MAXIMAL OPERATORS ALONG FLAT CURVES WITH ONE VARIABLE VECTOR FIELD

JOONIL KIM¹ AND JEONGTAE OH² D

1 Department of Mathematics, Yonsei University, Seoul, Korea ² Research Institute of Mathematics, Seoul National University, Seoul, Korea Corresponding author: Joonil Kim, email: jikim7030@yonsei.ac.kr

(Received 28 August 2023)

Abstract We study a maximal average along a family of curves $\{(t, m(x_1)\gamma(t)) : t \in [-r, r]\}\$, where $\gamma|_{[0,\infty)}$ is a convex function and m is a measurable function. Under the assumption of the doubling property of γ' and $1 \leq m(x_1) \leq 2$, we prove the $L^p(\mathbb{R}^2)$ boundedness of the maximal average. As a corollary, we obtain the pointwise convergence of the average in $r > 0$ without any size assumption for a measurable m.

Keywords: Maximal functions along curves; pseudo-differential operators

1. Introduction

In this study, we analyse a maximal operator defined by a convex function $\gamma|_{[0,\infty)}$ and a measurable function $m : \mathbb{R} \to \mathbb{R}$. Specifically, our focus lies on the operator:

$$
\mathcal{M}_{\gamma}^{m} f(x_1, x_2) := \sup_{r>0} \frac{1}{2r} \int_{-r}^{r} |f(x_1 - t, x_2 - m(x_1)\gamma(t))| \mathrm{d}t,
$$

where $\gamma : \mathbb{R} \to \mathbb{R}$ is an extension of $\gamma|_{[0,\infty)}$, which is a even or odd function. Recently, Guo, Hickman, Lie and Roos [\[13\]](#page-15-0) proved the L^p boundedness of maximal operators \mathcal{M}^m_γ for the homogeneous curve $\gamma(t) = t^n$, with $n \geq 2$, assuming that m is measurable. However, the L^p boundedness of \mathcal{M}^m_γ for the case $n=1$ remains an open problem. So, we focus on flat convex curves, including piecewise linear curves. Given a convex extension $\gamma : \mathbb{R} \to \mathbb{R}$, we define the bounded doubling property for a derivative γ' as follows:

there exists a constant $\omega > 1$ such that $\gamma'(\omega|t|) \geq 2\gamma'(|t|)$ for all $t \in \mathbb{R}$. (1.1)

Now, we state the main theorem:

Main Theorem 1. Let $m : \mathbb{R} \to \mathbb{R}$ be a measurable function such that $1 \leq m(x) \leq 2$ for all $x \in \mathbb{R}$. Suppose that an extension γ of a convex function $\gamma|_{[0,\infty)}$ satisfies the

© The Author(s), 2024. Published by Cambridge University Press on Behalf The Author(s), 2024. I ubilished by Cambridge University I ress on Benand 1212
of The Edinburgh Mathematical Society.

bounded doubling property of γ' in ([1.1](#page-0-0)), with $\gamma(0) = 0$. Then, there exists a constant C_{ω} such that $\|\mathcal{M}_{\gamma}^m\|_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)} \leq C_{\omega,p}$ holds for $1 < p \leq \infty$.

Remark 1.1.

• The theorem can be extended to certain types of piecewise linear curves. Refer to Section 7 in [\[7\]](#page-15-0) or Remark 5 in [\[14\]](#page-15-0) for more details. Additionally, the condi-

tion [\(1.1\)](#page-0-0) admits flat convex curves, such as $\gamma(t) = e^{-\frac{1}{|t|}}$ and e^{-e} $\frac{1}{|t|}$, which are flat at the origin.

• By using the dilation technique, we can extend our results to $\|\mathcal{M}_{\gamma}^{m}\|_{L^{p}\to L^{p}} \leq$ $C \log_2(\frac{b}{a})$ under the assumption $0 < a \leq m(x) \leq b$.

In the view of pointwise convergence, we can drop the assumption $1 \leq m(x_1) \leq 2$.

Corollary 1.1. For a measurable function $m : \mathbb{R} \to \mathbb{R}$ and a convex extension γ on \mathbb{R}^1 passing through the origin with its derivative γ' satisfying property ([1.1](#page-0-0)), we have

$$
\lim_{r \to 0} \frac{1}{2r} \int_{-r}^{r} f(x_1 - t, x_2 - m(x_1)\gamma(t)) dt = f(x_1, x_2) \quad a.e.
$$

for $f \in L^p(\mathbb{R}^2)$.

The study of maximal operators along flat convex curves has a rich history in Harmonic analysis by itself. In the 1970s, Stein and Wainger [\[24\]](#page-16-0) asked the general class of curves $(t, \gamma(t))$ for which there are L^p results for \mathcal{M}^1_{γ} . In the 1980s, Carlsson *et al.* [\[11\]](#page-15-0) proved that \mathcal{M}^1_γ is bounded on $L^p(\mathbb{R}^2)$ under the bounded doubling condition [\(1.1\)](#page-0-0). In the 1990s, the study of maximal operators was extended to the curves with a variable coefficient, as demonstrated in $[4, 9, 10, 15, 23]$ $[4, 9, 10, 15, 23]$ $[4, 9, 10, 15, 23]$ $[4, 9, 10, 15, 23]$ $[4, 9, 10, 15, 23]$ $[4, 9, 10, 15, 23]$ $[4, 9, 10, 15, 23]$ $[4, 9, 10, 15, 23]$. Carbery, Wainger and Wright [\[9\]](#page-15-0) established the L^p boundedness of $\mathcal{M}_{\gamma}^{x_1}$ along plane curves γ whose derivative satisfies the infinitesimal doubling property. Under the same assumption, Bennett [\[4\]](#page-15-0) extended the L^2 results for \mathcal{M}_{γ}^P , where P is a polynomial. As a corollary of our main theorem, we derive the L^p boundedness of \mathcal{M}^P_γ under much weaker assumptions on γ .

Corollary 1.2. For a polynomial $P : \mathbb{R} \to \mathbb{R}$ with degree d and a convex extension γ on \mathbb{R}^1 passing through the origin with its derivative γ' satisfying property ([1.1](#page-0-0)), there exists a constant $C_{\omega,d}$ independent of the coefficients of P such that $\|\mathcal{M}_{\gamma}^P\|_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)} \leq C_{\omega,d,p}$ for $1 < p \leqslant \infty$.

Note that the infinitesimal doubling property implies the bounded doubling property. For more details, refer to [\[4\]](#page-15-0).

1.1. Historical background

Zygmund conjecture is a long-standing open problem in harmonic analysis. This question inquires whether the Lipschitz regularity of u is sufficient to guarantee any non-trivial L^p bounds for the maximal operator:

1214 J. Kim and J. Oh

$$
\mathcal{M}_{\gamma}^{u}(f)(x_1,x_2) := \sup_{r>0} \frac{1}{2r} \int_{-r}^{r} |f(x_1 - t, x_2 - u(x_1, x_2)\gamma(t))| \mathrm{d}t,
$$

where $\gamma(t) = t$. Since the discovery of the Besicovitch set in the 1920s, it has been shown that the conjecture is false when the function u is only Hölder continuous C^{α} with $\alpha < 1$. However, the problem remains open under the Lipschitz assumption for u. In the 1970s, Stein and Wainger [\[24\]](#page-16-0) proposed an analogous conjecture for the Hilbert transform. Regarding the Hilbert transforms along vector fields, Lacey and Li [\[18\]](#page-16-0) made a significant progress regarding the regularity of u in 2006, using time–frequency analysis tools. Later, Bateman and Thiele $[2]$ obtained the L^p estimates for the Hilbert transform along a one-variable vector field. Their proof relied on the commutation relation between the Hilbert transform and Littlewood–Paley projection operators, which cannot be directly applied to the maximal operator \mathcal{M}_{γ}^{m} due to its sub-linearity. Therefore, the problem for maximal operators remains open. For additional discussion on Stein's conjecture, we recommend references [\[1,](#page-15-0) [2,](#page-15-0) [17\]](#page-16-0). In the study of maximal operators, Bourgain [\[5\]](#page-15-0) demonstrated the L^2 boundedness of \mathcal{M}_t^u for real analytic functions u. In 1999, Carbery, Seeger, Wainger and Wright [\[8\]](#page-15-0) examined the maximal operators \mathcal{M}_t^m along one variable vector field. One of the authors in this paper further extended this result in [\[16\]](#page-15-0).

Recently, in [\[13\]](#page-15-0), Guo *et al.* investigated the L^p boundedness of \mathcal{M}^u_γ under the Lipschitz assumption for u and homogeneous curve $\gamma(t) = t^n$ for $n > 1$. Later, Liu, Song and Yu [\[20\]](#page-16-0) extended the results to more general curves with the condition $\left| \begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right|$ $t\gamma^{\prime\prime}(t)$ extended the results to more general curves with the condition $\left|\frac{t\gamma''(t)}{\gamma'(t)}\right| \sim 1$. A crucial tool used in the proofs of both papers was the local smoothing estimate, which was established in [\[3,](#page-15-0) [21\]](#page-16-0). For more history, we recommend the study [\[19\]](#page-16-0) by Victor Lie, which presents a unified approach and includes a more general view of this topic as well as problems related to the concept of non-zero curvature.

1.2. Notation

Let $\psi : \mathbb{R} \to \mathbb{R}$ be a non-negative C^{∞} function supported on [-2, 2] such that $\psi \equiv 1$ on [-1, 1]. Define $\varphi(t) = \psi(t) - \psi(2t)$ and $\varphi_l(t) = \frac{1}{2^l} \varphi(\frac{t}{2})$ $\frac{t}{2^l}$). Also, define $\psi^c(t) = 1 - \psi(t)$. Note that $\sum_{l\in\mathbb{Z}}\varphi\left(\frac{t}{2}\right)$ $\left(\frac{t}{2^l}\right) = 1$ for $t \neq 0$ and $\text{supp}(\varphi) \subset \left\{\frac{1}{2} \leqslant |x| \leqslant 2\right\}$. We define the Littlewood–Paley projection $\mathcal{L}_s f$ as $\widehat{\mathcal{L}_s f}(\xi) := \widehat{f}(\xi) \varphi\left(\frac{\xi_1}{2^s}\right)$. We shall use the notation $A \lesssim_d B$ when $A \leq C_d B$ with a constant $C_d > 0$ depending on the parameter d. Moreover, we write $A \sim_d B$, if $A \lesssim_d B$ and $B \lesssim_d A$. Let $M_{\rm HL}$ be the Hardy–Littlewood maximal operator and $M^{\rm str}$ be the strong maximal operator. Let χ_A be a characteristic function, which is equal to 1 on A and otherwise 0. Denote the dyadic pieces of intervals by

$$
I_i = [2^{i-1}, 2^{i+1}] \cup [-2^{i+1}, -2^{i-1}],
$$

$$
\tilde{I}_i = [2^{i-2}, 2^{i+2}] \cup [-2^{i+2}, -2^{i-2}],
$$

and the corresponding strips by $S_i = I_i \times \mathbb{R}, \tilde{S}_i = \tilde{I}_i \times \mathbb{R}$.

<https://doi.org/10.1017/S0013091524000555>Published online by Cambridge University Press

2. Reduction

In this section, we present three propositions that have broad applicability. Let $\Gamma : \mathbb{R}^2 \to$ R be a measurable function and define a general class of operators

$$
T_j f(x_1, x_2) := \int f(x_1 - t, x_2 - \Gamma(x_1, t)) \varphi_j(t) dt.
$$

Proposition 2.1. Define $T_j^{glo}f(x_1, x_2) := \psi_{j+4}^c(x_1)T_jf(x_1, x_2)$. Under the measurability assumption of Γ , we have

$$
\|\sup_j |T_j - T_j^{glo}|\|_p \leq C_p,
$$

for $1 < p \leqslant \infty$.

Proof. Denote that $\tilde{\varphi}(\frac{x}{2})$ $(\frac{x}{2^j}) = \sum_{k=-3}^4 \varphi(\frac{x}{2^j})$ $\frac{x}{2^{j+k}}$, which has a localized support $|x| \sim 2^j$. Let T_j^{loc} and T_j^{mid} be operator, defined by

$$
T_j^{\text{loc}} f(x_1, x_2) := \psi_{j-4}(x_1) T_j f(x_1, x_2),
$$

$$
T_j^{\text{mid}} f(x_1, x_2) := \tilde{\varphi}\left(\frac{x_1}{2^j}\right) T_j f(x_1, x_2).
$$

Then, we can decompose $T_j - T_j^{\text{glo}}$ into $T_j^{\text{mid}} + T_j^{\text{loc}}$. For the operator T_j^{mid} , replace the sup as ℓ^p sum. Then, we have

$$
\left\|\sup_{j\in\mathbb{Z}}|T^{\text{mid}}_jf|\right\|_{L^p(\mathbb{R}^2)}\leqslant \bigg(\sum_{j\in\mathbb{Z}}\|T^{\text{mid}}_jf\|_{L^p(\mathbb{R}^2)}^p\bigg)^{\frac{1}{p}}.
$$

Denote $F(x_1) = ||f(x_1, \cdot)||_{L^p(dx_2)}$. By applying Minkowski's integral inequality and a change of variables, we get the pointwise inequality:

$$
||T_j^{\text{mid}} f(x_1, \cdot)||_{L^p(dx_2)} \leqslant \int \left(\int |f(x_1 - t, x_2 - \Gamma(x_1, t))|^p dx_2 \right)^{\frac{1}{p}} \varphi_j(t) dt
$$
\n
$$
\leqslant \int F(x_1 - t) \varphi_j(t) dt \lesssim_{\varphi} M_{\text{HL}} F(x_1),
$$
\n(2.1)

where the second inequality follows form the fact that $\Gamma(x_1, t)$ is independent of x_2 . By (2.1) and the L^p boundedness of M_{HL} , we obtain

$$
\bigg(\sum_{j\in\mathbb{Z}}\|T_j^{\text{mid}}f\|_{L^p(\mathbb{R}^2)}^p\bigg)^{\frac{1}{p}} \leqslant \bigg(\sum_j\int\tilde{\varphi}\bigg(\frac{x_1}{2^j}\bigg)|M_{\operatorname{HL}}F(x_1)|^pdx_1\bigg)^{\frac{1}{p}} \lesssim \|f\|_p.
$$

which implies the L^p boundedness of $f \mapsto \sup_j |T_j^{\text{mid}} f|$ for $p > 1$. For the operator $T_j^{\text{loc}} f$, we observe the localization principle:

$$
T_j^{\text{loc}}f(x_1, x_2) = T_j^{\text{loc}}(\chi_{S_j}f)(x_1, x_2).
$$

By combining this with $\sup_{j\in\mathbb{Z}}||T_j||_p \leq C$, we get the following estimate:

$$
\Big\|\sup_{j\in\mathbb{Z}}|T_{j}^{\mathrm{loc}}f|\Big\|_{p}^{p}=\sum_{j\in\mathbb{Z}}\int|T_{j}^{\mathrm{loc}}\chi_{S_{j}}f(x_{1},x_{2})|^{p}\mathrm{d}x\leqslant C\sum_{j\in\mathbb{Z}}\int|\chi_{S_{j}}f(x_{1},x_{2})|^{p}\mathrm{d}x\lesssim\|f\|_{p}^{p}.
$$

Therefore, we prove $||\sup_j |T_j - T_j^{\text{glo}}|||_p \leqslant C_p$ for $1 < p \leqslant \infty$.

By Proposition [2.1,](#page-3-0) in order to prove Theorem [1,](#page-0-0) it suffices to consider the maximal operator defined as

$$
f\mapsto \sup_j|T^{\textrm{glo}}_jf| \text{ , where } T^{\textrm{glo}}_j=\psi^c_{j+4}T_j.
$$

Proposition 2.2 (Space Reduction). Let $T_j^{\ell} f(x_1, x_2) := \chi_{S_{\ell}}(x_1, x_2) T_j^{glo} f(x_1, x_2)$. Then, the following inequality holds:

$$
\|\sup_{j\in\mathbb{Z}}|T_j^{glo}|\|_{L^p\to L^p}\lesssim \sup_{\ell\in\mathbb{Z}}\|\sup_{j\in\mathbb{Z}}|T_j^{\ell}|\|_{L^p\to L^p}.\tag{2.2}
$$

Proof. One can obtain (2.2) from the localization $T_j^{\ell} f(x_1, x_2) = T_j^{\ell} (\chi_{\tilde{S}_{\ell}} f)(x_1, x_2)$. \Box

Combining Proposition [2.1](#page-3-0) and Proposition 2.2, we may restrict our attention to the maximal operator defined by $f \mapsto \sup_j |T_j^{\ell}|$, supported on $|x_1| \sim 2^{\ell} \gg 2^j$.

Proposition 2.3 (Frequency Reduction). Suppose $\Gamma : \mathbb{R} \times [0, \infty) \rightarrow \mathbb{R}$ is measurable on \mathbb{R}^2 with $\Gamma(x_1, 0) = 0$ satisfying the following conditions:

> For every $x_2 \in \mathbb{R}, x_1 \mapsto \Gamma(x_1, x_2)$ is measurable function. For every $x_1 \in \mathbb{R}, x_2 \mapsto \Gamma(x_1, x_2)$ is convex increasing function.

Let $\widehat{\mathcal{L}_{j}^{low}}\widehat{f}(\xi_1,\xi_2) := \widehat{f}(\xi_1,\xi_2)\psi(2^{j}\xi_1)$ for $f \in \mathcal{S}(\mathbb{R}^2)$. Then, there exists a constant C independent of Γ such that

$$
\sup_{j\in\mathbb{Z}}|T_j(\mathcal{L}_j^{low}f)(x_1,x_2)| \leq C M^2 M^1 f(x_1,x_2),
$$

where M^i is the Hardy-Littlewood maximal operator taken in the ith variable.

Proof. For $g \in \mathcal{S}(\mathbb{R}^1)$ and $2^{j-1} \leqslant |t| \leqslant 2^{j+1}$, we have

$$
\int g(x_1 - t - s) \frac{1}{2^j} \check{\psi} \left(\frac{s}{2^j} \right) ds \lesssim_{\psi} M_{\text{HL}} g(x_1),
$$

$$
\frac{1}{r} \int_0^r g(x_2 - \Gamma(x_1, t)) dt \leq 2M_{\text{HL}} f(x_2 - \Gamma(x_1, 0)) = 2M_{\text{HL}} g(x_2),
$$

where the second inequality follows form the convexity of $t \mapsto \Gamma(x_1, t)$. For more details, we refer to Lemma 2 in [\[12\]](#page-15-0) and [\[6\]](#page-15-0). Since $T_j(\mathcal{L}_j^{\text{low}}f)(x_1, x_2)$ is a composition of the above two functions, we obtain the desired pointwise inequality.

Set $\widehat{\mathcal{L}_j^{high}} f(\xi_1, \xi_2) = \widehat{f}(\xi_1, \xi_2)\psi^c(2^j \xi_1)$. Following Proposition [2.3,](#page-4-0) it is enough to show the estimate $||\sup_j |T_j^{\ell}(\mathcal{L}_j^{\text{high}}f)||_p \lesssim ||f||_p$.

3. Proof of main theorem [1](#page-0-0)

Following the reduction section, we only consider $\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}}f)$, which is given by

$$
\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}}f)(x_1, x_2) := \psi_{j+4}^c(x_1)\chi_{S_{\ell}}(x) \int \mathcal{L}_j^{\text{high}} f(x_1 - t, x_2 - m(x_1)\gamma(t))\varphi_j(t)dt,
$$

supported on $|x_1| \sim 2^{\ell} \gg 2^j$.

3.1. Main difficulty

In a view of pseudo-differential operator, we write

$$
\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}} f)(x_1, x_2) = \int e^{2\pi i (x_1\xi_1 + x_2\xi_2)} b_j(x_1, \xi_1, \xi_2) \hat{f}(\xi_1, \xi_2) d\xi_1 d\xi_2,
$$

with the symbol $b_j(x_1,\xi_1,\xi_2)$ given by

$$
b_j(x_1,\xi_1,\xi_2) = \chi_{I_\ell}(x_1)\psi^c(2^j\xi_1)\int e^{-2\pi i(2^j t\xi_1 + m(x_1)\gamma(2^j t)\xi_2)}\varphi(t)dt.
$$

When analysing an oscillatory integral with a phase $t\xi_1 + m(x_1)\gamma(t)\xi_2$, it is usual to decompose each frequency variable ξ_1 and ξ_2 with dyadic scale. Specifically, in the case of a homogeneous curve, we can even estimate the asymptotic behaviour of oscillatory integral. However, under the flat condition (1.1) , this usual approach does not work, as there are no comparablity condition $\Big|$ $\frac{\gamma'(2t)}{\gamma'(t)}\bigg|_{\infty} \sim 1$ and a finite type assumption for the curve. To overcome this situation, we will perform an angular decomposition in [\[11\]](#page-15-0) for a function f and utilize the method in one of the author's paper [\[15\]](#page-15-0).

3.2. Angular decomposition

Set

$$
A_j(\xi_1, \xi_2) := \psi\left(\frac{\xi_1}{\xi_2 \gamma'(2^{j+1})}\right) - \psi\left(\frac{\xi_1}{\xi_2 \gamma'(2^{j-1})}\right)
$$

and

$$
\widehat{\mathcal{A}_j f}(\xi_1, \xi_2) := \widehat{f}(\xi_1, \xi_2) A_j(\xi_1, \xi_2), \n\mathcal{A}_j^c f(x_1, x_2) := f(x_1, x_2) - \mathcal{A}_j f(x_1, x_2).
$$

Note that we have the following Littlewood–Paley estimate in [\[11\]](#page-15-0):

$$
\left\| \left(\sum_{j \in \mathbb{Z}} |\mathcal{A}_j f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)} \text{ for } 1 < p < \infty.
$$

We have $A_j \mathcal{L}_j^{\text{high}} f(x) = A_j f(x) - \mathcal{L}_j^{\text{low}} A_j f(x)$. Then, it gives

$$
|\mathcal{A}_j \mathcal{L}_j^{\text{high}} f(x_1, x_2)| \lesssim |\mathcal{A}_j f(x_1, x_2)| + |M^1 \mathcal{A}_j f(x_1, x_2)|
$$

from the pointwise estimate $|\mathcal{L}_j^{\text{low}} f(x_1, x_2)| \lesssim M^1 f(x_1, x_2)$. By the vector valued estimate for Hardy–Littlewood maximal operator, the following estimate holds:

$$
\left\| \left(\sum_{j \in \mathbb{Z}} |A_j \mathcal{L}_j^{\text{high}} f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)} \text{ for } 1 < p < \infty. \tag{3.1}
$$

We split $\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}}f)$ into two terms:

$$
\mathcal{T}_j^{\ell}(\mathcal{L}_j^{\text{high}} f) = \mathcal{T}_j^{\ell}(\mathcal{A}_j \mathcal{L}_j^{\text{high}} f) + \mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{\text{high}} f).
$$

Then, we shall prove the following:

$$
\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j \mathcal{L}_j^{\text{high}} f)| \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)},\tag{3.2}
$$

$$
\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{\text{high}} f)| \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_{L^p(\mathbb{R}^2)}.
$$
\n(3.3)

We can obtain the estimate (3.2) for $p = 2$ from the following process:

$$
\left\| \left(\sum_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j \mathcal{L}_j^{\text{high}} f)|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \left\| \left(\sum_{j \in \mathbb{Z}} |\mathcal{A}_j \mathcal{L}_j^{\text{high}} f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^2)} \lesssim \|f\|_p. \tag{3.4}
$$

Furthermore, the range of p can be extended by a bootstrap argument detailed in [Section](#page-11-0) [3.4.](#page-11-0) In the following proposition, we focus particularly on the term $\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{\text{high}} f)$ and prove the estimate (3.3) . Furthermore, the range of p can be extended by a bootstrap argument detailed in [Section 3.4.](#page-11-0) In the following proposition, we focus particularly on the term $\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_j^{\text{high}} f)$ and prove the estimate [\(3.3\)](#page-6-0).

Proposition 3.1. Define the Littlewood–Paley projection $\widehat{\mathcal{L}_j f}(\xi_1, \xi_2) := \widehat{f}(\xi_1, \xi_2)$ $\varphi(\frac{\xi_1}{2^j})$ so that $\mathcal{T}_j^{\ell}(\mathcal{A}_j^c\mathcal{L}_j^{high}f) = \sum_{n=0}^{\infty} \mathcal{T}_j^{\ell}(\mathcal{A}_j^c\mathcal{L}_{n-j}f)$. For $f \in L^p(\mathbb{R}^2)$, It holds that

$$
\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell}(\mathcal{A}_j^c \mathcal{L}_{n-j} f)| \right\|_{L^p(\mathbb{R}^2)} \le C 2^{-\varepsilon_p n} \|f\|_{L^p(\mathbb{R}^2)},
$$
\n(3.5)

for $1 < p < \infty$ and $n \geq 0$.

Note that we need the following:

Lemma 3.1 (Reduction to one variable operator). Consider the two operators \mathcal{R}_1 and \mathcal{R}_2^{λ} , given by

$$
\mathcal{R}_1 f(x_1, x_2) := \int_{\mathbb{R}^2} e^{2\pi i (x_1\xi_1 + x_2\xi_2)} a(x_1, \xi_1, \xi_2) \hat{f}(\xi_1, \xi_2) d\xi_1 d\xi_2,
$$

$$
\mathcal{R}_2^{\lambda} g(x_1) := \int_{\mathbb{R}} e^{2\pi i x_1\xi_1} a(x_1, \xi_1, \lambda) \hat{g}(\xi_1) d\xi_1.
$$

for $f \in \mathcal{S}(\mathbb{R}^2)$ and $g \in \mathcal{S}(\mathbb{R})$. Then, $||\mathcal{R}_1||_{L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)} \leq \sup_{\lambda \in \mathbb{R}} ||\mathcal{R}_2^{\lambda}||_{L^2(\mathbb{R}) \to L^2(\mathbb{R})}$.

Proof of Lemma 3.1 Consider a function $f \in \mathcal{S}(\mathbb{R}^2)$ with $||f||_{L^2(\mathbb{R}^2)} = 1$. Denote $\mathcal{F}_2 f(x_1, \xi_2) = g_{\xi_2}(x_1)$. By Plancheral's theorem with respect to x_2 , we get

$$
\begin{split} \|\mathcal{R}_1 f\|_2^2 &= \int \left| \int_{\mathbb{R}^2} e^{2\pi i (x_1\xi_1 + x_2\xi_2)} a(x_1, \xi_1, \xi_2) \hat{f}(\xi_1, \xi_2) d\xi_1 d\xi_2 \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \int \left| \int_{\mathbb{R}} e^{2\pi i x_2 \lambda} \mathcal{R}_2^{\lambda} g_{\lambda}(x_1) \mathrm{d}\lambda \right|^2 \mathrm{d}x_2 \mathrm{d}x_1 \\ &= \int |\mathcal{R}_2^{\lambda} g_{\lambda}(x_1)|^2 \mathrm{d}x_1 \mathrm{d}\lambda \leqslant \sup_{\lambda \in \mathbb{R}} \|\mathcal{R}_2^{\lambda}\|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})}^2 \int |g_{\lambda}\|_{L^2(\mathbb{R})}^2 \mathrm{d}\lambda. \end{split}
$$

which yields the desired estimate. \Box

3.3. Proof of Proposition [3.1](#page-7-0)

We shall prove $\|\mathcal{T}_j^{\ell} \mathcal{L}_{n-j} \mathcal{A}_j^c\|_{L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)} \lesssim 2^{-\frac{n}{2}}$, which implies

$$
\left\| \sup_j |\mathcal{T}_j^{\ell}(\mathcal{L}_{n-j}\mathcal{A}_j^c f)| \right\|_2^2 \lesssim \sum_j \|\mathcal{T}_j^{\ell}\mathcal{L}_{n-j}\mathcal{A}_j^c(\mathcal{L}_{n-j}f)\|_2^2
$$

$$
\lesssim 2^{-n} \|\sum_j \mathcal{L}_{n-j}f\|_2^2 = 2^{-n} \|f\|_2^2.
$$

We write $\mathcal{T}_j^{\ell} \mathcal{L}_{n-j} \mathcal{A}_j^c f$ as

$$
\mathcal{T}_j^{\ell} \mathcal{L}_{n-j} \mathcal{A}_j^c f(x_1, x_2) = \int e^{2\pi i (x_1 \xi_1 + x_2 \xi_2)} a_j(x_1, \xi_1, \xi_2) \hat{f}(\xi_1, \xi_2) d\xi_1 d\xi_2,
$$

with symbol $a_j(x_1, \xi_1, \xi_2)$ given by

$$
\chi_{I_{\ell}}(x_1)\varphi\left(\frac{\xi_1}{2^{n-j}}\right)A_j^c(\xi_1,\xi_2)\int_{\mathbb{R}}e^{-2\pi i(2^jt\xi_1+m(x_1)\gamma(2^jt)\xi_2)}\varphi(t)\mathrm{d}t.
$$

By Lemma 3.1 , to prove (3.5) , it suffices to show

$$
\|\mathcal{R}_j^{\lambda}\|_{L^2(\mathbb{R})\to L^2(\mathbb{R})}\leqslant c_1 2^{-c_2 n},
$$

where c_1 and c_2 are constants independent of j and λ and $\mathcal{R}_j^{\lambda} g(x)$:= $\int e^{2\pi ix\xi} a_j(x,\xi,\lambda)\hat{g}(\xi) d\xi$ for $g \in \mathcal{S}(\mathbb{R})$. Note that $x \in \mathbb{R}$ and $\xi \in \mathbb{R}$. Hereafter, we omit j and λ in operators for simplicity. Observe that we write $\mathcal R$ with kernel K

$$
\mathcal{R}g(x) = \int e^{2\pi ix\xi} a_j(x,\xi,\lambda) \bigg(\int e^{-2\pi iy\xi} g(y) dy \bigg) d\xi
$$

=
$$
\int K(x,y)g(y) dy,
$$

where

$$
K(x,y) := \chi_{I_{\ell}}(x) \int e^{-2\pi i \lambda m(x)\gamma(2^{j}t)} \bigg(\int e^{2\pi i (x-2^{j}t-y)\xi} \varphi\bigg(\frac{\xi_{1}}{2^{n-j}}\bigg) \widehat{A}_{j}^{\widehat{c}}(\xi,\lambda) d\xi\bigg) \varphi(t) dt.
$$

Recall that $|x| \sim 2^{\ell} \gg 2^j$ and denote

$$
Q_k := \{ x \in \mathbb{R} : 2^{\ell - 1} + k \cdot 2^j \le |x| < 2^{\ell - 1} + (k + 1) \cdot 2^j \},
$$
\n
$$
Q'_k := \{ x \in \mathbb{R} : 2^{\ell - 1} + (k - 4) \cdot 2^j \le |x| < 2^{\ell - 1} + (k + 5) \cdot 2^j \},
$$

for each integer k . We define the functions

$$
\begin{aligned} G_k(x,y) &:= K(x,y) \chi_{Q_k}(x) \chi_{Q_k'}^c(y), \\ B_k(x,y) &:= K(x,y) \chi_{Q_k}(x) \chi_{Q_k'}(y) \end{aligned}
$$

and use them to split the operator $\mathcal R$ as

$$
\mathcal{R}g(x) = \sum_{k=0}^{3 \cdot 2^{\ell-j-1}-1} \left(\int G_k(x, y)g(y) \,dy + \int B_k(x, y)g(y) \,dy \right) \\
:= \sum_{k=0}^{3 \cdot 2^{\ell-j-1}-1} \left(\mathcal{G}_k g(x) + \mathcal{B}_k g(x) \right).
$$

Then, we shall prove the following:

Lemma 3.2. There exist constants C_1 and C_2 independent of j, ℓ and λ such that

$$
\left\| \sum_{k=0}^{3 \cdot 2^{\ell-j-1}-1} \mathcal{G}_k \right\|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} \leqslant C_1 2^{-n},\tag{3.6}
$$

$$
\left\| \sum_{k=0}^{3 \cdot 2^{\ell-j-1}-1} \mathcal{B}_k \right\|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} \leqslant C_2 2^{-\frac{n}{2}}.
$$
 (3.7)

Proof of (3.6) . Recall that

$$
K(x,y) := \int e^{-2\pi i \lambda m(x)\gamma(2^{j}t)} \bigg(\int e^{2\pi i (x-2^{j}t-y)\xi} \varphi\bigg(\frac{\xi}{2^{n-j}}\bigg) A_{j}^{c}(\xi,\lambda) d\xi \bigg) \varphi(t) dt.
$$

We build our proof upon the following observation:

$$
|G_k(x,y)| \lesssim \frac{2^j}{2^n|x-y|^2} \chi_{Q_k}(x) \psi^c\bigg(\frac{|x-y|}{2^j}\bigg). \tag{3.8}
$$

 \Box

Proof of (3.8). Note that $supp(\psi^c) \subset \{|x| > \frac{1}{2}\}$. We utilize the integration by parts twice with respect to ξ . Then, we get

$$
\left| \int e^{2\pi i (x-2^{j}t-y)\xi} \varphi_{n-j}(\xi) A_j^c(\xi,\lambda) d\xi \right| \lesssim \frac{1}{(x-2^{j}t-y)^2} \int \left| \partial_{\xi}^{2} \left[\varphi \left(\frac{\xi}{2^{n-j}} \right) A_j^c(\xi,\lambda) \right] \right| d\xi
$$

$$
\lesssim \frac{2^{j}}{2^{n}} \cdot \frac{1}{(x-2^{j}t-y)^2}.
$$

Since $|x - 2^j t - y| \gtrsim |x - y|$ on $x \in Q_k$, $y \in \mathbb{R} \setminus Q'_k$ for $\frac{1}{2} \leq t \leq 2$, we get the desired \Box estimate. \Box

We shall deduce the following estimate:

$$
\sum_{k=0}^{3 \cdot 2^{\ell-j-1}-1} \left(\int |G_k(x,y)| dx + \int |G_k(x,y)| dy \right) \lesssim 2^{-n}.
$$
 (3.9)

Proof of (3.9). By estimate [\(3.8\)](#page-9-0) and the disjointness of Q_k s, we have

$$
3 \cdot 2^{\ell-j-1} - 1 \int |G_k(x, y)| dx \lesssim \frac{2^j}{2^n} \sum_k \int_{|x-y| > 2^j} \frac{\chi_{Q_k}(x)}{|x-y|^2} dx
$$

$$
\lesssim \frac{2^j}{2^n} \cdot \int_{|x| > 2^j} \frac{1}{|x|^2} dx = 2^{-n}.
$$

and the second estimate also holds by the similar way. \Box

By Schur's lemma with the estimate (3.9) , we finish the proof of (3.6) .

Proof of [\(3.7\)](#page-9-0). For the operator \mathcal{B}_k , denote $g_k(y) = \chi_{Q'_k}(y)g(y)$. By the localization principle, we have

$$
\left\| \sum_{k=0}^{3 \cdot 2^{\ell-j-1}-1} \mathcal{B}_k \right\|_{L^2 \to L^2} \lesssim \sup_{k \in \mathbb{Z}} \left(\sup_{\|g_k\|_2 = 1} \|\mathcal{B}_k g_k\|_2 \right).
$$
 (3.10)

To estimate $\|\mathcal{B}_k g_k\|_2$, we write it with the symbol expression again, which is

$$
\mathcal{B}_k g_k(x) = \int e^{2\pi ix\xi} \chi_{Q_k}(x) a_j(x,\xi,\lambda) \widehat{g_k}(\xi) d\xi,
$$

where

$$
a_j(x,\xi,\lambda) = \chi_{I_\ell}(x)\varphi\left(\frac{\xi}{2^{n-j}}\right)A_j^c(\xi,\lambda)\int e^{-2\pi i(2^jt\xi+m(x_1)\gamma(2^jt)\lambda)}\varphi(t)\mathrm{d}t,
$$

Observe that

$$
|a_j(x,\xi,\lambda)| \lesssim \frac{1}{2^j|\xi|}.\tag{3.11}
$$

$$
\Box
$$

Proof of [\(3.11\)](#page-10-0). From the support of $A_j^c(\xi,\lambda)$, we have $\left|\frac{\xi}{\lambda}\right| \sim |\gamma'(2^{j}t)|$ for $|t| \sim 1$. This enables us to apply the integration by parts with respect to variable t . Then, we get

$$
\left| \int e^{-2\pi i (\xi 2^{j}t + \lambda m(x)\gamma(2^{j}t))} \varphi(t) dt \right|
$$

\n
$$
\lesssim \left| \int e^{-2\pi i (\xi 2^{j}t + \lambda m(x)\gamma(2^{j}t))} \partial_t \left(\frac{\varphi(t)}{2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))} \right) dt \right|
$$

\n
$$
\lesssim \int \frac{|2^{j} \lambda m(x) 2^{j} \gamma''(2^{j}t)|}{\{2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))\}^2} \cdot \varphi(t) dt + \int \frac{|\varphi'(t)|}{|2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))|} dt
$$

\n
$$
\lesssim \int \frac{|\varphi'(t)|}{|2^{j}(\xi + \lambda m(x)\gamma'(2^{j}t))|} dt \lesssim \frac{1}{2^{j}|\xi|}.
$$

Then, we get the desired estimate.

From the observation (3.11) , it is easy to check

$$
\int |\chi_{Q_k}(x)a_j(x,\xi,\lambda)| \,dx \lesssim 2^{-(n-j)},
$$

$$
\int |a_j(x,\xi,\lambda)| \,d\xi \lesssim 2^{-j}.
$$

By Schur's lemma with the above estimate and [\(3.10\)](#page-10-0), we obtain [\(3.7\)](#page-9-0) in Lemma [3.2.](#page-9-0)

3.4. A bootstrap argument for the proof of Theorem [1](#page-0-0)

In the spirit of Nagel, Stein and Wainger [\[22\]](#page-16-0), we claim that

Lemma 3.3. If $\|\sup_j |\mathcal{T}_j^\ell f|\|_{L^p(\mathbb{R}^2)} \leqslant C_1 \|f\|_{L^p(\mathbb{R}^2)}$ and $\|\mathcal{T}_j^\ell f\|_{L^r(\mathbb{R}^2)} \leqslant C_2 \|f\|_{L^r(\mathbb{R}^2)}$ for $1 < r < \infty$,

$$
\left\| \left(\sum_{j} |\mathcal{T}_j^{\ell} f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^q(\mathbb{R}^2)} \leqslant (C_1 C_2)^{\varepsilon q} \left\| \left(\sum_{j} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^q(\mathbb{R}^2)} \tag{3.12}
$$

holds for all q with $\frac{1}{q} < \frac{1}{2}(1 + \frac{1}{p})$.

Proof. Consider vector valued functions $\mathfrak{f} = \{f_j\}$ and $\mathfrak{F} = \{\mathcal{T}_j^{\ell} f_j\}$. Since the operator \mathcal{A}_j is a positive, it follows that $\|\mathfrak{Tr}\|_{L^p(\mathbb{R}^2,\ell^{\infty})} \lesssim \|f\|_{L^p(\mathbb{R}^2,\ell^{\infty})}$ and $\|\mathfrak{Tr}\|_{L^r(\mathbb{R}^2,\ell^r)}$ $\lesssim \|f\|_{L^r(\mathbb{R}^2, l^r)}$ for r near 1. Applying the Riesz–Thorin interpolation for vector-valued function, we get the conclusion.

Combining [\(3.4\)](#page-6-0), Proposition [2.3](#page-4-0) and Proposition [3.1,](#page-7-0) we obtain the estimate

$$
\left\| \sup_{j \in \mathbb{Z}} |\mathcal{T}_j^{\ell} f| \right\|_p \leqslant C_p \|f\|_p \tag{3.13}
$$

for $p = 2$. Moreover, we have

$$
\|\mathcal{T}_j^{\ell}f\|_r \leqslant \|f\|_r \tag{3.14}
$$

for $r > 1$. By using Lemma [3.3](#page-11-0) with (3.13) and (3.14), we obtain [\(3.12\)](#page-11-0) for $\frac{4}{3} < p \le 2$. Then, by setting $\{f_j\}_{j\in\mathbb{Z}} = \{\mathcal{A}_j^c\mathcal{L}_{n-j}f\}_{j\in\mathbb{Z}}$ in [\(3.12\)](#page-11-0) and applying interpolation with the decay estimate [\(3.5\)](#page-7-0), we obtain Proposition [3.1](#page-7-0) for $\frac{4}{3} < p \le 2$. To treat the bad part in [\(3.4\)](#page-6-0), set $\{f_j\}_{j\in\mathbb{Z}}$ = $\{\mathcal{A}_j\mathcal{L}_j^{\text{high}}\}_{j\in\mathbb{Z}}$. Then, we apply Lemma [3.3](#page-11-0) again to get the first inequality of [\(3.4\)](#page-6-0), which implies (3.13) for $\frac{4}{3} < p \leq 2$. We can iteratively apply Lemma [3.3](#page-11-0) with a wider range of p until we get (3.13) for all $p > 1$. With this, we complete the proof of Main Theorem [1.](#page-0-0)

4. Application

In this section, we shall prove Corollary [1.1](#page-1-0) and Corollary [1.2.](#page-1-0)

4.1. Proof of Corollary [1.1](#page-1-0)

For a measurable function $m : \mathbb{R} \to \mathbb{R}$, denote that

$$
S_r^m f(x_1, x_2) = \frac{1}{2r} \int_{-r}^r f(x_1 - t, x_2 - m(x_1)\gamma(t))dt,
$$

$$
\tilde{E}^k = \{(x_1, x_2) \in \mathbb{R}^2 : 2^k \le m(x_1) \le 2^{k+1}\}.
$$

By Main Theorem [1](#page-0-0) and the second part of Remark [1.1,](#page-1-0) one can easily check that

$$
\|\sup_{r>0} |\chi_{\tilde{E}^k}(\cdot)S_r^m f|\|_p \lesssim \|f\|_p. \tag{4.1}
$$

To prove Corollary [1.1,](#page-1-0) it suffices to show that for each $\alpha > 0$ and $k \in \mathbb{Z}$, the set

$$
E_{\alpha}^{k} = \left\{ (x_1, x_2) \in \tilde{E}^{k} : \limsup_{r \to 0} |S_{r}^{m} f(x_1, x_2) - f(x_1, x_2)| > 2\alpha \right\}
$$

has measure zero. Consider a continuous function g_{ε} of compact support with $||f$ $g_{\varepsilon} \|_p < \varepsilon$. One can see that $\limsup_{r\to 0} |S_r^m f(x_1, x_2) - f(x_1, x_2)| \leqslant \mathcal{M}_{\gamma}^m (f - g_{\varepsilon})(x) +$ $|g_{\varepsilon}(x) - f(x)|$. For F_{α}^{k} and G_{α}^{k} , defined by

Maximal operators along flat curves with one variable vector field 1225

$$
F_{\alpha}^{k} = \{ x \in E_{\alpha}^{k} : \mathcal{M}_{\gamma}^{m} (f - g_{\varepsilon})(x) > \alpha \},
$$

\n
$$
G_{\alpha}^{k} = \{ x \in E_{\alpha}^{k} : |f(x) - g_{\varepsilon}(x)| > \alpha \},
$$

we have $m(E_{\alpha}^k) \leq m(F_{\alpha}^k) + m(G_{\alpha}^k)$. Applying estimate [\(4.1\)](#page-12-0), we get

$$
m(F_\alpha^k)+m(G_\alpha^k)\leqslant \frac{2\varepsilon^p}{\alpha^p}.
$$

As $\varepsilon \to 0$, we get the conclusion.

4.2. Proof of Corollary [1.2](#page-1-0)

In order to achieve our goal of removing the dependence of the coefficients of polynomial P on factors other than its degree, we consider the following lemma.

Lemma 4.1. Given a polynomial P with degree d , we can find a partition $\{s_0, s_1, s_2, \ldots, s_{n(d)}\}$ such that for each interval $[s_i, s_{i+1}]$, there exists a pair (m_i, s_{j_i}) with $1 \leqslant m_i \leqslant d$, satisfying

$$
\sup_{x \in [s_i, s_{i+1}]} \frac{|P(x)|}{|x - s_{j_i}|^{m_i}} \sim_d \inf_{x \in [s_i, s_{i+1}]} \frac{|P(x)|}{|x - s_{j_i}|^{m_i}}.
$$
\n(4.2)

Proof of Lemma 4.1. We seek to construct a partition $\mathcal{P} = \{s_1, s_2, ..., s_{n(d)}\}$ of $(-\infty,\infty)$ such that, for each subinterval $[s_i,s_{i+1}]$, there exist non-negative integers m_i and j_i satisfying (4.2). Consider a polynomial $P(x)$ represented by the following expression:

$$
P(x) = \prod_{i=1}^{d_1} (x - \alpha_i)^{q_i},
$$

where α_i are distinct real numbers. Let $U_i = \{x \in \mathbb{R} : |x - \alpha_i| < |x - \alpha_k| \text{ for all } k = 1\}$ 1,...,d₁}. For each i and k, let $\mathcal{U}_i^k(1) = \{x \in U_i : 2|x - \alpha_i| \geq |x - \alpha_k|\}$ and $\mathcal{U}_i^k(0) =$ ${x \in U_i : 2|x - \alpha_i| < |x - \alpha_k|}.$ Then, for any $x \in \mathbb{R}$, there exists an index i such that $x \in U_i$. We define the set-valued function F_i on $\{0,1\}^{d_1}$ by $F_i(a) = \bigcap_{k=1}^{d_1} \mathcal{U}_i^k(a_k)$ for $a = (a_k) \in \{0,1\}^{d_1}$. By using the set-valued function F, we can decompose each set U_i into a finite number of disjoint open intervals, that is,

$$
U_i = \mathcal{U}_i^k(0) \cup \mathcal{U}_i^k(1) = \bigcap_{k=1}^{d_1} \left(\mathcal{U}_i^k(0) \cup \mathcal{U}_i^k(1) \right) = \bigcup_{a \in \{0,1\}^{d_1}} F_i(a).
$$

For each interval $F_i(a) = [s_i, s_{i+1}]$, we take $m = \sum_{\{k: a_k=1\}} q_k$ and $s_{j_i} = \alpha_i$. Observe that we have the following inequalities for each fixed i :

$$
|x - \alpha_k| \sim |x - \alpha_i|
$$
 for all k such that $a_k = 1$,

$$
|x - \alpha_k| \sim |\alpha_i - \alpha_k|
$$
 for all k such that $a_k = 0$.

1226 J. Kim and J. Oh

By using these observation, we have (4.2) on $[s_i, s_{i+1}]$.

To handle a general polynomial, we can employ a similar approach. First, we can express the polynomial as

$$
P(x) = \prod_{i=1}^{d_1} (x - \alpha_i)^{q_i} \prod_{i=1}^{d_2} \{(x - \beta_i)^2 + \delta_i^2\}^{r_i}.
$$

To treat this, we give one more criterion comparing between $2|x - \alpha_i|$ and $\max\{|x - \alpha_i\|$ β_k , $|\delta_k|$ instead of $|x - \alpha_k|$. Then. the last part can be proved similarly.

Proof of the Corollory [1.2.](#page-1-0) Given a polynomial $P(x)$, we obtain a partition $\mathcal{P} =$ $\{s_0, s_1, \ldots, s_{n(d)}\}$ from Lemma [4.1.](#page-13-0) We then decompose $\mathcal{M}^P_\gamma f(x)$ as

$$
\mathcal{M}_{\gamma}^{P} f(x) = \sum_{i=0}^{n(d)} \chi_{[s_i, s_{i+1}]}(x) \mathcal{M}_i f(x),
$$

where $\mathcal{M}_i f(x) := \chi_{[s_i, s_{i+1}]}(x) \mathcal{M}_{\gamma}^P f(x)$. To complete the proof, it suffices to demonstrate that

$$
\|\mathcal{M}_i f\|_p \leq C_d \|f\|_p.
$$

By Lemma [4.1,](#page-13-0) there exists a pair (m_i, s) such that the following holds for $[s_i, s_{i+1}]$:

$$
\sup_{x_1 \in [s_i, s_{i+1}]} \frac{|P(x_1)|}{|x_1 - s|^{m_i}} \sim_d \inf_{x_1 \in [s_i, s_{i+1}]} \frac{|P(x_1)|}{|x_1 - s|^{m_i}}.
$$

Denote that $g_s(x_1, x_2) := f(x_1 + s, x_2)$ and consider the estimate

$$
\|\mathcal{M}_i f\|_p^p = \int_{s_i - s}^{s_{i+1} - s} \int_{\mathbb{R}} \left(\sup_{r > 0} \frac{1}{r} \int_0^r |g_s(x_1 - t, x_2 - P(x_1 + s) \gamma(t))| dt \right)^p dx_2 dx_1.
$$

By applying Proposition [2.2,](#page-4-0) we can reduce matters to $|x_1| \sim 2^{\ell}$.

$$
\left\| \sup_{j \in \mathbb{Z}} |\mathcal{P}_j^{\ell} g_s| \right\|_p \leqslant C_d \|f\|_p,\tag{4.3}
$$

where $\mathcal{P}_j^{\ell} g_s(x)$ is defined as

$$
\mathcal{P}_j^{\ell} g_s(x) := \chi_{I_{\ell}}(x_1) \psi_{j+4}^c(x_1) \int g_s(x_1 - t, x_2 - P(x_1 + s) \gamma(t)) \varphi_j(t) dt,
$$

for ℓ such that $[2^{\ell-1}, 2^{\ell+1}] \cap [s_i - s, s_{i+1} - s] \neq \emptyset$. To prove (4.3) , it is enough to check the hypothesis of Remark [1.1:](#page-1-0)

$$
\frac{\sup_x |P(x+s)|}{\inf_x |P(x+s)|} \lesssim_d \frac{2^{(\ell+1)m_i}}{2^{(\ell-1)m_i}} \lesssim_d 1 \text{ for } |x| \in [2^{\ell-1}, 2^{\ell+1}],
$$

where $1 \leqslant m_i \leqslant d$. This implies the conclusion.

Acknowledgements. J. Kim was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea under grant NRF-2015R1A2A2A01004568. J. Oh was supported by the National Research Foundation of Korea under grant NRF-2020R1F1A1A01048520 and is currently supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2024-00461749).

References

- (1) M. Bateman, Single annulus L^p estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam. 29(3): (2013), 1021–1069.
- (2) M. Bateman and C. Thiele, L^p estimates for the Hilbert transforms along a one-variable vector field, Anal. PDE 6(7): (2013), 1577–1600.
- (3) D. Beltran, J. Hickman and C. D. Sogge, Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds, Anal. PDE $13(2)$: (2020), 403–433.
- (4) J. M. Bennett., Hilbert transforms and maximal functions along variable flat curves, Trans. Amer. Math. Soc. 354(12): (2002), 4871–4892.
- (5) J. Bourgain, A remark on the maximal function associated to an analytic vector field In Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987), Volume 137, pp. 111–132, (Cambridge Univ. Press, Cambridge, 1989) London Math. Soc. Lecture Note Ser..
- (6) A. C´ordoba and J. L. Rubio de Francia, Estimates for Wainger's singular integrals along curves, Rev. Mat. Iberoamericana 2(1-2): (1986), 105–117.
- (7) A. Carbery, M. Christ, J. Vance, S. Wainger and D. K. Watson, Operators associated to flat plane curves: L^p estimates via dilation methods, *Duke Math. J.* 59(3): (1989), 675–700.
- (8) A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, J. Geom. Anal. 9(4): (1999), 583–605.
- (9) A. Carbery, S. Wainger & J. Wright. Hilbert transforms and maximal functions along variable flat plane curves, The Journal of Fourier Analysis and Applications, (1995), 119–139.
- (10) A. Carbery, S. Wainger and J. Wright, Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group, J. Amer. Math. Soc. $8(1)$: (1995), 141–179.
- (11) H. Carlsson, M. Christ, A. C´ordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger and D. Weinberg, L^p estimates for maximal functions and Hilbert transforms along flat convex curves in \mathbb{R}^2 , *Bull. Amer. Math. Soc.* (*N.S.*) **14**(2): (1986), 263-267.
- (12) Y. -K. Cho, S. Hong, J. Kim and C. Woo Yang, Multiparameter singular integrals and maximal operators along flat surfaces, Rev. Mat. Iberoam. 24(3): (2008), 1047–1073.
- (13) S. Guo, J. Hickman, V. Lie and J. Roos, Maximal operators and Hilbert transforms along variable non-flat homogeneous curves, *Proc. Lond. Math. Soc.* (3) $115(1)$: (2017), 177–219.
- (14) J. Kim, Hilbert transforms along curves in the Heisenberg group, Proc. London Math. Soc. (3) **80**(3): (2000), 611-642.
- (15) J. Kim, L^p -estimates for singular integrals and maximal operators associated with flat curves on the Heisenberg group, *Duke Math. J.* $114(3)$: (2002) , 555–593.
- (16) J. Kim, Maximal average along variable lines, Israel J. Math. 167 (2008), 1–13.

1228 J. Kim and J. Oh

- (17) M. Lacey and X. Li, On a conjecture of E. M. Stein on the Hilbert transform on vector fields, Mem. Amer. Math. Soc. $205(965)$: (2010), viii+72.
- (18) M. T. Lacey and X. Li, Maximal theorems for the directional Hilbert transform on the plane, Trans. Amer. Math. Soc. 358(9): (2006), 4099–4117.
- (19) V. Lie, A unified approach to three themes in harmonic analysis (I & II): (I) The linear Hilbert transform and maximal operator along variable curves; (II) Carleson type operators in the presence of curvature, Adv. Math. 437 (2024), Paper No. 109385, 113.
- (20) N. Liu, L. Song and H. Yu, L^p bounds of maximal operators along variable planar curves in the Lipschitz regularity, J. Funct. Anal. 280(5): (2021), Paper No. 108888, 40.
- (21) G. Mockenhaupt, A. Seeger and C. D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, Ann. of Math. (2) 136(1): (1992), 207–218.
- (22) A. Nagel, E. M. Stein and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. **75**(3): (1978), 1060-1062.
- (23) A. Seeger and S. Wainger, Singular Radon transforms and maximal functions under convexity assumptions, Rev. Mat. Iberoamericana 19(3): (2003), 1019–1044.
- (24) E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84(6): (1978), 1239–1295.