as cheaply as possible. Such a preference can be viewed as a multi-dimensional prefer-

ence, which cannot be easily captured using atomic preferences or basic desires. General

preference formulae support the representation of such multi-dimensional preferences.

Formally, a general preference formula is a formula satisfying one of the following

conditions:

• An atomic preference Ψ is a general preference;

• If Ψ1,Ψ2 are general preferences, then Ψ1&Ψ2, Ψ1 | Ψ2, and ! Ψ1 are general

preferences;

13 The notation α <e β <e γ is a syntactic sugar for α <e β ∧ β <e γ.
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• If Ψ1,Ψ2, . . . ,Ψk is a collection of general preferences, then Ψ1 �Ψ2 � · · ·�Ψk is

a general preference.

In the above definition, the operators &, |, ! are used to express different ways to combine

preferences. For example, the preference Ψt
1&Ψt

2 indicates that the user prefers trajecto-

ries that are most preferred according to both Ψt
1 and Ψt

2; Ψ
t
1 | Ψt

2 states that, among

trajectories with the same cost, the user prefers trajectories that are most comfortable

or vice versa. A detailed discussion of general preferences can be found in the paper by

Son and Pontelli (2006).

Semantics. In order to define the semantics of the preference language, we need to start

from describing whether a trajectory α = s0a0 . . . an−1sn satisfies a basic desire formula.

We write α |= ϕ to denote that α satisfies a basic desire ϕ. The definition of |= is

straightforward, and we report here only some of the cases (the complete definition can

be found in the paper by Son and Pontelli 2006), where α[i] = siai . . . an−1sn.

• α |= occ(a) if a0 = a;

• α |= � if s0 |= � and � is a fluent;

• α |= always(ϕ) if for all 0 ≤ i < n we have α[i] |= ϕ;

• α |= next(ϕ) if α[1] |= ϕ.

The satisfaction of desires is used to define two relations between trajectories, one

expressing preference between trajectories and one capturing the fact that two trajecto-

ries are indistinguishable, denoted by ≺Ψ and ≈Ψ, respectively, where Ψ is a preference

formula. For two trajectories α and β,

1. if Ψ is a basic desire then α ≺Ψ β (α is more preferred than β with respect to Ψ)

if α |= Ψ and β �|= Ψ; α ≈Ψ β denotes that α |= Ψ iff β |= Ψ.

2. if Ψ is an atomic preference ϕ1 � ϕ2 � · · · � ϕn then α ≺Ψ β if ∃(1 ≤ i ≤ n) such

that

(a) ∀(1 ≤ j < i) we have that α ≈ϕj
β, and

(b) α ≺ϕi
β.

α ≈Ψ β denotes that α ≈ϕj
Ψ for every j = 1, . . . , n.

3. if Ψ is a general preference and has the form Ψ = Ψ1 � · · · � Ψk then α ≺Ψ β is

defined similar to the second case. Otherwise, α ≺Ψ β

(a) if Ψ = Ψ1&Ψ2 and α ≺Ψ1
β and α ≺Ψ2

β

(b) if Ψ = Ψ1 | Ψ2 and (i) α ≺Ψ1
β and α ≈Ψ2

β; or (ii) α ≺Ψ2
β and α ≈Ψ1

β;

or (iii) α ≺Ψ1
β and α ≺Ψ2

β.

(c) if Ψ = !Ψ1 and β ≺Ψ1
α.

In all cases, α ≈Ψ β iff α ≈Ψ′ β where Ψ′ is a component of Ψ.

The following proposition holds (Son and Pontelli 2006).

Proposition 1

≺Ψ is a partial order and ≈Ψ is an equivalent relation.

The above proposition shows that maximal elements with respect to ≺Ψ exist, that is,

most preferred trajectories exist.
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6.2 Implementation: Computing preferred plans

Given a planning problem P and a preference formula Ψ, a preferred trajectory can be

computed using the following steps:

1. Use one of the programs, denoted by Plan(P, n), introduced in Sections 3–4 to

compute a potential solution α for P;
2. Associate to α a number, which represents the degree of satisfaction of α with

respect to Ψ; and

3. Use the #maximize statement of clingo to compute a most preferred trajectory.

This process requires an appropriate encoding of Ψ. This is usually achieved by converting

Ψ to a canonical form, which provides a convenient way to translate Ψ into a set of facts

with predefined predicates. For example, a basic desire formula can be encoded using

the predicates and, or, ¬, occ, next, until, eventually, always, and final (stands for

goal, to avoid confusion with the goal predicate defined in the previous sections). This

translation can be done using a script (e.g., Son and Pontelli 2006 presented a Prolog

program for such translation).

An atomic preference can be represented using an ordered set, consisting of a dec-

laration atomic(id), indicating that id is an atomic preference, and a set of atoms

of the form member(id, formula, order), where id, formula, and order represent the

atomic preference identifier, the formula, and the order of the formula in id, respectively.

Finally, a general preference can be encoded using the predicates &, |, and !, and the

basic representations of basic desires and atomic preferences. In the following, we use

Π(Ψ) to denote the set of facts encoding Ψ.

Since the first task in computing a most preferred trajectory is checking whether or

not a trajectory satisfies a basic desire, we need to add to Plan(P, n) rules for this

purpose. This task can be achieved by a set of domain-independent rules Πpref defining

the predicate holds(sat(ϕ), t), which states that the basic desire formula ϕ is satisfied by

the trajectory stat . . . an−1sn. Πpref contains the following groups of rules:

• Rules for checking the satisfaction of a propositional formula at a time step:

such as

holds(sat(F ), T ) ← fluent(F ), holds(F, T )

holds(sat(and(F,G)), T ) ← holds(sat(F ), T ), holds(sat(G), T )

• Rules for checking the satisfaction of a temporal formula at a time step: such as

holds(sat(next(F )), T )← holds(sat(F ), T + 1)

• Rules for checking the occurrence of an action:

holds(sat(occ(A)), T )← occ(A, T )

• Rules for checking the satisfaction of a goal formula:

holds(sat(final(F )), 0)← holds(sat(F ), n).

The following proposition holds.

Proposition 2

An answer set S of Plan(P, n)∪Π(ϕ)∪Πpref contains holds(sat(ϕ), 0) if and only if the

trajectory corresponds to S satisfies ϕ.
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The above proposition shows that Plan(P, n) ∪ Π(ϕ) ∪ Πpref can be used to compute a

most preferred trajectory with respect to a basic desire formula. To do so, we only need

to tell clingo that an answer set containing holds(sat(ϕ), 0) is preferred.

To compute a most preferred plan with respect to a general preference or an atomic

formula, Son and Pontelli (2006) proposed a set of rules that assigns a number to a

formula and then use the #maximize statement of clingo to select a most preferred

trajectory. The proposed rules were developed at the time the answer set solvers did

provide only limited capability to work with numbers. For this reason, we omit the detail

about these rules here. Features provided in more recent versions of answer set solvers,

such as multiple optimization statements and weighted tuples, are likely to enable a

simpler and more efficient implementation. For example, we could translate an atomic

preference

ϕ1 � ϕ2 . . .� ϕn

to a statement

#maximize{1@n : holds(sat(ϕ1), 0); . . . ;n@1 : holds(sat(ϕn), 0)}
as a part of Π(Ψ).

Remark 5

1. The encoding of Π(Ψ) presented in this paper does not employ any advanced fea-

tures of ASP, which were introduced to simplify the encoding of preferences such

as the framework for preferences specification asprin, introduced by Brewka et al .

(2015a) and 2015b. Analogously, a more elegant encoding of preference formulae

can be achieved using other extensions of ASP focused on rankings of answer sets,

such as logic programming with ordered disjunctions (Brewka 2002). This encoding,

however, cannot be used with clingo or dlv because none of these solvers supports

ordered disjunctions.

2. The discussion in this section focuses on expressing preferences over trajectories,

that is, sequences of actions and states. It can be extended to conditional plans

and used with the planner in Section 5. This extension can, for example, define

preferences over branches in a conditional plan.

6.3 Context: Planning with preferences

Planning with preferences has attracted a lot of attention by the planning community.

An excellent survey of several systems developed before 2008 and their strengths and

weaknesses can be found in the paper by Baier and McIlraith (2008). Preferences have

also been included in extensions of PDDL, such as PDDL3 (Gerevini and Long 2005).

The majority of systems described in the survey employ PDDL3 where preferences are,

ultimately, described by a numeric value. As such, most of the planning with preferences

systems in the literature can be characterized as cost optimal, where the cost of actions

plays a key role in deciding the preference of a solution. Hierarchical task planning is also

frequently used in these systems. Representative systems in this direction are HPlan-P

(Sohrabi et al . 2009), LPRPG-P (Coles and Coles 2011), and PGPlanner (Das et al .

2019). ChoPlan, developed by Bidoux et al . (2019), is a system which encodes a PDDL3
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Fig. 4. Analog circuit AC.

planning problem as a multi-attribute utility theory and a heuristic based on Choquet

integrals to derive solutions.

satplan(P), developed by Giunchiglia and Maratea (2007), shows that SAT-based

planning is also competitive with other planning paradigms. Giunchiglia and Maratea

(2011) present a survey of SAT-based planning with preferences. In recent years, SMT-

based planning has become more popular than SAT-based planning, thanks to the ex-

pressiveness of SMT compared to SAT and the availability of efficient SMT solvers. SMT-

based planning, which can work with numeric variables, provides an excellent way to deal

with preferences (Scala et al . 2016). It is worth observing that ASP-based planning with

action costs has been considered earlier by Eiter et al . (2003a) and more recently by

Khandelwal et al . (2014).

7 Planning and diagnosis

While planning and diagnosis are often considered two separate and independent tasks,

some researchers have suggested that ties exist between them, to the point that it is

possible to reduce diagnostic reasoning to planning. In this section, we present this view,

and specifically focus on the approach from Baral and Gelfond (2000) and Balduccini

and Gelfond (2003), under which planning tasks and diagnostic tasks share (a) the same

domain representation and (b) the same core reasoning algorithms.

In this section, the term diagnosis describes a type of reasoning task in which an agent

identifies and interprets discrepancies between the domain’s expected behavior and the

domain’s actual/observed behavior. Consider the following example.

Example 8 (From the paper by Balduccini and Gelfond 2003)

Consider the analog circuit AC from Figure 4.

We assume that switches sw1 and sw2 are mechanical components that cannot be

damaged. Relay r is a magnetic coil. If not damaged, it is activated when sw1 is closed,

causing sw2 to close. Undamaged bulb b emits light if sw2 is closed. For simplicity of

presentation we consider an agent capable of performing only one action, close(sw1). The

environment can be represented by two damaging exogenous14 actions: brk, which causes

b to become faulty, and srg, which damages r and also b assuming that b is not protected.

14 By exogenous actions we mean actions performed by the agent’s environment. This includes natural
events as well as actions performed by other agents.
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Suppose that the agent operating this device is given a goal of lighting the bulb. He

realizes that this can be achieved by closing the first switch, performs the operation, and

discovers that the bulb is not lit. The domain’s behavior does not match the agent’s

expectations. The agent needs to determine the reason for this state of affairs and ways

to correct the problem. �

In the following, we focus on non-intrusive and observable domains, in which the agent’s

environment does not normally interfere with his work and the agent normally observes

all of the domain occurrences of exogenous actions. The agent is, however, aware that

these assumptions can be contradicted by observations. The agent is ready to observe and

to take into account occasional occurrences of exogenous actions that alter the behavior

of the environment. Moreover, discrepancies between expectations and observations may

force the agent to conclude that additional exogenous actions have occurred, but remained

unobserved.

To model the domain, let us introduce a finite set of components C, disjoint fromA and

F previously introduced. Let us also assume the existence of a set F0 ⊆ F of observable

fluents (i.e., fluents that can be directly observed by the agent), such that ab(c) ∈ F0 for

every component ofC. Fluent ab(c) intuitively indicates that the c is “faulty.” Let us point

out that the use of the relation ab in diagnosis dated back to the work by Reiter (1987).

The set A is further partitioned into two disjoint sets: As, corresponding to agent actions,

and Ae consisting of exogenous actions. Additionally, exogenous and agent actions are

allowed to occur concurrently. With respect to the formalization methodology introduced

in Section 2.2, this is achieved by (1) introducing the notion of compound action, that

is, a set of agent and exogenous actions, (2) redefining Φ(a, s) so that a is a compound

action, and (3) extending the notion of trajectory to be a sequence s0a0 . . . ak−1sk of

states and compound actions.

A core principle of this approach is that the discrepancies between agent’s expectations

and observations are explained in terms of occurrences of unobserved exogenous actions.

The observed behavior of the domain is represented by a particular trajectory, referred

to as the actual trajectory.

A diagnostic domain is a pair 〈D,W 〉 where D is a domain and W is the domain’s

actual trajectory.

Information about the behavior of the domain up to a certain step n is captured by

the recorded history Hn, that is a set of observations of the form:

1. obs(l, t) – meaning that fluent literal l was observed to be true at step t;

2. hpd(a, t) – stating that action a ∈ A was observed to happen at time t.

The link between diagnostic domain and recorded history is established by the following:

Consider a diagnostic domain 〈D,W 〉 with W = sw0 a
w
0 . . . a

w
n−1s

w
n , and let Hn be a

recorded history up to step n.

1. A trajectory s0a0 . . . an−1sn is a model of Hn if for any 0 ≤ t ≤ n
(a) at = {a : hpd(a, t) ∈ Hn};
(b) if obs(l, t) ∈ Hn then l ∈ st.

2. Hn is consistent if it has a model.

3. Hn is sound if, for any l, a, and t, if obs(l, t), hpd(a, t) ∈ Hn then l ∈ swt and a ∈ awt .
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4. A fluent literal l holds in a modelM of Hn at time t ≤ n (M |= holds(l, t)) if l ∈ st;
Hn entails h(l, t)(Hn |= holds(l, t)) if, for every model M of Hn, M |= holds(l, t).

Note also that a recorded history may be consistent, but not sound – which is the case

if the recorded history is incompatible with the actual trajectory.

Example 8 can thus be formalized as:

% Fluents:

fluent(active(r))← fluent(on(b))← fluent(prot(b))←
fluent(closed(sw1))← fluent(closed(sw2))←
fluent(ab(r))← fluent(ab(b))←
% Agent Actions:

a act(close(sw1))←
%Exogenous Actions

x act(brk)← x act(srg)←
Note the use of relations a act and x act to distinguish agent actions and exogenous

actions. The laws describing the normal and abnormal/malfunctioning behavior of the

domain are:

DAC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

% normal % abnormal

causes(close(sw1), closed(sw1), ∅) causes(brk, ab(b), ∅)
caused({closed(sw1),¬ab(r)}, active(r)) causes(srg, ab(r), ∅)
caused({active(r)}, closed(sw2)) causes(srg, ab(b), {¬prot(b)})
caused({closed(sw2),¬ab(b)}, on(b)) caused({ab(b)},¬on(b))
caused({¬closed(sw2)},¬on(b)) caused({ab(r)},¬active(r))
executable(close(sw1), {¬closed(sw1)})

.

Now consider a recorded history:

H1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hpd(close(sw1), 0)

obs(¬closed(sw1), 0)

obs(¬closed(sw2), 0)

obs(¬ab(b), 0)
obs(¬ab(r), 0)
obs(prot(b), 0).

One can check that s0 close(sw1) s1 is the only model of H1, where s0 is the state

depicted in Figure 4. Additionally, H1 |= holds(on(b), 1).

Next, we formalize the key notions of diagnosis. Let δ = 〈D,W 〉 be a diagnostic domain.

A configuration is a pair

S = 〈Hn, O
m
n 〉, (61)

where Hn is the recorded history up to step n and Om
n is a set of observations between

steps n and m ≥ n. Leveraging this notion, we can now define a symptom as a configu-

ration 〈Hn, O
m
n 〉 such that Hn is consistent and Hn ∪Om

n is not.
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Once a symptom has been identified, the next step of the diagnostic process aims at

finding its possible reasons. Specifically, a diagnostic explanation E of symptom S =

〈Hn, O
m
n 〉 is defined as a set

E ⊆ {hpd(ai, t) : 0 ≤ t < n and ai ∈ Ae}, (62)

such that Hn ∪Om
n ∪ E is consistent.

7.1 Diagnostic reasoning as answer set planning

As we said earlier, answer set planning can be used to determine whether a diagno-

sis is needed and for computing diagnostic explanations. Next, we introduce an ASP-

based program for these purposes. Consider a domain D whose behavior up to step n is

described by recorded history Hn. Reasoning about D and Hn can be accomplished by

a translation to a logic program Π(D,Hn) that follows the approach outlined in Section

3. Focusing for simplicity on the direct encoding, Π(D,Hn) consists of:

• the domain dependent rules from Section 3.1.1;

• the rules related to inertia and consistency of states (11)–(13);

• domain independent rule establishing the relationship between observations and

the basic relations of Π:

occ(A, T )← hpd(A, T ) (63)

holds(L, 0)← obs(L, 0) (64)

• the reality check axiom, that is a rule ensuring that in any answer set the

agent’s expectations match the available observations (variable L ranges over fluent

literals):

← obs(L, T ), not holds(L, T ). (65)

The following theorem establishes an important relationship between models of a recorded

history and answer sets of the corresponding logic program.

Theorem 2

If the initial situation of Hn is complete, that is for any fluent f , Hn contains obs(f, 0)

or obs(¬f, 0), then M is a model of Hn iff M is defined by some answer set of Π(D,Hn).

The proof of the theorem is in two steps. First, one shows that the theorem holds for

n = 1, that is, that for a history H1 there is a one-to-one correspondence between

the transitions of the form s0a0s1 and the answer sets of Π(D,H1). Then, induction is

leveraged to extend the correspondence to histories of arbitrary length. The complete

proof can be found in the paper by Balduccini and Gelfond (2003).

Next, we focus on identifying the need for diagnosis. Given a domain D and S =

〈Hn, O
m
n 〉, we introduce:

TEST (S) = Π(D,Hn) ∪Om
n . (66)

The following corollary forms the basis of this approach to diagnosis.

Corollary 1

Let S = 〈Hn, O
m
n 〉 where Hn is consistent. A configuration S is a symptom iff TEST (S)

has no answer set.
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Once a symptom has been identified, diagnostic explanations can be found by means of

the answer sets of the diagnostic program

Πd(S) = TEST (S) ∪ { 1{occ(A, T ) : x act(A)}1← time(T ), T < n. } (67)

Specifically, every answer set X of Πd(S) encodes a diagnostic explanation

E = {hpd(a, t) | occ(a, t) ∈ X ∧ a ∈ Ae}.
Note that the choice rule shown in (67) is simply a restriction of (10) to exogenous actions.

As a result, Πd(S) can be viewed as a variant of the translation Π(P, n) of a planning

problem, where planning occurs over the past 0..n−1 time steps and over exogenous

actions only, and the goal states are described by the observations from S.
Example 9

Consider the domain from Example 8. According to H1 initially switches sw1 and sw2

are open, all circuit components are ok, sw1 is closed by the agent, and b is protected.

The expectation is that b will be on at 1. Suppose that, instead, the agent observes that

at time 1 bulb b is off, that is O1 = {obs(¬on(b), 1)}. TEST (S0), where S0 = 〈H1, O1〉,
has no answer sets and thus, by Corollary 1, S0 is indeed a symptom. The diagnostic

explanations of S0 can be found by computing the answer sets of Πd(S). Specifically,
there are three diagnostic explanations:

E1 = {occ(brk, 0)}
E2 = {occ(srg, 0)}
E3 = {occ(brk, 0), occ(srg, 0)}.

Remark 6

1. Other interpretations of the relationship between agent and environment are pos-

sible, yielding substantial differences in the overall approach to diagnosis. The

interested reader is referred to the paper by Baral et al . (2000).

2. In contrast to the approach by Baral et al . (2000), the approach presented in this

survey assumes that a recorded history is consistent only if observations about

fluents can be explained without assuming the occurrence of actions not recorded

in Hn.

3. In the paper by Balduccini and Gelfond (2003), the formalization of diagnostic

reasoning presented here is extended to incorporate an account of the agent’s in-

teraction with the domain in order to collect physical evidence that confirms or

refutes the diagnostic explanations computed. This is accomplished by introducing

the notions of candidate diagnosis and of diagnosis.

4. Theorem 2 is similar to the result from the paper by Turner (1997), which deals

with a different language and uses the definitions by McCain and Turner (1995).

If the initial situation of Hn is incomplete, one can adopt techniques discussed

elsewhere in this paper or the awareness axioms by Balduccini and Gelfond (2003).

5. As discussed in the paper by Balduccini and Gelfond (2003), the diagnostic process

may not always lead to a unique solution. In those cases, the agent may need to

perform further actions, such as repairing or replacing components, and observe

their outcomes. Balduccini and Gelfond (2003) provided a specialized algorithm
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to achieve this. An alternative, and potentially more general, option consists in

leveraging conditional planning techniques (see Section 5.2), that is, by creating

a conditional plan that determines the true diagnosis as proposed by Baral et al .

(2000).

7.2 Context: Planning and diagnosis

Classical diagnosis such as the foundational work by Reiter (1987) aimed at providing a

formal answer to the question of “what is wrong with a system given its (current failed)

state.” Central to classical diagnosis is the use of the model of the system to reason

about failures. Earlier formalizations considered a single state of the system and are

often referred to as model based diagnosis, which is summarized by De Kleer and Kurien

(2003). Later formalization such as the proposal by Feldman et al . (2020) considers a

finite trace of states, taking into consideration the transitions at different time points

in need of a diagnosis. This is closedly related to dynamic diagnosis, as described in

this paper, which has been considered in the literature (Baral et al . 2000; Baroni et al .

1999; Cordier and Thiébaux 1994; McIlraith 1997; Thielscher 1997; Thiébaux et al . 1996;

Williams and Nayak 1996).

The close relationship between model based diagnosis and satisfiability led to several

methods for computing diagnosis using satisfiability such as the method proposed by

Grastien and Anbulagan (2013), Metodi et al . (2014), or described in several publications

on diagnosing sequential circuits (e.g., by Feldman et al . 2020). In a recent work by

Wotawa (2020), ASP has been used in the context of model-based diagnosis.

8 Planning in MAE

The formalizations presented in the previous sections can be also extended to deal with

various problems in MAEs. In these problems, the planning (or reasoning) activity can be

carried out either by one system (a.k.a. centralized planning) or multiple systems (a.k.a.

distributed planning). In the following subsections, we discuss the use of ASP in these

settings.

8.1 Centralized multiagent planning

We will start with the Multi-Agent Path Finding (MAPF) problem which appears in a

variety of application domains, such as autonomous aircraft towing vehicles (Morris et al .

2016), autonomous warehouse systems (Wurman et al . 2008), office robots (Veloso et al .

2015), and video games (Silver 2005).

A MAPF problem is defined by a tupleM = (R, (V,E), s, d) where

• R is a set of robots,

• (V,E) is an undirected graph, with the set of vertices V and the set of edges E,

• s is an injective function from R to V , s(r) denotes the starting location of robot

r, and

• d is an injective function from R to V , d(r) denotes the destination of robot r.
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Fig. 5. A multi-agent path finding problem.

Robots can move from one vertex to one of its neighbors in one step. A collision occurs

when two robots move to the same location (vertex collision) or traveling on the same

edge (edge collision). The goal is to find a collision-free plan for all robots to reach their

destinations. Optimal plans, with the minimal number of steps, are often preferred.

A simple MAPF problem is depicted in Figure 5. In this problem, we have two robots

r1 and r2 on a graph with five vertices p1, . . . , p5. Initially, r1 is at p2 and r2 is at p4.

The goal consists of moving robot r1 to location p5 and robot r2 to location p3.

It is easy to see that a MAPFM = (R, (V,E), s, d) can be represented by

• a set {Pr | r ∈ R} of path-planning problems for the robots in R, where for each

r ∈ R, Pr = 〈Dr, at(r, s(r)), at(r, d(r))〉 is a planning problem with

Dr =

{
causes(move(r, l, l′), at(r, l′), {at(r, l)}) for (l, l′) ∈ E
caused({at(r, l)},¬at(r, l′))} for l �= l′, l, l′ ∈ V

• the set of constraints representing the collisions.

ASP-based solutions of MAPF problems have been proposed for both action-based as well

as state-based encodings. In the context of this survey, we will focus on an action-based

encoding. Consider a MAPF problem M = (R, (V,E), s, d). The program developed in

Section 3 for a single-agent planning problem can be used to develop a program solving

M, denoted by Π(M, n), as follows. Π(M, n) contains the following groups of rules:

1. the set of atoms {agent(r) | r ∈ R} encoding the robots;

2. the collection of the rules from Π(Pr, n); and

3. the constraints to avoid collisions:

← agent(R), agent(R′), R �= R′, (68)

holds(at(R, V ), T ), holds(at(R′, V ), T )

← agent(R), agent(R′), R �= R′, (69)

holds(at(R, V ), T ), holds(at(R′, V ′), T ),

holds(at(R, V ′), T + 1), holds(at(R′, V ), T + 1).

Rule (68) prevents two robots to be at the same location at the same time, while

rule (69) guarantees that edge-collisions will not occur. These two constraints and the

correctness of Π(Pr, n) imply that Π(M, n) computes solutions of length n for the MAPF

problemM.
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The proposed method for solving MAPF problems can be generalized to multi-agent

planning as considered by the multi-agent community in the setting discussed by Durfee

(1999). We assume that a multi-agent planning problem M for a set of agents R is

specified by a pair (Pr∈R, C) where Pr = 〈Dr,Δr,Γr〉 is the planning problem for agent

r and C is a set of global constraints. For simplicity of the presentation, we will assume

that

• the agents in R share the same set of fluents and, wherever needed, parameterized

with the names of the agents; for example, if an agent is carrying something then

carrying(r, o) will be used instead of carrying(o) as in a single-agent domain;

• the actions in the domain in Dr are parameterized with the agent’s name r, for

example, we will use the action move(r, l, l′) instead of the traditional encoding

move(l, l′);
• the constraints in C are of the form

executable(sa, ϕ), (70)

where sa is a set of actions in
⋃

r∈RDr and ϕ is a set of literals. This can be used

to represent parallel actions, non-concurrent actions, etc.

For a multi-agent planning problem M = (Pr∈R, C) where Pr = 〈Dr,Δr,Γr〉, the
program Π(M, n) that computes solution forM consists of

1. the set of agent declarations, agent(r) for r ∈ R;
2. the collection15 of the rules from Π(Pr, n) with the following modifications:

• the action specification of the form action(a) is replaced by action(r, a);

• the action generation rule is replaced by

1{occ(A, T ) : action(R,A)}1← time(T ), agent(R),

where, without the loss of generality, we assume that every Dr contains the action

noop that is always executable and has no effect;

3. for each constraint of form (70), we create a new “collective” action named said,

add action(said) to the set of actions in M (and make the (70) its executability

condition, translated into ASP as for any other action) and, for each a ∈ sa, the
following rule is added to Π(Pr, n):

occ(a, T ) ← occ(said, T ). (71)

8.2 Distributed planning

A main drawback of centralized planning is that it cannot exploit the structural or-

ganization of agents (e.g. hierarchical organization of agents) in the planning process.

Distributed planning has been proposed as an alternative to centralized planning that

aims at exploiting the independence between agents and/or groups of agents. We discuss

distributed planning in two settings: fully collaborative agents and partially-cooperative

or non-cooperative agents.

15 We keep only one instance of the domain-independent rules.
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8.2.1 Fully collaborative agents

When agents are fully collaborative, a possible way to exploit structural relationships

between agents is to allow each group of agents to plan for itself (e.g., using the planning

system described in Section 3 and then employ a centralized post-planning process (a.k.a.

the controller/scheduler) to create the joint plan for all agents. The controller takes the

output of these planners – individual plans – and merges them into an overall plan. One

of the main tasks of the controller is to resolve conflicts between individual plans. This

issue arises because individual groups plan without knowledge of other groups (e.g., robot

r1 does not know the location of robot r2). When the controller is unable to resolve all

possible conflicts, the controller will identify plans that need to be changed and request

different individual plans from specific individual groups.

Any implementation of distributed planning requires some communication capabilities

between the controller and the individual planning systems. For this reason, a client-

server architecture is often employed in the implementation of distributed planning. A

client plans for an individual group of agents and the server is responsible for merging the

individual plans from all groups. Although specialized parallel ASP solvers exist (e.g., the

systems discussed in the papers by Le and Pontelli 2005 and Schneidenbach et al . 2009),

there has been no attempt to use parallel ASP solvers in distributed planning. Rather,

distributed planning using ASP has been implemented using a combination of Prolog and

ASP, where communication between server and clients is achieved through Prolog-based

message passing, and planning is done using ASP (e.g., the system described in the paper

by Son et al . 2009a).

Observe that the task of resolving conflicts is not straightforward and can require

multiple iterations with individual planner(s) before the controller can create a joint

plan. Consider again the two robots in Figure 5. If they are to generate their own plans,

then the first set of individual solutions can be

occ(move(r1, p2, p4), 0), occ(move(r1, p4, p5), 1) (72)

and

occ(move(r2, p4, p2), 0), occ(move(r2, p2, l3), 1). (73)

A parallel execution of these two plans will result in a violation of the constraint stating

that two robots cannot be at the same location at the same time. One can see that the

controller needs to insert a few actions into both plans (e.g. r1 must move to either l1 or

l3 before moving to l4).

Let M be a multiagent planning problem and P{r∈R} be the plans received by the

controller. The feasibility of merging these plans into a single plan for all agents can

be checked using ASP. Let πn be the program obtained from Π(M, n) (described in

Subsection 8.1) by adding to Π(M, n)

• the set of action occurrences in P{r∈R}, that is,⋃
{r∈R}

{occurs(a, t) | occ(a, t) ∈ Pr}

• for r ∈ R, rules mapping time steps from 0 to n to time steps used in Pr (r ∈ R),
1{map(r, T, J) : time(J)}1← time(T ), T < n, T ≤ maxr

← map(r, T, J),map(p, T ′, J ′), T < T ′, J > J ′,
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where maxr is the maximal index in Pr. Intuitively, map(r, i, j) indicates that the

ith action in Pr should occur in the jth position in the joint plan. This mapping

must conform to the order of action occurrences in Pr.

• a rule ensuring that an atom occurs(a, j) ∈ Pr must occur at the specified position:

← occ(a, t),map(r, t, j), not occurs(a, j).

It can be checked that π4 would generate an answer set consisting of

occ(move(r1, p2, p1), 0), occ(move(r2, p4, p2), 0),

occ(move(r2, p2, l3), 1), occ(move(r1, p1, p2), 1),

occ(move(r1, p2, p1), 2),

occ(move(r2, p4, p2), 3)

which corresponds to the mappingmap(1, 0, 2),map(1, 1, 3),map(2, 0, 0),map(2, 1, 1) and

is a successful merge of the two plans in (72)–(73).

Observe that the program πn might have no answer sets, which indicates that the

merging of the plans P{r∈R} is unsuccessful. For instance, π3 has no answer set, that is,

the two plans in (72)–(73) cannot be merged with less than four steps.

8.2.2 Non/Partially-collaborative agents

Centralized planning or distributed planning with an overall controller is most suitable

in applications with collaborative (or non-competitive) agents such as the robots in the

MAPF problems. In many applications, this assumption does not hold, for example,

agents may need to withhold certain private information and thus do not want to share

their information freely; or agents may be competitive and have conflicting goals. In these

situations, distributed planning as described in the previous subsection is not applica-

ble and planning will have to rely on a message passing architecture, for example, via

peer-to-peer communications. Furthermore, an online planning approach might be more

appropriate. Next, we describe an ASP approach that is implemented centrally by Son

et al . (2009b) but could also be implemented distributedly.

In this approach, the planning process is interleaved with a negotiation process among

agents. As an example, consider the robots in Figure 5 and assume that the robots

can communicate with each other, but they cannot reveal their location. The following

negotiation between r2 and r1 could take place:

• r2 (to r1): “can you (r1) move out of l2, l3, and l4?” (because r2 needs to make

sure that it can move to location l2 and l3). This can be translated to the formula

ϕ1 = ¬at(r1, l2) ∧ ¬at(r1, l3) ∧ ¬at(r1, l4) sent from r2 to r1.

• r1 (to r2): “I can do so after two steps but I would also like for you (r2) to move

out of l2, l4, and l5 after I move out of those places.” This means that r1 agrees to

satisfy the formula sent by r2 but also has some conditions of its own. This can be

represented by the formula ϕ1 ⊃ ϕ2 = ¬at(r2, l2) ∧ ¬at(r2, l4) ∧ ¬at(r2, l5).
• r2 (to r1): “that is good; however, do not move through l4 to get out of the area.”

• etc.
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The negotiation will continue until either the agent accepts (or refutes) the latest pro-

posal from the other agent. A formal ASP based negotiation framework (e.g., the system

described by Son et al . 2014) could be used for this purpose.

Observe that during a negotiation, none of the robots changes its location or executes

any action. After a successful negotiation, each robot has some additional information

to take into consideration in its planning. In this example, if the two robots agree after

the second proposal by r2, robot r1 agrees to move out of l2, l3, and l4 but should do

so without passing by l4; robot r2 knows that he can have l2, l3, and l4 for itself after

sometime and also knows that it can stand at l4 until r1 is out of the requested area; etc.

Note, however, that this is not yet sufficient for the two robots to achieve their goals. To

do so, they also need to agree on the timing of their moves. For example, r1 can tell r2
that l2, l3, and l4 will be free after two steps; r2 responds that, if it is the case, then l2,

l4, and l5 will be free after 2 steps; etc. This information will help the robots come up

with plans for their own goals.

To the best of our knowledge, only a prototype implementation of the approach to

interleaving negotiation and planning has been presented (Son et al . 2009b). It is also

not implemented distributedly.

Remark 7

1. There are two different ways to enforce the collision-free constraint in the MAPF

encoding. One can, for example, replace (69) with the rule

← agent(R), agent(R′), R �= R′,

holds(at(R, V ), T ), holds(at(R′, V ′), T ),

occ(move(R, V, V ′), T ), occ(move(R′, V ′, V ), T + 1)

2. ASP-based solutions for various extensions of the MAPF problems have been dis-

cussed by Nguyen et al . (2017) and Gómez et al . (2020). The encoding proposed by

Gómez et al . (2020) is special in that its grounded program has a linear size to the

number of agents. An ASP-based solution for this problem has been applied in a

real-world application (Gebser et al . 2018). An environment for experimenting with

MAPF has been developed by Gebser et al . (2018). A preliminary implementation

of a MAPF solver on distributed platform can be found in the paper by Pianpak

et al . (2019).

3. We observe that little attention has been paid to ASP based distributed planning.

This also holds for the ASP based distributed computing platforms. Perhaps the

need to attack problems in multi-agent systems will eventually lead to a truly

distributed platform that could push the investigation of using ASP in this research

direction to the next level. We note that the need for such platform exists and

ad-hoc combinations with other programming language have been developed by

Le et al . (2015).

8.3 Context: Planning in MAEs

Planning in MAEs has been extensively investigated by the multi-agent research com-

munity. There exists a broad literature in this direction which addresses several issues,

such as coordination, sharing of resources, use of shared resources, execution of joint
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actions, centralized or distributed computation of plans, sharing of tasks, etc. Earlier

works in multiagent planning (e.g. see the papers Allen and Zilberstein 2009; Brafman

and Domshlak 2008; Bernstein et al . 2002; Brenner 2003; Crosby et al . 2014; Durfee

1999; de Weerdt et al . 2003; de Weerdt and Clement 2009; Goldman and Zilberstein

2004; Guestrin et al . 2001; Nair et al . 2003; Nissim and Brafman 2012; Peshkin and

Savova 2002; Shoham and Leyton-Brown 2009; Torreño et al . 2012; Vlassis 2007) focus

on generating plans for multiple agents, coordinating the execution of plans, and does

not take into consideration knowledge, beliefs, or privacy of agents. Work in planning

for multiple self-interested agents can be found in the papers (Gmytrasiewicz and Doshi

2005; Rathnasabapathy et al . 2006; Poupart and Boutilier 2003; Sonu and Doshi 2015).

The planning problem in MAEs discussed in this section focuses on the setting in which

each agent has its own goal, similar to the setting discussed in earlier work on multiagent

planning. It should be noted that MAPF has attracted a lot of attention in recent years

due to its widespread applicability such as in warehouse or airtraffic control, leading to

the organization of the yearly MAPF workshop at IJCAI and/or ICAPS conferences and

several tutorials on the topic. A good description of this problem can be found in the

papers (Barták et al . 2019; Stern et al . 2019). Challenges and opportunities in MAPF

and its extensions have been described by Salzman and Stern (2020). As with planning,

search-based approaches to solving MAPF are frequently used. Early MAPF solvers, such

as the ones described in the papers (Goldenberg et al . 2014; Wagner and Choset 2015;

Sharon et al . 2015; Boyarski et al . 2015; Cohen et al . 2016; Wang and Botea 2011; Luna

and Bekris 2011; de Wilde et al . 2014), can compute optimal, boundedly-suboptimal,

or suboptimal solutions of MAPF. Erdem et al . (2013), Yu and LaValle (2016), and

Surynek et al . (2016) applied ASP, mixed-integer programming, and satisfiability testing,

respectively, to solve the original MAPF problem. Suboptimal solutions of MAPF using

SAT is discussed by Surynek et al . (2018). Surynek (2019b) presents an SMT-based

MAPF solver.

Several extensions of the MAPF problem have been introduced. Ma and Koenig (2016)

generalize MAPF to combined Target Assignment and Path Finding (TAPF), where

agents are partitioned into teams and each team is given a set of targets that they need

to reach. MAPF with deadlines is introduced by Ma et al . (2018). Extensions of the

MAPF problem with delay probabilities have been described by Ma et al . (2017). The

answer set planning implementation by Nguyen et al . (2017) shows that TAPF can be

efficiently solved by answer set planning in multi-agent environments.

Andreychuk et al . (2019) investigate MAPF with continuous time, which removes the

assumption that transitions between nodes are uniform. Barták and Svancara (2019)

present a SAT-based approach to deal with this extension, while Surynek (2019a) de-

scribe an SMT-based MAPF solver for MAPF with continuous time and geometric

agents.

Atzmon et al . (2020) focus on the issue of unexpected delays of agents and introduce

the notion of k-robust MAPF plan, which can still be successfully executed when at most

k delays happen. This paper also studies a probabilistic extension of k-robust MAPF plan,

called pk-robots MAPF plan.

A more realistic version of MAPF, which allows agents to exchange packages and

transfer payload, is considered by Ma et al . (2016). Discussion of the problems where

robots have kinematic constraints can be found in the paper (Hönig et al . 2016).
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It is worth noting that all of the aforementioned approaches to solving MAPF are

centralized. Pianpak et al . (2019) propose a distributed ASP-based MAPF solver. In a

recent paper, Gómez et al . (2021) present a compact ASP encoding for solving optimal

sum-of-cost MAPF that is competitive with other approaches.

9 Planning with scheduling and extensions of ASP

Research on applications of ASP planning has also given impulse to, and is intertwined

with, work on extensions of ASP. Let us consider the scenario from the following example.

Example 10 (From the paper by Balduccini 2011)

In a typical scenario from the domain of industrial printing, orders for the printing of

books or magazines are more or less continuously received by the print shop. Each order

involves the execution of multiple jobs. First, the pages are printed on (possibly different)

press sheets. The press sheets are often large enough to accommodate several (10 to 100)

pages, and thus a suitable layout of the pages on the sheets must be found. Next, the

press sheets are cut in smaller parts called signatures. The signatures are then folded

into booklets whose page size equals the intended page size of the order. Finally the

booklets are bound together to form the book or magazine to be produced. The deci-

sion process is made more complex by the fact that multiple models of devices may be

capable of performing a job. Furthermore, many decisions have ramifications and inter-

dependencies. For example, selecting a large press sheet would prevent the use of a small

press. The underlying decision-making process is often called production planning. An-

other set of decisions deals with scheduling. Here one needs to determine when the various

jobs will be executed using the devices available in the print shop. Multiple devices of

the same model may be available, thus even competing jobs may be run in parallel. Con-

versely, some of the devices can be offline – or go suddenly offline while production is in

progress – and the scheduler must work around that. Typically, one wants to find a sched-

ule that minimizes the tardiness of the orders while giving priority to the more important

orders. Since orders are received on a continuous basis, one needs to be able to update

the schedule in an incremental fashion, in a way that causes minimal disruption to the

production, and can satisfy rush orders, which need to be executed quickly and take

precedence over the others. Similarly, the scheduler needs to react to sudden changes in

the print shop, such as a device going offline during production. �

This problem involves a combination of planning, configuration (of the devices involved)

and scheduling. While ASP can certainly be used to represent the problem, computation

presents challenges. In particular, the presence of variables with large domains has a

tendency to cause a substantial increase in the size of the grounding of ASP programs.

Under these conditions, both the grounding process itself and the following solving al-

gorithms may take an unacceptable amount of time and/or memory. Similar challenges

have been encountered in the ASP encoding of planning problems with large number of

actions and steps (see, e.g., the discussion by Son and Pontelli 2007).

Various extensions of ASP have been proposed over time to overcome this challenge.

Some approaches, for example, in response to large planning problems, rely on the avoid-

ance of grounding, as illustrated in systems with lazy grounding (see, e.g., the papers

by Palù et al . 2009; Cat et al . 2015, and Taupe et al . 2019) or on the use of top-down
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execution models (see, e.g., the papers by Bonatti et al . 2008 and Marple and Gupta

2013). At the core of the attempts focused on combination of planning and scheduling

is the integration of ASP with techniques from constraint solving; this approach en-

ables the effective ability to handle variables with large domains (especially numerical)

efficiently.

Elkabani et al . (2004) provided an initial exploration of the combination of ASP with

constraint logic programming, mostly focused on supporting the introduction of aggre-

gates in ASP. Baselice et al . (2005) were among the first to propose a methodology for

achieving such an integration as a way to extend the capabilities of the ASP framework.

In their approach, the syntax and semantics of ASP is extended to enable the encoding

of numerical constraints within the ASP syntax. Mellarkod et al . (2008) and Gebser

et al . (2009) proposed solvers that support variants of ASP defined along the lines of the

approach by Baselice et al . (2005), and specific ASP and constraint solvers are modified

and integrated. In particular, the approach discussed in the clingcon systems (Ostrowski

and Schaub 2012; Banbara et al . 2017) explores the integration of constraint solving

techniques with techniques like clause learning and back-jumping.

Experimental results show that these approaches lead to increased scalability, enabling

the efficient resolution of planning domains of larger size. Later research extends and

generalizes the language (Bartholomew and Lee 2013), increasing the efficiency of the

resolution algorithms; these extensions have been eventually integrated in the mainstream

clingo solver (Gebser et al . 2016). Notably, its extension with difference constraints,

viz. clingo[dl], is operationally used by Swiss Railway for routing and scheduling train

networks (Abels et al . 2019).

All of these approaches rely on a clear-box architecture (Balduccini and Lierler 2013),

that is, an architecture where the ASP components of the algorithm and its constraint

solving components are tightly integrated and modified specifically to interact with each

other. A different approach is proposed by Balduccini (2009) and later extensions. In

that line of research, the goal is to enable the reuse, without modifications, of existing

ASP and constraint solving algorithms. The intuition is that such an arrangement allows

one to employ the best solvers available and makes it easy to analyze the performance

of different combinations of solvers on a given task. This enabled researchers to propose

a black-box architecture (and, later, a more advanced gray-box architecture), where the

ASP and the constraint solving components are unaware of each other and are connected

only by a thin “upper layer” of the architecture, which is responsible for exchanging

data between the components and triggering their execution. The architecture proposed

by Balduccini and Lierler (2017) is illustrated in Figure 6. Intuitively, answer sets are

computed first by an off-the-shelf ASP solver. Special atoms are gathered by the “upper

layer” and translated into a constraint satisfaction problem, which is solved by an off-

the-shelf constraint solver. Solutions to the overall problem correspond to pairs formed

by an answer set and a solution to the constraint satisfaction problem extracted from

that answer set.

This approach features an embedding of constraint solving constructs directly within

the ASP language – that is, without the need to extend the syntax and semantics of

ASP – by means of pre-interpreted relations known to the “upper layer” of the archi-

tecture (and some syntactic sugars for increased ease of formalization). For instance,

constraint variables for the start time of jobs from Example 10 can be declared in the
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Fig. 6. Architecture of the EZCSP solver (Balduccini 2011).

language described in the paper (Balduccini 2011) by means of the rule

cspvar(st(D, J), 0,MT )← job(J), job device(J,D),max time(MT ), (74)

where cspvar is a special relation that the “upper layer” knows how to translate into a

variable declaration for a numerical constraint solver. Similarly, the effect on start times

of precedences between jobs can be encoded by the ASP rule

required(st(D2, J2) ≥ st(D1, J1) + Len1)←
job(J1), job(J2), job device(J1, D1), job device(J2, D2),

precedes(J1, J2), job len(J1, Len1),

(75)

where “≥” is a syntactic sugar for the predicate at least, written in the infix notation, and

it is replaced by a pre-interpreted function symbol during pre-processing. As before, the

“upper layer” is aware of the relation required and translates the corresponding atoms

to numerical constraints. A problem involving a combination of planning and scheduling

such as that described in Example 10 can be elegantly and efficiently solved by extending

a planning problem 〈D,Γ,Δ〉 with statements such as (74) and (75).

Later research on this topic (Balduccini and Lierler 2013; 2017) uncovered an interest-

ing result: contrary to what one might expect, there is no clear winner in the performance

comparison between black-box and white-box architectures (and gray-box as well); differ-

ent classes of problems are more efficiently solved by a different architecture. Furthermore,

Balduccini et al . (2017) showed that the EZCSP architecture can be used in planning

with PDDL+ domains.

10 Conclusions and future directions

This paper surveys the progress made over the last 20+ years in the area of answer set

planning. It focuses on the encoding in ASP of different classes of planning problems:

when the initial state is complete, incomplete, and with or without sensing actions. In

addition, the paper shows that answer set planning can reach the level of scalability
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and efficiency of state-of-the-art specialized planners, if useful information which can be

exploited to guide the search process in planning, such as heuristics, is provided to the

answer set solver. The paper also reviews some of the main research topics related to

planning, such as planning with preferences, diagnosis, planning in MAEs, and planning

integrated with scheduling. We note that research related to answer set planning has

been successfully applied in different application domains, often in combination with

other types of reasoning, such as planning for the shuttle spacecraft by Nogueira et al .

(2001), planning and scheduling (Balduccini 2011), robotics (Aker et al . 2011), scheduling

(Abels et al . 2019; Dodaro et al . 2019; Gebser et al . 2018), and multi-agent path findings

(Gómez et al . 2021; Nguyen et al . 2017). Section 9 also discusses the potential impacts

that the use of answer set planning in real-world applications can have on the development

of ASP.

In spite of this extensive body of research, there are still several challenges for answer

set planning.

Performance of ASP Planning: We note that extensive experimental comparisons with

state-of-the-art compatible planning systems have been conducted. For example, Gebser

et al . (2013) experimented with classical planning, Eiter et al . (2003b) and Tu et al .

(2011) worked with incomplete information and non-deterministic actions, and Tu et al .

(2007) with planning with sensing actions. The detailed comparisons can be found in the

aforementioned papers and several other references that have been discussed throughout

the paper. These comparisons demonstrate that ASP planning is competitive with other

approaches to planning, such as heuristic based planning or SAT-based planning.

The flexibility and expressiveness of ASP provide a simple way for answer set planning

to exploit various forms of domain knowledge. To the best of our knowledge, no heuristic

planning system can take advantages of all well-known types of domain knowledge, such

as hierarchical structure, temporal knowledge, and procedural knowledge, whist they can

be easily integrated into a single answer set planning system, as demonstrated by Son

et al . (2006).

It is important to note that the performance of answer set planning systems depends

heavily on the performance of the answer set solvers used in computing the solutions. As

such, it is expected that these answer set planing systems can benefit from the advance-

ments made by the ASP community. On the other hand, this hand-off approach also

gives rise to limitations of ASP-based planning systems, such as scalability, heuristics,

and ability to work with numeric values. It is worth noting that heuristics can be spec-

ified for guiding the answer set solver (e.g., as done by Gebser et al . 2013 in planning)

and there are considerable efforts in integrating answer set solvers and constraint solvers

(see Section 9). However, there exists no answer set planning system that works with

PDDL+, similarly to the system SMTPlan by Cashmore et al . (2020) which employs

SMT planning for hybrid systems described in PDDL+. An ASP-based planning system

for PDDL+ is proposed by Balduccini et al . (2017). Yet, this system cannot deal with

all features of PDDL+ as SMTPlan. The issue of numeric constraints is also related to

the next challenge.

Probabilistic planning: This research topic is the objective of intensive research within

the automated planning community. Similarly to other planning paradigms, competitions
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among different probabilistic planning systems are organized within ICAPS (Inter-

national Conference on Automated Planning and Scheduling, for example, https://

ipc2018-probabilistic.bitbucket.io/) and attract several research groups from

academia and industry.

Probabilistic planning is concerned with identifying an optimal policy for an agent in

a system specified by a Markov decision problem (MDP) or a Partial observable MDP

(POMDP). While algorithms for computing an optimal policy are readily available (e.g.,

value iteration algorithm by Bellman 1957, topological value iteration by Dai et al . 2011,

ILAO* by Hansen and Zilberstein 2001, LRTPD by Bonet and Geffner 2003, UCB by

Kocsis and Szepesvári 2006, as well as the work of Kaelbling et al . 1998; the interested

readers is also referred to the survey by Shani et al . 2013), scalability and efficiency

remain significant issues in this research area.

Computing MDP and POMPD in logic programming will be a significant challenge for

ASP, due to the fact that answer set solvers are not developed to easily operate with real

numbers. In addition, the exponential number of states of a MDP or POMPD require

a representation language suitable for use with ASP. This challenge can be addressed

using probabilistic action languages, such as the ones proposed by Baral et al . (2002) or

by Wang and Lee (2019). On the other hand, working with real numbers means that the

grounding-then-solving method to compute answer sets is no longer adequate. First of

all, the presence of real numbers implies that the grounding process might not terminate.

While discretization can be used to alleviate the grounding problem, it could increase

the size of the grounded program significantly, creating problems (e.g., lack of memory)

for the solving process. A potential approach to address these challenges is to integrate

constraint solvers into answer set solvers, creating hybrid systems that can effectively deal

with numeric constraints. Research in this direction has been summarized in Section 9.

The recent implementation by Abels et al . (2019) demonstrates that ASP based system

can work effectively with a huge number of numeric constraints.

Epistemic planning: In recent years, epistemic multiagent planning (EMP) has gained

significant interest within the planning community. Löwe et al . (2011) propose a gen-

eral epistemic planning framework. Complexity of EMP has been studied in the papers

(Aucher and Bolander 2013; Bolander et al . 2015; Charrier et al . 2016). Studies of EMP

can be found in several papers (Bolander and Andersen 2011; Engesser et al . 2017; van

der Hoek and Wooldridge 2002; Huang et al . 2017; Löwe et al . 2011; Eijck 2004) and

many planners have been developed (Burigana et al . 2020; Fabiano et al . 2020; Le et al .

2018; Muise et al . 2015; Kominis and Geffner 2015; 2017; Wan et al . 2015). With the

exception of the planner developed by Burigana et al . (2020), which employs ASP, the

majority of the proposed systems are heuristic search based planners. Some EMP plan-

ners, such as those proposed by Muise et al . (2015), Kominis and Geffner (2015) and 2017,

translate an EMP problem into a classical planning problem and use classical planners

to find solutions.

A multi-agent planning problem of this type is different from the planning problems

discussed in Section 8, in that it considers the knowledge and beliefs of agents, and

explores the use of actions that manipulate such knowledge and beliefs. This is necessary

for planning in non-collaborative and competitive environments. The difficulty in this

task lies in that the result of the execution of an action (by an agent or a group of
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agents) will change the state of the world and the state of knowledge and belief of other

agents. Inevitably, some agents may have false beliefs about the world. Semantically,

the transitions from the state of affair, that includes the state of the world and the

state of knowledge and beliefs of the agents, to another state of affair could be modeled

by transitions between Kripke structures (see, e.g., the books Fagin et al . 1995; Van

Ditmarsch et al . 2007). A Kripke structure consists of a set of worlds and a set of binary

accessibility relations over the worlds. A practical challenge is related to the size of

the Kripke structures, in terms of the number of worlds – as this can double after the

execution of each action. Intuitively, this requires the ability to generate new terms in the

answer set solvers during resolution. Multi-shot solvers (see, e.g., the paper Gebser et al .

2019) could provide a good platform for epistemic planning. Preliminary encouraging

results on the use of ASP in this context have been recently presented by Burigana et al .

(2020).

Explainable Planning (XAIP): This is yet another problem that has only recently been

investigated but attracted considerable attention from the planning community, lead-

ing to the organization of a a yearly workshop on XAIP associated with ICAPS (e.g.,

https://icaps20subpages.icaps-conference.org/workshops/xaip/). Several ques-

tions for XAIP are discussed by Fox et al . (2017). In XAIP, a human questions the

planner (a robot’s planning system) about its proposed solution. The focus is on explain-

ing why a planner makes a certain decision. For example, why an action is included (or

not included) in the plan? Why is the proposed plan optimal? Why can a goal not be

achieved? Why should (or should not) the human consider replanning?

Chakraborti et al . (2017), for example, describe model reconciliation problem (MRP)

and propose methods for solving it. In a MRP, the human and the robot have their own

planning problems. The goal in both problems are the same, but the action specifications

and the initial states might be different. The robot generates an optimal plan and informs

the human of its plan. The human declares that it is not an optimal plan according to

their planning problem specification. The robot, which is aware of the human’s problem

specification, needs to present to the human the reasons why its plan is optimal and

what is wrong in the human’s problem specification. Often, the answer is in the form of a

collection of actions, actions’ preconditions and effects, and literals from the initial states

that should be added to, or removed from, the human’s problem specification so that the

robot’s plan will be an optimal plan of the updated specification. While explanations

have been extensively investigated by the logic programming community, explainable

planning using ASP has been investigated only recently by Nguyen et al . (2020).
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Gómez, R., Hernández, C. and Baier, J. 2020. Solving sum-of-costs multi-agent pathfinding
with answer-set programming. In Proceedings of the Thirty-fourth National Conference on
Artificial Intelligence (AAAI’20). AAAI Press, 9867–9874.
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Notes in Artificial Intelligence, vol. 2923. Springer-Verlag, 346–350.

Lifschitz, V. 1999. Answer set planning. In Proceedings of the International Conference on
Logic Programming (ICLP’99), D. de Schreye, Ed. MIT Press, 23–37.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138,
1-2, 39–54.

Lifschitz, V. and Turner, H. 1999. Representing transition systems by logic programs. In
Proceedings of the Fifth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’99), M. Gelfond, N. Leone and G. Pfeifer, Eds. Lecture Notes in Artificial
Intelligence, vol. 1730. Springer-Verlag, 92–106.

Lin, F. 1995. Embracing causality in specifying the indirect effects of actions. In Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI’95), C. Mellish,
Ed. Morgan Kaufmann Publishers, 1985–1993.

https://doi.org/10.1017/S1471068422000072 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000072


Answer set planning: A survey 291

Lobo, J. 1998. COPLAS: A COnditional PLAnner with Sensing Actions. Tech. Rep. FS-98-02,
AAAI.

Lobo, J., Mendez, G. and Taylor, S. 1997. Adding knowledge to the action description
language A. In Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI’97), B. Kuipers and B. Webber, Eds. AAAI/MIT Press, 454–459.

Long, D., Kautz, H., Selman, B., Bonet, B., Geffner, H., Köhler, J., Brenner, M.,
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Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 1-2, 181–234.

Smith, D. andWeld, D. 1998. Conformant Graphplan. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI’98), J. Mostow and C. Rich, Eds. AAAI/MIT
Press, 889–896.

Sohrabi, S., Baier, J. and McIlraith, S. 2009. HTN planning with preferences. In Proceed-
ings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI’09),
C. Boutilier, Ed. AAAI/MIT Press, 1790–1797.

Son, T. and Baral, C. 2001. Formalizing sensing actions - a transition function based approach.
Artificial Intelligence 125, 1-2, 19–91.

Son, T., Baral, C., Nam, T. and McIlraith, S. 2006. Domain-dependent knowledge in
answer set planning. ACM Transactions on Computational Logic 7, 4, 613–657.

Son, T. and Pontelli, E. 2006. Planning with preferences using logic programming. Theory
and Practice of Logic Programming 6, 5, 559–608.

Son, T. and Pontelli, E. 2007. Planning for biochemical pathways: A case study of answer
set planning in large planning problem instances. In Proceedings of the First Workshop on

https://doi.org/10.1017/S1471068422000072 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000072


Answer set planning: A survey 295

Software Engineering for Answer Set Programming (SEA’07), M. de Vos and T. Schaub, Eds.,
vol. 281. CEUR Workshop Proceedings, 116–130.

Son, T., Pontelli, E. and Nguyen, N. 2009a. Planning for multiagent using asp-prolog.
In Proceedings of the Tenth International Workshop on Computational Logic in Multi-Agent
Systems, J. Dix, M. Fisher and P. Novák, Eds. Lecture Notes in Computer Science, vol. 6214.
Springer-Verlag, 1–21.

Son, T., Pontelli, E., Nguyen, N. and Sakama, C. 2014. Formalizing negotiations using
logic programming. ACM Transactions on Computational Logic 15, 2, 12:1–12:30.

Son, T., Pontelli, E. and Sakama, C. 2009b. Logic programming for multiagent plan-
ning with negotiation. In Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), P. Hill and D. Warren, Eds. Lecture Notes in Computer Science,
vol. 5649. Springer-Verlag, 99–114.

Son, T., Sabuncu, O., Schulz-Hanke, C., Schaub, T. and Yeoh, W. 2016. Solving goal
recognition design using ASP. In Proceedings of the Thirtieth National Conference on Artificial
Intelligence (AAAI’16), D. Schuurmans and M. Wellman, Eds. AAAI Press, 3181–3187.

Son, T. and Tu, P. 2006. On the completeness of approximation based reasoning and planning
in action theories with incomplete information. In Proceedings of the Tenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’06), P. Doherty,
J. Mylopoulos and C. Welty, Eds. AAAI Press, 481–491.

Son, T., Tu, P., Gelfond, M. and Morales, A. 2005a. An approximation of action the-
ories of AL and its application to conformant planning. In Proceedings of the Eighth In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05),
C. Baral, G. Greco, N. Leone and G. Terracina, Eds. Lecture Notes in Artificial Intelligence,
vol. 3662. Springer-Verlag, 172–184.

Son, T., Tu, P., Gelfond, M. and Morales, A. 2005b. Conformant planning for domains
with constraints — a new approach. In Proceedings of the Twentieth National Conference
on Artificial Intelligence (AAAI’05), M. Veloso and S. Kambhampati, Eds. AAAI Press,
1211–1216.

Sonu, E. and Doshi, P. 2015. Scalable solutions of interactive pomdps using generalized and
bounded policy iteration. Autonomous Agents and Multi-Agent Systems 29, 3, 455–494.

Spies, D., You, J. and Hayward, R. 2019. Human robot collaborative assembly planning: An
answer set programming. Theory and Practice of Logic Programming 19, 5-6, 1124–1142.

Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H., Walker, T., Li, J., Atzmon,
D., Cohen, L., Kumar, T., Barták, R. and Boyarski, E. 2019. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In Proceedings of the Twelfth International Symposium
on Combinatorial Search (SOCS’19), P. Surynek and W. Yeoh, Eds. AAAI Press, 151–159.

Subrahmanian, V. and Zaniolo, C. 1995. Relating stable models and AI planning domains.
In Proceedings of the Twelfth International Conference on Logic Programming. MIT Press,
233–247.

Surynek, P. 2019a. Multi-agent path finding with continuous time and geometric agents viewed
through satisfiability modulo theories (SMT). In Proceedings of the Twelfth International
Symposium on Combinatorial Search (SOCS’19), P. Surynek and W. Yeoh, Eds. AAAI Press,
200–201.

Surynek, P. 2019b. Unifying search-based and compilation-based approaches to multi-agent
path finding through satisfiability modulo theories. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence (IJCAI’19), S. Kraus, Ed. ijcai.org,
1177–1183.

Surynek, P., Felner, A., Stern, R. and Boyarski, E. 2016. Efficient SAT approach to
multi-agent path finding under the sum of costs objective. In Proceedings of the Twenty-second
European Conference on Artificial Intelligence (ECAI’16), G. Kaminka, M. Fox, P. Bouquet,
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