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Abstract We study a maximal average along a family of curves {(t,m(x1)γ(t)) : t ∈ [−r, r]}, where
γ|[0,∞) is a convex function and m is a measurable function. Under the assumption of the doubling
property of γ′ and 1 6 m(x1) 6 2, we prove the Lp(R2) boundedness of the maximal average. As a
corollary, we obtain the pointwise convergence of the average in r > 0 without any size assumption for a
measurable m.
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1. Introduction

In this study, we analyse a maximal operator defined by a convex function γ|[0,∞) and a
measurable function m : R → R. Specifically, our focus lies on the operator:

Mm
γ f(x1, x2) := sup

r>0

1

2r

∫ r

−r
|f(x1 − t, x2 −m(x1)γ(t))|dt,

where γ : R → R is an extension of γ|[0,∞), which is a even or odd function. Recently,
Guo, Hickman, Lie and Roos [13] proved the Lp boundedness of maximal operators Mm

γ

for the homogeneous curve γ(t) = tn, with n > 2, assuming that m is measurable.
However, the Lp boundedness of Mm

γ for the case n =1 remains an open problem. So, we
focus on flat convex curves, including piecewise linear curves. Given a convex extension
γ : R → R, we define the bounded doubling property for a derivative γ′ as follows:

there exists a constant ω > 1 such that γ′(ω|t|) ≥ 2γ′(|t|) for all t ∈ R. (1.1)

Now, we state the main theorem:

Main Theorem 1. Let m : R → R be a measurable function such that 1 6 m(x) 6 2
for all x ∈ R. Suppose that an extension γ of a convex function γ|[0,∞) satisfies the
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Maximal operators along flat curves with one variable vector field 1213

bounded doubling property of γ′ in (1.1), with γ(0) = 0. Then, there exists a constant Cω
such that ‖Mm

γ ‖Lp(R2)→Lp(R2) 6 Cω,p holds for 1 < p 6 ∞.

Remark 1.1.

• The theorem can be extended to certain types of piecewise linear curves. Refer
to Section 7 in [7] or Remark 5 in [14] for more details. Additionally, the condi-

tion (1.1) admits flat convex curves, such as γ(t) = e
− 1

|t| and e−e

1
|t|
, which are

flat at the origin.
• By using the dilation technique, we can extend our results to ‖Mm

γ ‖Lp→Lp 6
C log2(

b
a ) under the assumption 0 < a 6 m(x) 6 b.

In the view of pointwise convergence, we can drop the assumption 1 6 m(x1) 6 2.

Corollary 1.1. For a measurable function m : R → R and a convex extension γ on
R1 passing through the origin with its derivative γ′ satisfying property (1.1), we have

lim
r→0

1

2r

∫ r

−r
f(x1 − t, x2 −m(x1)γ(t))dt = f(x1, x2) a.e.

for f ∈ Lp(R2).

The study of maximal operators along flat convex curves has a rich history in
Harmonic analysis by itself. In the 1970s, Stein and Wainger [24] asked the general
class of curves (t, γ(t)) for which there are Lp results for M1

γ . In the 1980s, Carlsson

et al. [11] proved that M1
γ is bounded on Lp(R2) under the bounded doubling condi-

tion (1.1). In the 1990s, the study of maximal operators was extended to the curves
with a variable coefficient, as demonstrated in [4, 9, 10, 15, 23]. Carbery, Wainger and
Wright [9] established the Lp boundedness of Mx1

γ along plane curves γ whose deriva-
tive satisfies the infinitesimal doubling property. Under the same assumption, Bennett
[4] extended the L2 results for MP

γ , where P is a polynomial. As a corollary of our

main theorem, we derive the Lp boundedness of MP
γ under much weaker assumptions

on γ.

Corollary 1.2. For a polynomial P : R → R with degree d and a convex extension γ on
R1 passing through the origin with its derivative γ′ satisfying property (1.1), there exists a
constant Cω,d independent of the coefficients of P such that ‖MP

γ ‖Lp(R2)→Lp(R2) 6 Cω,d,p
for 1 < p 6 ∞.

Note that the infinitesimal doubling property implies the bounded doubling property.
For more details, refer to [4].

1.1. Historical background

Zygmund conjecture is a long-standing open problem in harmonic analysis. This ques-
tion inquires whether the Lipschitz regularity of u is sufficient to guarantee any non-trivial
Lp bounds for the maximal operator:
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Mu
γ(f)(x1, x2) := sup

r>0

1

2r

∫ r

−r
|f(x1 − t, x2 − u(x1, x2)γ(t))|dt,

where γ(t) = t. Since the discovery of the Besicovitch set in the 1920s, it has been
shown that the conjecture is false when the function u is only Hölder continuous Cα

with α< 1. However, the problem remains open under the Lipschitz assumption for u.
In the 1970s, Stein and Wainger [24] proposed an analogous conjecture for the Hilbert
transform. Regarding the Hilbert transforms along vector fields, Lacey and Li [18] made
a significant progress regarding the regularity of u in 2006, using time–frequency analysis
tools. Later, Bateman and Thiele [2] obtained the Lp estimates for the Hilbert trans-
form along a one-variable vector field. Their proof relied on the commutation relation
between the Hilbert transform and Littlewood–Paley projection operators, which cannot
be directly applied to the maximal operator Mm

γ due to its sub-linearity. Therefore, the
problem for maximal operators remains open. For additional discussion on Stein’s con-
jecture, we recommend references [1, 2, 17]. In the study of maximal operators, Bourgain
[5] demonstrated the L2 boundedness of Mu

t for real analytic functions u. In 1999,
Carbery, Seeger, Wainger and Wright [8] examined the maximal operators Mm

t along
one variable vector field. One of the authors in this paper further extended this result
in [16].
Recently, in [13], Guo et al. investigated the Lp boundedness ofMu

γ under the Lipschitz
assumption for u and homogeneous curve γ(t) = tn for n > 1. Later, Liu, Song and Yu [20]

extended the results to more general curves with the condition
∣∣∣ tγ′′(t)γ′(t)

∣∣∣ ∼ 1. A crucial tool

used in the proofs of both papers was the local smoothing estimate, which was established
in [3, 21]. For more history, we recommend the study [19] by Victor Lie, which presents
a unified approach and includes a more general view of this topic as well as problems
related to the concept of non-zero curvature.

1.2. Notation

Let ψ : R → R be a non-negative C∞ function supported on [−2, 2] such that ψ ≡ 1
on [−1, 1]. Define ϕ(t) = ψ(t)−ψ(2t) and ϕl(t) =

1

2l
ϕ( t

2l
). Also, define ψc(t) = 1−ψ(t).

Note that
∑
l∈Z ϕ

(
t

2l

)
= 1 for t 6= 0 and supp(ϕ) ⊂

{
1
2 6 |x| 6 2

}
. We define the

Littlewood–Paley projection Lsf as L̂sf(ξ) := f̂(ξ)ϕ
(
ξ1
2s

)
. We shall use the notation

A .d B when A 6 CdB with a constant Cd > 0 depending on the parameter d. Moreover,
we write A ∼d B, if A .d B and B .d A. Let MHL be the Hardy–Littlewood maximal
operator and M str be the strong maximal operator. Let χA be a characteristic function,
which is equal to 1 on A and otherwise 0. Denote the dyadic pieces of intervals by

Ii = [2i−1, 2i+1] ∪ [−2i+1,−2i−1],

Ĩi = [2i−2, 2i+2] ∪ [−2i+2,−2i−2],

and the corresponding strips by Si = Ii × R, S̃i = Ĩi × R.
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2. Reduction

In this section, we present three propositions that have broad applicability. Let Γ : R2 →
R be a measurable function and define a general class of operators

Tjf(x1, x2) :=

∫
f(x1 − t, x2 − Γ(x1, t))ϕj(t)dt.

Proposition 2.1. Define T glo
j f(x1, x2) := ψcj+4(x1)Tjf(x1, x2). Under the measura-

bility assumption of Γ, we have

‖ sup
j

|Tj − T glo
j |‖p 6 Cp,

for 1 < p 6 ∞.

Proof. Denote that ϕ̃( x
2j
) =

∑4
k=−3 ϕ(

x

2j+k
), which has a localized support |x| ∼ 2j .

Let T loc
j and Tmid

j be operator, defined by

T loc
j f(x1, x2) := ψj−4(x1)Tjf(x1, x2),

Tmid
j f(x1, x2) := ϕ̃

(
x1
2j

)
Tjf(x1, x2).

Then, we can decompose Tj − T glo
j into Tmid

j + T loc
j . For the operator Tmid

j , replace the
sup as `p sum. Then, we have

∥∥∥∥sup
j∈Z

|Tmid
j f |

∥∥∥∥
Lp(R2)

6

(∑
j∈Z

‖Tmid
j f‖p

Lp(R2)

) 1
p

.

Denote F (x1) = ‖f(x1, ·)‖Lp(dx2). By applying Minkowski’s integral inequality and a
change of variables, we get the pointwise inequality:

‖Tmid
j f(x1, ·)‖Lp(dx2) 6

∫ (∫
|f(x1 − t, x2 − Γ(x1, t))|pdx2

) 1
p

ϕj(t)dt

6
∫
F (x1 − t)ϕj(t)dt .ϕ MHLF (x1),

(2.1)

where the second inequality follows form the fact that Γ(x1, t) is independent of x 2.
By (2.1) and the Lp boundedness of MHL, we obtain

(∑
j∈Z

‖Tmid
j f‖p

Lp(R2)

) 1
p

6

(∑
j

∫
ϕ̃

(
x1
2j

)
|MHLF (x1)|pdx1

) 1
p

. ‖f‖p.

https://doi.org/10.1017/S0013091524000555 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000555


1216 J. Kim and J. Oh

which implies the Lp boundedness of f 7→ supj |Tmid
j f | for p> 1. For the operator T loc

j f ,
we observe the localization principle:

T loc
j f(x1, x2) = T loc

j (χSjf)(x1, x2).

By combining this with supj∈Z ‖Tj‖p 6 C, we get the following estimate:

∥∥∥ sup
j∈Z

|T loc
j f |

∥∥∥p
p
=

∑
j∈Z

∫
|T loc
j χSjf(x1, x2)|

pdx 6 C
∑
j∈Z

∫
|χSjf(x1, x2)|

pdx . ‖f‖pp.

Therefore, we prove ‖ supj |Tj − T glo
j |‖p 6 Cp for 1 < p 6 ∞. �

By Proposition 2.1, in order to prove Theorem 1, it suffices to consider the maximal
operator defined as

f 7→ sup
j

|T glo
j f | ,where T glo

j = ψcj+4Tj .

Proposition 2.2 (Space Reduction). Let T `j f(x1, x2) := χS`(x1, x2)T
glo
j f(x1, x2).

Then, the following inequality holds:

‖ sup
j∈Z

|T glo
j |‖Lp→Lp . sup

`∈Z
‖ sup
j∈Z

|T `j |‖Lp→Lp . (2.2)

Proof. One can obtain (2.2) from the localization T `j f(x1, x2) = T `j (χS̃`
f)(x1, x2). �

Combining Proposition 2.1 and Proposition 2.2, we may restrict our attention to the
maximal operator defined by f 7→ supj |T `j |, supported on |x1| ∼ 2` � 2j .

Proposition 2.3 (Frequency Reduction). Suppose Γ : R × [0,∞) → R is
measurable on R2 with Γ(x1, 0) = 0 satisfying the following conditions:

For every x2 ∈ R, x1 7→ Γ(x1, x2) is measurable function.

For every x1 ∈ R, x2 7→ Γ(x1, x2) is convex increasing function.

Let L̂low
j f(ξ1, ξ2) := f̂(ξ1, ξ2)ψ(2

jξ1) for f ∈ S(R2). Then, there exists a constant C
independent of Γ such that

sup
j∈Z

|Tj(Llow
j f)(x1, x2)| 6 CM2M1f(x1, x2),

where Mi is the Hardy–Littlewood maximal operator taken in the ith variable.
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Proof. For g ∈ S(R1) and 2j−1 6 |t| 6 2j+1, we have

∫
g(x1 − t− s)

1

2j
ψ̌

(
s

2j

)
ds .ψ MHLg(x1),

1

r

∫ r

0

g(x2 − Γ(x1, t))dt 6 2MHLf(x2 − Γ(x1, 0)) = 2MHLg(x2),

where the second inequality follows form the convexity of t 7→ Γ(x1, t). For more details,
we refer to Lemma 2 in [12] and [6]. Since Tj(Llow

j f)(x1, x2) is a composition of the above
two functions, we obtain the desired pointwise inequality. �

Set L̂high
j f(ξ1, ξ2) = f̂(ξ1, ξ2)ψ

c(2jξ1). Following Proposition 2.3, it is enough to show

the estimate ‖ supj |T `j (L
high
j f)|‖p . ‖f‖p.

3. Proof of main theorem 1

Following the reduction section, we only consider T `
j (L

high
j f), which is given by

T `
j (L

high
j f)(x1, x2) := ψcj+4(x1)χS`(x)

∫
Lhigh
j f(x1 − t, x2 −m(x1)γ(t))ϕj(t)dt,

supported on |x1| ∼ 2` � 2j .

3.1. Main difficulty

In a view of pseudo-differential operator, we write

T `
j (L

high
j f)(x1, x2) =

∫
e2πi(x1ξ1+x2ξ2)bj(x1, ξ1, ξ2)f̂(ξ1, ξ2)dξ1dξ2,

with the symbol bj(x1, ξ1, ξ2) given by

bj(x1, ξ1, ξ2) = χI`(x1)ψ
c(2jξ1)

∫
e−2πi(2jtξ1+m(x1)γ(2

jt)ξ2)ϕ(t)dt.

When analysing an oscillatory integral with a phase tξ1 + m(x1)γ(t)ξ2, it is usual to
decompose each frequency variable ξ1 and ξ2 with dyadic scale. Specifically, in the case
of a homogeneous curve, we can even estimate the asymptotic behaviour of oscillatory
integral. However, under the flat condition (1.1), this usual approach does not work, as

there are no comparablity condition
∣∣∣γ′(2t)γ′(t)

∣∣∣ ∼ 1 and a finite type assumption for the

curve. To overcome this situation, we will perform an angular decomposition in [11] for
a function f and utilize the method in one of the author’s paper [15].
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3.2. Angular decomposition

Set

Aj(ξ1, ξ2) := ψ

(
ξ1

ξ2γ′(2j+1)

)
− ψ

(
ξ1

ξ2γ′(2j−1)

)
and

Âjf(ξ1, ξ2) := f̂(ξ1, ξ2)Aj(ξ1, ξ2),

Ac
jf(x1, x2) := f(x1, x2)−Ajf(x1, x2).

Note that we have the following Littlewood–Paley estimate in [11]:

∥∥∥∥(∑
j∈Z

|Ajf |2
)1

2
∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2) for 1 < p <∞.

We have AjLhigh
j f(x) = Ajf(x)− Llow

j Ajf(x). Then, it gives

|AjLhigh
j f(x1, x2)| . |Ajf(x1, x2)|+ |M1Ajf(x1, x2)|

from the pointwise estimate |Llow
j f(x1, x2)| .M1f(x1, x2). By the vector valued estimate

for Hardy–Littlewood maximal operator, the following estimate holds:

∥∥∥∥(∑
j∈Z

|AjLhigh
j f |2

) 1
2
∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2) for 1 < p <∞. (3.1)

We split T `
j (L

high
j f) into two terms:

T `
j (L

high
j f) = T `

j (AjLhigh
j f) + T `

j (Ac
jL

high
j f).

Then, we shall prove the following:∥∥∥∥ sup
j∈Z

|T `
j (AjLhigh

j f)|
∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2), (3.2)

∥∥∥∥ sup
j∈Z

|T `
j (Ac

jL
high
j f)|

∥∥∥∥
Lp(R2)

. ‖f‖Lp(R2). (3.3)

We can obtain the estimate (3.2) for p=2 from the following process:

∥∥∥∥(∑
j∈Z

|T `
j (AjLhigh

j f)|2
) 1

2
∥∥∥∥
Lp(R2)

.

∥∥∥∥(∑
j∈Z

|AjLhigh
j f |2

) 1
2
∥∥∥∥
Lp(R2)

. ‖f‖p. (3.4)
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Furthermore, the range of p can be extended by a bootstrap argument detailed in Section
3.4. In the following proposition, we focus particularly on the term T `

j (Ac
jL

high
j f) and

prove the estimate (3.3). Furthermore, the range of p can be extended by a bootstrap
argument detailed in Section 3.4. In the following proposition, we focus particularly on
the term T `

j (Ac
jL

high
j f) and prove the estimate (3.3).

Proposition 3.1. Define the Littlewood–Paley projection L̂jf(ξ1, ξ2) := f̂(ξ1, ξ2)

ϕ(
ξ1
2j
) so that T `

j (Ac
jL

high
j f) =

∑∞
n=0 T `

j (Ac
jLn−jf). For f ∈ Lp(R2), It holds that

∥∥∥∥sup
j∈Z

|T `
j (Ac

jLn−jf)|
∥∥∥∥
Lp(R2)

≤ C2−εpn‖f‖Lp(R2), (3.5)

for 1 < p <∞ and n > 0.

Note that we need the following:

Lemma 3.1 (Reduction to one variable operator). Consider the two operators
R1 and Rλ

2 , given by

R1f(x1, x2) :=

∫
R2
e2πi(x1ξ1+x2ξ2)a(x1, ξ1, ξ2)f̂(ξ1, ξ2)dξ1dξ2,

Rλ
2g(x1) :=

∫
R
e2πix1ξ1a(x1, ξ1, λ)ĝ(ξ1)dξ1.

for f ∈ S(R2) and g ∈ S(R). Then, ‖R1‖L2(R2)→L2(R2) 6 supλ∈R ‖Rλ
2‖L2(R)→L2(R).

Proof of Lemma 3.1 Consider a function f ∈ S(R2) with ‖f‖L2(R2) = 1. Denote

F2f(x1, ξ2) = gξ2(x1). By Plancheral’s theorem with respect to x 2, we get

‖R1f‖22 =

∫ ∣∣∣∣ ∫
R2

e2πi(x1ξ1+x2ξ2)a(x1, ξ1, ξ2)f̂(ξ1, ξ2)dξ1dξ2

∣∣∣∣2dx1dx2
=

∫ ∣∣∣∣ ∫
R
e2πix2λRλ

2gλ(x1)dλ

∣∣∣∣2dx2dx1
=

∫
|Rλ

2gλ(x1)|2dx1dλ 6 sup
λ∈R

‖Rλ
2‖2L2(R)→L2(R)

∫
|gλ‖2L2(R)dλ.

which yields the desired estimate. �
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3.3. Proof of Proposition 3.1

We shall prove ‖T `
j Ln−jAc

j‖L2(R2)→L2(R2) . 2−
n
2 , which implies

∥∥∥∥ sup
j

|T `
j (Ln−jAc

jf)|
∥∥∥∥2
2

.
∑
j

‖T `
j Ln−jAc

j(Ln−jf)‖22

. 2−n‖
∑
j

Ln−jf‖22 = 2−n‖f‖22.

We write T `
j Ln−jAc

jf as

T `
j Ln−jAc

jf(x1, x2) =

∫
e2πi(x1ξ1+x2ξ2)aj(x1, ξ1, ξ2)f̂(ξ1, ξ2)dξ1dξ2,

with symbol aj(x1, ξ1, ξ2) given by

χI`(x1)ϕ

(
ξ1

2n−j

)
Acj(ξ1, ξ2)

∫
R
e−2πi(2jtξ1+m(x1)γ(2

jt)ξ2)ϕ(t)dt.

By Lemma 3.1, to prove (3.5), it suffices to show

‖Rλ
j ‖L2(R)→L2(R) 6 c12

−c2n,

where c1 and c2 are constants independent of j and λ and Rλ
j g(x) :=∫

e2πixξaj(x, ξ, λ)ĝ(ξ)dξ for g ∈ S(R). Note that x ∈ R and ξ ∈ R. Hereafter, we omit j
and λ in operators for simplicity. Observe that we write R with kernel K

Rg(x) =
∫

e2πixξaj(x, ξ, λ)

(∫
e−2πiyξg(y)dy

)
dξ

=

∫
K(x, y)g(y)dy,

where

K(x, y) := χI`(x)

∫
e−2πiλm(x)γ(2jt)

(∫
e2πi(x−2jt−y)ξϕ

(
ξ1

2n−j

)
Âcj(ξ, λ)dξ

)
ϕ(t)dt.

Recall that |x| ∼ 2` � 2j and denote

Qk := {x ∈ R : 2`−1 + k · 2j 6 |x| < 2`−1 + (k + 1) · 2j},
Q′
k := {x ∈ R : 2`−1 + (k − 4) · 2j 6 |x| < 2`−1 + (k + 5) · 2j},
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for each integer k. We define the functions

Gk(x, y) := K(x, y)χQk(x)χ
c
Q′
k
(y),

Bk(x, y) := K(x, y)χQk(x)χQ′
k
(y)

and use them to split the operator R as

Rg(x) =
3·2`−j−1−1∑

k=0

(∫
Gk(x, y)g(y)dy +

∫
Bk(x, y)g(y)dy

)

:=
3·2`−j−1−1∑

k=0

(
Gkg(x) + Bkg(x)

)
.

Then, we shall prove the following:

Lemma 3.2. There exist constants C1 and C2 independent of j, ` and λ such that

∥∥∥∥ 3·2`−j−1−1∑
k=0

Gk
∥∥∥∥
L2(R)→L2(R)

6 C12
−n, (3.6)

∥∥∥∥ 3·2`−j−1−1∑
k=0

Bk
∥∥∥∥
L2(R)→L2(R)

6 C22
−n2 . (3.7)

Proof of (3.6). Recall that

K(x, y) :=

∫
e−2πiλm(x)γ(2jt)

(∫
e2πi(x−2jt−y)ξϕ

(
ξ

2n−j

)
Acj(ξ, λ)dξ

)
ϕ(t)dt.

We build our proof upon the following observation:

|Gk(x, y)| .
2j

2n|x− y|2
χQk(x)ψ

c

(
|x− y|
2j

)
. (3.8)

�

Proof of (3.8). Note that supp(ψc) ⊂
{
|x| > 1

2

}
. We utilize the integration by parts

twice with respect to ξ. Then, we get∣∣∣∣ ∫ e2πi(x−2jt−y)ξϕn−j(ξ)A
c
j(ξ, λ)dξ

∣∣∣∣ . 1

(x− 2jt− y)2

∫ ∣∣∣∣∂2ξ[ϕ( ξ

2n−j

)
Acj(ξ, λ)

]∣∣∣∣dξ
.

2j

2n
· 1

(x− 2jt− y)2
.
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Since |x − 2jt − y| & |x − y| on x ∈ Qk, y ∈ R \ Q′
k for 1

2 6 t 6 2, we get the desired
estimate. �

We shall deduce the following estimate:

3·2`−j−1−1∑
k=0

(∫
|Gk(x, y)|dx+

∫
|Gk(x, y)|dy

)
. 2−n. (3.9)

Proof of (3.9). By estimate (3.8) and the disjointness of Qks, we have

3·2`−j−1−1∑
k=0

∫
|Gk(x, y)|dx .

2j

2n

∑
k

∫
|x−y|>2j

χQk(x)

|x− y|2
dx

.
2j

2n
·
∫
|x|>2j

1

|x|2
dx = 2−n.

and the second estimate also holds by the similar way. �

By Schur’s lemma with the estimate (3.9), we finish the proof of (3.6).

Proof of (3.7). For the operator Bk, denote gk(y) = χQ′
k
(y)g(y). By the localization

principle, we have

∥∥∥∥ 3·2`−j−1−1∑
k=0

Bk
∥∥∥∥
L2→L2

. sup
k∈Z

(
sup

‖gk‖2=1

‖Bkgk‖2
)
. (3.10)

To estimate ‖Bkgk‖2, we write it with the symbol expression again, which is

Bkgk(x) =
∫

e2πixξχQk(x)aj(x, ξ, λ)ĝk(ξ)dξ,

where

aj(x, ξ, λ) = χI`(x)ϕ

(
ξ

2n−j

)
Acj(ξ, λ)

∫
e−2πi(2jtξ+m(x1)γ(2

jt)λ)ϕ(t)dt,

Observe that

|aj(x, ξ, λ)| .
1

2j |ξ|
. (3.11)

�
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Proof of (3.11). From the support of Acj(ξ, λ), we have | ξλ | � |γ′(2jt)| for |t| ∼ 1.
This enables us to apply the integration by parts with respect to variable t. Then, we get

∣∣∣∣ ∫ e−2πi(ξ2jt+λm(x)γ(2jt))ϕ(t)dt

∣∣∣∣
.

∣∣∣∣ ∫ e−2πi(ξ2jt+λm(x)γ(2jt))∂t

(
ϕ(t)

2j(ξ + λm(x)γ′(2jt))

)
dt

∣∣∣∣
.

∫
|2jλm(x)2jγ′′(2jt)|

{2j(ξ + λm(x)γ′(2jt))}2
· ϕ(t)dt+

∫
|ϕ′(t)|

|2j(ξ + λm(x)γ′(2jt))|
dt

.
∫

|ϕ′(t)|
|2j(ξ + λm(x)γ′(2jt))|

dt .
1

2j |ξ|
.

Then, we get the desired estimate. �

From the observation (3.11), it is easy to check

∫
|χQk(x)aj(x, ξ, λ)|dx . 2−(n−j),∫

|aj(x, ξ, λ)|dξ . 2−j .

By Schur’s lemma with the above estimate and (3.10), we obtain (3.7) in Lemma 3.2.

3.4. A bootstrap argument for the proof of Theorem 1

In the spirit of Nagel, Stein and Wainger [22], we claim that

Lemma 3.3. If ‖ supj |T `
j f |‖Lp(R2) 6 C1‖f‖Lp(R2) and ‖T `

j f‖Lr(R2) 6 C2‖f‖Lr(R2)
for 1 < r <∞,

∥∥∥∥
∑

j

|T `
j fj |2

 1
2 ∥∥∥∥

Lq(R2)
6 (C1C2)

εq

∥∥∥∥
∑

j

|fj |2
 1

2 ∥∥∥∥
Lq(R2)

(3.12)

holds for all q with 1
q <

1
2 (1 +

1
p ).

Proof. Consider vector valued functions f = {fj} and Tf = {T `
j fj}. Since the oper-

ator Aj is a positive, it follows that ‖Tf‖Lp(R2,l∞) . ‖f‖Lp(R2,l∞) and ‖Tf‖Lr(R2,lr)
. ‖f‖Lr(R2,lr) for r near 1. Applying the Riesz–Thorin interpolation for vector-valued
function, we get the conclusion. �
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Combining (3.4), Proposition 2.3 and Proposition 3.1, we obtain the estimate∥∥∥∥ sup
j∈Z

|T `
j f |

∥∥∥∥
p

6 Cp‖f‖p (3.13)

for p=2. Moreover, we have

‖T `
j f‖r 6 ‖f‖r (3.14)

for r > 1. By using Lemma 3.3 with (3.13) and (3.14), we obtain (3.12) for 4
3 < p 6 2.

Then, by setting {fj}j∈Z = {Ac
jLn−jf}j∈Z in (3.12) and applying interpolation with

the decay estimate (3.5), we obtain Proposition 3.1 for 4
3 < p 6 2. To treat the bad

part in (3.4), set {fj}j∈Z = {AjLhigh
j f}j∈Z. Then, we apply Lemma 3.3 again to get

the first inequality of (3.4), which implies (3.13) for 4
3 < p 6 2. We can iteratively apply

Lemma 3.3 with a wider range of p until we get (3.13) for all p> 1. With this, we complete
the proof of Main Theorem 1.

4. Application

In this section, we shall prove Corollary 1.1 and Corollary 1.2.

4.1. Proof of Corollary 1.1

For a measurable function m : R → R, denote that

Smr f(x1, x2) =
1

2r

∫ r

−r
f(x1 − t, x2 −m(x1)γ(t))dt,

Ẽk = {(x1, x2) ∈ R2 : 2k 6 m(x1) 6 2k+1}.

By Main Theorem 1 and the second part of Remark 1.1, one can easily check that

‖ sup
r>0

|χẼk(·)S
m
r f |‖p . ‖f‖p. (4.1)

To prove Corollary 1.1, it suffices to show that for each α> 0 and k ∈ Z, the set

Ekα =

{
(x1, x2) ∈ Ẽk : lim sup

r→0
|Smr f(x1, x2)− f(x1, x2)| > 2α

}

has measure zero. Consider a continuous function gε of compact support with ‖f −
gε‖p < ε. One can see that lim supr→0 |Smr f(x1, x2) − f(x1, x2)| 6 Mm

γ (f − gε)(x) +

|gε(x)− f(x)|. For F kα and Gkα, defined by
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F kα = {x ∈ Ekα : Mm
γ (f − gε)(x) > α},

Gkα = {x ∈ Ekα : |f(x)− gε(x)| > α},

we have m(Ekα) 6 m(F kα) +m(Gkα). Applying estimate (4.1), we get

m(F kα) +m(Gkα) 6
2εp

αp
.

As ε→ 0, we get the conclusion.

4.2. Proof of Corollary 1.2

In order to achieve our goal of removing the dependence of the coefficients of polynomial
P on factors other than its degree, we consider the following lemma.

Lemma 4.1. Given a polynomial P with degree d, we can find a partition
{s0, s1, s2, . . . , sn(d)} such that for each interval [si, si+1], there exists a pair (mi, sji)
with 1 6 mi 6 d, satisfying

sup
x∈[si,si+1]

|P (x)|
|x− sji |

mi
∼d inf

x∈[si,si+1]

|P (x)|
|x− sji |

mi
. (4.2)

Proof of Lemma 4.1. We seek to construct a partition P = {s1, s2, ..., sn(d)} of
(−∞,∞) such that, for each subinterval [si, si+1], there exist non-negative integersmi and
ji satisfying (4.2). Consider a polynomial P(x ) represented by the following expression:

P (x) =

d1∏
i=1

(x− αi)
qi ,

where αi are distinct real numbers. Let Ui = {x ∈ R : |x − αi| < |x − αk| for all k =
1, . . . , d1}. For each i and k, let Uki (1) = {x ∈ Ui : 2|x − αi| > |x − αk|} and Uki (0) =
{x ∈ Ui : 2|x − αi| < |x − αk|}. Then, for any x ∈ R, there exists an index i such that

x ∈ Ui. We define the set-valued function Fi on {0, 1}d1 by Fi(a) =
⋂d1
k=1 Uki (ak) for

a = (ak) ∈ {0, 1}d1 . By using the set-valued function F, we can decompose each set Ui

into a finite number of disjoint open intervals, that is,

Ui = Uki (0) ∪ Uki (1) =
d1⋂
k=1

(
Uki (0) ∪ Uki (1)

)
=

⋃
a∈{0,1}d1

Fi(a).

For each interval Fi(a) = [si, si+1], we take m =
∑

{k:ak=1} qk and sji = αi. Observe

that we have the following inequalities for each fixed i :

|x− αk| ∼ |x− αi| for all k such that ak = 1,

|x− αk| ∼ |αi − αk| for all k such that ak = 0.
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By using these observation, we have (4.2) on [si, si+1].
To handle a general polynomial, we can employ a similar approach. First, we can

express the polynomial as

P (x) =

d1∏
i=1

(x− αi)
qi

d2∏
i=1

{(x− βi)
2 + δ2i }ri .

To treat this, we give one more criterion comparing between 2|x − αi| and max{|x −
βk|, |δk|} instead of |x− αk|. Then. the last part can be proved similarly. �

Proof of the Corollory 1.2. Given a polynomial P(x ), we obtain a partition P =
{s0, s1, . . . , sn(d)} from Lemma 4.1. We then decompose MP

γ f(x) as

MP
γ f(x) =

n(d)∑
i=0

χ[si,si+1]
(x)Mif(x),

where Mif(x) := χ[si,si+1]
(x)MP

γ f(x). To complete the proof, it suffices to demonstrate
that

‖Mif‖p 6 Cd‖f‖p.

By Lemma 4.1, there exists a pair (mi, s) such that the following holds for [si, si+1]:

sup
x1∈[si,si+1]

|P (x1)|
|x1 − s|mi

∼d inf
x1∈[si,si+1]

|P (x1)|
|x1 − s|mi

.

Denote that gs(x1, x2) := f(x1 + s, x2) and consider the estimate

‖Mif‖pp =
∫ si+1−s

si−s

∫
R

(
sup
r>0

1

r

∫ r

0

|gs(x1 − t, x2 − P (x1 + s)γ(t))|dt
)p

dx2dx1.

By applying Proposition 2.2, we can reduce matters to |x1| ∼ 2`:∥∥∥∥ sup
j∈Z

|P`jgs|
∥∥∥∥
p

6 Cd‖f‖p, (4.3)

where P`jgs(x) is defined as

P`jgs(x) := χI`(x1)ψ
c
j+4(x1)

∫
gs(x1 − t, x2 − P (x1 + s)γ(t))ϕj(t)dt,

for ` such that [2`−1, 2`+1] ∩ [si − s, si+1 − s] 6= ∅. To prove (4.3), it is enough to check
the hypothesis of Remark 1.1:

supx |P (x+ s)|
infx |P (x+ s)|

.d
2(`+1)mi

2(`−1)mi
.d 1 for |x| ∈ [2`−1, 2`+1],
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where 1 6 mi 6 d. This implies the conclusion. �
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