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Direct numerical simulation of drag reduction in
rotating pipe flow up to Reτ ≈ 3000
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Direct numerical simulation (DNS) of rotating pipe flows up to Reτ ≈ 3000 is carried
out to investigate drag reduction effects associated with axial rotation, extending previous
studies carried out at a modest Reynolds number (Orlandi & Fatica, J. Fluid Mech.,
vol. 343, 1997, pp. 43–72; Orlandi & Ebstein, Intl J. Heat Fluid Flow, vol. 21, 2000,
pp. 499–505). The results show that the drag reduction, which we theoretically show
to be equivalent to net power saving assuming no mechanical losses, monotonically
increases as either the Reynolds number or the rotation number increases, proportionally
to the inner-scaled rotational speed. Net drag reduction up to approximately 70 % is
observed, while being far from flow relaminarisation. Scaling laws for the mean axial
and azimuthal velocity are proposed, from which a predictive formula for the friction
factor is derived. The formula can correctly represent the dependency of the friction factor
on the Reynolds and rotation numbers, maintaining good accuracy for low-to-moderate
rotation numbers. Examination of the turbulent structures highlights the role of rotation in
widening and elongating the small-scale streaks, with subsequent suppression of sweeps
and ejections. In the core part of the flow, clear weakening of large-scale turbulent motions
is observed at high Reynolds numbers, with subsequent suppression of the outer-layer peak
in the pre-multiplied spectra. The Fukagata–Iwamoto–Kasagi decomposition indicates
that, consistent with a theoretically derived formula, the outer layer yields the largest
contribution to drag reduction at increasingly high Reynolds numbers. In contrast, both the
inner and the outer layers contribute to drag reduction as the rotation number increases.
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1. Introduction

Turbulent flow in circular pipes has always attracted the interest of scientists, owing to
its prominent importance in engineering practice and because of the beautiful simplicity
of the set-up. The study of flows in circular pipes holds particular significance not only
for its fundamental insights into fluid dynamics but also for its practical applications,
especially in industries such as oil and gas transportation. Understanding the behaviour of
turbulent flow in pipelines is crucial for optimising transport efficiency, ensuring structural
integrity, and minimising energy consumption. As such, research into flows in circular
pipes continues to be an active area of study, driving innovations in both theoretical
understanding and engineering practice.

Specifically, the research on drag reduction techniques in pipe flow holds significant
importance due to its potential for reducing energy consumption in the transportation of
gases or liquids, thereby leading to decreased pollutant emissions into the atmosphere.
The potential of axial rotation for drag reduction in turbulent pipe flow was first shown
by White (1963). In those experiments, dye was injected from a hypodermic tube into the
central core of the flow in a pipe, and then diffused radially outwards to fill the whole
pipe. When rotation was imposed on the pipe wall, the dye moved along the central core
of the pipe without as much radial diffusion. The rate of rotation is typically measured in
terms of the rotation number, N = ΩR/ub, where Ω is the rotational speed, R is the pipe
radius and ub is bulk velocity. The experiments of Kikuyama et al. (1983) showed that as N
increases, the wall friction decreases, with the mean axial velocity profiles approaching the
parabolic Poiseuille solution. These findings were subsequently confirmed from the direct
numerical simulation (DNS) conducted by Orlandi & Fatica (1997). Those authors mainly
attributed the mechanism of drag reduction to the stabilising effect of the radially growing
centrifugal force (or angular momentum). Indeed, according to the Rayleigh criterion
(Reich & Beer 1989; Drazin & Reid 2004), the radially growing pressure gradients impede
the radial motion of fluid particles. Orlandi & Fatica (1997) further pointed out that
axial rotation induces a long columnar structure in the core region which transports the
streamwise vortical structures away from the wall, while tilting and widening the near-wall
streaks. Also, wall rotation disrupts the symmetry between right- and left-handed helical
structures, and the resulting high helicity density yields less dissipation, with incurred
drag reduction (Orlandi 1997). Zhang & Wang (2022) showed that the sweep events are
systematically suppressed by rotation, which further impedes the formation of hairpin
structures. However, they found that rotation amplifies the azimuthal and radial velocity
variances, and that the pressure-strain and Coriolis production terms become the leading
terms in the budget of these two Reynolds normal stresses.

Davis et al. (2019) reported that the drag reduction effect increases with the
bulk Reynolds number, Reb = ubD/ν, where D = 2R is the pipe diameter and ν is
kinematic viscosity. However, their highest friction Reynolds number, Reτ = uτR/ν (with
uτ = (τw/ρ)

1/2 the friction velocity), was approximately 540, at which extrapolation to
real-world scenarios of fully developed turbulent flow is far from clear and well less than
achieved in DNS of non-rotating pipe flow (Pirozzoli et al. 2021).

Other techniques for drag reduction in turbulent pipe flow have been proposed based on
more complex wall actuation. Quadrio & Sibilla (2000) studied turbulent flow in a circular
pipe oscillating around its longitudinal axis through DNS and found that the maximum
amount of drag reduction achievable with appropriate oscillations of the pipe wall is of
the order of 40 %, comparable to what was found in planar geometries. They observed that
the transverse shear layer induced by wall oscillation induces substantial modifications to
the turbulence statistics in the near-wall region, indicating a strong effect on the vortical
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Direct numerical simulation of drag reduction

structures. Auteri et al. (2010) assessed the practical use of travelling waves of spanwise
velocity, as suggested by Quadrio, Ricco & Viotti (2009) and further analysed by Gatti &
Quadrio (2016), to achieve drag reduction in pipe flow. In their experiments, the pipe wall
was subdivided into thin slabs that could rotate independently in the azimuthal direction,
confirming the possibility of achieving drag reduction of up to 33 %.

In the present study, we leverage DNS data to explore drag reduction in turbulent pipe
flow up to Reτ ≈ 3000 through the use of steady axial rotation. The goal is to verify and
quantify the drag reduction effects, and shed light on the underlying physical mechanisms.

2. The numerical dataset

A second-order finite-difference solver is used to solve the incompressible Navier–Stokes
equations in cylindrical coordinates (Orlandi & Fatica 1997; Pirozzoli et al. 2021). The
current DNS pertains to fully developed turbulent flow, with periodic conditions along
the axial direction. The DNS is carried out in a frame of reference rotating with the
pipe, which has the advantage of allowing for larger time steps as compared with the
inertial frame. Coriolis forces are then added as −2Ωur and 2Ωuθ to the azimuthal
and radial momentum equations, where uθ and ur are the velocity components in the
azimuthal and radial directions. The simulations were conducted under conditions of
constant mass flow rate. From now on, the subscript 0 indicates non-rotating cases and
the superscript ∗ is used to denote normalisation with wall units. Normalisation with
wall units based on the non-rotating case is also used to better highlight the effects
of pipe rotation, which we indicate with the + superscript. We performed DNS for
various bulk Reynolds numbers, namely Reb = 5300, 17 000, 44 000, 82 500 and 133 000,
corresponding to friction Reynolds numbers of Reτ,0 = 180, 495, 1137, 1979 and 3020,
in the absence of rotation. For each Reynolds number, we have considered various
rotation numbers, namely N = 0, 0.25, 0.5, 1.0 and 2.0 and 4.0. A list including the
flow parameters for all the simulations is provided in table 1. The pipe length is set to
L = 15R and the mesh resolution for each of the Reynolds numbers is decided based on the
non-rotating cases, which exhibit the highest wall friction. Specifically, the grid spacing
is �z+ ≈ 10 and R+�θ ≈ 4, along the axial and azimuthal directions, respectively. In the
radial direction, the grid spacing is uniform up to y+ ≈ 5 and then proportional to the local
Kolmogorov length scale (η+ ≈ 0.8( y+)1/4) in the outer layer. Approximately thirty grid
points are allocated for y+ ≤ 40, with the first grid point located at y+ ≈ 0.05. Additional
details can be found in previous publications (Pirozzoli & Orlandi 2021). The sensitivity
of the results to pipe length and mesh resolution is analysed in the Appendix. Hereafter,
capital letters will be used to denote flow properties averaged in the homogeneous spatial
directions and in time, brackets to denote the averaging operator, and lower-case letters to
denote fluctuations from the mean.

3. Results

3.1. Drag reduction
Before delving into the analysis of drag reduction, we compare our results with previous
studies. Figure 1 displays the friction factor results. For the non-rotating cases, the DNS
results exhibit minor derivations from Prandtl’s friction law (Pirozzoli et al. 2021). For
the rotating cases, the DNS results for Reτ,0 = 180 and Reτ,0 = 495 agree well with the
DNS data of Davis et al. (2019). However, all DNS results exhibit large discrepancies from
the experimental data of Kikuyama et al. (1983) at high rotation number, even accounting
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Reb Reτ,0 N Mesh (Nθ × Nr × Nz) Reτ N+ λ× 103 DR (%) #ETT

5300 180.10 0 256 × 55 × 256 180.10 0.0 37.469 ± 0.24 % 0.00 ± 0.00 % 74.76
5300 180.10 0.25 256 × 55 × 256 174.69 3.7 34.748 ± 0.35 % 7.26 ± 5.42 % 72.51
5300 180.10 0.5 256 × 55 × 256 168.27 7.4 32.256 ± 0.52 % 13.80 ± 3.54 % 10.64
5300 180.10 1.0 256 × 55 × 256 168.62 14.7 32.388 ± 0.45 % 12.32 ± 3.25 % 70.60
5300 180.10 2.0 256 × 55 × 256 168.43 29.4 32.317 ± 0.58 % 12.52 ± 3.94 % 70.02
5300 180.10 4.0 256 × 55 × 256 167.26 58.9 31.869 ± 0.76 % 13.73 ± 4.54 % 70.34
17 000 495.29 0 768 × 96 × 768 495.29 0.0 27.160 ± 0.09 % 0.00 ± 0.00 % 35.00
17 000 495.29 0.25 768 × 96 × 768 481.12 4.3 25.624 ± 0.10 % 5.80 ± 2.24 % 42.51
17 000 495.29 0.5 768 × 96 × 768 452.65 8.6 22.681 ± 0.16 % 16.62 ± 0.93 % 26.68
17 000 495.29 1.0 768 × 96 × 768 411.53 17.2 18.747 ± 0.29 % 31.08 ± 0.68 % 24.26
17 000 495.29 2.0 768 × 96 × 768 396.91 34.3 17.439 ± 0.44 % 35.89 ± 0.81 % 23.39
17 000 495.29 4.0 768 × 96 × 768 376.59 68.6 15.700 ± 0.37 % 42.28 ± 0.52 % 22.20
44 000 1136.59 0 1792 × 270 × 1792 1136.59 0.0 21.352 ± 0.10 % 0.00 ± 0.00 % 25.86
44 000 1136.59 0.25 1792 × 164 × 1792 1087.91 4.8 19.562 ± 0.14 % 8.38 ± 1.88 % 24.78
44 000 1136.59 0.5 1792 × 164 × 1792 1013.63 9.7 16.982 ± 0.08 % 20.47 ± 0.50 % 34.44
44 000 1136.59 1.0 1792 × 164 × 1792 892.25 19.4 13.158 ± 0.14 % 38.37 ± 0.28 % 24.35
44 000 1136.59 2.0 1792 × 164 × 1792 808.56 38.7 10.806 ± 0.49 % 49.39 ± 0.51 % 13.51
44 000 1136.59 4.0 1792 × 164 × 1792 755.78 77.4 9.441 ± 0.54 % 55.78 ± 0.44 % 29.90
44 000* 1136.59 4.0 1792 × 164 × 3584 767.70 77.4 9.741 ± 0.26 % 54.38 ± 0.23 % 25.49
44 000** 1136.59 4.0 1792 × 328 × 1792 742.94 77.4 9.123 ± 0.00 % 54.38 ± 0.00 % 50.60
82 500 1979.32 0 3072 × 399 × 3072 1979.32 0.0 18.420 ± 0.18 % 0.00 ± 0.00 % 18.62
82 500 1979.32 0.25 3072 × 243 × 3072 1861.11 5.2 16.285 ± 0.14 % 8.38 ± 1.74 % 24.45
82 500 1979.32 0.5 3072 × 243 × 3072 1723.57 10.4 13.967 ± 0.25 % 20.47 ± 0.97 % 23.67
82 500 1979.32 1.0 3072 × 243 × 3072 1498.29 20.8 10.554 ± 0.42 % 38.37 ± 0.61 % 28.33
82 500 1979.32 2.0 3072 × 243 × 3072 1316.85 41.7 8.153 ± 1.10 % 55.74 ± 0.89 % 19.32
82 500 1979.32 4.0 3072 × 243 × 3072 1221.82 83.4 7.019 ± 1.42 % 55.78 ± 0.88 % 9.39
133 000 3020.16 0 4608 × 327 × 4608 3020.16 0.0 16.501 ± 0.26 % 0.00 ± 0.00 % 6.97
133 000 3020.16 0.25 4608 × 327 × 4608 2820.43 5.5 14.390 ± 0.37 % 13.44 ± 3.08 % 7.12
133 000 3020.16 0.5 4608 × 327 × 4608 2586.30 11.0 12.100 ± 0.27 % 27.21 ± 1.03 % 13.51
133 000 3020.16 1.0 4608 × 327 × 4608 2275.20 22.0 9.364 ± 0.54 % 43.67 ± 0.79 % 5.97
133 000 3020.16 2.0 4608 × 327 × 4608 1882.89 44.0 6.413 ± 0.30 % 61.42 ± 0.25 % 6.46
133 000 3020.16 4.0 4608 × 327 × 4608 1699.39 88.1 5.224 ± 0.73 % 68.57 ± 0.36 % 5.66

Table 1. Flow parameters for DNS. Reb = 2Rub/ν is the bulk Reynolds number; Reτ = uτR/ν is the friction
Reynolds number; Reτ,0 is the friction Reynolds number for the non-rotating case; N = ΩR/ub is the rotation
number; Nθ , Nr and Nz are the number of grid points along the azimuthal, radial and axial directions,
respectively; N+ = ΩR/uτ,0 is the inner-scaled rotational speed; λ is the friction factor; DR is the percentage
of drag reduction; and #ETT is the time-averaging interval, expressed in terms of the eddy turnover time,
R/uτ . The symbol ∗ denotes DNS with pipe length L = 30R and ∗∗ denotes DNS with doubled resolution in
the radial direction. The standard uncertainty of the friction factor is estimated using a modified batch means
method (Russo & Luchini 2017) and the uncertainty of drag reduction is evaluated by propagating the standard
uncertainties of the friction factors.

for differences in the Reynolds number (Reτ,0 = 240 and 570 for those authors). Orlandi
& Fatica (1997) attributed discrepancies to the influence of the entrance conditions, and
possible difficulties in achieving a constant pressure gradient in the experimental set-up.
We note that differences could also be related to limited pipe length, which might prevent
the achievement of a fully developed state in spatially developing flows. Indeed, as shown
in the Appendix, see figure 11), the time interval needed to achieve a fully developed state
is proportional to N, for given Reb. The drag reduction coefficient DR is here defined as

DR = 1 − Cf

Cf ,0
= 1 − λ

λ0
, (3.1)
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Figure 1. Global flow properties: (a) friction factor as a function of N; (b) friction factor as a function of Reb;
(c) drag reduction coefficient as a function of N; (d) drag reduction coefficient as a function of N+. In panels
(a,c,d), we show data for Reτ,0 = 180 (black), 495 (red), 1137 (green), 1979 (blue) and 3020 (pink); in panel
(b), we show N = 0 (black), 0.25 (red), 0.5 (green), 1.0 (cyan), 2.0 (blue) and 4.0 (pink). In panel (b), the
brown dashed line denotes Prandtl’s friction law (Pirozzoli et al. 2021) and the orange dashed line denotes the
laminar friction law λ = 64/Reb. In panels (c,d), the horizontal dashed lines denote the laminar limits of drag
reduction for various Reynolds numbers. The triangle symbols denote DNS data at Reτ,0 ≈ 180 and 540 (Davis
et al. 2019), and the circles denote experiments at Reτ,0 ≈ 240 and 570 (Kikuyama et al. 1983).

where λ = 4Cf is the friction factor and again the subscript 0 indicates non-rotating cases.
The average power expenditure to sustain wall rotation is

P = 2πΩLR2τrθ |r=R = 2πμΩLR3 d
dr

(
Vθ
r

)∣∣∣∣
r=R

, (3.2)

where τrθ is the tangential viscous shear stress and Vθ = Uθ +Ωr is the mean azimuthal
velocity in the inertial frame of reference. As formally shown below, the mean momentum
balance under the assumption of statistically steady flow implies that d(Vθ /r)/dr is zero
at the wall, i.e. there is no mean azimuthal friction. Hence, whereas energy must be
spent to maintain the mass flow rate and to rotate the pipe during the initial transient,
no energy must be spent to sustain wall rotation once statistically steady conditions are
achieved, let alone mechanical losses in the actuation system. As a consequence, the
drag reduction coefficient (3.1) is identical to the net power saving, which establishes
an important difference and advantage from other types of wall manipulation requiring
additional actuation energy (e.g. Ricco, Skote & Leschziner 2021).

Figure 1(c) shows the variation of the drag reduction coefficient with the rotation
number at constant values of Reb (or Reτ,0). Pipe rotation consistently leads to drag
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reduction, and monotonic increase with both N and Reτ,0 is observed, in agreement with
previous studies (Davis et al. 2019). At N = 4.0 and Reτ,0 = 3020, drag reduction is
as high as 69 %, which clearly highlights the potential of rotation for curtailing energy
consumption in high-Re internal flows, such as fluid transportation in large-diameter
pipelines, whose typical Reynolds number is Reτ,0 = 105–106 (Hultmark et al. 2012). This
is another important difference from other passive and active drag reduction strategies,
for which the drag reduction effect typically decreases with the Reynolds number (Gatti
& Quadrio 2016; Ricco et al. 2021). We note that full relaminarisation would result in
a drag reduction of approximately 97 % at Reτ,0 = 3020, so at even N = 4.0, the flow
remains distant from the laminar state. Figure 1(d) displays the drag reduction coefficient
as a function of the inner-scaled wall rotational speed based on the non-rotating friction
velocity, N+ = ΩR/uτ,0, which again confirms increased drag reduction with both N+ and
Reτ,0. Notably, the drag reduction profiles tend to be much more universal when expressed
as a function of N+, with deviations from a common trend occurring at increasingly higher
N+ as Reτ,0 increases. This suggests that the proper parameter to quantify drag reduction
effects could be the ratio of the pipe peripheral velocity to the friction velocity, which is
the typical scale for wall turbulence, in line with what is found in drag reduction studies
based on the use of oscillating walls and travelling waves (Quadrio et al. 2009; Touber &
Leschziner 2012).

To analyse the flow modifications yielding drag reduction in greater detail, in figure 2(a),
we display the inner-scaled mean axial velocity profiles at various rotation and Reynolds
numbers. At zero and small rotation numbers, the mean axial velocity follows with good
accuracy the logarithmic distribution observed in pipe flow (Pirozzoli et al. 2021),

U∗
z = 1

κ
log y∗ + B, (3.3)

with κ = 0.387 and B = 4.53. Deviations from such universal behaviour occur
increasingly farther from the wall as the Reynolds number increases. However, deviations
tend to occur earlier as N increases, and at the same time, the wake is found to grow
stronger. At N � 1, the whole logarithmic layer is eventually disrupted, consistent with
the findings of Orlandi & Fatica (1997) and Davis et al. (2019). This process is clearer
when the logarithmic diagnostic function, namely y∗dU∗

z /dy∗, is considered, as shown
in figure 2(b). Indeed, no plateau of this indicator is found at N � 1, although one can
speculate that a logarithmic behaviour is recovered at higher Reynolds numbers than we
consider here.

The mean axial velocity profiles are then shown in defect form in figure 3. As known
from previous studies (Pirozzoli et al. 2021), normalisation by the friction velocity shown
in panel (a) yields excellent universality of the profiles in the absence of rotation (N = 0).
However, when rotation is introduced, a large scatter is observed when either the rotation
number or the Reynolds number varies. Indeed, as noticed by Oberlack (1999), the
pipe rotational speed is an independent velocity scale and it is a better candidate to
achieve universality of the mean axial velocity profiles in the presence of pipe rotation.
Hence, in panel (b), we show the velocity profiles normalised by the peripheral rotational
speed. Excellent universality of the axial velocity profiles is then observed for any given
(non-zero) rotation number; however, with obvious dependence on N. Of course, this kind
of normalisation cannot apply to the non-rotating case asΩ = 0. Based on these empirical
observations, we then assume the following form for the defect velocity profiles,

UCL − Uz

ΩR
= 1

N
ϕ(N)

( r
R

)α(N)
, (3.4)
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Figure 2. (a) Inner-scaled mean axial velocity profiles and (b) corresponding logarithmic diagnostic functions.
The colour codes correspond to the same values of the rotation number: N = 0 (black); N = 0.25 (red);
N = 0.5 (green); N = 1 (cyan); N = 2 (blue) and N = 4 (pink). The line patterns correspond to the same values
of the nominal Reynolds number: Reτ,0 = 495 (dash-dotted); Reτ,0 = 1137 (dotted); Reτ,0 = 1979 (dashed)
and Reτ,0 = 3020 (solid). The dashed black lines in panel (a) denote the expected logarithmic distribution
given in (3.3), and in panel (b), the inverse of the Kármán constant (1/κ).
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Figure 3. Mean axial velocity defect profiles (UCL is the pipe centreline velocity), normalised (a) by the
friction velocity, uτ , and (b) by the pipe rotational velocity, ΩR. The colour codes correspond to the same
values of rotation number: N = 0 (black); N = 0.25 (red); N = 0.5 (green); N = 1 (cyan); N = 2 (green) and
N = 4 (pink). The line patterns correspond to the same values of the nominal Reynolds number: Reτ,0 = 495
(dash-dotted); Reτ,0 = 1137 (dotted); Reτ,0 = 1979 (dashed) and Reτ,0 = 3020 (solid). The solid black lines in
panel (b) indicate the power-law fitting function (3.4), with coefficients given in (3.5a,b).

where fitting of the DNS data in the range 0 ≤ r/R ≤ 0.9 yields

ϕ(N) = 0.90 + 0.25 log N, α(N) = 2.0 − 0.071N1.2. (3.5a,b)

It should be noted that previous experiments (Kikuyama et al. 1983) and DNS (Orlandi &
Fatica 1997) also suggested values of the power-law exponent α ≈ 2; however, based on a
much more limited set of data.

The previous observations can be leveraged to obtain predictions for the friction
coefficient. Indeed, integration of the defect profile (3.4) yields the following relationship
between the centreline and bulk velocity:

U∗
CL = u∗

b

(
1 + 2

2 + α
ϕ

)
. (3.6)
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Figure 4. (a,b) Inner-scaled bulk velocity and (c,d) friction factor, as a function of the (a,c) friction Reynolds
number and (b,d) bulk Reynolds number. The colour codes correspond to the same values of rotation number:
N = 0 (black); N = 0.25 (red); N = 0.5 (green); N = 1 (cyan); N = 2 (blue) and N = 4 (pink). Symbols
denote the DNS data, and lines the corresponding predictions of (3.9). The solid black line denotes the
predictions of Prandtl’s friction law for a non-rotating pipe (Pirozzoli et al. 2021).

Matching the wall-normal gradients of the inner profile (3.3) with the defect profile (3.4)
yields the condition

dU∗
z

dη
= 1
κη

= αϕu∗
b(1 − η)α−1, (3.7)

where η = y/R. This condition can be numerically solved to determine the outer-scaled
matching location η0. Under the assumption η0 � 1, the approximate solution holds

η0 ≈ 1
καϕu∗

b
. (3.8)

Finally, matching the pointwise values of (3.3) and (3.4) at η = η0 yields

1
κ

log η0 + 1
κ

log Reτ + B = u∗
b

(
1 + 2ϕ

2 + α
− ϕ(1 − η0)

α

)
. (3.9)

Equation (3.9) can be numerically solved to obtain u∗
b for a given Reb (as Reτ = Reb/(2u∗

b))
and N, and in turn obtain the friction factor, f = 8/u∗

b
2.

The charts of u∗
b and f as a function of the Reynolds number are shown in figure 4,

where symbols denote the DNS data and lines represent the corresponding predictions of
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Figure 5. Radial profiles of mean azimuthal velocity in (a) linear and (b) logarithmic scale. The colour codes
correspond to the same values of rotation number: N = 0.25 (red); 1.0 (cyan); 2.0 (blue) and 4.0 (pink). The
line patterns correspond to the same values of the nominal Reynolds number: Reτ,0 = 495 (dash-dotted);
Reτ,0 = 1137 (dotted); Reτ,0 = 1979 (dashed) and Reτ,0 = 3020 (solid). The solid black lines denote (3.12),
with the coefficient given in (3.13). The black dashed lines correspond to the case of solid body rotation.

(3.9). The latter formula indeed captures the correct Reynolds number trends including the
progressive departure of the friction curves from the non-rotating case, and it yields good
quantitative predictions at low-to-moderate rotation numbers. However, the drag reduction
effect becomes noticeably underestimated at N � 1, the reason being the previously noted
breakdown of the logarithmic profile (3.3) at high rotation numbers, which we used for
theoretical inference.

In figure 5, we further present the distributions of the absolute mean velocity in the
azimuthal direction. Before analysing its scaling laws, it is informative to consider the
momentum balance equation projected along the θ direction,

ν
d
dr

(
1
r

d
dr
(rVθ )

)
= 1

r2
d
dr
(r2〈uruθ 〉). (3.10)

Multiplying (3.10) by r2 and then integrating from 0 to r yields

νr
d
dr

(
Vθ
r

)
= 〈uruθ 〉, (3.11)

which highlights the balance between the viscous and the turbulent shear stress. At the

wall, 〈uruθ 〉 = 0, resulting in Vθ
r→R∼ Ωr. As one moves away from the wall, the presence

of a nonlinear distribution of Vθ becomes evident, due to positive values of 〈uruθ 〉.
Oberlack (1999) suggested that for r/R � 0.2, the mean azimuthal velocity should follow
a power-law variation, namely

Vθ
ΩR

=
( r

R

)ψ
, (3.12)

with ψ = 2.0, as inferred from the set of data available at that time, which according
to (3.11) would result in linear variation of the turbulent shear stress 〈uruθ 〉, with slope
proportional to N. However, Orlandi & Fatica (1997) reported that the slope of 〈uruθ 〉 is
not strictly proportional to N, even in the core region, thereby preventing perfect collapse
of the profiles in figure 5. In our simulations, Vθ /ΩR is found to gradually increase with
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N, exhibiting a similar trend as other DNS (Orlandi & Fatica 1997; Feiz, Ould-Rouis &
Lauriat 2005; Davis et al. 2019) and experimental studies (Kikuyama et al. 1983). We
have checked the influence of pipe length on the azimuthal velocity profile and confirmed
that using L = 30R yields almost the same results as using L = 15R (see figure 10b). It
is worth mentioning that the experimental data of Reich & Beer (1989) for Reb = 5000
with N = 1.0 and 5.0 are in good agreement with the quadratic law; however, they are
likely affected by entrance effects, as pointed out by Orlandi & Fatica (1997). Instead,
our DNS data show that the exponent ψ is clearly dependent on the rotation number, and
also has weaker dependence on the bulk Reynolds number, as shown in panel (a). As the
rotation number increases, the azimuthal velocity profiles become closer to the case of
solid body rotation, corresponding to smaller values of ψ . This tendency is regarded to be
reasonable, considering that as the rotation number increases, turbulent motions become
increasingly suppressed due to the stronger centrifugal instability. The weak influence of
the nominal bulk Reynolds number includes slightly higher values of ψ as Reb increases.
This tendency is partly explained in terms of diminished viscous effects near the wall,
which shortens the layer with approximately linear variation. Fitting the DNS data in the
range 0.2 ≤ r/R ≤ 0.9, we get

ψ(N) = 2.48 − 0.45N0.57, (3.13)

which is quite accurate as shown in figure 5. At N ≈ 1, the formula yields ψ ≈ 2.0,
corresponding to a quadratic power law. We would like to note that for r/R � 0.2, the
azimuthal velocity profiles observed in the DNS exhibit deviations from the quadratic law
and become closer to a linear distribution (see panel (b)) and thus indicate that the flow
near the pipe axis is close to a solid-body rotation state.

3.2. Organisation of turbulence
A perspective view of the instantaneous axial velocity field is provided in figure 6 for
two selected Reynolds numbers, including for reference the case of pipe flow in the
absence of rotation (Pirozzoli et al. 2021). As the Reynolds number increases, finer
scales are observed, but the flow in the cross-stream plane is always dominated by a
limited number of bulges distributed along the azimuthal direction, which correspond to
alternating intrusions of high-speed fluid from the pipe core and ejections of low-speed
fluid from the wall. Streaks are clear in the near-wall cylindrical shell, whose pattern has a
close association with the turbulence organisation in the cross-stream plane. The R-sized
low-speed streaks are linked to the large-scale ejections, and R-sized high-speed streaks are
associated with the large-scale inrush from the core flow. Simultaneously, smaller streaks
scaled in wall units prevail very close to the wall, which is correlated with buffer-layer
ejections and sweeps. Hence, the organisation of the flow at two characteristic length scales
is apparent, whose separation increases with the Reynolds number.

When rotation is introduced, a distinctive axial coherence becomes apparent in the
core region (White 1963), reminiscent of the columnar structures observed in rotating
homogeneous turbulence (Godeferd & Moisy 2015; Hu, Li & Yu 2022). Meanwhile, the
R-sized structures in the cross-stream plane undergo deformation due to the decreasing
angular velocity towards the core. The bulges gradually tend to lag behind the azimuthal
motion of the wall as one moves away from it. For the low-Re case, the turbulent
fluctuations are intensified in the core region for N � 1.0, as highlighted by increased
turbulence kinetic energy, q = 〈u2

r + u2
θ + u2

z 〉/2, in figure 7(a). Orlandi & Fatica (1997)
conjectured that such increase is due to a low-Re effect, whereby the fluctuations in
the central part of the pipe are amplified by the near-wall enlarged vortical structures.
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(a) (b) (c)

(d) (e) ( f )

Figure 6. Instantaneous fields of axial velocity on a near-wall cylindrical shell and cross-stream plane. The
cylindrical shell is located at a wall distance y+ ≈ 15. The colour scale is from blue (low speed) to red (high
speed). Rotation numbers N = 0, 0.5 and 2.0 are reported in panels (a,d), (b,e) and (c, f ), respectively, for
(a–c) Reτ,0 = 495 and (d–f ) Reτ,0 = 3020. The arrows indicate the direction of rotation.

This conjecture is corroborated herein as the phenomenon is much less evident in the
high-Re case, as substantiated by decreased turbulence kinetic energy shown in figure 7(b).
It is nevertheless important to highlight that at sufficiently low rotation numbers, the
fluctuations in the core region become consistently suppressed regardless of the Reynolds
number. Turning to the near-wall region, a noticeable reduction in both the number and
magnitude of the small-scale streaks is evident at both Reynolds numbers, which points to
attenuation of sweeps and ejections in the buffer layer. This causes a distinct decrease in the
axial velocity fluctuations compared with the other two components (see figure 7c), which
is not unexpected as the production of q is associated with the axial velocity component.
Moreover, the Taylor–Proudman theorem (Greenspan 1968) implies that the vorticity
component normal to the axis of rotation should be suppressed to reduce the axial velocity
gradients. Noteworthy is the lack of discernible azimuthal tilting of the small-scale streaks.
However, tilting of the footprints of the large-scale structures towards the direction of
rotation is evident on the cylindrical shell in the low-Re case.

The modifications in the characteristic length scales can be quantified in terms of
the pre-multiplied azimuthal energy spectra of the axial velocity, which we report in
figure 8. In the non-rotating cases, the spectra exhibit a prominent ridge along λθ ∼ y,
which should be interpreted as a hierarchy of wall-attached eddies as suggested by
Townsend (1976). Here, λθ is the wavelength in the azimuthal direction. The inner peak,
associated with the near-wall turbulence regeneration cycle (Jiménez & Pinelli 1999),
and the outer site, linked with R-sized large-scale motions (Hutchins & Marusic 2007),
exhibit a more pronounced separation in the high-Re case. Upon imposition of rotation,
the most remarkable modification is the progressive attenuation of the amplitude of the
inner spectra. Concurrently, an outer-layer peak of λθ /R = 1.08 emerges at y/R = 0.22
for N = 2.0 in the low-Re case, which we believe to be linked to the R-sized distorted
structures observed in figure 6(c). In contrast, the outer-layer peak of λθ /R = 1.26 at
y/R = 0.19 in the high-Re, non-rotating case vanishes, and a subdominant peak is found
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Figure 7. Distributions of: (a) turbulence kinetic energy for Reτ,0 = 495; (b) turbulence kinetic energy for
Reτ,0 = 3020; (c) individual velocity variances for Reτ,0 = 3020. In panel (c), lines correspond to: 〈u2

θ 〉 (solid);
〈u2

r 〉 (dashed) and 〈u2
z 〉 (dash-dot). Colour codes: N = 0 (black); 0.25 (red); 0.5 (green); 1.0 (cyan) and 2.0

(blue).

instead at λθ /R = π, at a wall distance y+ � 200. At both Reynolds numbers, the inner
peak undergoes a top-right shift, from approximately y+ = 13 to 19, with a concurrent
increase in the typical streaks spacing from approximately λ+θ = 120 to approximately
200. Consequently, the spectral ridge becomes steeper, taking the form of a power law,
with the exponent changing with Re and N.

3.3. Contributions to frictional drag
The Fukagata–Iwamoto–Kasagi (FIK) identity (Fukagata, Iwamoto & Kasagi 2002) is
herein used to isolate the contributions of molecular viscosity and turbulence to the overall
wall friction and to elucidate mechanisms contributing to the observed drag reduction. It
can be shown that the form of the FIK identity for a rotating pipe is identical to the case of
a non-rotating pipe as reported by Fukagata et al. (2002), because its derivation originates
from the momentum equation in the z direction, which does not depend on the imposition
of axial rotation. This results in the following expression for the relative drag reduction:

DR = 1 − Cf

Cf ,0
=
∫ log Reτ,0

0

( y
R

)
(cT

f ,0( y+)− cT
f ( y+))d log y+, (3.14)
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Figure 8. Pre-multiplied azimuthal energy spectra of axial velocity (κθEuu)
+ for (a,d) N = 0, (b,e) N = 0.5,

(c, f ) N = 2.0, at (a–c) Reτ,0 = 495, (d–f ) Reτ,0 = 3020. The solid lines denote the trend y = 0.14λθ , and the
dashed lines denote the trend λθ /R = 2.35( y/R)0.52 in panel (c), and λθ /R = 2.20( y/R)0.72 in panel ( f ). The
crosses denote spectral peaks.

where

cT
f ( y+) = 4

( r
R

)2 〈uruz〉+ (3.15)

denotes the local contribution of turbulence at a given wall distance to the overall friction
coefficient. It is noteworthy that the viscous contribution to wall friction (16/Reb) is the
same at the various rotation numbers as the DNS were carried out at constant mass flow
rate, hence it cancels out from (3.14). We have made sure that the relative errors between
friction coefficients obtained from the direct calculation and the FIK identity are well
below 1 %.

Figure 9(a) clearly shows that the reduction of the turbulent shear stress is greater
at higher Reynolds numbers. Whereas the maximum shear stress slowly increases
asymptotically to unity as Reb increases, the peak decreases in the case of a rotating
pipe, despite amplification of turbulence kinetic energy in the core region at high rotation
numbers in the low-Re cases (see figure 7a). This can be interpreted better by noticing
that the inner-scaled wall rotational speed, N∗ = N/2(Reb/Reτ ), increases with Reb,
with likely increased suppression of the near-wall turbulence. Figure 9(b) reports the
wall-normal distribution of the local turbulence contribution to the overall friction. Note
that the plot is reported in a semi-log scale and in pre-multiplied form to have a correct
perception of the integrated contributions. The figure shows that at low Reynolds numbers,
suppression of the turbulent contribution to friction mainly takes place in the core part of
the flow, with a reduction of the absolute peak. At higher Reynolds numbers, a strong
decrease of the peak value is still present and increasing, but substantial drag reduction is
also coming from the near-wall layer. To have a quantification of the effects of the inner
and outer layers, we then split the turbulent wall friction into integrated contributions from
the inner layer (say, CT,I

f ) and from the outer layer (say, CT,O
f ), based on the position of
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Figure 9. (a) Turbulent shear stress for N = 0 (dashed lines) and N = 2 (solid lines); (b) local contributions to
turbulent friction (as from (3.15)) for N = 0 (dashed lines) and N = 2 (solid lines); (c) turbulent contribution
to friction as a function of Reτ ; (d) fraction of drag reduction due to turbulence as a function of Reb. In panels
(a,b), Reτ,0 = 180 (black), 495 (red), 1137 (green), 1979 (blue) and 3020 (pink). In panels (c,d), N = 0 (black),
0.25 (red), 0.5 (green), 1.0 (cyan), 2.0 (blue) and 4.0 (pink). In panel (c), the dash-dotted line indicates the
prediction of (3.17).

the peak turbulent shear stress (say, ym), as suggested by Hurst, Yang & Chung (2014).
Accordingly, we define

CT,O
f

Cf ,0
=
∫ log Reτ,0

log y+
m

( y
R

)
cT

f ( y+) d log y+. (3.16)

In non-rotating pipe flow, the turbulent shear stress attains a peak at y+
m 
 c(Reτ /κ)n

(Chen, Hussain & She (2018) recommended n = 1/3 for Reτ ≤ 3000), and farther from
the wall, it decays linearly, and hence 〈uruz〉+ ∼ r/R. Under these assumptions, (3.16)
yields

1 −
(

CT,O
f

Cf

)1/4

≈ 4.0(κRe2
τ )

−1/3. (3.17)

Figure 9(c) shows that (3.17) also yields a satisfactory approximation in the case of rotating
pipes, as long as N ≤ 2. The formula also well underscores that CT,O

f asymptotically
approaches Cf with increasing Reτ , as a result of the increasing influence of the very
large turbulent structures that populate the outer layer and modulate the small near-wall
structures (Hutchins & Marusic 2007). In (3.17), the splitting location for the rotating
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cases is based on the respective profiles of 〈uruz〉, but the asymptotic behaviour remains
valid if ym is determined based on the non-rotating cases, since ym,0 � ym, as inferred
from figure 9(a). In figure 9(d), we present the ratio of the drag reduction associated with
the outer layer to the total drag reduction. This indicator is observed to exceed 90 % for
N = 4.0 and Reτ,0 = 3020, tending asymptotically to unity, consistent with theoretical
expectations. We also emphasise that it becomes almost independent from N at high
enough Reynolds numbers. It is important to note that the FIK identity per se does not
imply any direct causality link between its right- and left-hand sides, meaning that the
observed reduction of the turbulent shear stress in the outer layer could as well be a
consequence of the reduced wall friction, rather than the opposite.

4. Conclusions

Direct numerical simulation has been performed to study axially rotating pipe flow up
to nominal friction Reynolds number Reτ,0 = 3020. The drag reduction rate, which we
show to be equivalent to net power saving in the fully developed scenario assuming no
mechanical losses, increases with either N or Reτ,0, becoming a sole function of the
inner-scaled wall rotational speed at high enough Reynolds numbers. The drag reduction
is as high as approximately 70 % at N = 4.0 for Reτ,0 = 3020, although the flow is
still far from full relaminarisation. We have developed a theoretical analysis informed
with DNS data which allows for quantitative prediction of this effect, based on the
observation that the rotational speed becomes the relevant velocity scale in the core flow.
The analysis yields a predictive formula for the friction coefficient (3.9), which yields
accurate approximation of the DNS data up to N ≈ 1, regardless of the bulk Reynolds
number, which however breaks down once the logarithmic layer in the mean axial velocity
profile is disrupted.

Analysis of the instantaneous velocity fields reveals the role of rotation in weakening
the near-wall sweeps and ejections, and in the elongation and broadening of the streaks. In
the core region, rotation leads to turbulence suppression at moderate rotation numbers
and high Reynolds numbers, resulting in the disappearance of the outer-layer peak in
the pre-multiplied spectra. Turbulence is instead intensified at moderate rotation numbers
and low Reynolds numbers, and a distinct outer-layer peak or plateau, emerges in the
pre-multiplied spectra. Nevertheless, a consistent decrease of the turbulent shear stress is
observed. Use of the FIK identity reveals that the turbulent drag reduction originating from
the outer layer asymptotically approaches the total turbulent drag reduction with increasing
Reτ,0, consistent with a theoretically derived formula, and conveys that both the inner and
outer layers increasingly contribute to drag reduction as N increases.

It is finally important to acknowledge opportunities and challenges in applying wall
rotation in practical contexts. On the positive side, it is clear from this paper that large drag
reduction is possible without reverting to complicated wall actuation rules. In particular,
we note that at a statistically steady state, the work required to sustain rotation is zero
(leaving mechanical losses aside) and drag reduction effects increase with the Reynolds
number, unlike in conventional wall actuation techniques. On the negative side, setting a
full pipeline into rotation may not be an easy task. In addition, we find that the achievement
of a fully developed state requires a longer distance than for non-rotating flows (typically,
a few hundred diameters) and energy must be spent during this transient state to put
the whole system into rotation. This energy expenditure should be accounted for in the
evaluation of axial rotation for realistic applicative scenarios.
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Figure 10. Radial profiles for Reτ,0 = 1137 and N = 4.0: (a) axial velocity and (b) azimuthal velocity. Pink,
L = 15R and Nr = 164; blue, L = 30R and Nr = 164; green, L = 15R and Nr = 328.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1103/APS.DFD.2023.
GFM.V0080.
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Appendix. Numerical issues

The DNS herein reported assume a pipe length L = 15R. Figure 10 compares the profiles
of axial velocity and azimuthal velocity obtained using L = 15R and 30R for the case of
Reτ,0 = 1137 and N = 4.0. The longer configuration predicts a more turbulent mean axial
velocity profile. The friction factors for the two lengths have a relative difference of only
approximately 3 %, which is much less than the drag reduction amount of approximately
55 % for this case (see table 1). Note that the discrepancies would be smaller with
decreasing N due to the weakened long columnar structures in the core region. Figure 10
also displays the results obtained using a grid with a higher resolution in the radial
direction. The refined resolution results in a slightly less turbulent profile of the mean
axial velocity, and it brings out a difference in the friction factor of only approximately
3 %, which is again much lower than the drag reduction amount. Hence, we conclude
that the current numerical settings could be considered enough especially when drag
reduction is the primary focus. In our time-evolving simulations, the time interval needed
to achieve a fully developed state becomes significantly longer with increasing N at a
fixed Reynolds number. Figure 11 shows the time history of the axial pressure gradient
for Reτ,0 = 495 at N = 0 and 4.0, showing that it takes a time interval of approximately

996 A24-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

81
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1103/APS.DFD.2023.GFM.V0080
https://doi.org/10.1103/APS.DFD.2023.GFM.V0080
http://newton.dma.uniroma1.it/
https://orcid.org/0000-0001-6528-2641
https://orcid.org/0000-0001-6528-2641
https://orcid.org/0000-0001-6664-1677
https://orcid.org/0000-0001-6664-1677
https://orcid.org/0000-0002-0305-5723
https://orcid.org/0000-0002-0305-5723
https://orcid.org/0000-0002-7160-3023
https://orcid.org/0000-0002-7160-3023
https://doi.org/10.1017/jfm.2024.811


Direct numerical simulation of drag reduction

tub/R
0 200 400 600 800

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

0

(∂
p/
∂
z)

(R
/
ρ

u b2
)

(×10–2)

Figure 11. Time history of axial pressure gradient for Reτ,0 = 495. Black, N = 0 and pink, N = 4.0.

100R/ub for the non-rotating case to become fully developed, whereas the rotating case
needs approximately 400R/ub.
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