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Abstract
As a kind of lower-limb motor assistance device, the intelligent walking aid robot plays an essential role in helping
people with lower-limb diseases to carry out rehabilitation walking training. In order to enhance the safety per-
formance of the lower-limb walking aid robot, this study proposes a deep vision-based abnormal lower-limb gait
prediction model construction method for the problem of abnormal gait prediction of patients’ lower limbs. The
point cloud depth vision technique is used to acquire lower-limb motion data, and a multi-posture angular predic-
tion model is trained using long and short-term memory networks to build a model of the user’s lower-limb posture
characteristics during normal walking as well as a real-time lower-limb motion prediction model. The experimen-
tal results indicate that the proposed lower-limb abnormal behavior prediction model is able to achieve a 97.4%
prediction rate of abnormal lower-limb movements within 150 ms. Additionally, the model demonstrates strong
generalization ability in practical applications. This paper proposes further ideas to enhance the safety performance
of lower-limb rehabilitation robot use for patients with lower-limb disabilities.

1. Introduction
In recent years, the increasing aging population, rising incidence of stroke, and a surge in accidental
injuries, particularly those related to traffic accidents, have led to a growing number of patients with phys-
ical mobility impairments [1, 2], and a growing population is experiencing varying degrees of loss of
mobility, relying on others for long-term care. Therefore, lower-limb rehabilitation training has become
increasingly important for these patients [3, 4]. Exoskeleton robots can assist patients with lower-limb
diseases in providing functions such as standing and walking [5, 6]. Oyman EL et al. designed a cable-
driven rehabilitation robot that can be easily configured to exercise different joints but is limited by
space constraints [7]. Ye et al. developed a multi-posture lower-limb rehabilitation robot system that
utilizes an online personalized classifier for real-time action recognition and corresponding rehabilita-
tion training. However, the action classification process takes slightly longer [8]. Wang Y et al. studied
the mechanical characteristics of cable-driven lower-limb rehabilitation robots (CDLR) and established
the dynamic model of CDLR, but further research is needed on the safety assessment of this system
and compliance control strategies [9]. Wang JH proposed the development of an end-effector-type full-
body walking rehabilitation robot and three walking training methods. However, this study is greatly
influenced by the environment and is not suitable for complex surroundings [10]. Gonçalves RS devel-
oped three non-maneuverable individual lower-limb joint rehabilitation mechanisms based on a four-bar
linkage mechanism and built a prototype of the knee joint mechanism for initial experimental testing.
However, this study did not involve real-assistive walking for patients [11]. Hwang used a cane-walking
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exoskeleton robot, and the wearer walked with environmental recognition between the cane support
point and the foot position of the supporting leg. However, this study only involved one subject and
lacks good generalizability [12]. Chawin et al. introduced an active assistive trunk support system, indi-
cating its potential suitability for individuals who cannot independently sit due to trunk impairments,
thereby promoting active trunk movement assistance [13]. Li et al. designed a novel soft-rigid knee
joint-assistive robotic system (SR-KR) and conducted mechanical performance testing, demonstrating
its potential in the field of rehabilitation [14]. The lower-limb walking-assist robot used in this study
provides patients with walking support, walking assistance, and impedance training functions.

As the popularity of rehabilitation robots in gait rehabilitation increases [15], gait cycle disturbance
analysis based on different muscle analyses becomes more critical [16]. Zhang P proposed a fuzzy
radial impedance (RBF-FVI) controller and developed a six-degree-of-freedom lower-limb rehabili-
tation exoskeleton. However, this exoskeleton system did not detect human falls [17]. Yuqi W designed
a cable-driven waist rehabilitation training parallel robot, but this exoskeleton system did not detect
falls during assisted walking [18]. Ercolano proposed a method for recognizing daily activities based
on deep learning and skeleton data. However, this method did not run in a real environment [19]. Qin
proposed a least squares support vector regression (LS-SVR) prediction algorithm to predict the gait
data of the human lower limbs at the next moment. However, this method did not collect a substantial
amount of lower-limb posture data [20]. S. K. Challa proposed a human gait trajectory generator based
on Long Short-Term Memory (LSTM) to capture human gait data during treadmill walking. However,
this model did not thoroughly study the effectiveness of trajectory generation [21]. Yu et al. proposed a
gait phase detection system based on inertial measurement units (IMUs). Experimental results showed
that the proposed system can identify the gait phases of stroke survivors. However, the system does not
include a fall detection functionality [22]. In the current stage, walkers primarily assist users in walking,
without monitoring the user’s gait or preventing the user from falling.

Due to gait being considered a well-known visual recognition technique [23], three-dimensional
vision cameras are more robust and less affected by lighting conditions compared to traditional two-
dimensional camera recognition. V. B. Semwal employed the muscle-skeletal model in OpenSim to
calculate the real-time inverse kinematics of the leg’s three-link motion, proposing a learning-based
approach using LSTM models for gait generation. This method aims to overcome the limitations of
model-based approaches but has not been applied in practical walking aids [24]. Salvatore Gaglio and
colleagues presented a method using RGB-D cameras to perceive information for identifying human
activities, estimating multiple relevant joints within the human body. Experimental results demonstrate
that this estimation method can detect the postures involved in various activities [25]. Walking assistive
robots equipped with depth cameras continuously monitor the lower-limb posture and user’s movement
status in real time to determine the risk of abnormal lower-limb behavior. This enables prompt inter-
vention of lower-limb assistive robots to provide protection for users [26]. Wei Xu and collaborators
improved the accuracy of two-dimensional and three-dimensional posture estimation in the CAREN
system using multi-angle videos, showing high precision in estimating human body posture for clinical
applications [27]. The walking aid robot used in this study, combined with a 3D depth vision camera,
can instantly detect the user’s movement posture when using the walking aid, ensuring user safety.

Recent researchers have explored the use of depth vision sensors to monitor human abnormal behav-
iors. Jack White and others proposed a novel end-to-end visual processing pipeline for artificial vision.
This pipeline employs deep reinforcement learning to learn important visual filters in offline simulations,
which are later deployed on artificial vision devices capable of processing images captured by cameras
and generating real-time task-guided scene representations [28]. Lei Yang and colleagues utilized depth
values to separate background information, analogizing the human body as an elliptical model. They
determine whether the human body has undergone abnormal movement based on the angle between the
ground and the elliptical model [29]. Choon Kiat and team established a dataset of human lower-limb
behavior using the Kinect skeleton tracking model. They used the vertical velocity threshold of the cen-
troid of skeletal points as a criterion for monitoring the trend of falling [30]. In real-world scenarios,
subjects are often obstructed by different static and dynamic objects, leading to the loss of gait data. This
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Figure 1. Walking aid robot platform.

obstruction is referred to as occlusion [31]. Three-dimensional vision cameras provide a simple method
for collecting multidimensional motion signals.

To enhance the safety performance of individuals with lower-limb impairments using lower-limb
assistive robots, this study innovatively combines depth vision and deep learning to construct a model
for predicting user lower-limb behavior. Given that depth cameras can capture rich lower-limb pose
information within short distances and small areas, they are utilized to monitor local leg behaviors
of the user. Simultaneously, models trained using deep learning are employed to enhance the robot’s
ability to detect user lower-limb abnormalities within a relatively short period, ultimately achieving
the prediction of user lower-limb abnormal actions and thus improving the safety performance of the
lower-limb assistive device.

Section II of this thesis contains the data collection and preprocessing of the data and illustrates
the network structure construction. Section III contains the experimental results and discussion of the
results. Section IV contains the discussion of this thesis. Section V contains the conclusion and future
work.

2. Materials and methods
The experimental equipment of this study is a self-developed walking aid, which can collect the attitude
angle data of lower limbs in real time. The physical object is shown in Fig. 1.

The Intel D435i camera was selected to acquire lower-limb point cloud data with an operating range
(min ∼ max) of −3 m ∼ 3 m, depth resolution of FPS 1280 x 720 30 fps, field of view depth of H:87
V:58, with an RGB sensor, module dimensions of 90m x 25m x 25m (Camera), and system interface
type of USB 3.

The walking aid robot has three working modes: forward assistance mode, active resistance training
mode, and slow electronic braking mode.

When the user is using the lightweight walking robot normally, both hands will be on the handle
to control the usage mode of the walking robot. When the user has an emergency or falls, both hands
or one hand will disengage from the grip and the robot will stop immediately. This study predicts the
tendency to fall without disengaging the handle and does not consider the above situation. The abnor-
mal gait movements of the user before the fall can be classified into three categories: forward leaning
abnormal, unilateral abnormal, and backward leaning abnormal. The three abnormal states are shown in
Fig. 2.
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Figure 2. Common abnormal gait before falling: (a) Forward tilt abnormality; (b) Unilateral abnor-
mality; (c) Backward tilt abnormality.

When users engage in any of the aforementioned risky behaviors while using the lower-limb assistive
walker, if one or both hands detach from the handles, the two motors of the walker’s rear wheels will
promptly and safely come to a halt, providing support to the user and ensuring their safety. Once the
user’s risk is mitigated and they are capable of independently participating in rehabilitation training,
simply placing both hands back onto the handles will allow the lower-limb rehabilitation walker to
resume monitoring the user’s lower-limb behavior to anticipate any risky movements.

2.1. Collect point cloud data of human lower-limb posture
The Intel D435i camera is selected to collect the point cloud data of lower limbs, the point cloud data
source was 15 health subjects including 6 females and 9 males, subjects are informed and voluntary,
aged between 23–26 years, with an average age of 24.3 (±1.03) years, height of 172.1 (±6.46) cm, and
weight of 71.3 (±9.58 kg.). The subjects were not trained prior to the test. The number of depth camera
acquisitions, duration, average ankle and knee joint amplitudes are shown in Table 1.

The experimental data of these 15 individuals are divided into two parts: data from 5 individuals are
used to train the LSTM neural network, while data from the other 10 individuals are utilized to validate
the real-time performance and accuracy of the trained model. Place the Intel D435i depth sensor on
the central axis of the frame and place it facing the user. Next, adjust the camera placement height to
collect the point cloud data of the whole leg, and confirm that there is no occlusion in the field of view.
The experimental software environment of walking motion information acquisition algorithm based on
three-dimensional vision is Windows10, Visual Studio 2019, PCL 1.11.0. The hardware environment is
Intel Core TM i7-9850h CPU@2.59 GHz, NVDIA RTX 4000 graphics processor.

After the point cloud data are collected by the three-dimensional vision camera, the three-dimensional
coordinate system is obtained through transformation so as to describe the spatial position of the
measured object. The data acquisition of lower-limb depth is shown in Fig. 3.

Since the depth vision has a great deal of redundant information after collecting the raw information
of the lower limb, it is impossible to extract the significant features of the lower limb directly. So this
raw information needs to be processed to extract features.

The collected panoramic 3D data are shown in Fig. 4. The acquisition of panoramic point cloud data
map is subject to coordinate conversion, and the color frame image is aligned with the depth frame
image to represent the depth coordinates in pixel form.

Let ppixel (u, v, 1) be a specific point in the pixel coordinate system, convert the pixel coordinate
information into spatial position information, and the transformed coordinate system can be called spa-
tial coordinate system. Among them, the point coordinate corresponding to the pixel coordinate system
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Table I. Sensors collect relevant parameters.

Hip joint Knee joint
Repetitions Duration(s) amplitude (cm) amplitude (cm)

Forward tilt abnormality 10 2.7 72.5 41.8
Unilateral abnormality 10 3.2 69.3 38.3
Backward tilt abnormality 10 3.6 65.7 36.4

Figure 3. Diagram of depth data acquisition method: (a) Lower-limb behavior data acquisition;
(b) Depth camera acquisition diagram.

Figure 4. Global point cloud data.
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The relationship between ppixel and pimg is obtained as follows:⎡
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The second transformation coordinate system is the transformation from the picture coordinate sys-
tem to the point cloud coordinate system. Set a point Pi(xi, yi, zi) as the coordinate of point P in the point
cloud coordinate system. The relationship between Pimg and Pi is:

ziPimg =
⎡
⎢⎣

fx s cx

0 fy cy

0 0 1

⎤
⎥⎦ Pi (4)

Order:

H =
⎡
⎢⎣

fx s cx

0 fy cy

0 0 1

⎤
⎥⎦ (5)

In the H matrix, the elements f x, f y, cx, cy, and s are camera internal parameters, where f x and f y are
focal lengths, which are generally equal; cx and cy are primary coordinates relative to the imaging plane;
s is the coordinate axis inclination parameter, which is ideally 0. The elements f x, f y, cx, cy, and s are
usually set by the manufacturer when the camera leaves the factory. After conversion, the coordinates
of Pi point in the point cloud coordinate system are:

Pi = ziH−1Pimg = ziH−1X−1

⎡
⎢⎣

u

v

1

⎤
⎥⎦ (6)

Order:

K−1 = ziH−1X−1 (7)

Given that the depth value of pi point is zi, the conversion relationship between point cloud coordinate
system and pixel coordinate system is as follows:

Pi = K−1Ppixel (8)

2.2. Optimization of lower-limb attitude point cloud data
The whole point cloud data contain available information of lower-limb point cloud data, background
point cloud, noise point cloud, and other redundant data. These redundant data will occupy a large
amount of computational resources and storage space, which need to be optimized for the whole point
cloud data so as to improve the real-time performance of the effective data acquisition of the lower-
limb point cloud. Therefore, this study will not directly use point cloud data as the original data for
neural network model training. In this study, a three-layer point cloud data filter is designed, containing
straight-pass filtering, body pixel sampling, and statistical filtering.

2.2.1. Point cloud direct filtering
When the user and the walking aid robot move forward at the same time, take the point cloud coordinate
system as the origin to establish the lower-limb point cloud space state diagram, as shown in Fig. 5(a).
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Figure 5. Schematic diagram of pass-through filter: (a) Boundary condition; (b) Through filter point
cloud.

Figure 6. Point cloud data after voxel grid filter.

After direct filtering, the point cloud is shown in Fig. 5(b), and the contour information of leg point
cloud data is obtained.

The point cloud segmentation boundary conditions can be shown by Eq. (9), where xmin and xmax,
respectively, represent the minimum and maximum values of the segmentation boundary x, ymin, and
ymax, respectively, represent the minimum and maximum values of the segmentation boundary y so as
to avoid blocking the original point cloud data.{−25cm < xi < 25cm

−27.5cm < yi < 27.5cm
(9)

In Eq. 9, xi and yi represent the horizontal and vertical coordinates of the user’s position within the
point cloud segmentation boundary, respectively.

2.2.2. Voxel downsampling
The amount of data after straight-through filtering is still relatively large, which leads to a decrease in
the real-time performance of lower-limb pose resolution. To solve this problem, a body voxel downsam-
pling algorithm is used, which is less complex, saves some storage space, and preserves the detailed
information of the point cloud data. The sampled point cloud data are shown in Fig. 6.
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Figure 7. Point cloud data after statistical filter.

Let the global enclosing space containing all point cloud data be S, and the enclosing space be m
cubes of width w. These cubes will fill the whole point cloud enclosing space as shown in Eq. 10.

S = m × w3 (10)

The point cloud data corresponded to the cubes at the corresponding positions, and the invalid cubes
that do not contain point clouds are removed. In the valid cube, there is one or more point cloud data,
and all the point cloud data in the original cube are replaced by finding the center of gravity value of the
point cloud data in each valid cube, so that the body pixel sampling is completed. When the value of w
is larger, the value of m is smaller, which improves the operation speed, but the details of the original
data will be lost; when the value of w is smaller, the value of m is larger, which is able to contain a large
amount of point cloud data information, but will reduce the operation speed. In practice, the w value
will be adjusted according to the computing power of the processor, and the parameter w set needs to
be traded off in both sampling fidelity and real-time. This walker could be moved in the x-axis direction
with a range of 50 cm, y-axis with a range of 55 cm, and z-axis with a range of 70 cm. w was selected to
be the best when 0.2 cm was chosen after many tests, and the m-value at this time was 24062500.

2.2.3. Statistical filtering
After direct filtering and volume voxel downsampling, there are still some separation points or noise
points in the point cloud data. In order to remove the separation points or noise points, the neighborhood
point cloud filter is used. Build a KD tree (k-dimensional tree) according to the effective point cloud
data pk(k = 1,2, . . ., N), calculate the k-nearest neighbor dk(k = 1,2, . . ., N) for each dataset, calculate
the distance of the k-nearest neighbor, and calculate the mean d and variance σ 2 of all dk

d = 1

N

N∑
k=1

dk (11)

σ 2 = 1

N

N∑
k=1

(
dk − d

)2
(12)

Due to the distance between the departure point and the effective point cloud cluster, the boundary
condition defc can be established to make defc = d + ασ . For each point, if its K-nearest neighbor average
distance dk > defc, it is regarded as a separation point and deleted. The point cloud data after statistical
filtering are shown in Fig. 7.

As shown in Fig. 7, complete, accurate, real-time, and fast lower-limb posture data could be obtained
after statistical filtering of lower-limb posture point cloud data.
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A variety of abnormal real-time point cloud data of human lower limbs are obtained after direct
filtering, volume voxel downsampling, and statistical filtering. The abnormal posture data of human
lower limbs with small amount of data and clear characteristics are used to establish the prediction
dataset of abnormal posture angle of lower limbs.

2.3. Constructing a model to monitor trends in abnormal lower-limb gait
When the patient walks normally with the walking aid robot, the prediction model trained by using deep
learning has higher accuracy and is suitable for the calculation of the walking aid robot. When the user
has a tendency to have abnormal lower-limb movements, the data input to the model at that time will
lead to abnormal computation. The time domain value of the lower-limb posture angle of the real-time
prediction model can be used as a feature to determine whether the lower limb shows abnormal behavior
and to improve the rapidity of abnormal gait trend monitoring.

Using DTW algorithm to plan the element relationship of different time series, it is possible to
solve the problems of local expansion and time axis drift of multidimensional time series [32]. Set
the time axis window data of the bending angle of the knee joint of the right leg during walking as
α = [x1, x2, x3 . . . , xm] and the predicted time axis window data as β = [y1, y2, y3 . . . , yn]. Define the
dimension of local distance matrix m as m × n; (xi, yi) is any point in the matrix. Each element in the
matrix is shown in Eq. (13).

di, j = ‖xi − yi‖ , i ∈ [1, m] , j ∈ [1, n] (13)

The planned path is P, indicating α and β element pk in vector p = (m, n) k, where:

P = [
p1, p2, . . . , pk

]
, max (m, n) ≤ k ≤ m + n − 1 (14)

Path P must meet three constraints:
(1) Boundary condition: the planned path is in matrix M, starting from point p1 = (1,1) and ending

at point pk = (m, n) of matrix M.
(2) Monotonicity condition: in order to ensure the monotonicity of the planned path along

the time axis, the two adjacent elements in path p, pk = (a, b) and pk + 1 = (a’, b’) need to meet
a′ − a ≥ 0, b′ − b ≥ 0.

(3) Continuity condition: in order to prevent interval matching by matching step size, two adjacent
elements in path p, pk = (a, b) and pk + 1 = (a’, b’) need to meet a − a′ ≤ 1, b − b′ ≤ 1.

After the DTW algorithm meets the above constraints, the optimal path is the minimum value of the
cumulative sum of local distances DTW(α, β). The distance of DTW under the optimal path is shown
in Eq. (15).

DTW (α, β) = min

{
L∑

l=1

d (xml, ynl)

}
(15)

The transformed time series α′, β ′ are expressed as:{
β ′ = β (pt (n))

α′ = α (pt (m))
, t = 1, 2, . . . , k (16)

To address the problem of identical trend outputs when using real-time prediction models, which
leads to confusion in single-feature decisions, additional features are introduced to improve the accuracy
of the model. Root mean square can accurately characterize the time domain signal. The lower-limb
behavior feature vector v of the real-time predictive mixture model is obtained as in Eq. (17).

v = [rmsac, dtw] (17)
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2.4. Establish abnormal gait trend monitoring methods
In the initial stage of abnormal gait generated by the help robot, the recognition features under the point
cloud distribution are difficult to recognize. When the user has abnormal gait in the middle and late stage
of using the walking aid robot, the angle characteristics of lower-limb posture collected by point cloud
data are difficult to distinguish and protect the user. Through the above analysis, in order to detect the
abnormal gait trend, it can be transformed into a single classification problem of finite positive samples
and infinite negative samples in the feature space, that is, to judge whether the lower-limb movement
posture is normal walking.

In the selection of gait features for the real-time prediction model, the SVDD single classification
algorithm [33] was used, and the samples selected were two time domain lower-limb behavior features.
To satisfy the SVDD single classification model, a closure curve was resolved in the two-dimensional
sample space as the boundary of the positive samples.

Let the positive sample vector set M = [v1, v2, v3 . . . , vm], and the positive samples are distributed
in the sphere with center a and radius r. The SVDD optimization objective function and optimization
conditions are:

min
a,ξ i

(
r2 + C

m∑
i=1

ξ i

)
s.t. ‖vi − a‖2 ≤ r2 + ξ i

ξ i ≥ 0, i = 1, 2 . . . , m

(18)

Parameter C is a penalty parameter, which is used to balance the sphere volume and misclassification
rate in the sample space. Lagrange multiplier L(r, a, α, ξ , γ ) is introduced to describe the optimization
objective:

L (r, a, α, ξ , γ ) = r2 + C
m∑

i=1

ξi −
m∑

i=1

αi

(
r2 + ξi −

(‖vi‖2 − 2avi + ‖a‖2
)) −

m∑
i=1

γiξi (19)

In Eq. (18) αi ≥ 0, γi ≥ 0, let the partial derivatives of Lagrange function r and a and ξi be 0
respectively; then: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

m∑
i=1

αi = 1

a =
m∑

i=1

αivi

C − αi − γi = 0

(20)

Substituting Eq. (20) into Lagrange function, the dual problem of SVDD is obtained as follows:

max
a

L (a) =
m∑

i=1

αiK (vi, vi) −
m∑

i=1

m∑
j=1

αiαjK
(
vi, vj

)
(21)

The Lagrange coefficient of the sample can be obtained, and its rules are as follows:
‖vi − a‖2

< r2 → αi = 0, γi = 0 (22)

‖vi − a‖2 = r2 → 0 < αi < C, γi = 0 (23)

‖vi − a‖2
> r2 → αi = C, γi > 0 (24)

The sample vector satisfying the condition (23) is called support vector. If vs ∈ SV , then:

r2 = K (vs, vs) − 2
n∑

i=1

αiK (vs, xi) +
n∑

i=1

n∑
j=1

αiαjK
(
vi, vj

)
(25)

The distance d between the test sample vt and the spherical center of the hypersphere is as follows:

d2 = K (vt, vt) − 2
n∑

i=1

αiK (vt, vi) +
n∑

i=1

n∑
j=1

αiαjK
(
vi, vj

)
(26)
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Figure 8. Three planes of human motion.

Figure 9. Lower-limb posture angle extraction in sagittal plane.

2.5. Establish the prediction model of lower-limb walking posture angle
Before establishing the lower-limb gait angle prediction model, the gait angle is selected. According
to the mechanism of human anatomy, the horizontal, sagittal, and coronal views of human body are
established, as shown in Fig. 8.

In this experiment, the sagittal plane of human anatomy is used to extract the posture angle of lower
limbs. Since the depth camera captures three-dimensional data of the lower limbs, even after filtering,
the point cloud data retains three-dimensional coordinate information of the hip, knee, and ankle joints.
Therefore, in the event of the user leaning forward or backward abnormally, the point cloud coordinates
can still be used to calculate the angles of the hip and knee joints. In this study, the depth camera was
solely utilized to capture frontal 3D point cloud data of the lower limbs without considering user rotation.
Due to occlusion issues encountered when obtaining specific values of each joint angle of the lower limbs
in the coronal and transverse planes using the depth camera, point cloud data collection is restricted to
the sagittal plane. The YOZ plane in the point cloud coordinate system is utilized as a projection plane
within the anatomical sagittal plane to extract the posture angles of the lower limbs. Fig. 9 shows the
projection of the right leg on the YOZ plane of the point cloud diagram. After all the lower limbs are
projected to the YOZ plane, it can be regarded as the lower-limb-connecting rod model projected in the
sagittal plane.

https://doi.org/10.1017/S0263574724000948 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000948


12 Tie Liu et al.

Table II. Lower-limb joint range of motion.

Normal angle range Maximum range of movement angles
qRH −30◦ ∼ 145◦ −20◦ ∼ 75◦

qRK −135◦ ∼ 10◦ −65◦ ∼ 0◦

As shown in Fig. 9, qRH is the angle between the thigh and the Z-axis in the YOZ plane, and qRk is
the angle between the extension of the thigh linkage in the calf direction and the calf linkage. The range
of specific activity angles is shown in Table 2.

After selecting the gait angle, the volunteers pushed forward under the conditions of indoor light
and flat road and set the walking aid robot to the power-assisted working mode of moving forward at a
constant speed. Each group of experiments pushed forward 2 m. According to the measurement, a gait
cycle lasts about 2.5 s when moving forward slowly. In addition, depth images are collected at a rate of
60 frames per gait cycle to obtain the complete motion walking cycle. Due to four types of falls, each
repeated 10 times, a total of 6000 depth visual images were collected for each person, totaling 60 ∗ 2.5
∗ 4 ∗ 10. Fifteen people collected a total of 90,000 depth images, each with 4 joint angles, resulting in
a total of 360000 joint point data.

2.5.1. Dataset and sample set construction
In this study, LSTM network was utilized to predict lower-limb posture angles. A dataset comprising
a total of 30,000 motion posture angle images of bilateral hip and knee joints in the sagittal plane was
selected from five subjects for deep learning training. Of these, 80% of the data was allocated to the
training set, while the remaining 20% was used for validation.

The training model takes the right leg knee angle as an example. Starting from the first data of the right
leg knee angle dataset, take the first j frame data as the input of the sample vector and the j + i frame data
as the training label of the sample vector; that is, the first sample vector is X1

Lh = [x1
Lh, x2

Lh, x3
Lh, . . . , xj

Lh],
the label value Y1

Lh = xj+i
Lh , and the lower-limb knee angle dataset takes the sliding window value for

each frame of the picture until the sliding window moves to the end of the dataset. Since the sampling
frequency of the depth camera is 60 fps (frame per second), the conversion relationship between the
predicted step width of the sample (n) and the predicted time step (tpridict) can be calculated as shown in
Eq. (27).

tpredict = 1

60
n (27)

The deep learning model is trained using a linear function normalization method to calculate the
updated weight matrix, such that the training set accounts for sixty percent of the total deep learning
dataset, the validation set is twenty percent of the total deep learning dataset, and the test set is twenty
percent of the total deep learning dataset.

2.5.2. Build a deep learning network model
The training goal of the deep learning model designed in this study is to predict the motion information
of four joints of the lower limb. There are four units in the input layer and output layer of the deep
learning network structure. The input layer parameter is that each input unit has a one-dimensional
vector corresponding to it, that is, each lower-limb joint angle xi, and the step size of each sampling is
set to k frames. k is determined by the frame rate of the depth camera with various processor computing
power. Each element in the four sample label vectors yi is used as the training label of the corresponding
input unit. The format of the output layer is a single-layer fully connected neural network for linear
transformation of the feature space where the hidden layer is located to the label space. In consideration
of the principle of lightweight and practicality of the network model, the number of hidden layers is
chosen as three layers, all of which are LSTM cell layers. The hidden layer consists of multiple LSTM
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Table III. LSTM prediction model training parameters.

Model parameter Parameter selection
Loss function MSE
Optimizer Adam
Neuron inactivation ratio 0.2
LSTM layers 3
Number of cell states in each layer of LSTM 100, 80, 60
Number of nodes in the whole connection layer 10
Enter the number of layer nodes 4
Learning rate 0.000001
Number of iterations 300

cells and connects the input layer with the output layer. In this deep learning model, the activation
function of LSTM unit layer is tanh function (28), the activation function of output full link layer unit
is sigmoid function (29), and the loss function is MSE (30).

tanh (x) = ex − e−x

ex + e−x
(28)

σ (x) = 1

1 + e−x
(29)

MSE = 1

m

m∑
i=1

(yi − ỹi)
2 (30)

The software used for deep learning model training includes Python 3.8, Keras 2.4.2, Numpy 1.18.4,
and Scikitlearn 0.23.2. The hardware used for deep learning model training includes Intel i7 processor
and RTX4000 graphics card. After considering the parameters of the mainstream deep learning network
training model at this stage and training the deep learning network several times, the final parameters of
the deep learning network model in this study are set as shown in Table 3. In the deep learning training
model, the sagittal angles of four joints of both lower limbs are selected as the dataset for training.
In order to improve the generalization ability of the model, the time series data of participants under
different walking speeds and asynchronous amplitudes collected during the experiment were mixed,
and, finally, 10,000 frames of continuous change data of effective walking posture angles of four joints
were sorted out.

3. Results
3.1. Prediction model experiment and results
According to the selected deep learning training model, the relevant information of four lower-limb joint
movements in a gait cycle is randomly selected from the verification results of the verification set. The
original data and prediction data are shown in Fig. 10.

As can be seen from Fig. 10, according to the comparison diagram between the test dataset and the
actual prediction data, the prediction data can accurately predict the test data in 0.2 s, so the prediction
ability of this model is strong.

In this experiment, three evaluation criteria are cited to describe the error between the label value
and the model output in the test sample, which are mean absolute error (MAE), mean square error
(MSE), and root mean square error (RMSE). To verify the prediction ability of the LSTM network, three
evaluation criteria were used to compare the prediction ability performed with the Back Propagation
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Figure 10. LSTM prediction model test results.

neural network (BP) and Recursive Neural Network (RNN) network and Convolutional Neural Networks
(CNN) network and Gated Recurrent Units (GRUs) and Bidirectional Encoder Representations from
Transformers (BERT) with the equal number of layers, the sizes of these six training models are also
compared, and the results are shown in Table 4.

As shown in Table 4, in the test set samples, the LSTM network prediction model exhibits smaller
MAE, MSE, and RMSE values compared to other models, demonstrating its superior predictive accu-
racy. Although the trained models of BP and RNN are smaller than the LSTM model, their predictive
capabilities are weaker, making them unsuitable as predictive models. Both the CNN and GRU models
demonstrate predictive capabilities close to the LSTM model, but they are larger in size. While the pre-
dictive capabilities of the BERT model are comparable to those of the LSTM model, the BERT model is
significantly larger. Considering the limited computational resources of the control module, the LSTM
model is chosen as the predictive model. Taking into account both the predictive capability and the size
of the model, LSTM is selected as the predictive model.

Figure 11 shows the variation curve of mean square error for the loss function during the training
process of the long short-term memory network model.

As shown in Fig. 11, with the increase of training rounds the loss function tends to be smooth, and
finally, the model tends to converge, proving that the model is reliable and effective. Table 5 shows the
specific height, weight, age, number of experiments and the accuracy of the validation set predicted
using the LSTM model for the five subjects.
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Table IV. Evaluation and comparison of multi-model prediction results.

Network model MAE MSE RMSE SIZE(M)
BP 1.6598 × 10–1 9.7461 × 10–3 8.6522 × 10–2 9.25
RNN 8.6579 × 10–2 6.6978 × 10–3 5.3659 × 10–2 12.78
CNN 6.4763 × 10–2 5.5972 × 10–3 4.1549 × 10–2 16.36
GRU 5.8215 × 10–2 4.2941 × 10–3 3.6426 × 10–2 15.59
BERT 4.6732 × 10–2 4.0568 × 10–3 2.9713 × 10–2 19.32
LSTM 4.2691 × 10–2 3.8542 × 10–3 2.5985 × 10–2 13.17

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

rorre
derau qs

nae
m

/

Training rounds

Figure 11. Variation of loss function values during model training.

3.2. Abnormal gait monitoring and performance analysis of lower limbs
When the user stands or assists walking with the walker robot, the depth camera monitors the trend of the
user’s lower-limb behavior, thus preventing the user from leaning forward, falling sideways, or falling.
A block diagram of the safety performance enhancement scheme of this study is shown in Fig. 12.

When users engage the mobility aid, deep vision technology is employed to extract point cloud data
for monitoring the pose of the user’s lower-limb joints. This involves employing an offline-trained angle
prediction model to analyze the angles of the lower-limb joints. Subsequently, prediction of the pose
angles is accomplished using decision boundaries based on abnormal gait trends. Initial monitoring
of abnormal walking trends is conducted, integrating the empirical trajectories of key points from a
dynamic model for the modal recognition of walking abnormalities. The system ultimately determines
whether there is an occurrence of abnormal gait trends. In the event of predicting a potential danger, the
mobility aid initiates an emergency brake to prevent any harm to the user. If no dangerous gait trends
are detected, the aid continues to assist the user in rehabilitation training.

The dynamic time programming algorithm judges the tendency for abnormal lower-limb movements
when the boundary conditions, monotonicity conditions, and continuity conditions are met, and the
optimal path is obtained as shown in Fig. 13.

From Eq. 25, when d ≤ r, the test sample is inside or on the boundary of the positive sample, which
is regarded as a normal sample; when d > r, the test sample is outside the boundary and is regarded as
an abnormal sample. Take the angle data of left knee joint as an example. Let the function be the model
training kernel function, establish the normal walking positive sample set, and take the normal lower-
limb attitude angle sampling experimental data as the total dataset, the window rule of online monitoring
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Table V. Detailed parameters and validation set accuracy of five subjects.

Gender Height (cm) Weight (kg) Age Repetitions Accuracy
Female 165.1 53.1 26 10 98.6%
Female 163.4 56.2 23 10 96.4%
Male 176.8 75.9 25 10 98.1%
Male 175.6 77.8 26 10 96.9%
Male 178.5 78.9 25 10 98.3%

Walking aid grip 
detection

Visual acquisition 
of lower limb data

analysis of lower limb 
posture angle

Lower limb posture 
prediction

abnormal gait trend 
detection

Predicting the occurrence 
of danger

emergency 
braking

robot action 
protection

Continue 
to use 

walking 
aids to 
assist 

walking

Use a 
walking 
aid after 
safety is 
ensured

Yes No

Figure 12. Safety performance improvement scheme.

is that the width is 40 frames and the step length is three frames, and 600 groups of continuous positive
training samples are obtained, and the realistic data of the real-time prediction model is compared with
the predicted data as shown in Fig. 14.

When training with the Gaussian kernel function, the parameter s needs to be tuned. It is found
through the experiment that the degree of fitting of the decision boundary is negatively correlated with
s, and the model has the best decision effect when s is 200. The training results are shown in Fig. 15.

As shown in Fig. 15(a), when s is set to 200, most training samples fall within the decision boundary
of 0.885, with only a small number of samples lying outside the boundary. This indicates that the kernel
function exhibits a good level of fit when s is 200, without displaying signs of overfitting. Additionally,
as illustrated in Fig. 15(b), the distribution of sample distances predominantly ranges between 0.84 and
0.89, suggesting that the decision boundary performs optimally at this range, thereby providing favorable
boundary conditions for subsequent prediction of lower-limb gait risks.

3.3. Abnormal gait trend monitoring results
Since the subjects are performing normal walking recovery training with lower-limb walking aids, when
the patients encounter an emergency during walking at a uniform speed suitable for them, the abnormal
gait trend monitoring will quickly monitor and judge the abnormality within the current gait cycle, as
shown in Fig. 16.

Figure 16(a) shows the test data and prediction data of an abnormal attitude angle of the left knee.
An exception occurs when it is about 2.5 s. The width of the feature sampling window is 500 ms and the
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Figure 13. The optimal path of DTW.

Figure 14. Comparison of attitude angle information of real-time prediction model using DTW.

step size is 60 ms. In Fig. 16(b), the horizontal axis is the sliding window sequence, the vertical axis is
the distance d between the current sample and the center of the decision model, and the red dotted line
represents the decision boundary r of the model. In the decision model, an anomaly is detected in the
34nd sampling window, and a continuous anomaly decision is made in the subsequent sampling window.
This experiment verifies the sensitivity of the real-time prediction model to abnormal gait and the good
real-time response ability of the single classification decision model in abnormal gait monitoring.

To further validate the real-time prediction model’s real-time and accuracy, a mixed sample was
created to evaluate the model. Ten time series posture angle data with a global time window of 2.5 s,
including the initial abnormal gait trend, were selected for testing, and the final results were 396 positive
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Figure 15. Decision boundary training results based on Gaussian kernel function: (a) Two-dimensional
decision boundary of training samples; (b) Sample distance distribution.

Figure 16. Online abnormal trend monitoring scheme.

samples and 199 negative samples. Decisions with five or more consecutive exceptions were specified
as valid decisions. The decision delay is the difference between the actual anomaly time point and the
model decision time point. A negative number indicates that anomalies can be predicted. The test results
are shown in Table 6. In order to further verify the real-time and accuracy of the real-time prediction
model, the remaining ten subjects were selected for data collection, and mixed samples were established
to evaluate the model.

From Table 6, it is clear that the real-time prediction model can accurately determine the abnormal-
ities of hip and knee posture angles; however, the probability of misclassification is higher for positive
samples from the lower-limb knee than the hip. The abnormal decision of the knee joint preceded that
of the hip joint, which indicated that the knee joint was better in real time. The reason for this is that the
range of motion of the knee joint posture angle is larger than that of the hip joint posture angle, so the
model is more resistant to interference and has better tracking ability.

To validate the model’s generalization ability, the remaining ten participants’ lower-limb depth vision
data were selected for prediction verification. These data from the ten participants were not included in
the training of the LSTM prediction model. Table 7 provides specific information and the accuracy of
the model validation for the ten participants.

From Table 7, it can be observed that the LSTM prediction model achieves an overall accuracy of
over 95%, with an average prediction accuracy of 96.33% across the ten participants. This indicates a
high level of predictive capability.
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Table VI. Anomaly monitoring model evaluation.

Positive Positive Negative Negative Average
Attitude sample sample sample sample abnormal
angle recognition confusion recognition confusion decision
category rate rate rate rate delay
qLh 91.2% 8.8% 96.3% 3.7% 20 ms
qRh 90.7% 9.3% 97.6% 2.4% 13 ms
qLk 88.8% 11.2% 98.2% 1.8% − 131 ms
qRk 87.5% 12.5% 97.5% 2.5% − 122 ms

Table VII. Detailed parameters and model prediction accuracy for ten subjects.

Gender Height (cm) Weight (kg) Age Repetitions Accuracy
Female 169.6 55.3 24 10 98.2%
Female 166.9 56.9 25 10 97.3%
Female 163.2 58.2 25 10 94.7%
Female 165.4 57.1 23 10 95.8%
Male 172.5 68.5 25 10 96.5%
Male 173.5 71.5 24 10 96.2%
Male 178.2 80.4 23 10 97.5%
Male 175.3 75.9 25 10 96.1%
Male 176.2 77.2 24 10 95.6%
Male 179.2 82.9 23 10 95.4%

Figure 17 depicts the actual results at two randomly selected time points in lower-limb prediction
using the LSTM prediction model. Figure 17(a) illustrates the lower-limb movements of the user while
employing the lower-limb assistive walker. Figure 17(b) depicts the number of point clouds in the lower
limbs at the same moment of walker usage. Figure 17(c) showcases the filtered lower-limb point cloud
data, where redundant information has been removed while still retaining essential lower-limb data.
Figure 17(d) demonstrates the real-time prediction of lower-limb actions based on the filtered lower-
limb point cloud data. The actual performance depicted in Fig. 17(d) indicates that the LSTM prediction
model possesses robust capabilities in forecasting lower-limb risky behaviors.

4. Discussion
The research findings indicate that the LSTM model can accurately predict test data within 0.2 s during
randomly selected gait cycles, showcasing its strong predictive speed capability. Compared to other
deep learning models, the LSTM model demonstrates higher prediction accuracy than BP and RNN
models. In comparison to the GRU model, the LSTM model outperforms in both prediction accuracy
and model size. Although the BERT model shows similar prediction accuracy to the LSTM model, it is
larger by 6.15M compared to the LSTM model. Therefore, the LSTM model exhibits the strongest overall
capability. As the training epochs of the LSTM model reach 150 rounds, the loss function tends to smooth
out, and the final model converges. In the LSTM model’s prediction validation set of 5 participants, the
average accuracy reaches 97.66%, confirming the reliability and effectiveness of the model.

Meanwhile, DTW allows for obtaining the optimal path for the four lower-limb joints. The optimal
path derived from DTW effectively reduces the time gap between reality and prediction, enabling the
training model to quickly identify abnormal behaviors and enhance the safety of pedestrians. The average
recognition rate for positive samples of the four lower-limb joints is 89.55%, with a tolerance of 3.7%.
For negative samples of the four lower-limb joints, the average recognition rate is 97.4%, with a tolerance
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Figure 17. Actual effect diagram of LSTM prediction of lower-limb behavior.

of 1.9%. These results indicate that the prediction model can accurately detect abnormal lower-limb
behaviors.

In the validation testing to assess the model’s generalization capability, the LSTM prediction model
achieved an overall accuracy of over 95% for the 10 subjects, with the highest accuracy reaching 98.2%.
The average prediction accuracy was 96.33%. Moreover, it demonstrated strong predictive capability
in practical applications. In conclusion, this real-time prediction model exhibits excellent real-time
performance and accuracy, making it suitable for rapid fall risk alerting.

A deficiency of this study is that, because the user needs rehabilitation training with a lower-limb
walker, this study predicts the abnormal gait in the same gait cycle when the user advances at a uniform
speed but does not predict the behavior of the user at different walking speeds. In terms of future work,
the experimental team and I will continue to conduct in-depth research to solve the problem of predicting
the abnormal lower-limb behavior of users under different gait cycles and variable speeds of walking.

5. Conclusion
This study proposed a prediction model of human lower-limb abnormal behavior based on 3D vision.
Firstly, a real-time lower-limb posture angle resolution method based on point cloud data was designed,
and the lower-limb information was extracted accurately and quickly using multilayer filters; secondly,
a deep learning model for simultaneous prediction of multiple posture angle falls was designed based
on the periodic characteristics of walking motion posture angles in the sagittal plane, and a method for
characterizing real-time walking motion states was proposed; finally, the real-time and accuracy of the
real-time prediction model was verified using mixed samples, and the prediction model was sufficient
to make accurate prediction of abnormal gait within 150 ms. In general, this study uses point cloud
data to extract the behavior characteristics of lower limbs and predict the dangerous behavior quickly
and accurately, which puts forward a new engineering technology method for improving the safety of a
lower-limb walking aid robot.

In future work, a human–machine coupled control system can be established based on this prediction
model to further improve the safety performance of the walking aid robot.
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