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Abstract
We study the positivity and causality axioms for Markov categories as properties of dilations and informa-
tion flow and also develop variations thereof for arbitrary semicartesian monoidal categories. These help
us show that being a positive Markov category is merely an additional property of a symmetric monoidal
category (rather than extra structure). We also characterize the positivity of representable Markov cate-
gories and prove that causality implies positivity, but not conversely. Finally, we note that positivity fails
for quasi-Borel spaces and interpret this failure as a privacy property of probabilistic name generation.

Keywords: Categorical probability; Markov category; Semicartesian category; Information flow; Quasi-Borel space

1. Introduction
Markov categories are a categorical approach to the foundations of probability and statistics.
Recent developments of this framework have resulted in purely categorical proofs of various
classical theorems, including theorems on sufficient statistics (Fritz 2020), 0/1-laws (Fritz and
Rischel 2020), comparison of statistical experiments (Fritz et al. 2023), the de Finetti theorem
(Fritz et al. 2021; Moss and Perrone 2022), development of multinomial and hypergeometric
distributions (Jacobs 2021), ergodic systems (Moss and Perrone 2023), and the d-separation crite-
rion for Bayesian networks (Fritz and Klingler 2023). The Markov categories framework has also
found use in probabilistic programming theory (Stein 2021; Stein and Staton 2021) and cognitive
science (St. Clere Smithe https : //arxiv.org/abs/2109.04461).

Many of these developments do not apply to arbitrary Markov categories, they require addi-
tional conditions, such as the existence of conditionals, the causality axiom or the positivity
axiom (see Section 1.2 for more details). The fact that these axioms hold in measure-theoretic
probability is the only measure-theoretic input that is needed for developments like this. The
string-diagrammatic nature of these conditions also suggests that one can think of them as
conditions on information flow; hence, we propose to call them information flow axioms.

The purpose of the present paper is to conduct a more detailed study of these axioms.
Previously it was known that the existence of conditionals implies both the causality and the
positivity axioms (Fritz 2020, Proposition 11.34 and Lemma 11.24). The converse is not true.
For example, the Markov category Stoch of all measurable spaces and Markov kernels satisfies
causality and positivity but does not have conditionals (Fritz 2020, Example 11.3). The relation
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914 T. Fritz et al.

between causality and positivity remained an open question. Our main result here is that causal-
ity implies positivity, but not conversely (Theorem 2.24). For both axioms, we also prove various
reformulations which elucidate their meaning further.

Besides adding further clarity to the intuition behind the axioms, these reformulations can also
help in deciding whether a given Markov category satisfies them. As a case in point, we consider
the Markov category QBStoch, which is the Kleisli category of the probability monad on the cat-
egory Qbs of quasi-Borel spaces. We find that QBStoch violates positivity, and that it does so in
an interesting way. As was recently discovered, Qbs validates the privacy equation (Sabok et al.
2021), which originally describes a phenomenon of fresh name generation in theoretical com-
puter science (Stark 1996). As we show in Proposition 3.5, the privacy equation and positivity are
incompatible.

A secondary theme of this paper is the idea of developing categorical probability in terms of
semicartesian monoidal categories only, which have a weaker structure than Markov categories.
This is achieved using the concept of dilations. A dilation of a Markov kernel is another Markov
kernel with an additional output such that marginalizing over the latter recovers the original
Markov kernel. In the case of kernels with trivial input, this amounts to an extension of the origi-
nal probability space. While already many of our investigations of the positivity axiom forMarkov
categories are phrased in terms of dilations, the concept of dilation comes to shine in the purely
semicartesian setting. There, we use them to define concepts that mimic those of almost sure
equality and of deterministic morphisms in Markov categories. We also note that the structure of
a positive Markov category can be recovered from its structure as a semicartesian category, and
we provide a characterization of positive Markov categories in semicartesian and dilational terms.

1.1 Summary of the paper
• Section 1.2 starts with the definitions of semicartesian categories and Markov categories,
sketches the most important examples for this paper and recalls the definition of dilation.

• Section 2 presents a detailed study of the positivity axiom. After a reformulation of positiv-
ity as deterministic marginal independence (DMI) in Definition 2.4 and Theorem 2.8, we
derive a characterization of positivity for representable Markov categories in Proposition
2.14. We then turn to the causality axiom and state its equivalence with parametrized equal-
ity strengthening inDefinition 2.16 and Proposition 2.17. Theorem 2.24 shows that causality
implies positivity; an intricate counterexample for the converse is given by a Markov cate-
gory with semiring-valued Markov kernels as morphisms for a carefully crafted semiring in
Proposition 2.25.

• Section 3 recalls the main features of quasi-Borel spaces before presenting the privacy equa-
tion as Theorem 3.2. Proposition 3.3 then uses our earlier reformulation of positivity to
show that theMarkov category of quasi-Borel spaces violates positivity. Proposition 3.5 gen-
eralizes this to arbitrary categorical models of name generation by first observing that every
such model defines a Markov category.

• Section 4 treats aspects of categorical probability, and in particular the positivity theme, in
purely semicartesian categories. To this end, Definition 4.1 introduces dilational equality. It
coincides with almost sure equality in Markov categories if and only if the said Markov cat-
egory satisfies causality (Proposition 4.3). In Definition 4.4, we associate a category of dila-
tions to every morphism. Its initial objects are dubbed initial dilations (Definition 4.7). This
provides yet further characterizations of positivity forMarkov categories as Proposition 4.12
and Corollary 4.16. Finally, Corollary 4.20 characterizes positiveMarkov categories in terms
of their structure as semicartesian categories alone, and Theorem 4.19 achieves the same for
a slightly more general class of Markov categories.
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Figure 1. Implications between various information flowaxioms considered in this paper, with pointers to theoremnumbers
on the arrows.

Fig. 1 summarizes various information flow axioms considered in this paper together with their
relations.

1.1.1 Prerequisites for reading
We assume that the reader has some basic familiarity with symmetric monoidal categories and
string diagrams (Baez and Stay 2011; Piedeleu and Zanasi https : //arxiv.org/abs/2305.08768).
Some prior exposure toMarkov categories (Cho and Jacobs 2019; Fritz 2020) will be helpful, but is
not strictly necessary. On the probability theory side, basic knowledge of discrete probability the-
ory suffices, as measure-theoretic probability does not play a central role in this paper. Somewhat
of an exception is Section 3; although we briefly recall the most relevant theoretical background,
prior exposure to the theory of quasi-Borel spaces (Heunen et al. 2017) is helpful to understand it.

1.2 Semicartesian categories, Markov categories, and dilations
All categories that are of interest to us in this paper are symmetric monoidal categories with
the following extra property, which for categorical probability implements the normalization of
probability, and can be thought of as saying that there is a unique way to forget information.

Definition 1.1. A symmetric monoidal category C is semicartesian if the monoidal unit I is
terminal.

We usually abbreviate the lengthy phrase “semicartesian symmetric monoidal category” to
“semicartesian category,” leaving in particular the symmetry implicit since other cases will not be
considered. Although the concept of semicartesian category is standard, we do not know where it
was considered first.

Besides Markov categories, that we turn to next, interesting examples of semicartesian cat-
egories occur in quantum probability, where for example the category with finite-dimensional
Hilbert spaces as objects and quantum channels as morphisms is a widely studied example (see
Houghton-Larsen 2021 and references therein).

Markov categories. Roughly speaking, a Markov category (Fritz 2020) is a semicartesian category
where all objects are commutative comonoids. Here is the precise definition.
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Definition 1.2. AMarkov category is a symmetric monoidal category C where:

• Each object X is equipped with “copy” and “discard” maps

X X

X

copyX

X

delX= = (1)

satisfying the identities of a commutative comonoid:

= = = =

(2)
• The copy maps are compatible with the monoidal structure in the following way:

X⊗ Y

=

X⊗ Y

X⊗ Y

X Y X Y

X Y

(3)

• C is semicartesian.

This definition is motivated by the fact that statements in probability theory often refer to the
same variablemultiple times, which explains why the copymorphisms are relevant. In a semicarte-
sian category, we still have the discarding maps del, for which we use the same symbol in string
diagrams. For further background on Markov categories, we refer the reader to Fritz (2020). For
a history of the concept, see Fritz and Liang (2023, Introduction and Remark 2.2)

A state in a Markov category, or more generally in a semicartesian category, is a morphism
from the monoidal unit, i.e., in the formm : I→ X. We denote it by a triangle,

X

m

States are the abstract categorical generalization of probability measures.

Example 1.3. (Probabilistic Markov categories). Here are some Markov categories of interest in
probability theory and which are used in this work.

• The category FinStoch has as objects finite sets, and as morphisms stochastic matrices with
their usual composition. We denote the entries of a matrixm : X→ Y bym(y|x), which we
can interpret as a discrete transition probability.

• The category Stoch has as objects measurable sets, and as morphisms Markov kernels with
their usual composition. Given such a kernel k : X→ Y , we denote its value on a point x ∈ X
and on a measurable subset B⊆ Y by k(B|x), and again we can interpret it as the probability
of obtaining an outcome in B given input x.
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• The category BorelStoch is the full subcategory of Stoch whose objects are standard Borel
spaces, i.e., measurable spaces whose σ -algebra can be written as the Borel σ -algebra of a
complete separable metric space (often called a Polish space).

• The category QBStoch has as objects quasi-Borel spaces and as morphisms kernels between
them. We refer to Section 3 and Heunen et al. (2017), Sabok et al. (2021) for details.

In all these examples, states are probability measures. In the case of FinStoch, they are discrete
and finitely supported.

Example 1.4. (Semiring-valued kernels). One can generalize the Markov category FinStoch to
one in which transition “probabilities” are valued in an arbitrary commutative semiring R instead
of the semiring of non-negative real numbers. Furthermore, by requiring that, for each x ∈ X,
the transition probability m(y|x) ∈ R is nonzero for finitely many y ∈ Y only, we can extend its
objects to include all sets rather than merely the finite ones. In this way, we obtain a Markov
category Kl(DR), which is equivalently the Kleisli category of the R-distribution monad DR on the
category of sets and functions. See Fritz et al. (2023, Example 3.3) or Coumans and Jacobs (2013,
Section 5.1) for more details. For example, taking R :=R+ to be the nonnegative reals results in
the category Kl(DR+), within which FinStoch is the full subcategory on finite sets.

We return to Markov categories of semiring-valued kernels throughout the article. In par-
ticular, we identify properties of the semiring R that characterize when they are positive and
representable (Proposition 2.12) as well as when they satisfy the causality axiom (Proposition
2.20). We use these to show that the Markov category Kl(DR) is causal (Proposition 2.23) when-
ever R is a bounded distributive lattice and to construct a Markov category that is positive but not
causal (Proposition 2.25).

Example 1.5. (R-valued kernels). For some counterexamples in this paper, we also need the cat-
egory FinStoch±, which can be defined as the full subcategory of Kl(DR) on finite sets. More
explicitly:

• Just as in FinStoch, objects are finite sets;
• Just as in FinStoch, a morphism f : X→ Y is a Y-by-X matrix whose columns sum to one,∑

y∈Y
f (y|x)= 1. (4)

However, unlike in FinStoch, we do not require that the entries f (y|x) are nonnegative.
• The copy and discard structures are the same as in FinStoch, which is embedded as a full
subcategory.

Example 1.6. (Cartesian categories). Every cartesian monoidal category is a Markov category
with the copy morphisms given by the diagonal maps X→ X× X. The categories Set and FinSet
are examples.

The main theme of this work is the positivity axiom, which we recall in Definition 2.1. It has
played an important role in the proofs of theorems on sufficient statistics in Markov categories in
Fritz (2020), and variants of it have also been used in the quantum context (Parzygnat 2020).

In this work, we also make use of the following additional concepts for Markov categories, for
which we also refer to earlier sources for more detail.
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Definition 1.7. (Fritz 2020, Definition 10.1). A morphism f : A→ X in a Markov category is
deterministic if it commutes with copying in the following way:

f f
=

f

X X X X

A A

(5)

We denote by Cdet the wide subcategory of C consisting of deterministic morphisms.

For example, a state in Stoch is deterministic if and only if it is a probability measure that
assigns either 0 or 1 to each measurable subset. In BorelStoch, these are exactly the Dirac delta
measures. A cartesian monoidal category is exactly a Markov category where each morphism is
deterministic.

Definition 1.8. (Fritz 2020, Definition 11.5). Given a morphism f : A→ X⊗ Y in a Markov
category, a conditional of f given X is a morphism f|X : X⊗A→ Y such that

=f

X Y

A
f

f|X

YX

A

(6)

holds. We say that a Markov category has conditionals if every morphism admits a conditional.

For example, if f is a state I→ X⊗ Y in Stoch, the conditional f|X recovers exactly the notion
of regular conditional probability (Fritz 2020, Example 11.3), and for general f , a conditional is the
same thing with an additional measurable dependence on an additional parameter. BorelStoch
has conditionals, but Stoch does not since there are probability measures on product spaces
without regular conditional probabilities (Faden 1985). We suggest (Fritz 2020, Section 11) for
additional context.

Definition 1.9. (Fritz 2020, Definition 13.1).Given morphisms f , g : A→ X in a Markov category,
and a morphism m : �→A, we say that f and g are m-almost surely equal, and write f =m-a.s. g, if

f

XA

=
m

�

g

XA

m

�

(7)

In Stoch, especially whenm is a state, this recovers exactly almost sure equality with respect to
a measure (Fritz 2020, Example 13.3).
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Definition 1.10. (Fritz et al. 2023, Definition 3.10). A Markov category C is representable if the
inclusion functor Cdet→ C has a right adjoint P : C→ Cdet. In this case, we write

sampX : PX→ X (8)

for the counit of the adjunction, and f � : A→ PX for the deterministic counterpart of a morphism
f : A→ X.

We denote the right adjoint, and also the induced monad on Cdet, by P in order to evoke the
association with a probability monad. For example, BorelStoch is representable, since a Markov
kernel A→ X is the same thing as a measurable map A→ PX, where PX is the measurable space
of probability measures on X. The counit (8) is the Markov kernel given by sampX(S|μ)=μ(S)
for every measurable S ∈�X , which we interpret as the kernel which outputs a random sample
from every distribution μ.

A Markov category C is representable if and only if it is the Kleisli category of an affine com-
mutative monad on Cdet (Fritz et al. 2023, Section 3.2). Because of this, a representable Markov
category can be thought of as adding probabilistic effects (via the monad) to a cartesian category.
For example, BorelStoch is the Kleisli category of the Girymonad on BorelMeas= BorelStochdet.

Besides the above, a very important notion for this work is that of dilations. While this concept
has been established for some time, in particular for quantum states and processes (Chiribella
2014; Chiribella et al. 2010; Selby et al. 2021), dilations have not been systematically studied or
applied in the general setting of semicartesian categories before the third author’s PhD thesis
(Houghton-Larsen 2021).

Definition 1.11. Let D be a semicartesian category (i.e., D need not be a Markov category). Let
p : A→ X be any morphism in D. A dilation of p is any morphism π : A→ X⊗ E for some E ∈ C
satisfying

π = p

X

A

X

A

(9)

We call E the environment of the dilation.

Intuitively, a dilation π describes a process that coincides with p while potentially leaking
information to an “environment” E. Conversely, p is obtained from π by ignoring the leaked
information. Dilations have been studied extensively in Houghton-Larsen (2021) in order to give
an abstract account of the so-called self-testing of quantum instruments. There, various concepts
relating to the structure of dilations were introduced (such as completeness, universality, local-
izability, purifiability), and these give a flavour of the various types of properties which dilations
may ormay not enjoy in a given category. Dilations have also been utilized in Selby et al. (2021)1 to
formulate a categorical purification axiom as part of a characterization of quantum theory among
other theories of physical processes. We use dilations for a similar purpose in Sections 4.2 and 4.3,
namely to characterize positivity in Markov categories, as well as distinguishing positive Markov
categories among other semicartesian categories. We study them in detail in Section 4.

We end this background section by relating dilations to convex combinations, which adds some
further intuition to the concept of dilation. In Moss and Perrone (2023, Section 3.1), it is shown
that for categories ofMarkov kernels, a convex decomposition of a state can be expressed bymeans
of categorical composition. We now sketch how convex combinations can also be expressed in
terms of dilations, in a way that generalizes to all morphisms (not just states). The basic idea is
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that a dilation π : A→ X⊗ E of p : A→ X can express explicitly the different terms, indexed by
E, which appear in a convex decomposition of p.

Example 1.12. (Convex combinations as dilations). In FinStoch, consider the state p : I→ X over
X= {x, y, z} given by

p(x)= 1/6, p(y)= 3/6, p(z)= 2/6 (10)
We would like to express the distribution p as a convex combination

p= 1
3
p1 + 2

3
p2 (11)

where
p1(x)= 1/2,
p2(x)= 0,

p1(y)= 1/2,
p2(y)= 1/2,

p1(z)= 0,
p2(z)= 1/2.

(12)

To this end, we can use the environment E= {1, 2} and the dilation π : I→ X× E given by

π(x, 1)= 1
3
p1(x),

π(x, 2)= 2
3
p2(x),

π(y, 1),= 1
3
p1(x),

π(y, 2),= 2
3
p2(x),

π(z, 1)= 1
3
p1(x),

π(z, 2)= 2
3
p2(x).

(13)

In this way, we can view π as equivalent to the convex decomposition from (11). The object E
indexes the “components” of p via the conditional distribution π|E : E→ X. Furthermore, the
coefficients appearing in Equation (11) correspond to the marginal distribution of π on E.

In general, if we have a morphism p : A→ X for general A, viewed as a parametrized state,
the same procedure gives a decomposition where both the coefficients and the components in
Equation (11) are allowed to depend on a parameter ranging over A. While this implements
finite convex combinations in FinStoch, in measure-theoretic probability such as BorelStoch, one
obtains infinitary convex decompositions in the form of integrals.

Let us now establish a link between dilations and the decompositions of states of Moss and
Perrone (2023). Let C be a Markov category, and let p : I→ X be a state. In Moss and Perrone
(2023), decomposing pmeans expressing it as a composition

I E Xm k (14)
for some object E, which indexes the components (and m plays the role of the “coefficients,” see
Moss and Perrone 2023, Section 3.1 for more). Such a decomposition always gives a dilation given
by

=

E

k

X

π
m

X E

(15)

and this dilation represents p as a convex combination in a way that is equivalent to (14). In fact
whenever conditionals exist, the two kinds of decomposition are equivalent.

Proposition 1.13. Let C be a Markov category with conditionals, and let p : I→ X be a state. For
every object E, the construction of Equation (15) establishes a bijective correspondence between:

• dilations of p with environment E, and
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• decompositions of p via E up to almost sure equality, i.e., pairs (m, [k]) where
– m : I→ E is a state;
– [k] is an equivalence class of morphisms k : E→ X modulo m-a.s. equality;
– k ◦m= p for each k ∈ [k].

The proof can be seen as an abstraction of Example 1.12.

Proof. Equation (15) shows how to map from decompositions to dilations. The surjectivity of this
map is immediate by the existence of conditionals. For injectivity, note thatm can be recovered as
the marginal on E; then, the claim holds by definition ofm-almost sure equality.

2. Conditions for Positivity of Markov Categories
The positivity axiom for Markov categories, as introduced in Fritz (2020), formalizes the idea that
any (potentially random) intermediate outcome of a deterministic process is independent of the
output given the input. The goal of this section is to present a number of reformulations of the
positivity axiom for Markov categories. These underline its significance and shed further light
on its intuitive meaning. Along the way, we develop a number of related notions that may be of
independent interest.

2.1 The positivity axiom
Here, we recall the definition of a positive Markov category. Readers familiar with this material
may proceed directly to Section 2.2.

Definition 2.1. AMarkov category C is positive if whenever f : X→ Y and g : Y→ Z are such that
g ◦ f is deterministic, then we have

g

=
f

ZY ZY

X X

ff

g

(16)

The positivity property was introduced under this name in Fritz (2020) because the proof that it
holds in Stoch relies importantly on the nonnegativity of probabilities. It was also observed there
that positivity follows from the existence of conditionals. Moreover, positivity fails in FinStoch±
(Fritz 2020, Example 11.27), which provides a nice way to see that FinStoch± does not have
conditionals.

Remark 2.2. (i) The intuition behind the positivity axiom is that if a composite computation
gf is deterministic, then it is possible to calculate the intermediate result (the output of f )
independently of the result of the entire computation.

(ii) The stronger notion of strict positivity2 relativizes the positivity axiom with respect to
almost sure equality (Fritz 2020, Definition 13.16). This property is relevant for proving
properties of sufficient statistics, namely versions of Fisher–Neyman factorization theorem
(Fritz 2020, Theorem 14.5) and of Basu’s theorem (Fritz 2020, Theorem 15.8). We briefly
consider strict positivity, and refer to it as relative positivity, in Section 2.5.

(iii) Parzygnat (Parzygnat 2020, Section 4) has considered a quantum analogue of the positivity
axiom, but for subcategories of a (quantum)Markov category. It is indeed related to notions
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of positivity in the quantum setting. In particular, the category of linear unital maps between
finite-dimensional C*-algebras includes Schwarz positive maps (and thus also completely
positive maps) as a subcategory that satisfies the relevant positivity axiom. Nevertheless, the
subcategory of all positive linear maps does not satisfy the categorical notion of positivity
(Parzygnat 2020, Example 4.9).

Remark 2.3. As a rather weak information flow axiom, one may consider the property that
every isomorphism is deterministic. This is not the case in every Markov category (Fritz 2020,
Remark 10.10); For example in FinStoch± defined in Example 1.5, every invertible matrix is an
isomorphism, but it is only the permutation matrices among them which are also deterministic.

The property that every isomorphism is deterministic is a simple consequence of positiv-
ity (Fritz 2020, Remark 11.28). Indeed if f is an isomorphism, then taking g = f−1 in Equation (16)
and composing with f on the right output shows that f is deterministic.

Conversely, the condition “isomorphisms are deterministic” does not imply positivity. For
example, consider the wide subcategory of FinStoch±, a morphism of which is

• an arbitrary stochastic matrix (i.e., a morphism of FinStoch), or
• any morphism of FinStoch± whose rank is 1.

Since this class of morphisms is closed under composition, tensor product and contains all the
structure morphisms of FinStoch±, it follows that it is a Markov category in its own right. To see
that every isomorphism is deterministic, note that a stochastic matrix of rank 1 is not invertible
unless its domain and codomain are both singletons, in which case its only entry must be 1. To
see that positivity fails, consider e.g.

f =

⎛
⎜⎜⎝

1
1
−1

⎞
⎟⎟⎠ , g =

(
1 0 0
0 1 1

)
, (17)

for which g ◦ f is deterministic, but Equation (16) does not hold.

2.2 Deterministic marginal independence is equivalent to positivity
In probability theory, it is an obvious fact that a deterministic random variable is independent
of any other random variable. This fact has previously made a brief appearance in the Markov
categories framework in Fritz (2020, Proposition 12.14). Here is the general definition.

Definition 2.4. A Markov category C satisfies deterministic marginal independence (DMI) if for
every deterministic morphism p : A→ X, every dilation π : A→ X⊗ E of p displays the conditional
independence of X and E given A, i.e.

π π=

X E X E

AA

π (18)

Equivalently, DMI says that everymorphismA→ X⊗ E that has a deterministic marginal (say,
on X) must display conditional independence of X and E given A.
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Note that the term “deterministic marginal independence” is intended to be understood as
“(deterministic marginal) independence,” not as “deterministic (marginal independence).”

In words, deterministic marginal independence states that a deterministic output of a pro-
cess cannot be correlated with another output. The following example already illustrates that this
property is also related to the nonnegativity of probabilities.

Example 2.5. (DMI for stochastic matrices). FinStoch satisfies deterministic marginal indepen-
dence. For instance, consider trivial input A= I, so that π is a joint distribution of X and E.
Deterministic states in FinStoch are point distributions, so that we have p= δx0 for some x0 ∈ X.
The assumption that π dilates pmeans that for x ∈ X,

∑
e∈E

π(x, e)=
{
1 if x= x0,
0 otherwise

(19)

holds. By the nonnegativity of probabilities, this implies that π(x, e) vanishes for all e whenever
x �= x0. Consequently, the other marginal of π is given by

πE(e)= π(x0, e), (20)

and the whole joint distribution can be written as

π(x, e)= δx0 (x) · π(x0, e)= p(x) · πE(e) (21)

which is precisely the desired Equation (18). For more general morphisms, the same holds, where
now both p and π depend on an additional parameter.

Another closely related notion is the following one.

Definition 2.6. A morphism q : A→ X⊗ E is deterministic in X if and only if it satisfies

=

A

qq

A

E EX XX X

q
(22)

Discarding the output E shows that if q is deterministic in X, then its marginal qX is
deterministic. However, the converse does generally not hold, as the following example shows.

Example 2.7. (Deterministic marginals with negative probabilities). In FinStoch±, a joint distri-
bution q : 1→ X⊗ E is deterministic in X if and only if for all outcomes x1, x2 ∈ X and e ∈ E, we
have

δx1,x2 · q(x2, e)= qX(x1) · q(x2, e). (23)

In FinStoch, this property is equivalent to the marginal qX being deterministic; this is an instance
of Theorem 2.8 below. In FinStoch±, instead, there are joint distributions q which are not
deterministic in X although their marginal qX is deterministic. For example, for X= {x, y} and
E= {a, b}, taking the signed distribution with joint probabilities given by

q a b
x 1/2 1/2
y 1/2 −1/2

(24)
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has marginal qX equal to δx, which is deterministic. However, setting x1 = x2 = y and e= a in (23)
results in

1 · 1/2 �= 0 · 1/2. (25)

The culprit is that the marginal qX gives mass zero to y, but the joint probability q gives nonzero
mass to the point (y, a). This is possible because in this category we are allowing negative
probabilities, and some mass cancels out when we form the marginal.

Theorem 2.8. For a Markov category C, the following are equivalent:

(i) C is positive.
(ii) C satisfies deterministic marginal independence.
(iii) For all q : A→ X⊗ E,

q is deterministic in X ⇐⇒ qX is deterministic.

Proof.

(i)⇒ (ii): This was proven as Fritz (2020, Proposition 12.14), and we recall the argument here for
completeness. If p is deterministic, then in the defining Equation (16) we take a dilation
π thereof in place of f and the morphism

X

EX

(26)

in place of g. Then the composite g ◦ f is equal to p, which is deterministic by
assumption. Equation (16) now reads

ππ=

XE XX

AA

π

EX

(27)

We then get the desired conditional independence by marginalizing over the leftmost
output and swapping the other two,

π π=

X E X E

AA

π (28)

implicitly using the commutativity of copy.
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(ii)⇒ (i): Consider f : A→ X and g : X→ Y with a deterministic composite g ◦ f . Then the
morphism

g
:=

f

Y

A

X

A

Y

π

X

(29)

is a dilation of its Y-marginal g ◦ f , which is deterministic by assumption. Therefore
deterministic marginal independence applies and gives

g

=
f

X

A

Y X

A

f

Y

gg
= f

X Y

g

A

f
f

(30)

as was to be shown.
(ii)⇒ (iii): We already noted that determinism in X of q always implies that its X-marginal qX is

deterministic, so we focus on the backward implication, assuming that C satisfies DMI.
Consider a morphism q : A→ X⊗ E with deterministic marginal qX . By DMI, q dis-
plays the conditional independence of X and E given A. Using both of these properties
entails

=

q

A

qq

A

EX X

X X

=

A

X EX

q q

E

=
qq

A

X E

q

X

X

=
qq

EX

q

A

(31)

so that q is indeed deterministic in X. The first and last equations hold because of the
conditional independence; the second one uses the fact that qX is deterministic; and
the third one holds by associativity of copying.

(iii)⇒ (ii): Let π : A→ X⊗ E be a dilation of a deterministic morphism p : A→ X. Then π is
necessarily deterministic in X by the assumed Property (iii). Marginalizing the middle
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output in Equation (22) gives

π π=

X E X E

AA

π
(32)

which is the desired conditional independence.

Remark 2.9. Let us call a morphism p : A→ X globally deterministic if every dilation of p is
deterministic in X. We can then express Property (iii) as saying

Cdet = Cgd (33)
where Cgd denotes the class of globally deterministic morphisms in C.

As a consequence of Theorem 2.8, Example 2.7 corresponds to the failure of positivity in
FinStoch± as noticed in Fritz (2020, Example 11.27).

We can also use Theorem 2.8 to establish the conditions under which Markov categories of
semiring-valued stochastic matrices from Example 1.4 are positive. First, let us characterize the
deterministic morphisms therein. To that end, recall that a commutative semiring R is entire if
0 �= 1 and if R has no zero divisors in the sense that

rs= 0 =⇒ r= 0 or s= 0 (34)
holds.

Lemma 2.10. Let R be an entire commutative semiring. A morphism f : A→ X in Kl(DR) is
deterministic if and only if it can be expressed as

f (x|a)= δf �(a)(x) (35)

for a function f � ∈ Set(A, X), where δx′ ∈DR(X) is the delta distribution given by

x �→
{
1 if x= x′,
0 if x �= x′.

(36)

Moreover, f � is then uniquely determined by f .

In other words, deterministic morphisms of Kl(DR) coincide with its pure morphisms in the
sense of Moss and Perrone (2022, Definition 2.5). However, they do not necessarily coincide
with pure or dilationally pure morphism in the sense of Selby et al. (2021) and Houghton-Larsen
(2021), respectively. Note that the function f � is unique by 1 �= 0 in R.

Proof. Since every morphism of that form is clearly deterministic, it suffices to show the forward
implication. Let f be deterministic, meaning that

f (x|a) f (x′|a)= f (x|a) δx′(x) (37)
holds for all a ∈A and all x, x′ ∈ X. For every a there is an x with f (x|a) �= 0. Since R has no
zero divisors by assumption, Equation (37) which takes the form f (x|a) f (x′|a)= 0 then implies
f (x′|a)= 0 for every x′ distinct from x. Normalization then forces f (x|a)= 1, so that f satisfies
Equation (35).
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The uniqueness is clear by 0 �= 1 in R; equivalently, the canonical Kleisli functor Set→ Kl(DR)
is faithful.

While the proof of Lemma 2.10 is instructive, it is worth noting that this statement also follows
from Fritz et al. (2023, Propositions 3.4 and 3.6), which in turn also implies that the Markov
category Kl(DR) is representable.3

Definition 2.11. A semiring R is zerosumfree if it satisfies

r+ s= 0 =⇒ r= s= 0 (38)

for all r, s ∈ R.

Proposition 2.12. Let R be an entire commutative semiring. Then theMarkov category Kl(DR) from
Example 1.4 is positive if and only if R is zerosumfree.

This generalizes the fact that FinStoch± is not positive and can be taken as further motivation
for the term “positivity”.

Proof. We use the characterization of positive Markov categories as those satisfying deterministic
marginal independence.

First, assume that R is zerosumfree and consider a dilation π : A→ X⊗ E of a deterministic
p : A→ X. By Lemma 2.10, we have∑

e∈E
π(x, e|a)= p(x|a)= δp�(a)(x). (39)

Therefore by zerosumfreeness we have π(x, e|a)= 0 for every e ∈ E and every x ∈ X distinct from
p�(a) ∈ X. This means that

π(x, e|a)= δp�(a)(x) p̃(e|a) (40)

holds, where p̃ : A→ E is the E-marginal of π . But this is precisely the statement of deterministic
marginal independence.

Conversely, assume that R is not zerosumfree, i.e., that there exist r and s such that r+ s= 0
and r �= 0. Consider a morphism π : I→ X⊗ E with X= {x, x′} and E= {e, e′}, given by the joint
distribution π ∈DR(X× E) with

π(x, e)= 1,
π(x, e′)= 0,

π(x′, e)= r,
π(x′, e′)= s.

(41)

Then the marginal p := πX is deterministic. However, π is not equal to the product of its
marginals, since the latter is instead given by

πX(x) πE(e)= 1+ r,
πX(x) πE(e′)= s,

πX(x′) πE(e)= 0,
πX(x′) πE(e′)= 0.

(42)

This means that Kl(DR) does not satisfy deterministic marginal independence and thus it is not
positive.

2.3 Positivity of representable Markov categories
We will show next that the following existing notion can be used to detect the positivity of a
representable Markov category, in terms of the associated commutative monad on the cartesian
monoidal category Cdet of deterministic morphisms.
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Definition 2.13. (Jacobs 2016, Definition 1). A strong monad (P,μ, δ) with strength s on a
cartesian monoidal category D is strongly affine if for all objects X and Y of D, the diagram

X× PY P(X× Y)

X PX

s

π1 P(π1)
δ

(43)

is a pullback in D, where π1 is the projection map.

Taking X= Y = 1 shows that a strongly affine monad is in particular affine (satisfies P1∼= 1).
Therefore the adverb “strongly” cleverly refers to both a strengthening of affineness and to the fact
that the condition involves the strength s.

Proposition 2.14. Let C be a representable Markov category with affine commutative monad P on
Cdet, so that C= Kl(P). Then C is positive if and only if P is strongly affine.

Proof. By Theorem 2.8, it suffices to show that C satisfies deterministic marginal independence if
and only if P is strongly affine.

In a representable Markov category, a morphism p : A→ X is deterministic if and only if it
satisfies p� = δp (Fritz et al. 2023, Proposition 3.12). For the remainder of the proof, we work in
Cdet only. Then by the previous statement, a given q : A→ X× Y has deterministic first marginal
qX if and only if there exists f : A→ X (namely qX) such that the diagram

A

X× PY P(X× Y)

X PX

q�

f
s

π1 P(π1)

δ

(44)

commutes. Now, if the square (43) is a pullback, then q factors (uniquely) through the strength s,
i.e. there exists a unique morphism u : X→ Y × PZ making the diagram

A

X× PY P(X× Y)

X PX

q�

qX

u

s
π1 P(π1)

δ

(45)

commute. By the universal property of the product X× PY in Cdet, the map u is determined by its
components. Its X-component must be equal to qX and its PY-component must be equal to the
marginal q�Y in order for the diagram to commute. Indeed, since the diagram

X× PY P(X× Y)

PY
π2

s

P(π2) (46)
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commutes, we have that π2 ◦ u= P(π2) ◦ s ◦ u= P(π2) ◦ q� = q�Y . Recall now that the strength s is
given by the following composition,

X× PY PX× PY P(X× Y),δ×id ∇ (47)

where ∇ denotes the lax symmetric monoidal structure morphism of P. Therefore, if (43) is a
pullback, then we get

q� = s ◦ u=∇ ◦ (δ× id) ◦ (f , q�Y )=∇ ◦ (q�X , q�Y ). (48)

Sampling on both sides produces the desired factorization of Equation (18). Since q was arbitrary,
it follows that C has deterministic marginal independence.

The converse implication follows by the same line of argument upon noting that the above
reasoning covers every instance of the universal property of the pullback in Cdet.

2.4 Causality and positivity
We now turn to another important information flow axiom: causality (Fritz 2020,
Definition 11.31).

Definition 2.15. (Fritz 2020, Definition 11.31).AMarkov category C is causal if whenever f : A→
W, g : W→ X and h1, h2 : X→ Y satisfy

=

A

f

X

g

h1

Y

A

g

h2

Y

f

X

(49)

then we also have the stronger equation

=

A

f

X

g

h1

Y W

A

f

X

g

h2

Y W

(50)

Intuitively, the axiom states that if a choice between h1 and h2 in the “future” of g does not
affect anything that happens from there on, then this choice cannot affect anything that happened
in the “past” of g either.

To show that causality is a stronger property than the positivity axiom, it is helpful to have an
alternative formulation thereof. The following definition elaborates on Fritz (2020, Remark 11.36).
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Definition 2.16. A Markov category C has parametrized equality strengthening if for any
h1, h2 : X→ Y and any p : A→ X,

=

Y

p

h1

X

p

h2

Y X

A A

(51)

implies that for every dilation π of p with environment E, we have

=
π

h2

Y E

A

π

h1

Y E

A

(52)

Definition 2.16 extends the notion of equality strengthening given by Cho and Jacobs
(2019, p. 19), who considered the special case in which p has trivial input, meaning that A= I.

Proposition 2.17. (Fritz 2020, Remark 11.36). For a Markov category C, the following are
equivalent:

(i) C is causal.
(ii) C has parametrized equality strengthening.

Proof. The proof amounts to reinterpreting the terms in the respective equalities.

(i)⇒ (ii): Consider h1, h2, and p satisfying Equation (51) and an arbitrary dilation π : A→ X⊗ E
of p. If we define

:= π

X E

A

f

X E

A

g

X E

X

:=
X E

X

(53)

then Equation (51) coincides with (49) and applying causality gives

=

A

X

h1

Y X

π

E

A

X

h2

Y X

π

E

(54)

which, upon marginalizing the two X outputs, gives the required Equation (52).
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(ii)⇒ (i): Conversely, the morphism

A

f

X

g

WX

(55)

is a particular dilation of g ◦ f : A→ X with environment X⊗W, so that applying
parametrized equality strengthening to Equation (49) gives Equation (50).

Let us use Proposition Proposition 2.17 to characterize causality for Markov categories of
semiring-valued stochastic matrices from Example 1.4.

Definition 2.18. An element r of a semiring R is said to have a complement r ∈ R if we have
r+ r= 1. (56)

Remark 2.19. A complement need not be unique if it exists. For example, Rmay satisfy x+ x= x
and x2 = x for all x ∈ R, in which case R is equivalently a bounded distributive lattice with join +
and meet ·, and with 0 as bottom and 1 as top element. In this case, 1 is a complement for (and is
complemented by) every other element.4

Proposition 2.20. Let R be a commutative semiring. The Markov category Kl(DR) is causal if and
only if, for all s, t, v,w ∈ R such that s, t and v+w have complements in R, we have the following
implication:

s(v+w)= t(v+w) =⇒ sv= tv and sw= tw (57)

Proof. First, let us show that for a semiring satisfying Implication (57), the corresponding
Markov category Kl(DR) has parametrized equality strengthening. Writing out Equation (51) in
components gives

h1(y|x) p(x|a)= h2(y|x) p(x|a) (58)
which, for any dilation π of p, reads

h1(y|x)
[∑
e∈E

π(x, e|a)
]
= h2(y|x)

[∑
e∈E

π(x, e|a)
]
. (59)

For any choice of a ∈A, e ∈ E, x ∈ X, and y ∈ Y , let us define the following elements of R,
s := h1(y|x),
s :=

∑
y′ �=y

h1(y′|x),
t := h2(y|x),
t :=

∑
y′ �=y

h2(y′|x),
v := π(x, e|a),
w :=

∑
e′ �=e

π(x, e′|a). (60)

Then, by normalization of the respective morphisms, s and t have s and t as complements, while
v+w, being equal to p(x|a), has a complement too. Moreover, Equation (59) takes the form of the
antecedent of Implication (57). Using this implication then gives sv= tv, which reads

h1(y|x) π(x, e|a)= h2(y|x) π(x, e|a). (61)
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This is the componentwise form of Equation (52) that we aimed to show.
Conversely, assume that Kl(DR) has parametrized equality strengthening. Let A= I be the sin-

gleton and let X, Y , and E each have cardinality two. We choose morphisms p, π , h1, and h2 with
types as above to be given by

p :=
(
z
z

)

π :=
(
v w
z 0

)
h1 :=

(
s 1
s 0

)

h2 :=
(
t 1
t 0

)
.

(62)

where z := v+w. In the above matrix notation, π ranges over X in its rows and over E in its
columns, while h1 and h2 denote stochastic matrices X→ Y with X in columns and Y in rows as
usual. With these choices, Equation (58) reads(

sz sz
z 0

)
=
(
tz tz
z 0

)
, (63)

as an equality of joint distributions in DR(X× Y) with X on the rows and Y on the columns. This
equation follows from the assumed antecedent of Implication (57). Applying parametrized equal-
ity strengthening to get Equation (61), we then obtain the requisite equations sv= tv and sw= tw
by choosing the elements ofX andY that correspond to the upper left corner in Equation (63).

Remark 2.21. Causality implies positivity for semiring-valued kernels. For entire commuta-
tive semirings, Propositions 2.20 and 2.12 foreshadow Theorem 2.24, which says that causality
implies positivity for arbitrary Markov categories. Indeed, any commutative semiring satisfying
Implication (57) is also zerosumfree. To see this, let s= 1 and t= 0, both of which have comple-
ments. Since v+w= 0 implies that v+w also has a complement, applying (57) gives v= 0 and
w= 0. Thus, R is then zerosumfree and Kl(DR) is a positive Markov category by Proposition 2.12.

Remark 2.22. Multiplicative cancellativity implies causality. Another consequence of Proposition
2.20 is that if R is a zerosumfree commutative semiring in which multiplication by nonzero ele-
ments can be cancelled, then the Markov category Kl(DR) is causal. Indeed, if v+w= 0, then
by zerosumfreeness we conclude v=w= 0, so that Implication (57) is satisfied. Otherwise, the
equation s(v+w)= t(v+w) gives us s= t by cancelling v+w, and thus the implication also
holds in this case. An interesting example where this applies would be the tropical semiring
R= [−∞,+∞) with max as addition and+ as multiplication.

As we show next, the conditions in Proposition 2.20 are also satisfied when R is a bounded
distributive lattice (as considered in Remark 2.19). Later on, this will rule such semirings out as
potential counterexamples showing that positivity does not imply causality, and we will need to
consider more complicated semirings instead (Proposition 2.25).

Proposition 2.23. Let R be a bounded, distributive lattice. Then the Kleisli category Kl(DR) is a
causal Markov category.

Proof. Let us denote the underlying lattice ordering by≥. We will show that for arbitrary elements
s, t, v,w of R, Implication (57) holds, from which causality follows by Proposition 2.20. By the
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antecedent of (57) and the fact that in a lattice we always have a+ b≥ a≥ ab and a+ b≥ b≥ ab,
we can infer the order relations depicted in the following Hasse diagram, where z := v+w:

s t

sz tz

tvsv sw tw

wv (64)

Using transitivity of ≥, we extract relations

s≥ tv, v≥ tv, t≥ sv, v≥ sv. (65)

Since sv is the greatest lower bound of {s, v}, the first two imply sv≥ tv, and by similar reasoning
the latter two imply tv≥ sv. Since≥ is antisymmetric, we finally get sv= tv. Analogously, one can
obtain the other equation sw= tw. By Proposition 2.20, Kl(DR) is thus a causal Markov category.

Returning to the general theory, we now prove a new and surprising implication from causality
to positivity.

Theorem 2.24. If a Markov category C is causal, then C is positive. The converse is false.

Proof. Let f : A→W and g : W→ X be such that g ◦ f is deterministic. Define p to be the
morphism

A

X

f

g

X

= f

X

g

A

X

g

f:=p

A

XX

(66)

where the two forms of p are equal by the assumption that g ◦ f is deterministic. Then there is a
dilation π of p, with environmentW, given by

A

f

W

g

X

f

X

g

:=π

A

WXX

(67)
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Note that the following equation
X XX

A

=

h1

p

X XX

A

h2

p

f

g

f

g
(68)

holds by the associativity of copying, where we identify h1 as delX ⊗ idX and h2 as idX ⊗ delX .
Since causality is equivalent to parametrized equality strengthening (Proposition

Proposition 2.17), we can apply the latter to Equation (68). Replacing p (with its outputs
copied) by the dilation π from (67) yields

X

A

=

h1

π

f

g

f

g

W X

A

h2

π

f

g

f

g

W

(69)

which is the desired positivity equation up to swapping the outputs (see Definition 2.1).
The fact that positivity does not imply causality in general is shown by constructing a Markov

category that is positive but not causal, which we do next in Proposition 2.25.

In particular, we take inspiration from Propositions 2.12 and 2.20 and look for an entire com-
mutative semiring that is zerosumfree, but does not satisfy Implication (57). By Proposition 2.23,
we know that such a semiring cannot be a distributive lattice. Rather, let I(Z[2i]) be the
commutative quantale5 of ideals of the commutative ring

Z[2i]=Z⊕ 2iZ= {m⊕ 2ik |m, k ∈Z}, (70)

which is the subring of the Gaussian integers whose imaginary part is even. The addition and
multiplication in I(Z[2i]) are the ideal addition and multiplication, respectively, with units given
by the null ideal {0} the whole ring Z[2i], respectively.

Proposition 2.25. Let R be the semiring of ideals I(Z[2i]) defined above. Then:

(i) R is entire and zerosumfree.6
(ii) The Markov category Kl(DR) is representable and positive.
(iii) The Markov category Kl(DR) is not causal.

Proof. (i) R is nontrivial as we have {0} �=Z[2i]. To show that it is entire, we thus need to
prove that is has no zero divisors. Consider two nonzero ideals I, J ⊆Z[2i] with IJ = {0}.
The latter is equivalent to αβ = 0 for all α ∈ I and β ∈ J. Since Z[2i] itself is entire, this
implies I = J = {0}.
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To show that R is zerosumfree, consider two ideals I and J that sum to zero, i.e., I + J = {0}.
Since the sum of ideals contains each of them, the desired I = J = {0} is immediate.

(ii) Representability follows by Fritz et al. (2023, Proposition 3.6) and the previous item.
Positivity follows by Proposition 2.12 and the previous item.

(iii) Let us show that Implication (57) fails here. To this end, we choose ideals

s= v := (2, 4i), t=w := (4, 2i), (71)

where (m, 2ik) denotes the setmZ⊕ 2ikZ⊆Z[2i]. Note that s and t are the principal ideals
generated by 2 and 2i, respectively. We use the (m, 2ik) notation to highlight that these are
distinct ideals in Z[2i], which would not be the case for the Gaussian integers Z[i]. Since
every element of R has a complement given by Z[2i] itself, s, t, and (v+w) do as well. We
can now compute

s2 = t2 = (4, 8i), st= (8, 4i), (72)

so that we have

s(v+w)= s2 + st= st+ t2 = t(v+w), (73)

but nevertheless

sv= s2 = (4, 8i) �= (8, 4i)= st= tv. (74)

These computations show that Implication (57) fails and thus, by Proposition 2.20, that
Kl(DR) is not a causal Markov category.

Question 2.26. Is there a characterization of when a representable Markov category is causal,
analogous to Proposition 2.14?

2.5 Information flow almost surely
As a brief aside, let us turn to the notion of strict positivity introduced in Fritz (2020, Definition
13.16). As discussed in Section 4.3, the name strict positivity appears unfortunately chosen in
retrospect. We thus refer to it as relative positivity in this article. It corresponds to the positivity
axiom (Definition 2.1) with both antecedent and consequent relativized to p-almost sure equality.
That is, we say that C is a relatively positive Markov category if for all morphisms f , g, and p of
suitable types, we have

g
=p-a.s.

f

ff

g

f

g f

g

f

g

=p-a.s. =⇒ (75)

Remark 2.27. Relative positivity implies ordinary positivity by choosing p= id.

In fact, one can formulate similar relative versions of other information flow axioms, such as
relative deterministic marginal independence and relative causality. By replacing equalities with p-
a.s. equalities in the respective proofs, implications in Fig. 1 remain valid also between the relative
versions of the axioms, e.g., relative causality implies relative positivity by Theorem 2.24.
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An interesting observation is that the causality axiom is equivalent to its relativized version.
That is, the implication

=p-a.s.

A

f

X

g

h1

Y

A

g

h2

Y

f

X

=p-a.s.=⇒

A

f

X

g

h1

Y W

A

f

X

g

h2

Y W

(76)

can be derived by two applications of the causality axiom itself. This lets us show the following
strengthening of Theorem 2.24.

Corollary 2.28. If C is causal, then C is relatively positive.

Proof. By the arguments presented in this section, we have

causality ⇐⇒ relative causality =⇒ relative positivity.

It is interesting to note that the first implication cannot be generalized to quantum Markov
categories due to Parzygnat (2020, Example 8.28 and Proposition 8.34).7

3. Quasi-Borel Spaces, the Privacy Equation, and Failure of Positivity
So far, counterexamples to positivity arose in settings constructed for this purpose, such as when
we deal with negative probabilities. The purpose of this section is to present probability theory
on function spaces as a naturally occurring situation in which positivity is violated. The failure of
positivity here is not a bug but a feature, because it conforms to intuitions about information-
hiding and privacy. This failure of positivity is not rooted in the existence of negative probabilities
like in FinStoch±. Rather, information hiding and a form of destructive interference are central
to understanding the failure of positivity in this context.

In short, if X∼ ν is a random variable sampled from an atomless distribution ν such as a
Gaussian distribution, then we can form the singleton set A= {X}, which is now a random sub-
set of the real line. As we will show, A is equal in distribution to the empty set, i.e., its law is δ∅.
This means that the distribution of the random pair (A, X) is a state which violates deterministic
marginal independence. Indeed its first marginal is deterministic (with value ∅), but A and X are
not independent; this can be seen for example because A � X holds with probability 1.

In order to make this counterexample precise, we first need to introduce a Markov category
capable of expressing random subsets of the real line. This is not possible in Stoch or BorelStoch
because the category of (standard Borel)measurable spaces is not cartesian closed (Aumann 1961).

• In Section 3.1, we recall quasi-Borel spaces, which are a model for probabilistic program-
ming with higher order functions and are thus capable of formalizing our example.

• In Section 3.2, we formally define the random singleton distribution as a measure on 2R
and show that it equals δ∅. We then obtain a counterexample to deterministic marginal
independence (Proposition 3.3).

• In Section 3.3, we remark that the situation in quasi-Borel spaces has strong connections
to fresh name generation in computer science (Sabok et al. 2021). While we do not focus
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on the models, this matches up well with our analysis of information flow and information
leaking and defines another source of interesting Markov categories.

3.1 Quasi-Borel spaces
Quasi-Borel spaces have been introduced inHeunen et al. (2017) as a conservative extension of the
category of measurable maps between standard Borel spaces to a cartesian closed category Qbs.
This means that one can form function spaces such as 2R, the space of all Borel subsets of R, and
consider probability distributions on such objects. Quasi-Borel spaces also feature a probability
monad P which is commutative, affine, and agrees with the Giry monad on standard Borel spaces.
We denote the Markov category obtained as the Kleisli category of P by QBStoch. It serves as an
interesting source of counterexamples to information flow axioms, as it can “hide” information
flow into objects like 2R.

A quasi-Borel space is a pair (X,MX), where X is a set andMX ⊆ XR is a collection of functions
R→ X, called random elements, satisfying certain closure properties (Heunen et al. 2017), such
as including all constant maps. A morphism of quasi-Borel spaces (X,MX)→ (Y ,MY ) is a func-
tion f : X→ Y that preserves random elements. We consider the following quasi-Borel spaces of
interest:

• The real line is the quasi-Borel space R whose random elements are the Borel measurable
maps R→R.

• The Booleans form the quasi-Borel space 2 with two elements, whose random elements are
the Borel measurable maps R→ 2, i.e., Borel subsets of R.

• The exponential 2R in Qbs consists of all Borel measurable maps R→ 2. Its random ele-
ments R→ 2R are precisely the exponential transposes of Borel measurable maps of type
R×R→ 2. The evaluation map

ev : 2R ×R→ 2, (A, x) �→ �x ∈A� (77)

is a morphism of quasi-Borel spaces, where �x ∈A� stands for the truth value of the
proposition x ∈A.

Every quasi-Borel space (X,MX) has an induced σ -algebra �MX given by the largest σ -algebra
which makes all random elements measurable. Equivalently, a subset A⊆ X is measurable if and
only if its characteristic function is a morphism of quasi-Borel spaces of type (X,MX)→ 2.

Random elements R→ X allow one to push a source of randomness from the quasi-Borel
space R onto the quasi-Borel space (X,�MX ). In this spirit, a probability measure on (X,MX)
is a probability measure on the induced measurable space (X,�MX ) which can be obtained as a
pushforward α∗μ, where α ∈MX is a random element and μ ∈ P(R) is an ordinary probability
measure on R.

Example 3.1. The Dirac measure δx on (X,�MX ) is a valid probability measure on the quasi-Borel
space (X,MX) because it can be written as a pushforward of any probability measure on R by the
constant random element with image {x}.

The probability monad P on Qbs assigns, to every quasi-Borel space (X,MX), the set P(X) of all
probability measures on X endowed with a suitable quasi-Borel structure. The unit ηX : X→ P(X)
of the monad is given by the Dirac measure. The monad P is affine and commutative (Heunen
et al. 2017), so that its Kleisli category QBStoch is a Markov category.
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3.2 Random singleton sets
We can now take advantage of the cartesian closure of quasi-Borel spaces to define random
singleton sets. There is a morphism

{−}: R→ 2R (78)
which sends a number x ∈R to the singleton set {x} ∈ 2R. Note that this morphism is simply the
exponential transpose of the equality test (= ) : R×R→ 2. If ν ∈ P(R) is a probability measure
on the real line, then we can describe the distribution of a random singleton set by

RSν = P({−})(ν) ∈ P(2R).
Recall that by definition of distributions on a quasi-Borel space,RSν is the pushforward measure
{−}∗ν on the induced measurable space (2R,�M2R

), defined by

RSν(U)= ν
({
x ∈R | {x} ∈ U}) for all U ∈�M2R

(79)

Using the σ -algebra �M2R
is crucial – it ensures, for example, that the set {x ∈R | {x} ∈ U} in (79)

is measurable. We elaborate on this further in the proof of the next theorem.

Theorem 3.2. (Privacy equation Sabok et al. 2021). For every atomless probability measure ν, the
random singleton is equal in distribution to the empty set, i.e.

RSν = δ∅. (80)

Proof idea. The details of the proof are covered extensively in Sabok et al. (2021, Theorem 4.1).
We have to show that for all U ∈�M2R

,

RSν(U)= δ∅(U)= �∅ ∈ U�. (81)
This claim hinges on the fact that the the induced σ -algebra on 2R is highly restrictive; we have

�M2R
=
{
U | ∀α : R×R→ 2 measurable,

{
x | α(x,−) ∈ U} ∈�R

}
, (82)

which is known as Borel-on-Borel in the literature on higher order measurability (e.g. Kechris
1995). All families U which would be assigned different values by the formulas in (81) turn out
to be not measurable. As a brief nonexample, consider the family E = {∅}. This would clearly
differentiate a random singleton from the empty set because we have

RSν(E)= ν
({x ∈R | {x} ∈ E})= 0 and δ∅(E)= �∅ ∈ E�= 1. (83)

However, it can be shown that E /∈�M2R
. In other words, checking if a set is empty is not a

morphism 2R→ 2 in Qbs.

We call Theorem 3.2 privacy equation because the random number x ∈R is “anonymized in
distribution” when expressed as a random set {x} ∈ 2R. In particular, we have a dilation

{ }

ν

2R R

ψ

2R R

:= (84)

of ν, with environment 2R, which gives no information about the value x in its environment
marginal that behaves like the empty set. In this sense, we could viewψ as a “private dilation” – one
that leaks no information.

https://doi.org/10.1017/S0960129523000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000324


Mathematical Structures in Computer Science 939

Another way to conceive of private dilations is to require that there is no correlation between
the local output and the output leaked into the environment, i.e. that the two outputs are inde-
pendent. However, the dilationψ does not factorize, and so it would not be “private” in this sense.
In particular, provided access to x ∈R, one can distinguish the leaked output from ∅ by applying
the evaluation morphism given in (77).

We employ these curious properties of ψ to show that QBStoch is not a positive Markov
category.

Proposition 3.3. In QBStoch, consider the state ψ : I→ 2R ⊗R defined by Equation (84).
Then the 2R-marginal ψ2R : I→ 2R is deterministic, but ψ is not the product of its marginals.
Consequently, deterministic marginal independence (Definition 2.4) does not hold in QBStoch.

Proof. By Theorem 3.2, the 2R-marginal of ψ equals δ∅:

{ }

ν

2R

ψ

2R

=

∅

2R

= (85)

while the second marginal equals ν. Therefore, the product of the marginals is δ∅ ⊗ ν. This is
different from ψ , as we can witness by postcomposing with the evaluation map

{ }

ν

ev

tt

=

∅ ν

ev�=

ff

=

2 2 2 2

(86)

where tt, ff : 1→ 2 are the two boolean truth values.

By applying Theorems 2.8 and 2.24, we immediately obtain the following consequence, which
had already been announced in Sabok et al. (2021), Stein (2021).

Corollary 3.4. QBStoch is neither a positive nor a causal Markov category.

Note that because QBStoch faithfully contains BorelStoch, positivity will hold in the full sub-
category of all quasi-Borel spaces that come from standard Borel spaces. The function space 2R
is not of that form. This gives a novel, probabilistic reading to Aumann’s result that the evalua-
tion morphism ev cannot be made into a measurable map (Aumann 1961). It is, nevertheless, a
morphism in Qbs.

3.3 Fresh name generation
Fresh name generation is a classic area of computer science (Pitts and Stark 1993; Stark 1996).
A pure name is an abstract entity that contains no other information except whether it is equal
to other names. Typical examples of names are identifiers such as bound variables: In definitions
such as f (x, y)= xy2, the names of the variables x, y do not matter as long as they remain distinct.
They could be switched or replaced by say z,w without changing the meaning of the expression.
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New names are allocated freshly, when they are distinct from any other name already in place. In
languages such as LISP, this primitive is called gensym.

We give a high-level summary of the categorical semantics of name generation and show that it
is another instance of information flow which can be modeled using Markov categories. We also
show that the information hiding for random functions arises naturally in the context of name
generation, which makes it a prototypical example of non-positivity.

A categorical model of name generation consists of the following pieces of structure, satisfying
further conditions spelled out in Stark (1996, Section 4.1):

• a cartesian closed category C and a distinguished object A of names,
• an equality test (= ) : A×A→ 2, where 2 := 1+ 1 is assumed to exist. (One may think of
the coproduct inclusions tt, ff : 1→ 2 as represent the boolean truth values true and false.)

• a commutative affine monad T : C→ C,
• a distinguished state ν : I→ T(A) which represents picking a fresh name.

Various nondegeneracy axioms are also assumed, such as that the unit η2 : 2→ T(2) is monic. The
Kleisli category of T is a Markov category, and the freshness condition for ν states that testing a
fresh name on equality always returns ff. We can write this condition in string diagrams:

ff
=

ν

=

A

2 AA

ν

2 AA

A

(87)

This makes ν into an abstract version of the atomless measure used in Section 3.2.
An important problem in computer science is then to understand the behavior of higher order

functions that generate fresh names locally. The program

let x= gensym() in λy.(x= y) (88)

generates a fresh name x and returns a function A→ 2 which tests its input y for equality with
x. One can show that this function is observably indistinguishable from the function λy.false
(Stark 1996, Example 8). This is because the name x remains private or enclosed in the function
λy.(x= y), and it can never be extracted programmatically in order to obtain the output true.

In a categorical model of name generation, the function λy.(x= y) is modeled using the
singleton map {−}: A→ 2A completely analogously to quasi-Borel spaces. A model of name
generation is then said to satisfy the privacy equation if

{ }
ν

=

∅

2A 2A

(89)

holds. Given these ingredients, we can follow the reasoning of Proposition 3.3 in an analogous
way. This is a striking example how the abstraction of Markov categories enables connections
between different areas of mathematics and computer science. That is, we obtain the following
statement.

Proposition 3.5. Every categorical model of name generation defines a Markov category. If it is
nondegenerate and satisfies the privacy equation, then the Markov category is not positive.
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It is relatively involved to construct such amodel, but Stark provides one in Stark (1996, Section
6.1) using a categorified version of logical relations. We stress that this model has no probabilistic
ingredients whatsoever.

On the other hand, the use of Markov categories lets us apply synthetic probabilistic termi-
nology and intuition to reason about name generation. In fact, choosing names at random is a
common strategy to implement gensym in practice. By using an atomless measure ν, we formally
obtain purely probabilistic semantics for name generation, as described in Sabok et al. (2021):

Theorem 3.6. (Sabok et al. 2021, Theorem 3.8).Quasi-Borel spaces are a nondegenerate categorical
model of name generation, where A is any uncountable standard Borel space and ν any atomless
measure. It furthermore satisfies the privacy equation.

4. Dilations and Positivity Properties in Semicartesian Categories
We now shift the focus from Markov categories to the more general semicartesian categories
(Definition 1.1). A substantial theory of information flow can be developed already in semicarte-
sian categories, as shown for example in Houghton-Larsen (2021). This suggests that categorical
probability might not need Markov categories after all, but that semicartesian categories could
in fact be sufficient. This would be of interest not only as a conceptual clarification on the
foundations of probability but also insofar as some of its results may apply to quantum probability.

The primary concept needed for the development of categorical probability in semicartesian
terms the notion of dilation, which we have used in the previous sections in the context of Markov
categories, but which is meaningful even for semicartesian categories in general. Throughout this
section, D thus refers to a semicartesian category.

4.1 Categories of dilations
In this part, we study dilations more in detail (recall them from Definition 1.11). The following
notion of dilational equality generalizes the definition of strongly almost sure equality (Cho and
Jacobs 2019, Definition 5.7), defined originally with respect to a state p : I→ X. We have already
encountered it in Definition 2.16, which defines a Markov category with parametrized equality
strengthening as one in which equality almost surely implies dilational equality.

Definition 4.1. Let p : A→ X and f , g : X→ Y be morphisms in D. We say that f and g are p-
dilationally equal, written as

f =p-dil. g,

if for every dilation π of p, we have

π

f
=

π

g

A A

Y E Y E

(90)

Intuitively, f =p-dil. g means that f and g cannot be distinguished even with access to what-
ever environment that pmay have leaked information to. While this trivially implies fp= gp, it is
typically a strictly stronger condition:
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Example 4.2. In FinStoch, let p : I→{0, 1} be the uniform distribution, f = id{0,1}, and g the
non-identity permutation on {0, 1}. Then clearly fp= gp, but using π := copy{0,1} ◦ p witnesses
f �=p-dil. g. This is easy to understand upon noting that the distribution of a fair coin is invariant
under exchanging heads and tails, but copying the outcome and switching only one copy while
retaining the other clearly changes the distribution.

This example suggests that dilational equality in the Markov categories case is closely related to
almost sure equality (Fritz 2020, Definition 13.1). We now formalize this relation.

Proposition 4.3. In a Markov category C, dilational equality implies equality almost surely. That
is, for any f , g : X→ Y and any p : A→ X,

f =p-dil. g =⇒ f =p-a.s. g. (91)

The converse is true if and only if C is a causal Markov category.

Proof. Every morphism p has a dilation given by

p (92)

Substituting it for π in Equation (90) produces exactly the desired p-a.s. equality of f and g.
Note that the converse of implication (91) is precisely the property of parametrized equal-

ity strengthening from Definition 2.16, which is equivalent to causality as shown in Proposition
Proposition 2.17.

To every morphism in a semicartesian category, we can associate an entire category of
dilations—a variant of the one introduced in Houghton-Larsen (2021, Remark 2.2.8).

Definition 4.4. Let p : A→ X be any morphism in D. Then its category of dilations, denoted

Dilations(p),

has dilations of p as objects. Given two dilations of p, say π ∈ D(A, X⊗ E) and π ′ ∈ D(A, X⊗ E′),
morphisms π→ π ′ in Dilations(p) correspond to =π-dil. equivalence classes of morphisms f ∈
D(E, E′) such that

π

f
= π ′

E′X

A A

X E′

(93)

holds. Composition of morphisms is defined as composition of representatives in D.

In other words, if f1 and f2 both satisfy Equation (93), then these represent the same morphism
of dilations if and only if f1 =π-dil. f2, which means that for every dilation ρ of π , we have
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ρ

f1 =
ρ

f2

X E′ F X E′ F

AA

(94)

where the third output wire F denotes the additional environment object associated with ρ.

Lemma 4.5. Composition of morphisms in Dilations(p) is well defined.

Proof. Consider f1, f2 ∈ D(E, E′) and g1, g2 ∈ D(E′, E′′) as representatives of morphisms π→ π ′
and π ′ → π ′′. If f1 =π-dil. f2, then we have the requisite

g1 ◦ f1 =π-dil. g1 ◦ f2 (95)

by composing Equation (94) with g1.
On the other hand, given g1 =π ′-dil. g2, we have the requisite

ρ

f1 =
g1

ρ

f1

g2
X E′′ F

AA

X E′′ F

(96)

for every dilation ρ of π because the morphism

ρ

f1

E′′

A

X F

(97)

is itself a dilation of π ′. Thus, the required g1 ◦ f1 =π-dil. g2 ◦ f1 follows and composition in
Dilations(p) is well-defined.

Example 4.6. (Copying leaked information is irrelevant). If π : A→ X⊗ E is a dilation of any
morphism p : A→ X in a causal Markov category C, then the dilation given by

π

X E E

A

π ′

A

X E E

:= (98)

is isomorphic to π in Dilations(p). To see this, note that the copy morphism itself defines a
morphism of dilations π→ π ′, while marginalizing either environment output of π ′ defines a
morphism π ′ → π . The composite π→ π ′ → π is trivially equal to idπ already at the level of
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representatives in C. In the other direction, we use Proposition 4.3 to reduce the claim to proving
π ′-almost sure equality. This amounts to the equation

π

X E E

A

XE E

π

X E

A

XE E

=

E

(99)

which is a straightforward consequence of the commutative comonoid equations on E. Note
that for this direction, the composite π ′ → π→ π ′ is generally not equal to idπ ′ on the level
of representatives. In fact, in the version of Dilations(p) where morphisms are not identified up
to equivalence, the two dilations are generally not isomorphic, since an isomorphism therein in
particular constitutes an isomorphism between X and X⊗ X, which typically does not exist.

4.2 Initial dilations
We introduce and study a variant of the concept of universal dilations from Houghton-Larsen
(2021, Definition 2.4.1).

Definition 4.7. An initial dilation of a morphism p is an initial object in Dilations(p).

Explicitly, a dilation π of p : A→ X is initial if for every dilation π ′ of p there is a morphism f
in D such that

π

f
= π ′

E′X

A A

X E′

(100)

holds and moreover such that this f is unique up to π-dilational equality.
Our notion of initial dilation is intermediate between the notions of universal dilation and

of complete dilation from Houghton-Larsen (2021).8 That is, every universal dilation is ini-
tial, and every initial dilation is complete. Indeed, a universal dilation is one for which the f in
Equation (100) is unique as a morphism in D rather than unique up to dilational equality as in
the case of initial dilations. On the other hand, a complete dilation is one for which f is merely
required to exist with no uniqueness requirement.

Example 4.8. The category of finite-dimensional Hilbert spaces and quantum channels has initial
dilations in the form of Stinespring dilations. It is shown in Houghton-Larsen (2021, Theorem
2.4.11) that every minimal Stinespring dilation is universal and thus initial – but in fact every
Stinespring dilation is initial. The argument goes as follows. First of all, the relevant morphism
f in Equation (100) exists because Stinespring dilations are complete (Houghton-Larsen 2021,
Lemma 2.3.8). Moreover, it is unique up to dilational equality because the relation g =π-dil. h for
any Stinespring dilation π reduces to equality of the composites: (id⊗ g) ◦ π = (id⊗ h) ◦ π . This
fact follows because every dilation of such a π is given by a tensor product of π with a state of the
environment (Houghton-Larsen 2021, Corollary 2.3.23).
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Example 4.9. Let 1/Set be the category of pointed sets, and consider (1/Set)op with cartesian
product as the symmetric monoidal structure. This is a semicartesian category. In the remainder
of this example, we depict the arrow directions in 1/Set in order to avoid confusion, writing a
morphism f from X to Y as f : X← Y . We denote basepoints by the symbol ∗. A dilation of a
morphism p : A← X is a morphism π : A← X× E such that π(x, ∗)= p(x) for all x ∈ X.

WritingXX for the hom-set (1/Set)(X, X) with basepoint the identity map, function evaluation
defines a morphism

evX : X←− X× XX , (101)

which is a dilation of idX . This dilation is initial, since every dilation π : X← X× E of idX arises
from evX by composing with a unique morphism XX← E.

Example 4.10. In aMarkov category C, a copymorphism copyX is a dilation of idX . If C is positive,
then copyX is an initial dilation of idX . Indeed, any dilation of idX can be written as

ι=

X E X E

XX

ι (102)

which follows from the positivity axiom in the form of deterministic marginal independence
(Definition 2.4), instantiated with π = ι. The uniqueness clause is automatic.

To see that this can fail without positivity, we return to the Markov category of quasi-Borel
spaces from Section 3.

Proposition 4.11. In QBStoch, the copy map copy2R is not an initial dilation of the identity.

Proof. In terms of the notation from Section 3, we construct a dilation ι : 2R→ 2R ⊗R of the
identity which cannot be obtained from the copy map. To this end, we define

{ }

ν

ι :=

∪

2R

2R R 2R R

2R

(103)

where∪: 2R ⊗ 2R→ 2R takes the union of subsets. That is, ιmodifies its input setA by adding in a
random point and records that point in the second output. The map ∪ is a morphism of QBStoch
because it can be obtained via cartesian closure and the monad unit from the disjunction map
∨∈Qbs(2× 2, 2).
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The privacy equation implies that ι is indeed a dilation of the identity because we have

{ }
ν

ι =
∪

∅=
∪

=

2R 2R 2R 2R

2R 2R 2R 2R

(104)

However, ι cannot be obtained by some dilation morphism from the copy map because we have

ν
ι �= ι =

2R 2R 2R

2R 2R 2R

R R R

(105)

which can be witnessed by postcomposing with the evaluation morphism ev for instance.

The copymorphism is an example of a specific type of dilation in which only the input is leaked
to the environment. More generally, the bloom pic (Fullwood and Parzygnat 2021) of a morphism
p : A→ X is the dilation of p given by9

A

pic

X A

:= p

X

A

A

(106)

In the following result, we reinterpret positivity as the property that blooms of arbitrary determin-
istic morphisms are initial dilations.

Proposition 4.12. For a Markov category C, the following are equivalent:

(i) C is positive.
(ii) For every deterministic p, its bloom pic is an initial dilation of p.

Proof.

(i)⇒ (ii): Consider a deterministic morphism p : A→ X and a dilation π : A→ X⊗ E thereof.
By Theorem 2.8, we can apply deterministic marginal independence to π , which by
Equation (18) gives

p π=

X E X E

AA

π = π

E

A

pic

X

(107)

This makes the bloom pic into an initial dilation of p, since the uniqueness is automatic
by the fact that the A-marginal of pic is idA.

https://doi.org/10.1017/S0960129523000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000324


Mathematical Structures in Computer Science 947

(ii)⇒ (i): We show that C satisfies deterministic marginal independence, which is enough by
Theorem 2.8.
So once again let π be an arbitrary dilation of a deterministic morphism p. Then,
by assumption, π factors through the bloom of p. That is, there exists an f : A→ E
satisfying

=

A

p f

X E

A

X E

π (108)

This already constitutes the relevant factorization as in Equation (18).

While for the existence of initial dilations for deterministic morphisms it suffices to assume
positivity, we can give a generic argument for the existence of all initial dilations under the
stronger assumption that the Markov category in question has conditionals. The following result
and proof adapt the third author’s argument for the existence of universal dilations in FinStoch
(Houghton-Larsen 2021, Theorem 2.4.6).

Proposition 4.13. Let C be a Markov category with conditionals. Then every morphism in C has an
initial dilation.

Proof. Let p : A→ X be any morphism. We claim that an initial dilation of p is given by the
dilation which simply copies both its input and output,

ppioc :=

XX A

A

XX A

A

(109)

where the environment is given by X⊗A. To see this, let π : A→ X⊗ E be any other dilation of
p and let π|X be any conditional of π with respect to X. Then π factorizes through pioc:

pπ =

X E

A

X

A

π|X

E

(110)

This equation follows directly from the definition of conditionals and the fact that π is a dilation
of p.

On the uniqueness, suppose that we have some other h : X⊗A→ E satisfying (110) in place of
π|X . Then h is itself a conditional of π with respect to X and, by the -a.s. uniqueness of condition-
als, h is pioc-a.s. equal to π|X . Since every Markov category with conditionals is causal (Fritz 2020,
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Proposition 11.34), we can use Proposition 4.3 to deduce that hmust also be pioc-dilationally equal
to π|X , thus showing the requisite uniqueness property.

4.3 A dilational characterization of Markov categories
Here, we give an abstract characterization of positive Markov categories as semicartesian cate-
gories subject to additional principles. More precisely, these principles serve to single out the copy
morphisms uniquely and ensure their defining properties.

We first introduce the concept of noncreative morphisms. It mimics the idea behind deter-
ministic morphisms in a positive Markov category, but its definition applies in the semicartesian
case since it does not reference the copy morphisms at all. To motivate this, let us anticipate
Lemma 4.15 below: this shows that a morphism p in a positive Markov category is determinis-
tic if and only if every dilation π of p factors as in Equation (108). While this factorization of π
makes explicit reference to copyA, we also know from Example 4.10 that the copy morphism is an
initial dilation of idA. Thus, the right-hand side of Equation (108) can be expressed as a sequential
composition of an arbitrary dilation

A

f

A E

(111)

of idA with p⊗ idE. Here is now the general definition.

Definition 4.14. A morphism p : A→ X in a semicartesian category is called noncreative if every
dilation of p is of the form

p

A

X E

ι
(112)

for some dilation ι : A→A⊗ E of idA.

The term “noncreative” indicates that any information leaked from process p to the environ-
ment can be viewed as having leaked already from the input of p. For a semicartesian category D,
we write Dnc for the class of noncreative morphisms in D.

Lemma 4.15. Determinism, noncreativity and positivity. Let C be a Markov category in which
the copy morphisms are initial dilations of the identities. Then every noncreative morphism is
deterministic and we have Cnc = Cdet if and only if C is positive.

Proof. Let p : A→ X be a noncreative morphism in C. The morphism copyX ◦ p is a dilation of p,
and therefore satisfies
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p

A

X X

ι
=

p

X X

A

(113)

for some dilation ι : A→A× X of idA by Definition 4.14. Since copyA is an initial dilation of idA
by assumption, we must have ι= (idA ⊗ f ) ◦ copyA for some f : A→ X. Consequently,

p

X

A

X

=

A

p

f

X X

=

A

p f

X X

ι

(114)

holds and in particular wemust have f = p bymarginalizing the left output. The resulting equation
precisely asserts that p is deterministic. Hence, the claim Cnc ⊆ Cdet follows.

It remains to prove that the reverse inclusion Cdet ⊆ Cnc is equivalent to positivity of C. This
can be achieved either by showing that Cdet ⊆ Cnc is a just a different way to express deterministic
marginal independence (Definition 2.4) or by relating it to property (ii) of Proposition 4.12. We
take the latter approach. To this end, consider a deterministic morphism p : A→ X in C and an
arbitrary dilation π : A→ X⊗ E thereof.

Suppose first that C is positive. By Proposition 4.12, the bloom of p is an initial dilation of p, so
that we have

A

p

f

X E

=

A

X E

π (115)

for some f : A→ E. The fact that the morphism in the dashed rectangle is a dilation of idA shows
that p is noncreative, so that Cdet ⊆ Cnc follows.

Conversely, suppose that Cdet ⊆ Cnc holds. Together with the assumption that copyA is an ini-
tial dilation of idA, this implies the factorization of π as in Equation (115) for some f , which is
necessarily the E-marginal of π and therefore unique. By Proposition 4.12 again, we obtain that C
is a positive Markov category.

Positivity implies that copy morphisms are initial dilations of the identities (Example 4.10). We
therefore obtain another immediate characterization of positivity.

Corollary 4.16. A Markov category C is positive if and only if the copy morphisms are initial
dilations of the identities and Cdet = Cnc.

Our next goal is to characterize certain classes of Markov categories as semicartesian categories
subject to additional axioms. Specifically, these axioms shall serve as a way to reconstruct the copy
morphisms and to ensure their required properties. In this way, the copy morphisms emerge as a
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consequence of dilational axioms rather than being imposed as additional mathematical data on
top of a semicartesian category.

Definition 4.17. (i) A morphism bX : X→ X⊗ X is broadcasting if both of its marginals are the
identity:

X

X

bX =
X

X

X

X

bX =
X

X

(116)

(ii) An object X admits broadcasting if there is a broadcasting morphism bX : X→ X⊗ X.

The terminology is inspired by the analogous concept of broadcasting in quantum information
theory (Barnum et al. 1996). For example, the terminal object I trivially admits broadcasting; and
if X and Y admit broadcasting via bX and bY , then so does X⊗ Y via the product bX ⊗ bY with the
middle outputs swapped. Furthermore, every copy morphism in a Markov category is broadcast-
ing by the counitality axiom. In some Markov categories, however, there are other broadcasting
morphisms as well. For instance, in FinStoch± (Example 2.7) for X= {0, 1}, the kernel given by

bX(x1, x2|x0) := (− 1)x1+x2 + copyX(x1, x2|x0) (117)

is broadcasting, but not equal to the copy map.
On the positive side, in positive Markov categories there are no broadcasting morphisms other

than copy,10 since then for any broadcasting morphism bX , we have

X

bX

X X

=

X

bX

X X

=

XX

X

bXbX

X X X

=

X

bX

X XX

(118)

where the second step is by positivity and the third by the broadcasting property. This shows that
bX is the copy morphism upon marginalizing the third output.

Proposition 4.18. Let D be a semicartesian category. For any object X, the following are equivalent:

(i) X admits broadcasting.
(ii) The discard morphism delX is noncreative.

We therefore obtain a no-broadcasting theorem (Barnum et al. 2007): X does not admit
broadcasting if and only if delX is not noncreative.

Proof.

(i)⇒ (ii): Given a broadcasting morphism bX , by equations (116) we have

X

Y

bX

f
=

X

Y

f (119)

https://doi.org/10.1017/S0960129523000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000324


Mathematical Structures in Computer Science 951

for every f : X→ Y . In particular, an arbitrary dilation of delX is of the form of
diagram (112) and thus delX is noncreative.

(ii)⇒ (i): Consider the dilation idX of delX with environment X. Since delX is noncreative, this
dilation must be of the form (112). That is, there is a dilation ι : X→ X⊗ X of idX
whose second output is the environment and which also satisfies

X

X

ι
=

X

X

(120)

In particular, ι is broadcasting.

In the remainder of this section, we characterize positive Markov categories in purely semi-
cartesian terms.

Theorem 4.19. Let D be a semicartesian category. Then the following are equivalent:

(i) D can be made into a Markov category in which the copy morphisms are initial dilations of the
identities.

(ii) For every object X, the identity idX admits an initial dilation ι : X→ X⊗ E such that the
marginal

X

E

ι:=ιE

X

E

(121)

is noncreative.

If these conditions hold, then the Markov category structure in (i) is unique.

Proof.

(i)⇒ (ii): If D is a Markov category in which the copy morphisms are initial dilations of the
identity, then the requirements of (ii) hold since the identity is noncreative.

(ii)⇒ (i): Using the notation of the statement, since ι is a dilation of the noncreative morphism
ιE with environment X, we have

ιE

X

X E

X

X E

=ι
cX

(122)

for some cX : X→ X⊗ X whose right-hand marginal is idX . We argue that this mor-
phism is broadcasting. Indeed, we just noted that the right-hand marginal is the
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identity, while the left-hand marginal is the identity because ι is a dilation of the
identity:

X

X

=cX

X

X

=
cX

ιE

X

X

ι =

X

X

Moreover, since ι is an initial dilation of the identity, there is g : E→ X in D that
corresponds to a morphism of type ι→ cX in Dilations(idX), so that

g

X

X X

X

X E

=cX
ι

g

X

X X

=
cX

ιE

Marginalizing the first output of this equation gives g ◦ ιE = idX , while the initiality of
ι implies ιE ◦ g =ι-dil. idE. As a consequence, cX is isomorphic to ι in Dilations(idX) and
thus also an initial dilation of idX .

Next, we show that every identity morphism idX has exactly one broadcasting
morphism. To this end, let c′X : X→ X⊗ X be another morphism satisfying equations
(116). Then we have

h

X

X X

X

X X

=c′X cX
(123)

for some h : X→ X by initiality of cX . Marginalizing the left output gives h= idX ,
so that c′X is necessarily equal to cX . This demonstrates the asserted uniqueness. In
particular, this immediately implies that cX is symmetric, i.e., it satisfies

X

=

X X

X

X X

cX cX (124)

because swapping the outputs of cX obviously results in a broadcasting morphism
again. Furthermore, cX is also the only dilation of idX which is symmetric in this sense,
as being a symmetric dilation implies being broadcasting.

Next, let us show that the unique symmetric dilation equips X with the structure of
a commutative comonoid. Commutativity is precisely Equation (124) and counitality
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corresponds to Equations (116). For coassociativity, the initiality of cX implies that
there is a dX of the same type such that

X

=

XX X

X

X XX

cX dX

cXcX
(125)

holds, since the left-hand side of the equation is a dilation of idX with environment
X⊗ X. But then marginalizing the first output shows dX = cX since cX is broadcasting,
so that we obtain the required coassociativity equation.

In order to see that D becomes a Markov category, it is thus enough to prove the
multiplicativity equation

X⊗ Y

=

X

YXX⊗ Y X⊗ Y

Y

YX

cX⊗Y cX cY
(126)

for all objects X and Y . As we argued above, symmetric dilations of identities are
unique. Therefore, Equation (126) follows upon showing that its right-hand side is
a dilation of idX⊗Y that is invariant under swapping the two copies of X⊗ Y . Since
this is a direct consequence of the symmetry of cX and cY , we obtain the desired
result.

Furthermore, the uniqueness of the broadcasting morphisms implies that the con-
structed Markov category structure is the only possible one (cf. Fritz 2020, Remark
11.29).

With this characterization at hand, also positive Markov categories can now be characterized
in semicartesian terms by adding additional requirements to item (ii).

Corollary 4.20. (Semicartesian characterization of positive Markov categories). Let D be a
semicartesian category. Then the following are equivalent:

(i) D can be equipped with copy morphisms making it into a positive Markov category.
(ii) For every object X, the identity idX admits an initial dilation ι : X→ X⊗ E such that the

marginal

X

E

ι:=ιE

X

E

(127)

is noncreative. Moreover, if f : X→ Y is such that for any dilation π of the identity morphism
idY we have
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=
π ′

f

Y E

X

π

f

Y E

X

(128)

for some dilation π ′ of the identity morphism idX, then f is noncreative.

Proof. By Theorem 4.19, we can assume that D is a Markov category in which the copymorphisms
are initial dilations of the identity. The problem is therefore reduced to showing that, under this
assumption, positivity is equivalent to the second part of item (ii).

Consider a morphism f satisfying the condition of Equation (128). For π = copyY , we have

X

f

g

Y Y

=
f

Y Y

X

(129)

where the box on the right-hand side represents an arbitrary dilation of the identity on X
since copyX is its initial dilation by assumption. Marginalizing the left output gives g = f , so
that f is deterministic by Equation (129). Conversely, every deterministic morphism satisfies
Equation (128), which, once again, follows from copy morphisms being initial dilations of iden-
tities. Therefore, the second part of item (ii) can be restated as “every deterministic morphism is
noncreative,” and this holds if and only if D is positive by Lemma 4.15.

Remark 4.21. Let us make a couple of comments on Theorem 4.19 and Corollary 4.20.

(i) The conditions stated in items (ii) of both results suggest that being a Markov category of
the specified sort is a mere property of a symmetric monoidal category rather than extra
structure.

If we restrict to strict monoidal structure for simplicity, then this statement is easy
to make precise in terms of the formalism of stuff, structure, and property (Baez and
Shulman 2010): the obvious forgetful functor from the category of strict Markov cate-
gories andMarkov functors (Fritz 2020, Definition 10.14) to the category of strict symmetric
monoidal categories and strict monoidal functors is full and faithful, and therefore forgets
at most property. While the faithfulness is trivial, the fullness amounts to the statement that
every strict monoidal functor between positive Markov categories preserves the copy mor-
phisms. This holds because such a functor clearly maps a copy morphism to a broadcasting
morphism, which in the positive case must be a copy morphism again.

(ii) Theorem 4.19 also holds substituting all the occurrences of “initial dilation” with different
properties – namely that of “complete dilation” (Houghton-Larsen 2021, Definition 2.3.1)
and “universal dilation” (Houghton-Larsen 2021, Definition 2.4.1). A complete dilation
is like an initial dilation, but for the fact that there could be multiple morphisms f in
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Dilations(p) that relate it to another dilation of p via Equation (93), while a universal dilation
is an initial dilation for which the morphism f is unique as a morphism in D.

(iii) Example 4.9 on pointed sets shows that there are semicartesian categories which have
initial dilations, but not initial dilations satisfying item (ii) of Theorem 4.19. Indeed, we
have

evX

X

XX

=

X

XX

∗
(130)

i.e. the marginal of the initial dilation given in (101) (the left-hand side) equals the mor-
phism X← XX that evaluates functions at the base point. Since the functions under
consideration are all basepoint preserving, this is indeed the map that sends every
function in XX to the basepoint ∗ of X, i.e., the right-hand side of Equation (130),
where ∗: I← XX is the unique morphism of this type. If the constant morphism from
Equation (130) was noncreative, then there would have to be a factorization of the
form

X

X

ι

=
evX

XXX

X

XX

∗
(131)

for some dilation ι of idX . For any X with at least two elements, this equation cannot be
satisfied, because after plugging in a function f ∈ XX , its right-hand side is independent of f
while the left-hand side is not.

(iv) Another important example is the category of finite-dimensional Hilbert spaces and
quantum channels. In this category, identities only have trivial dilations (see e.g. Houghton-
Larsen 2021, Section 2.2.A), which is a strong form of the no-cloning theorem (cf. Selby and
Coecke 2017, Proposition 7.1). In particular, there is no copy morphism and so also item (ii)
of Theorem 4.19 cannot hold. The reasonwhy it becomes clearer in light of Proposition 4.18.
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Notes
1 The dilations used in Houghton-Larsen (2021) and in Selby et al. (2021) are generally two sided, which means that the g in
Definition 1.11 may also carry an additional input not shared with f . Note, however, that the definitions of two-sided dilations
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in Houghton-Larsen (2021) and Selby et al. (2021) are not the same. One-sided dilations as per Definition 1.11 are sufficient
for our purposes.
2 This looks like an unfortunate choice of terminology in hindsight, and we are in favour of changing it in the future.
3 Because of Kl(DR)det = Set, the relevant right adjoint to the inclusion Kl(DR)det ↪→ Kl(DR) is simply the usual Kleisli adjoint
of the inclusion Set ↪→ Kl(DR).
4 Unfortunately our notion of complement does not coincide with the usual notion of lattice complement in this case, since
we only require r ∨ r= 1 but not r ∧ r= 0.
5 Recall that a quantale is a semiring where addition is given by the join of a complete join-semilattice, and such that mul-
tiplication distributes over arbitrary joins. The lattice of ideals of a commutative ring is a commutative quantale under ideal
multiplication (Rosenthal 1990, Chapter 4).
6 As the proof will show, this holds with any integral domain in place of Z[2i].
7 We thank Arthur Parzygnat for pointing this out to us.
8 Strictly speaking, this refers to one-sided complete and one-sided universal dilations, since in contrast to Houghton-Larsen
(2021) we only consider one-sided dilations throughout (see Section 4.3).
9 We use the subscript “ic” as shorthand for “input-copy”.
10 This is a special case of a general result on broadcasting morphisms in quantum Markov categories (Parzygnat 2020,
Theorem 4.17) based on “quantum positivity” (see also Remark 2.2 (iii)).
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