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REMARKS ON CONVERGENCE OF MORLEY SEQUENCES

KARIM KHANAKI

Dedicated to the memory of my first teacher Fatemeh Mardani

Abstract. We refine results of Gannon [6, Theorem 4.7] and Simon [22, Lemma 2.8] on convergence
of Morley sequences. We then introduce the notion of eventual NIP. as a property of a model, and prove a
variant of [15, Corollary 2.2]. Finally, we give new characterizations of generically stable types (for countable
theories) and reinforce the main result of Pillay [17] on the model-theoretic meaning of Grothendieck’s
double limit theorem.

§1. Introduction. Pillay and Tanovi¢ [18] introduced the notion of generically
stable type, for arbitrary theories, as an abstraction of the crucial properties of
definable types in stable theories. All invariant types in NIP theories and all
generically stable types in arbitrary theories share an important phenomenon:
convergence of Morley sequences. Using this phenomenon/property, although it
is not explicitly mentioned, Simon [22] proved the following interesting result:

Simon’s lemma': Let 7 be a countable NIP theory and M a countable model of T.
Suppose that p(x) € S(Uf) is finitely satisfiable in M. Then there is a sequence (c;)
in M such that lim ¢p(c; /U) = p.

The present paper aims to focus on convergence of Morley sequences. The core
of our observations/proofs here is that the convergence of tuples/types depends on
a certain type of formulas, namely symmetric formulas. We show that a sequence of
types converges if and only if there are some symmetric formulas that are not true
in the sequence.

On the other hand, the origin of Simon’s lemma is related to the following
crucial theorem in functional analysis due to Bourgain, Fremlin, and Talagrand
[3, Theorem 3F]:

BFT theorem: Let X be a Polish space. Then the space B;(X) of all Baire 1 functions
on X is an angelic space with the topology of pointwise convergence.

In [13, Appendix A], it is shown that complete types (not just ¢-types) can be coded
by suitable functions, and a refinement of Simon’s lemma is given using the BFT
theorem. Recall that every point in the closure of a relatively compact set of an
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1[22, Lemma 2.8]. In this article, when we refer to Simon’s lemma, we mean this result.
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angelic space is the limit of a sequence of its points, and relatively compact sets of
B1(X) possess a property similar to NIP (cf. [16]). In this paper we aim to give a
model theoretic version of the Bourgain—Fremlin-Talagrand result in the terms of
convergent Morley sequences.” More precisely, we prove that:

Theorem A: Let T be a countable theory and M a countable model of 7.}

(1) Suppose that p(x) € S(Uf) is finitely satisfiable in M and there is a Morley
sequence (d;) of p over M such that (¢p(d; /U) : i < w) converges. Then there is a
sequence (¢;) € M such that lim¢p(c; /U) = p.

(2) Furthermore, the following are equivalent:

(i) M is eventually NIP (as in Definition 3.1).

(ii) For any p(x) € S(U) which is finitely satisfiable in M, there is a sequence
(¢;) € M such that the sequence (7p(c;/U) : i < w)DBSC-converges to p
(as in Definition 3.4).

(iii) For any p(x) € S(i/) which is finitely satisfiable in M, there is a Morley

sequence (d;) of p over M such that (zp(d; /U) : i < w) converges.

Recall that Morley sequences in NIP theories are convergent (cf. Definition 2.9).*
Therefore, as the theory 7" in Theorem A is arbitrary, the equivalences (i)—(iii) of
Theorem A(2) refine Simon’s lemma. On the other hand, a result of Gannon [6,
Theorem 4.7] asserts that:

Gannon’s theorem: Let T be a countable theory and M a (not necessarily countable)
model of 7. Suppose that p(x) € S(U) is generically stable over M. Then there is a
sequence (¢;) in M such that lim ¢p(c; /U) = p.

This follows from Theorem A(1) and the fact that every generically stable type
over M is generically stable over a countable elementary substructure of M. We also
give a refinement of Gannon’s theorem. In fact, we give a new characterization of
generically stable types for countable theories:

Theorem B: Let T be a countable theory, M a model of T, and p(x) € S(UU) a
global M-invariant type. The following are equivalent:

(i) p is generically stable over M.

(i) p is definable over M, AND there is a sequence (c;) in M such that (¢p(c; /U) :
i < w)DBSC-converges to p (as in Definition 3.4).

Suppose moreover that 7" has NSOP, then (iii) below is also equivalent to (i) and
(ii) above:

(iii) There is a sequence (c¢;) in M such that (1p(c; /U) : i < w)DBSC-converges
to p.

Notice that, as DBSC-convergence is strictly stronger than usual convergence,
Theorem B is a clear refinement of Gannon’s theorem. Moreover, this result can be
lead to an answer to [6, Question 4.15].

2 Although we only use one analytical/combinatorial result (Fact 2.10), we will explain that it is not
even needed and that all arguments in this paper are model-theoretic (cf. Remark 2.12(iv)).

3We can consider countable fragments of (uncountable) theories, however, to make the proofs more
readable, we assume that the theory is countable.

4This is a consequence of indiscernibility of Morley sequences and countability of theory. If not, one
can find a Morley sequence («;) and a formula ¢(x) such that |= ¢(a;) iff i is even, a contradiction.
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Theorems A and B allow us to reinforce the main result of [17] on generic stability
in a model. That is,

Theorem C: Let T be a (countable or uncountable) theory, and let M be a model
of T. The following are equivalent:

(i) Any type p € S.(M) has an extension to a global type p’ € S, (U) which is
generically stable over M.

(ii) M has no order (as in Definition 4.8) AND M is eventually NIP.

It is worth mentioning that Gannon’s theorem based on the idea of Simon’s
lemma, and our results/observations are based on ideas of both of them. This paper
is a kind of companion-piece to [16] and [9], although here we are mainly concerned
with model-theoretic proofs of variants of results from [16].

This paper is organized as follows. In Section 2, we fix some model theoretic
conventions. We will also prove Theorem A(1) (cf. Theorem 2.11) In Section 3, we
will provide all necessary functional analysis notions, and introduce the notion of
eventual NIP. We will also prove Theorem A(2) (cf. Theorem 3.6) In Section 4,
we will study generically stable types in arbitrary/countable theories. We will also
prove Theorem B and Theorem C (cf. Theorems 4.4 and 4.10) At the end paper we
conclude some remarks,/questions on future generalizations and applications of the
results/observations.

§2. Convergent Morley sequences. The notation is standard, and a text such as
[21] will be sufficient background. We fix a first-order language L, a complete
countable L-theory T (not necessarily NIP), and a countable model M of T. The
monster model is denoted by U/ and the space of global types in the variable x is
denoted by S, (U) or S(U).

CONVENTION 2.1. In this paper, when we say that (a;) C U is a sequence, we mean
the usual notion in the sense of analysis. That is, every sequence is indexed by w.
Similarly, we consider Morley sequences indexed by w.

CONVENTION 2.2. In this paper, a variable x is a tuple of length n (for n < ).’
Sometimes we write X or X1, ..., X, instead of x. All types are n-type (for n < ) unless
explicitly stated otherwise. Similarly, a sequence (a;) C U is a sequence of tuples of
length n (for n < w).

CONVENTION 2.3.  In this paper, when we say that ¢ is a formula, we mean a formula
over (). Otherwise, we explicitly say that ¢ is an L(A)-formula for some set/model A.
Although the structure of some important definitions and proofs does not depend on
the parameter at all.

DEerINITION 2.4. Let A C U and ¢(x;, ..., x,) € L(A). We say that ¢(x1..... x,)
is symmetric if for any permutation ¢ of {1, ..., n},

= VE(A(x1. oo Xn) ¢ B (1) e s X ()

3 Although all arguments are true for infinite variables, to make the proofs readable, we consider finite
tuples.
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For a formula ¢(x) (with or without parameters) and a sequence (a;) of x-tuples
in U, we write lim; o, ¢(a;) = 1 if there is a natural number n such that U/ = ¢(a;)
for all i > n. If lim;_,oc ¢ (a;) = 1 we write lim, o ¢(a;) = 0.

For a formula ¢(x;..... x;) and a sequence (b;) €U, if there exists an
ng such that for any i > - > iy >n, we have U = ¢(b bi,). we write
limio<~~<ik., ig— 00 ¢(bioa s bik) =1

DErFINITION 2.5. (i) Let (b;) be a sequence of elements in If and A C I a set.

The eventual Ehrenfeucht—Mostovski type° (abbreviated EEM -type) of (b;) over A.
which is denoted by EEM ((b;)/A). is the following (partial) type in S,,(4):

é(x0,....xr) € EEM((b;)/A) <~ i lim ¢(biy. ... by, ) = 1.

0<-+ <. lp—00

igs e

(i1) Let (b;) be a sequence of U and 4 C U a set. The symmetric eventual
Ehrenfeucht—Mostovski type (abbreviated SEEM -type) of (b;) over A, which is
denoted by SEEM ((b;)/A), is the following partial type in S,,(4):

{¢ = @(xo.....x,) : ¢ € EEM((b;)/A) and ¢ is symmetric}.

Whenever (b;) is A-indiscernible, we sometimes write SEM ((b;)/A) instead of

SEEM ((b;)/A4).

(iii) Let p(x) be a type in S, (4) (or S, (U)). The symmetric type of p. denoted
s

by Sym(p). is the following partial type:

{¢(x) € p: ¢ is symmetric}.

The sequence (b;) is called eventually indiscernible over A if EEM ((b;)/A) is a
complete type. In this case, for any L(A)-formula ¢(x), the limit lim;_,o, ¢(b;) is
well-defined.

Fact 2.6 [6. Fact 4.2]. Let (b;) be a sequence of elements in U and A C U such
that |A| = Y. Then there exists a subsequence (¢;) of (b;) such that (c;) is eventually
indiscernible over A.

PrOOF. A generalization of this observation (for continuous logic) is proved in
Proposition 5.3 of [6]. -

Let 4 be a set/model and p(x) a global A-invariant type. The Morley type (or
sequence) of p(x) is denoted by p@ (cf. [21. Section 2.2.1]) The restriction of
p(x) to A4 is denoted by p|4. A realisation (d; : i < w) of p®)| is called a Morley
sequence of/in p over 4.

LemMmA 2.7. Let p(x) € S(U) be invariant over A, and I = (d;) a Morley sequence
in p over A.

(i) If there is a sequence (c;) € A such that limtp(c;/AI) = plar and (c;) is
eventually indiscernible over AI . then SEEM ((c;)/A) = Sym(p'®)| ).

(ii) If p is finitely satisfiable in A and |A| = Ry, then there is a sequence (c;) in A
such that lim tp(c;/AI) = p| ;1 and (c;) is eventually indiscernible over AI. Therefore,
SEEM ((¢;)/A4) = Sym(p'™)|4).

%The EEM-type is defined in [6, Definition 4.3]. It was extracted from the notion of eventual
indiscernible sequence in [22].
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PrOOF. (i): Suppose that there is a sequence (c;) such that lim¢p(c; /A1) = p|ar
and (c;) is eventually indiscernible over A1 (}). Set J = (¢;).

We show that SEEM ((¢;)/A) = SEM ((d;)/A) = Sym(p'®)| 4). We remind the
reader that SEM ((d;)/A) = Sym(p'®)| ) follows from the definition of a Morley
sequence. The proof is by induction on symmetric formulas. The base case works.
Indeed, for any L(A)-formula ¢(xp), ¢(xo) € SEEM((¢;)/A) < lim¢(c;) =
1 < ¢(x) € p < ¢(x) € SEM((d;)/A).

The induction hypothesis is that for any symmetric formula ¢(xo....,x;_1)
in L(A4), ¢(x0.....xx1) € SEEM((¢;)/A) if and only if ¢(xp.....x5 1) €
SEM ((d))/4).

Let ¢(xo. ..., xx) be a symmetric L(A4)-formula (}). Clearly, for any ¢ € A4, the
L(A)-formula ¢(c, x1, ..., x; ) is symmetric. Therefore, by the induction hypothesis,

limi_mo ¢(C, Citlsenns C,’+k) = ¢(C, d], ey dk) (*)
On the other hand, since lim,,_,, tp(c,/AI) = p|ar, we have

liml’l—ﬂ)o ¢(Ci’l=d17"“,dk) = ¢(dk+lvd17"'7dk) (**)'

To summarize, for large n,

. () 4. .
lim ¢(cj.cjpr. . cjug) = lim lim @(cy. ¢isr. ... Civr)
Jj—roo n—00 i—00

“ lim (. d. ... dy)

n—o0

b1, dr. .. dy)

(i) ¢(d], e s dk+l)'

This means that ¢(x) € SEEM (J/A) iff ¢(x) € SEM (I/A).

(ii): Let I’ be a Morley sequence in p over A. Since T and A are countable, and p is
finitely satisfiable in A, there is a sequence (¢;) in A4 such that limzp(c; /A1") = p| ;.
(Notice that the closure of {tp(a/Al") : a € A} C S,(AI") is second-countable and
compact,” and so metrizable. Therefore, there is a sequence (c;) € 4 such that
lim¢p(e;/Al") = plap.)*

By Fact 2.6, we can assume that (c;) is eventually indiscernible over A7 (). That
is, the type EEM ((¢;)/AI) is complete. (Notice that, as A1 and T are countable,
using Ramsey’s theorem and a diagonal argument, there is a subsequence of (c;)
which is eventually indiscernible over 41.)

By (i). SEEM ((c;)/A4) = Sym(p'”)|4). .

REmARK 2.8. The proof of Lemma 2.7 is essentially the same as [6, Lemma 4.5].
The difference is that we don’t need all formulas, but only symmetric ones. Notice
that it is not necessary to assume that 4 is a model. It is worth recalling that Gannon’s
result is based on an idea of Simon [22, Lemma 2.8].

"Recall that a compact Hausdorff space is metrizable if and only if it is second-countable.
8 Another argument that is more model-theoretic is given in the first paragraph of the proof of [6,
Lemma 4.6].
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Lemma 2.7 discusses converging of tuples, although in the rest of paper,
converging of tuples means convergence of types/tuples over the monster model,
but not small sets/models:

DEFINITION 2.9. We say that a sequence (d;) € U of x-tuples converges (or is
convergent) if the sequence (1p(d;/U):i < w) converges in the logic topology.
Equivalently, for any L(U/)-formula ¢(x), the truth value of (¢(d;):i < w) is
eventually constant. If (zp(d;/U) : i < w) converges to a type p, then we write
lim¢p(d;/U) = p or tp(d;/U) — p. Notice that tp(d; /U) — p iff for any L(U)-
formula ¢(x),

lim¢(d;) =1 < ¢(x) € p.

Fact 2.10. Let (d;) be a sequence in U of x-tuples. Then the following are
equivalent:

(1) (d;) has a subsequence with no convergent subsequence.

(ii) There are a subsequence (d}) C (d;) and a formula $(x. y) (with or without
parameters) such that for all ( finite) disjoint subsets E, F C N,

Eay | N\ old.y)n )\ -ed. y)

icE i¢F

Furthermore, suppose that (d;) is indiscernible. Then each of (i) and (ii) above is also
equivalent to (iii) below:

(iii) The condition (ii) holds for any subsequence of (d;). More precisely, there
is a formula ¢(x,y) (with or without parameters) such that for any subsequence
(d!) C (d;) and for all (finite) disjoint subsets E, F C N,

1

Eay | N\ old.y)n )\ -sd. y)

icE i¢F

ProoF. The direction (i) = (ii) follows from one of the prettiest result in the
Banach space theory due to Rosenthal, Theorem 1 in [20]. (See also Lemma 3.12
of [10] or Appendix B in [11].) Indeed, as T is countable, we can assume’ that
there is a subsequence (¢;) C (d;) and a formula ¢(x. y) such that the sequence
(¢(ci,y) :i < w) has a subsequence with no convergent subsequence. Now use
Rosenthal’s theorem for it. (On the other hand, notice that, as T is countable, every
complete type can be coded by a function on a suitable space (cf. [13, Appendix A]).
This leads to an alternative argument.)

The direction (ii) = (iii) follows from indiscernibility.
(iii) = (ii) = (i) are evident. =

We emphasize that, in Fact 2.10, the direction (i) = (ii) needs countability of
the theory. On the other hand, it is easy to verify that, this fact holds for real-valued
functions (or types in continuous logic).

THEOREM 2.11. Let T be a countable theory, M a countable model,"’ and
p(x) € S(U) a global type which is finitely satisfiable in M. Let (d;) be a Morley

9If not, using a diagonal argument, we can find a convergent subsequence of any subsequence.
19Tanovi¢ pointed out to us that it is not necessary to assume that M is a model (cf. Remark 2.12(iv)).

https://doi.org/10.1017/js1.2023.18 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.18

REMARKS ON CONVERGENCE OF MORLEY SEQUENCES 1345

sequence of p over M. If (d;) converges then there is a sequence (c;) in M such that
tp(ci/U) — p.

ProoF. By Lemma 2.7, we can assume that there is a sequence (¢;) in M such
that tp(c;/M U (d;)) = plyow,) and SEEM ((¢;)/M) = Sym(p(@)|;). We show
that p(c;/U) — p. Let ¢ be an accumulation point of {¢p(c;/U) :i € w}. Then
qImuia) = Plmua;)- Notice that, as ¢ is finitely satisfiable in M (and so M-invariant),
the type ¢'® is well-defined.

Claim 0: p<‘”>|M = q(“’)|M.

Proof": The proof is by induction. The base case is ¢|yu@;) = Plau,)- The
induction hypothesis is that p®*D|,, = ¢"+V|,,. Let ¢(x,41. X ... X0) € L(M),

and suppose that p, , ® p;”H) F ¢(x,11. %), where ¥ = (x,..... Xo). Since (d;) is

a Morley sequence in p over M, = ¢(d,..d) where d = (d,. ....dy). By definition

of Morley sequence. py, , + ¢(xpi1.d) and d |= p§”+1)|M. By the hypothesis of

X

induction, d = qé”ﬂ) |s- By the base case. gy, = ¢(xni1. d). and so by definition.
Gy @ ngl) F ¢(xn+1= )2). claim 0
Claim 1: p = g¢q.

Proof: If not, assume for a contradiction that p - ¢(x.b) and ¢ - —¢(x, b) for
some b € U and formula ¢(x,y) (without parameters). We inductively build a
sequence (a;) as follows:

e Ifiiseven, a; = plyufay..a; 1.5}

elfiisodd. a; = q|yugay...a; b}

As p @)y = ¢'“)| . the sequence (g;) is indiscernible and its type over M is
P'®)| 3. Moreover. ¢(a;.b) <= iiseven.

As (a;) is indiscernible, using the backward direction of [21, Lemma 2.7], U =
Onglai,....a,)" where

Onp (X1, xy) =VF C{1,....n}3yF /\¢(xiaJ’F) A /\ =¢(xi. yr)

i€F i¢F

(Notice that 0, is symmetric, and so 6,4 € Sym(p“)|s).) This means that =
On4(ds. ....d,) for all n. Therefore, for any infinite subset I C N, the set

2= N ¢dr)A N -é(d.y):neN

ieIn{l....n} i¢In{l....n}

is a partial type. This means that the sequence ¢(d;. y) does not converge (and even
it has no convergent subsequence), a contradiction. (Alternatively, as both (a;), (d;)

1T According to that argument of Claim 0, sometimes it is better to “reverse” the definition of EEM
type: replace each ¢(x1. ..., x,) by ¢(xs. .... x1). This was suggested to us by Tanovi¢. Although we still
continue the previous arrangement.
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are Morley sequence over M, there is an automorphism ¢ € Aut (U, M) which maps
a; to d;. Then ¢(d;, o (b)) converges iff ¢(a;, b) converges.'?) Alaim 1

Claim 2: The sequence (1p(c;/U) : i < w) converges.

Proof": If not, without loss of generality we can assume that it has no convergent
subsequence. (If (¢;) has a convergent subsequence, we can just choose it to be our
sequence and explain why it converges to p.) As T is countable, there is a formula
w(x, y) (with or without parameters) such that, the sequence (w(c;.y) : i < w) has
no convergent subsequence.”” Then, by Fact 2.10, for any infinite subset I C N,
the set

=1 N\ wlrn AN -wley)ineN
ieIn{l....n} i¢gIn{l....n}

is a partial type. As 0, , is symmetric, this means that 0, , € SEEM ((¢;)/M ). and
s0 |= 0, (d). ....d,) for all n. Equivalently, (w(d;.y) : i < w) does not converge, a
contradiction. elaim 2

Since (¢1p(c;)/U : i € w) converges to say a type r, this type is in the topological
closure of {¢p(c;/U) : i € w}. Hence by the first portion of the argument, r = p.

REMARK 2.12. (i) Let T be a (countable or uncountable) theory, M a model,
and p(x) € S(U) a global type. The argument of Claim 1 in the proof of
Theorem 2.11 shows that if there exists a Morley sequence of p which is convergent,
then any Morley sequence of p is convergent.

(ii) Let T be a (countable or uncountable) theory, M a model. and p(x). g(x) two
global M-invariant types. If the Morley sequence of p is convergent and p'®)|,, =
q(“’)\ u» then the argument of Claim 1 in the proof of Theorem 2.11 shows that
p = q."* As T is arbitrary, this is a generalization of Proposition 2.36 of [21] (see
also Lemma 2.5 of [8]).

(iii) There is a converse to Theorem 2.11: Let T be a countable theory, M a
countable model, and p(x) € S(U/) a global type which is finitely satisfiable in M.
If there is a sequence (¢;) in M such that 7p(c; /) DBSC-converges to p (as in
Definition 3.4), then some/any Morley sequence of p (over M) is convergent. (See
the argument of the direction (ii) = (iii) of Theorem 3.6.)

(iv) (Tanovi¢) Proof of Claim 2 in Theorem 2.11: If not, there are formulas y (x, y)
(without parameters) and b € U such that both sets C; = {¢; := w(c;.b)} and
C, = {c; := ~y(c;i, b)} areinfinite. Let py. py be accumulation points of {¢p(c; /U) :
¢; € C1} and {tp(c;/U) : ¢; € Cy}, respectively. Notice that Pil;) = P2le;)- We
inductively build a sequence (a;) as follows:

e Ifiiseven. a; = pil{a,...a; 3}

[ ] lfilS Odd. a; ': p2|{a1.....d,‘,l}'

12This was suggested to us by Tanovi¢ and the referee, independently.

BIf not, using a diagonal argument one can show the sequence (¢p(c;/U) : i < w) has a convergent
subsequence.

4Notice that we can assume p<‘"> lp = q(‘”> |p because the formula ¢(x,y) in Claim 1 has no
parameters.
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Similar to Claim 0, we have le\(di) = pé“))|(di), and similar to Claim 1, as the
Morley sequence (d;) is convergent, we have p; = p,. This is a contradiction, as
p1Fw(x.b) and py F —w(x.b). (In fact, it is not necessary to assume that M is
a model, and we can assume that M = (c;). However, countability remains a key
assumption.)

Although with Remark 2.12(iv), we don’t need Fact 2.10, but for better intuition
and providing basic concepts in the rest of the article, the approach of Fact 2.10 is
useful (cf. Definition 3.1).

COROLLARY 2.13 [6, Theorem 4.8]. Let T be a countable theory, p(x) € S(U)
and N a (not necessarily countable) model. If p is generically stable over N, then there
is a sequence (c;) € N such that tp(c; /JU) — p.

ProOF. As T is countable, there is a countable elementary substructure M of N
such that p is generically stable over M, and so p is finitely satisfiable in M and every
Morley sequence of p is convergent (see also Fact 4.1). Then, by Theorem 2.11, there
is a sequence (¢;) € M such that 1p(c; /U) — p. =

Notice that in the proof of Theorem 2.11, for any formula y there is a natural
number 7 such that 6, ¢ SEEM ((c;)/M ). This is equivalent to a stronger version
of convergence that was studied in [14] and we will recall it in the next section. This
implies that our result is strictly stronger than Gannon’s theorem. Cf. Theorem 4.4,
the direction (i) = (ii). This is also related to Question 4.15 of [6].

§3. Eventual NI/P. In this section, we want to give a characterization of
convergent Morley sequences over countable models. First we introduce the
following notions.

DEFINITION 3.1. Let T be a theory, M a model of it and ¢(x, y) a formula (with
or without parameters).

(i) We say that ¢(x, ) is eventually NIP in M if for any infinite sequence (¢;) € M
there are a subsequence (a;) C (¢;), a natural number n = n(,) and subset £ C
{1.....n} such that for any i} < - < i, < 0. U |= wy(a,.....a;,) where

wo(xi.x)) ==y | Noxiy)n N\ —6(x.y)

iC€E ie{l...n}\E
(ii) We say that M is eventually NIP if every formula is eventually NIP in M.

Note that (i) states that we have a special pattern that never exists. This intuition
helps to better understand the notion and how to use it further. In the following, we
will explain it better.

REMARK 3.2. (i) The subsequence («;) in the above is convergent for ¢."> That is,
(¢(a;.b) : i < w) converges for any b € U. Moreover, y, (%) is in the Ehrenfeucht—
Mostovski type EM ((a;)) of (a;).

15An analysis of y, shows that the alternation number (4 of (¢(ai, p) 1 i < w) is finite (see also
Remark 3.5(ii)). Notice that n(,,) depends on both the formula and the sequence: not just on formula.
This is a “wider’ notion of alternation number.” Cf. [14], the paragraph before Remark 2.11.
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(ii) In some sense, the notion of eventual NIP is not new. In fact, a theory T is
NIP (in the usual sense) iff the monster model of T is eventually NIP iff every model
of T is eventually NIP iff some model M of T in which all types over the empty set
in countably many variables are realized is eventually NIP (cf. Proposition 2.14 in
[14]).

(iii) The notion of “eventual NIP” is strictly stronger than the notion of “NIP in
a model” in [16], and strictly weaker than the notion of “uniform N/P in a model”
in [12].16

Let X be a topological space and f : X — [0, 1] be a function. Recall from [14]
that f is called a difference of bounded semi-continuous functions (short DBSC) if
there exist bounded semi-continuous functions F; and F, on X with f = F| — F>.
It is a well-known fact that, in general, the class of DBSC functions is a proper
subclass of all Baire 1 function (cf. [14, Section 2]).

We let ¢*(p, x) = ¢(x. ). Let ¢ = tpy=(b/M) be the function ¢*(¢.x) : M —
{0, 1} defined by a +— ¢*(b, a). This function is called a complete ¢*-types over
M. The set of all complete ¢*-types over M is denoted by Sy« (M ). We equip
Sy+ (M) with the least topology in which all functions g — ¢*(g.a) (for a € M)
are continuous. It is compact and Hausdorff, and is totally disconnected.

DErFINITION 3.3. Let p(x) be a global type which is finitely satisfiable in M.
(1) Suppose that ¢(x, y) is a formula, and p, is the restriction of p to ¢-formulas.
Deﬁnefﬁ : Sg+ (M) — {01} by £9(q) = 1iff ¢(x.b) € p forsome/any b |= q. We
say that:

(i) pg is definable over M if £ is continuous.

(i) pg is DBSC definable over M if f% is DBSC.

(ifi) py is Baire 1 definable over M if £ is Baire I.

(2) p(x) is called (DBSC or Baire 1) definable over M iff for any formula ¢(x, y)
the type py is (DBSC or Baire 1) definable over M, respectively.

Notice that (i) = (ii) = (iii) but in general (i) <= (ii) <~ (iii) (cf. [14]).

DEFINITION 3.4, Let (a;) € U be a sequence. We say that (a;) is DBSC -convergent
(or DBSC-converges) if for any formula ¢ (x. y) there is a natural number N = N
such that forany b € U,

Y I¢(ai.b) - ¢lai1.b)| < N.
i=1

In the following we explain the above notions and their relationship.

REeMARK 3.5. (i) Notice that this notion is equivalent to having finite alternation
number. Although, this number depends on both the formula and the sequence; not
just on formulas.

(ii) Assuming that («; ) is eventually indiscernible over the empty set (). A sequence
(a;) is DBS C-convergent iff for any formula ¢(x, y) (without parameters) there is a

10The directions are consequences of definitions. Although, we strongly believe that the strictness
holds, but we have not found clear examples yet. Cf. Remark 3.7 and item (1) in the “Concluding
remarks/questions.”
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formula w4 (x;. ..., x,). as be in Definition 3.1, such that |= y4(a;,. ... a;,) for any
ip < -+ < i, < o iff for any formula ¢(x, y) (without parameters) there is a natural
number 7 such that 6, , ¢ SEEM ((a;)/0)."

(iii) Suppose that (@;) is DBSC-convergent. Then the sequence 7p(a;/U)
converges. Moreover, for any formula ¢(x,y) the sequence (¢ps(a;/U) i< w)
converges to a type ps which is DBSC definable (over any model M 2 (a;)).

(iv) Whenever M is countable, DBSC-definability and strong Borel definability
(in the sense of [8]) are the same.

ProOF. (i) was first observed in [14]. (Cf. the paragraph before Remark 2.11 in
there.)

(ii) and (iii) follows form Lemma 2.8 of [14]. For the last part of (ii), note that |=
we(ai,.....a;,) forany i) < -+ < i, < w, clearly implies that 0,y ¢ SEEM ((a;)/0).
For the converse, suppose that there are natural numbers #, N such that for any
N<i) < <iy Opy ¢ SEEM((a;)/0). Then, we replace (a;) by (ayi1.an2. ...)
and use Ramsey’s theorem, if necessary.

(iv) was first mentioned in [14, Remark 2.15] and studied in [13]. =

We are ready to give a characterization of convergent Morley sequences over
countable models in the terms of eventual NIP.

THEOREM 3.6. Let T be a countable theory and M a countable model of T. Then
the following are equivalent:

(1) is eventually NIP.

(i) For any p(x) € SU) which is finitely satisfiable in M, there is a sequence
(¢c; 1 i < ®) € M such that the sequence (tp(c; JU) : i < w)DBSC-converges to p.

(i) For any p(x) € S(U) which is finitely satisfiable in M, there is a Morley
sequence (d; i < w) of p over M such that (tp(d; JU) : i < w) converges.

Proor. (iii) = (i): Let ¢(x,y) be a formula, and (c;) a sequence in M. Let p
be an accumulation point of {zp(c;/U) : i € w}. (Therefore, p is finitely satisfiable
in M.) Let I = (d;) be a Morley sequence of p over M. By (iii). (tp(d; /U) : i < w)
converges.

Claim: There is a subsequence (a;) of (¢;) such that lim ¢p(a;/MI) = p|ys."*

Proof: The closure of {tp(c;/MI):i< w} C Sy(MI) is second-countable and
compact, and so metrizable. Therefore, there is a sequence (a;) € {¢; :i < w} such
thatlim ¢p(a; /MI) = p|y;. We can assume that (a;) is a subsequence of (¢;). (If not,
consider a subsequence of (a;) which is a subsequence of (c;).) claim

By Fact 2.6, we can assume that (@;) is eventually indiscernible. Now, by
Lemma 2.7, SEEM ((a;)/M) = SEM ((d;)/M ). By Remark 3.5, as (d;) converges,
this means that the condition (i) of Definition 3.1 holds for (¢;) and ¢(x.y) (cf.
Remark 2.12(iv)).

(i) = (iii): Let p(x) € SU) be finitely satisfied in M, and (¢; :i < w) € M
such that the sequence (7p(c;/U) : i < w)DBSC-converges to p. Recall that some

170,1_¢ was defined in the proof of Theorem 2.11.
18Compare the argument of Lemma 2.7(ii). An alternative (and more model-theoretic) argument can
be given that is similar to the one Gannon gave in the first paragraph of the proof of [6, Lemma 4.6].
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Morley sequence of p over M is convergent if and only if every Morley sequence
of p over M is convergent. Let I = (d;) be a Morley sequence in p over M. By
(i), lim¢p(c;/MI) = p|ys. and so by Lemma 2.7, we have SEEM ((¢;)/M) =
SEM ((d;)/M). As (tp(c;/U) : i < w) is DBSC-convergent, by Remark 3.5, (d;)
converges.

(i) = (ii): Let p(x) € S(i4) be finitely satisfied in M. By Lemma 2.7, there
are a sequence (¢;) in M and a Morley sequence (d;) of p over M such that
tp(c/M U (d)) = plaruigy and SEEM ((c;)/M) = SEM((d;)/M). By (i), as T
is countable, using a diagonal argument, there is a subsequence (¢;) C (¢;) such that
(tp(c//U) : i < @)DBSC-converges. Therefore, using an argument similar to the
proof of Claim 2 in Theorem 2.11 (or directly), we can see that the Morley sequence
(d;) is convergent. By an argument similar to Theorem 2.11, (zp(c!/U) i < w)
converges to p (cf. Remark 2.12(iv)). 4

REmMARK 3.7. Let T be a countable theory and M a countable model of it. Suppose
that any p(x) € S(I) which is finitely satisfied in M is DBSC definable over M.
In this case, using the BFT theorem, it is easy to show that for any such type p(x)
there is a sequence (¢;) € M such that lim¢p(c; /U) = p. Notice that there is no
reason that (¢p(c;/U) : i < w)DBSC-converges to p. A question arises. With the
above assumptions, for any p(x) € S(/) which is finitely satisfied in M, is there any
sequence (¢;) € M such that (¢p(c;/U) : i < w)DBSC-converges to p? We believe
that the answer is negative, although we have not found a counterexample yet.

3.1. An application to definable groups. To finish this section, we give an example
where the notion of eventual NIP is used to deduce results about definable groups.

Lemma 3.8. Let G be a definable group. Let p, q be invariant types concentrating
on G such that both p, ® q, and q, @ py imply x -y = y - x."” If some/any Morley
sequence of p converges, thena -b =b - a forany a |= p andb = q.

Proor. The proof is an adaptation of [21, Lemma 2.26]. By compactness, there
is a small model M such that p, q are M-invariant and for any (a, b) realizing one
of (p®q)|mor(q®p)|luwehavea -b=b-a.

We claim that there is no infinite sequence (a,b,:n < w) such that a, =
Plmacpben bn = qlpac,pe, and ay, - b, # by - a,. If not, by hypothesis a, - by, = by, -
a, forn # m. For any I C w finite, define b; = I—[nel b,. Therefore, a,, - by = b; - a,
if and only if n ¢ I. This means that the sequence (¢(a,.y): N < w) does not
converges where ¢(a,.y) :=a, -y #y - a,. As (a, : n < w) is a Morley sequence
of p, this contradicts the assumption.

Therefore, by the above claim, there is some n such that any sequence with the
above construction has the length smaller than n. Let py = p|aa_,b., and qo =

9| Macyben- Then po(x) Ago(y) = x-y =y - x. -

ProPOSITION 3.9. Let T be a countable theory and G a definable group. Assume
that there is a countable subset A C G such that any two elements of A commute, and
A is eventually NIP. Then there is a definable abelian subgroup of G containing A.

19Recall that a type p(x) concentrates on a group Gif p - x € G.
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ProoOF. Let S, C S(U) be the set of global 1-types finitely satisfiable in 4. Notice
that, as A4 is eventually NIP. by Theorem 3.6, the Morley sequence of any type in S 4
is convergent. Therefore, for any p, g € S. the pair (p, ¢) satisfies the hypothesis of
Lemma 3.8. The rest is similar to the argument of Proposition 2.27 of [21]. Indeed, by
Lemma 3.8 and compactness, one can find formulas ¢(x) and w(y) such that ¢(x) A
w(y) — x -y =y -x and all types of S4 concentrate on both ¢(x) and w(y). Set
H = C(C(p ANw)),where Cg(X)={ge G:g-x=x-gforallx € X}. Then
H is a definable abelian subgroup of G containing A. -

REMARK 3.10. (1) Notice that, if any two elements of a set 4 commute, then
Cs(Cg(A4)) is abelian, but Cs(A) is not automatically abelian (even when 4 is a
subgroup).? In the following, we provide a proof:

Notice that, as any two elements of 4 commute, 4 C Cg(A4). Therefore Cs(A4) D
C(Cg(A4)).”" Let a.b € Cs(C(A)). Since b € Cg(A), so by definition ab = ba.
As a, b are arbitrary, Cg(Cg (X)) is abelian.?

(2) In Proposition 3.9, if A is finite, we don’t need eventual NIP: take H =
Cs(Cs(A)).

§4. Generically stable types. Here we want to give new characterizations of
generically stable types for countable theories. The notion of generically stable types
in general theories was introduced in [18]. Recall from [4, Proposition 3.2] that a
global type p is generically stable over a small set A4 if p is A-invariant and for any
Morley sequence (a; : i < w) of p over 4, we have lim ¢p(a; /U) = p.

Before giving the results let us recall that:

Fact 4.1 [6. Fact 2.6]. Let M be small set, and p(x) € S(U) a global M-invariant
type.

(i) If p is generically stable over M., then p is definable over and finitely satisfiable
in M.

(ii) If p is generically stable over M and My-invariant, then p is generically stable
over My. If p is definable over and finitely satisfiable in M and My-invariant, the same
holds.

(iil) Assuming that T is countable, if p is generically stable over M, there exists a
countable elementary substructure My such that p is generically stable over My. The
same holds for definable and finitely satisfiable case.

LemMa4.2. Let Tbe a(countable or uncountable) theory, A C U, and p(x) € SU)
a global A-invariant type. Suppose that some/any Morley sequence of p is totally
indiscernible, AND some/any Morley sequence of p is convergent. Then p is generically
stable.”

Proor. Let I = (a;) be a Morley sequence of p over 4. We show that
lim¢p(a;/U) = p. Let ¢(x.b) € p and J = p')|4p. Set I, = (ay. .... a,) for all n.

20Let G be any non-abelian group, and let e be the identity of the group. Then Cg(e) = G is non-
abelian.

21Recall that forany X C Y. Cg(Y) O Cg(X).

22This short statement was suggested to us by Narges Hosseinzadeh.

23 This was first announced in Remark 3.3(iii) of [8].
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Notice that all points of J satisfy ¢ (x. b). and I,, + J is a Morley sequence (for alln).>
We claim that at most a finite number of points of I satisfy ¢ (x, b). If not, for each k.
there is a natural number n; such that #{q; € I, := —¢(a;.b)} > k. As I, + J is
totally indiscernible (for all n), this implies that for each n, 0, 4(x1. ....x,) € tp(J)
where

Ong(x1.....x,) =VF C{l.....n}3yp /\QS(xi»yF) A /\ ~¢(xi. yr)

icF i¢F

(Recall that 0, 4, was introduced in the proof of Theorem 2.11. Notice that if #{i :|=
é(a;,b)} = Ny then we do not need total indiscernibility, but only indiscernibility.)
Equivalently, J is not convergent, a contradiction. o

REMARK 4.3. Let T be a (countable or uncountable) theory, 4 C U, and
p(x) € S(U) a global A-invariant type. The following are equivalent.

(i) p is generically stable.

(ii) p is definable over a small model AND there is a Morley sequence (a; : i < »)
of p over 4 such that lim¢p(a; /U) = p.

ProOF. (i) = (ii) follows from Fact 4.1 (cf. [21. Theorem 2.29]).

(ii) = (i): Suppose that there is a Morley sequence I = (a;) of p over 4 such
that lim I = p. As p is definable and finitely satisfiable, some/any Morley sequence
of p is totally indiscernible. (Cf. [12, Corollary 4.11] for a proof that any definable
and finitely satisfiable type commutes with itself and a generalization to measures.)
Therefore, by Lemma 4.2, p is generically stable. o

The following theorem gives new characterizations of generically stable types for
countable theories. The important ones to note immediately are (ii) and (v).

THEOREM 4.4. Let T be a countable theory, M a small model of T. and p(x) € S(U)
a global M-invariant type. The following are equivalent:

(i) p is generically stable over M.

(ii) p is definable over a small model, AND there is a sequence (c;) in M such that
(tp(c;/U) : i < w)DBSC-converges to p.

(iii) p is definable over and finitely satisfiable in some small model, AND there is a
convergent Morley sequence of p over M.

(iv) p is definable over a small model, AND there is a Morley sequence (a;) of p
over M such that limtp(a; /U) = p. Suppose moreover that T has NSOP, then each
of (v)—(vii) below is also equivalent to (i)—(iv) above.

(v) There is a sequence (c¢;) in M such that (tp(c;/U) : i < w)DBSC-converges
top.

(vi) p is finitely satisfiable in a countable model My < M, AND there is a convergent
Morley sequence of p over M.

(vii) There is a Morley sequence (a;) of p over M such that limtp(a; JU) = p.

Proor. (i) = (ii): As T is countable, by Fact 4.1, we can assume that p is
generically stable over a countable substructure My < M. By Corollary 2.13, there

241, + J is the concatenation of I, and J. It has I, as initial segment and J as the complementary
final segment.
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is a sequence (¢;) in M such that (1p(c;/U) : i < w) converges to p. Notice that in
the proof of Theorem 2.11 for any formula ¢ there is a natural number z such that the
formula 6, , does not belongto SEEM ((¢;) /M ). This means that (¢p(¢; /U) : i < w)
is DBSC-convergent.

(i) = (i): Clearly, p is finitely satisfiable in M. As p is definable and finitely
satisfiable, any Morley sequence of p is totally indiscernible (cf. [12, Corollary 4.11]).
Let (d;) be a Morley sequence of p over M. By Fact 2.6, we can assume that
(¢;) is eventually indiscernible over M U (d;). By Lemma 2.7, it is easy to see
that SEEM ((¢;)/M) = SEM ((d;)/M ). Therefore, as (c;) is DBSC-convergent,
the Morley sequence (d;) converges. By Lemma 4.2, p is generically stable.

(iii) = (i) follows from Lemma 4.2 and the fact that the Morley sequences of
definable and finitely satisfiable types are totally indiscernible.

(i) == (iii) follows from the direction (i) == (ii) of [4, Proposition 3.2]. (Recall
that generically stable types are definable and finitely satisfiable.)

(iv) <= (i) follows from Remark 4.3.

The directions (ii) = (v) and (iii) = (vi) and (iv) = (vii) are evident (and
hold in any theory).

For the rest of the proof, suppose moreover that 7" has NSOP.

Then, (v) = (ii) follows from Proposition 2.10 of [14] and the Eberlein—
Grothendieck criterion [14, Fact 2.2]. Indeed, by the direction (i) = (iv) of
[14, Proposition 2.10]. for any formula ¢(x. ). there is no infinite sequence (b;)
such that ¢(c;. b;) holds iff i < j. By Fact 2.2 of [14]. this means that the limit of
(¢(ci.y) : i < w) is a continuous function. Equivalently, p is definable over M (see
also Remark 2.11 of [14]).

(vi) = (iii): Suppose that p is finitely satisfiable in My < M with |M| = Xy. By
Theorem 2.11, there is a sequence (¢;) € My such that (¢p(¢;/U) : i < w)DBSC-
converges to p. By the direction (i) = (iv) of [14, Proposition 2.10 and Fact 2.2],
p is definable over M. Therefore, (iii) holds.

(vii) = (iv): As (a;) is indiscernible and convergent, the sequence (tp(a; /U) :
i < w) is DBSC-convergent. This means, by NSOP (i.e., the direction (i) = (iv)
of [14, Proposition 2.10 and Fact 2.2]), that p is definable. -

REMARK 4.5. (i) It is not hard to give a variant of Theorem 4.4 for uncountable
theories. Indeed, we can consider a/l countable fragments of the languages, and use
the above argument.

(i) With the assumption of Theorem 4.4, then (x) below is also equivalent to
(i)—(iv) in Theorem 4.4:

(x) For any B D M, p is the unique global nonforking extension of p|g, AND
there is a convergent Morley sequence of p over M.

The argument is an adaptation of the proof of [8, Proposition 3.2]. See also
Proposition 4.6(ii).

As the referee pointed out to us, the following proposition is not new.”> Although
for the sake of completeness we give a proof using the above observations.

25(i) is Remark 5.18 of [5], and (ii) follows from the fact that generically stable types are stationary
(cf. [18. Proposition 1(iv)]).
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PrOPOSITION 4.6. Let T be a (countable or uncountable) theory and p a generically
stable type.

(i) For any invariant type ¢, p @ ¢ = ¢ ® p.

(il) If p is A-invariant, then p is the unique A-invariant extension of p|4.

Proor. (i) follows from the argument of Proposition 2.33 of [21] by replacing [21,
Lemma 2.28] with the argument of Lemma 4.2. Indeed, suppose for a contradiction
that for some formula ¢(x, y.c) € L(I/) (where ¢ is a tuple of elements) we have
Px®@qy E@(x.y.c)andq, @ py b =¢(x.y.c). Let(a; i< w) E P\ b E qlua-,
and (a; : 0 < i< w2) E p'|ya.,». Then for i < w, —~¢(a;. b. c) holds and for i >
., we have ¢(a;.b.c). (Recall the definition of Morley products in 2.2.1 of [21].)
As (a; : i < w2) is totally indiscernible, similar to the argument of Lemma 4.2, it is
easy to verify that for each n, 0, 4(x1. ... x,) € tp((a;)/0) where

0n.¢(x1a~--»xn) ZVF g {1""’n}5|yFE|yC /\¢(xf=yF7y(?) /\ /\“(z)(xivavyC)
i€F i¢F

Equivalently, the sequence (¢(a;, yr, y.) : i < @) is not convergent, a contradiction.
(ii): Let ¢ be any A-invariant extension of p| 4.
Claim: p@)|, = ¢(@)| 4.

Proof": The proof is by induction, and similar to the argument of Proposition 2.35
of [21]. The base case is p|4 = ¢|4. The induction hypothesis is that p")| , = ¢ 4.
Using (i) above and associativity of Morley products, we have

gD a= (s, 04" )l
= (g, @ P )|
2Pl ey @ )l
= (chrll)vn ® Pxn+1)|A
=pU la
Notice that (i) and associativity of Morley products are used in (*).* Aelaim

Therefore, every Morley sequence of ¢ is totally indiscernible AND convergent.
By Lemma 4.2, g is generically stable and so lim / = ¢ for any Morley sequence
of ¢. This means that p = limI = ¢ for any I = p®)|, = ¢\®)| ;. (Alternatively, as
|4 = ¢'“)| 4. one can use Remark 2.12(ii) above.) -

Here we want to give a local version of a classical result [8, Proposition 3.2].

THEOREM 4.7. Let T be a (countable or uncountable) theory. M be a model of T,
and p(x) a global M-invariant type. Suppose that there is an elementary extension
M' = M containing a Morley sequence of p such that M is eventually NIP. Then the
following are equivalent.

26Notice that we can not use Lemma 2.34 of [21]. because it is not known whether the products of
generically stable types are generically stable or not. Although, the associativity of Morley products and
the part (i) of Proposition 4.6 are sufficient here.
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i)p = limtp(a; /U) for any (a;) |= p'|us.
ii) p is definable over and finitely satisfiable in M.

111) Px @ Py = Dy Q Px.
iv) Any Morley sequence of p is totally indiscernible.

Py

Proor. (i) = (ii) = (iii) = (iv) are standard and hold in any theory
(cf. Theorem 2.29 of [21]).

(iv) = (i): Let J € M’ be a Morley sequence of p. Since M is eventually NIP,
the sequence J is convergent. By Lemma 4.2, p is generically stable. -

Notice that the above theorem holds with a weaker assumption, namely every
formula has NIP in M’ (cf. [16] for the definition of NIP in a model). This easily
follows from indiscernibility of Morley sequences.

4.1. Eventually stable models. The story started from Grothendieck’s double limit
characterization of weak relative compactness, Theorem 6 in [7]. In [1] Ben Yaacov
showed that the “Fundamental Theorem of Stability” is in fact a consequence of
Grothendieck’s theorem. Shortly afterwards, Pillay [17] pointed out that the model-
theoretic meaning of the Grothendieck theorem is that the formula ¢(x, y) does not
have the order property in M if and only if every complete ¢-type p(x) € Sy(M)
has an extension to a complete type p’ € S, (U) which is finitely satisfiable in, and
definable over M. There, he called such types “generically stable” and said: “We will
investigate later to what extent we can deduce the stronger notions of generic stability
from not the order property in M.” Here, using the previous results/observations,
we can prove a result similar to [17] for the stronger notions of generic stability.
Maybe the following result is the end of this story, and of course the beginning of
another story.

DEerINITION 4.8. Let M be a model. (i) We say that M has no order if for any
formula ¢ (x, y) there do not exist (a;). (b;) in M for i < w such that M |= ¢(a;.b;)
iffi < j.

(ii) We say that M is eventually stable if:
(1) M has no order, and
(2) M is eventually NIP (as in Definition 3.1).

REMARK 4.9. (i) In stable theories, every model is eventually stable.
(ii) In NIP theories, every model which has no order is eventually stable.

ProoF. (i): If not, similar to the argument of (i) = (iii) of [14, Proposition 2.14],
we can find a formula ¢(x. ), an indiscernible sequence (c;), and an element d such
that ¢(c;. d) holds if and only if i is even. This contradicts NIP.

(ii) Suppose that the theory T is NIP and M = T has no order. Suppose for a
contradiction that M is not eventually NIP. Similar to (i), we can find a formula
¢(x. y),anindiscernible sequence (c; ) (possibly in an elementary extension of M), and
anelement d € U such that ¢(c;. d) holdsif and only if i is even, a contradiction. -

THEOREM 4.10. Let T be a (countable or uncountable) theory, and M be a model
of T. The following are equivalent:
(1) M is eventually stable.
(ii) Any type p € Sc(M) has an extension to a global type p' € S.(U) which is
generically stable over M.
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Proor. First, without loss of generality we can assume that 7T is countable.”’” By
Proposition 2.3(c) of [17], M has no order if and only if any type p € S, (M) has an
extension to a global type p’ € S, (U) which is finitely satisfiable in, and definable
over M.”* By Theorems 3.6 and 4.4, any global type p’ € S, (i) which is finitely
satisfiable in, and definable over M is generically stable over M if and only if M is
eventually N/P. This proves the theorem. =

4.2. Concluding remarks/questions. (1) In Example 2.18 of [14], we built a graph
N with the following property: (i) there is a sequence (a;) € N such that R(a;. y)
converges, and (ii) R(a;, y) is not DBSC-convergent. We guess that a modification
of this example leads to a definable type p such that: (i) there is a sequence (a;) with
lim¢p(a; /U) = p. and (ii) p is not the limit of any DBSC-convergent sequence.
(For this, one need to remove the axiom schema (1) in Example 2.18, and to check
the above properties.) Therefore, by Theorem 4.4, p is not generically stable. This
approach probably answer to Question 4.15 of [6].

(2) These results/observations can be generalize to “continuous logic” [2]. On
the other hand. one can generalize Theorem 3.6 for measures in classical logic.
This is a generalization of another result of Gannon [6, Theorem 5.10]. Recall that
measures in classical logic correspond to types in continuous logic. This means that
a generalization of Theorem 3.6 to continuous logic leads to a generalization of this
theorem for measures in classical logic, and vice versa.

(3) In[11], we claimed that in the language of Banach spaces in continuous logic,
there is a Krivine-Maurey type theorem for NIP theories (or even NIP spaces). That
is, for any separable NIP space X there exists a spreading model of X containing ¢
or £, for some 1 < p < co. We believe that the results/observations of the present
paper are sufficient tools and they lead to a proof of this conjuncture. For example,
notice that EEM -types correspond to spreading models in Banach space theory.
On the other hand, types of ¢y and £, are symmetric in a strong sense. Finally, the
types of ¢q or £, are finitely satisfied in any Banach space, by Krivine’s theorem.

(4) In [11]. we showed that every Ry-categorical Banach space contains ¢ or £,,.
What is the translation of this observation into “classical logic” (if such a translation
is essentially possible)? Similar questions can be asked about the Krivine-Maurey
theorem (and the claim in (3) whenever a proof of it is given).

We will study them elsewhere. (See, for example, [15] for (2).)
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2TWe consider all countable fragments of the languages.

281n fact, we do not need to use Grothendieck’s argument. Indeed, assuming eventual NIP, as any
Morley sequence is controlled by a sequence in the model and vice versa (cf. Theorem 3.6), we can use
the standard fact that a Morley sequence is totally indiscernible iff it has no order (cf. Theorem 12.37
of [19]).
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