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Abstract

Let s be the sum-of-digits function in base 2, which returns the number of 1s in the base-
2 expansion of a nonnegative integer. For a nonnegative integer t , define the asymptotic
density

ct = lim
N→∞

1

N

∣∣{0 ≤ n < N : s(n + t) ≥ s(n)}∣∣.
T. W. Cusick conjectured that ct > 1/2. We have the elementary bound 0 < ct < 1; however,
no bound of the form 0 < α ≤ ct or ct ≤ β < 1, valid for all t , is known. In this paper, we
prove that ct > 1/2 − ε as soon as t contains sufficiently many blocks of 1s in its binary
expansion. In the proof, we provide estimates for the moments of an associated probability
distribution; this extends the study initiated by Emme and Prikhod’ko (2017) and pursued
by Emme and Hubert (2018).

2020 Mathematics Subject Classification: 11A63, 05A20 (Primary);
05A16, 11T71 (Secondary)

1. Introduction and main result

It is an elementary problem of deceptive simplicity to study the behaviour of the base-q
digits of an integer under addition of a constant. For example, it is clear that addition of the
constant 1 to an even integer in base 2 replaces the right-most digit 0 by 1, and addition of 1
to an odd integer replaces the right-most block of 1s by a block of 0s and the digit 0 directly
adjacent to this block by 1. Considerations of this kind can be carried out for each given
constant t in place of 1, which gives a complete description of the digits of n and n + t .

However, due to carry propagation the situation quickly turns into an unwieldy case dis-
tinction for growing t , and a general structural principle describing these cases is out of sight.
We therefore consider a simplification of this problem (which is still difficult) by studying a
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parameter associated to the binary expansion: the sum of digits s(n) of n in base 2, which
is just the number of 1s occurring in the binary expansion of n. More precisely, we are
interested in the quantities

δ( j, t) = dens{n ∈N : s(n + t) − s(n) = j},
where dens A is the asymptotic density of a set A ⊆N, which exists in our case. (In fact,
the set in question is a finite union of arithmetic progressions, see Bésineau [5] or the
proof following (1·2).) Cusick’s conjecture on the binary sum-of-digits function concerns
the values

ct = dens{n ∈N : s(n + t) ≥ s(n)} = δ(0, t) + δ(1, t) + · · ·
and states that for all t ≥ 0,

ct > 1/2. (1·1)

This conjecture was presented to the author as “question by Cusick” in 2011, by
J. F. Morgenbesser; Cusick, in a private communication (2015) upgraded his question to
“conjecture”. This easy-to-state elementary problem appears to be difficult, despite its appar-
ent simpleness. Moreover, we think that it is not an artificial conjecture. In our opinion, this
combination of characteristics constitutes the beauty of this problem. The proof below uses
interesting techniques; this highlights the complex structure of the problem and further adds
to the interest of this question.

We note the partial results [8, 10, 11, 12, 20] on Cusick’s conjecture, among which we
find an almost-all result by Drmota, Kauers, and the author [8] and a central limit-type result
by Emme and Hubert [10].

Cusick formulated his conjecture while he was working on the related Tu–Deng conjec-
ture [22, 23], which is relevant in cryptography: assume that k is a positive integer and
t ∈ {1, . . . , 2k − 2}. Then this conjecture states that∣∣∣{(a, b) ∈ {0, . . . , 2k − 2

}2 : a + b ≡ t mod 2k − 1, s(a) + s(b) < k
}∣∣∣≤ 2k−1.

Partial results are known, see [6, 7, 14, 15, 21, 22], but the full conjecture is still open.
Besides an almost-all result on Tu and Deng’s conjecture [21], Wallner and the author proved
in that paper that this conjecture in fact implies Cusick’s conjecture.

We return to Cusick’s conjecture and begin with the case t = 1. From the introductory
observation we obtain s(n + 1) − s(n) = 1 − ν2(n + 1), where ν2(m) = max{k ≥ 0 : 2k | m},
which implies that δ(·, 1) describes a geometric distribution with mean 0: we have

δ( j, 1) =
{

0, j > 1;
2 j−2, j ≤ 1,

and therefore c1 = 3/4. In other words, the sum of digits of n + 1 is smaller than the sum
of digits of n if and only if n ≡ 3 mod 4, since only in this case we lose at least one 1 by
replacing the rightmost block 01k by 10k in the binary expansion.

Next, we consider the general case t ∈N. It follows from a recurrence due to Bésineau [5]
that the values δ( j, t) satisfy the following recurrence for all k ∈Z and t ≥ 0:

δ( j, 2t) = δ( j, t),

δ( j, 2t + 1) = 1

2
δ( j − 1, t) + 1

2
δ( j + 1, t + 1).

(1·2)
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The proof of the first identity is as follows: we have the disjoint union

{n ∈N : s(n + 2t) − s(n) = k} = 2{n ∈N : s(2n + 2t) − s(2n) = k}
∪ (2{n ∈N : s(2n + 1 + 2t) − s(2n + 1) = k} + 1) ,

and using the identities s(2n) = s(n) and s(2n + 1) = s(n) + 1, the first line of the recur-
rence follows. In an analogous way, the second line can be proved. This proof also shows
inductively that the sets defining δ( j, t) are finite unions of arithmetic progressions.

Using the recurrence (1·2), we verified (1·1) by numerical computation for all t < 230,
yielding the minimal value 18169025645289/245 = 0.516394 . . . at the position t = (111
101111011110111101111011111)2 and at the position t R obtained by reversing the base-2
expansion of t . (By a result of Morgenbesser and the author [16] we always have δ( j, t) =
δ( j, t R).)

Using a generating function approach and Chebyshev’s inequality, Drmota, Kauers and
the author [8] obtained an almost-all result for Cusick’s conjecture: for all ε > 0, we have

|{t < T : 1/2 < ct < 1/2 + ε}| = T −O(T/ log T ).

Moreover, the probability distribution defined by μt : j �→ δ( j, t) for given t was stud-
ied by Emme and Hubert [10, 11], continuing work by Emme and Prikhod’ko [12].
In [10], Emme and Hubert considered the moments of μt and proved a central limit law.
We introduce the notation aX (λ) =∑

0≤i≤λ Xi 2i for X ∈ {0, 1}N and λ ≥ 0, and we write

�(x) = 1/
√

2π
∫ x

−∞ e−x2/2 dx . Then their result states the following. For almost all X with
respect to the balanced Bernoulli measure, we have

lim
λ→∞ dens

{
n ∈N : s(n + aX (λ)) − s(n)√

λ/2
≤ x

}
= �(x) for all x ∈R. (1·3)

Recall that this measure is the unique probability measure on the Borel σ -algebra BX such
that for each (ω1, . . . , ωk) ∈ {0, 1}k , the cylinder set [ω1, . . . , ωk] has measure 2−k .

In particular, excluding the negligible case that s(n + aX (k)) − s(n) = 0 and considering
x = 0, this statement implies that

lim
k→∞

caX (k) = 1/2 (1·4)

almost surely. Note that this latter result does not follow directly from the Drmota–Kauers–
Spiegelhofer result [8], since our error term is not strong enough. On the other hand, the
theorem by Emme and Hubert does not give us a statement of the form ct > 1/2 as in [8].

From (1·3) we obtain the result that ct > 1/2 − ε for almost all t with respect to asymp-
totic density. The proof of this fact is by contradiction: assume that ct ≤ 1/2 − ε for at least
2λ+1δ many t < 2λ+1 and infinitely many λ, where δ > 0. Define

Ak = {X ∈ {0, 1}N : caX (λ) > 1/2 − ε for all λ ≥ k}.
By the almost sure convergence to 1/2 and since the sequence of sets Ak is ascending, we
have μ(AN ) > 1 − δ for some N . Then for all X ∈ AN and λ > N we have caX (λ) > 1/2 −
ε. By definition of the balanced Bernoulli measure, there exist at least (1 − δ)2λ+1 many
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t < 2λ+1 such that ct > 1/2 − ε. This is a contradiction to our assumption, by which there
exists λ > N such that ct ≤ 1/2 − ε for at least 2λ+1δ many t < 2λ+1.

While this result clearly also follows from the theorem by Drmota, Kauers and the author,
it is this particular formulation that we want to sharpen. Our main theorem gives a lower
bound for Cusick’s conjecture for all t not contained in a very small exceptional set having
a simple structure. In this theorem and in the following, we will be concerned with blocks
of 0s or 1s in the binary expansion of t ; by this, we will always mean contiguous blocks of
maximal size, where we omit the lowest block of 0s for even integers t . In particular, if we
have the binary expansion t = (1m00n01m10n1 · · · 1m�−10n�−11m�0n� )2 with positive integers
mi and ni (with the exception of n�, which may be zero), then t contains � blocks of 0s and
� + 1 blocks of 1s.

Our main result is the following lower bound for ct for many values t .

THEOREM 1·1. For all ε > 0 there exists an L ≥ 0 such that the following holds: if the
binary expansion of t ∈N contains at least L blocks of 1s, then

ct > 1/2 − ε.

In particular, for all ε > 0 there exist δ > 0 and C > 0 such that for T ≥ 2,

|{0 ≤ t < T : ct ≤ 1/2 − ε}| ≤ C logδ T .

The “in particular”-part results from counting the number of integers with less than L
blocks of 1s in their binary expansion. A rough upper bound is given as follows: up to 2λ,
there are not more than λ2L−2 many such natural numbers, since the length of each block of
1s as well as the position of the least significant 1 in each block is bounded by λ.

The error term logδ T should be compared to Drmota–Kauers–Spiegelhofer’s [8] much
weaker error term T/ log T . Certainly, the statement ct > 1/2 − ε in Theorem 1·1 is weaker
than the bound ct > 1/2 in [8], but the constant 1/2 is optimal: for all ε > 0, we have ct <

1/2 + ε for almost all t with respect to asymptotic density (this follows, as above, from [10],
or from [8, theorem 1]).

From Theorem 1·1 we also obtain (1·4) almost surely, since the measure of the set of
X ∈ {0, 1}N having only finitely many blocks of 1s is zero.

Moreover, we note that Theorem 1·1 significantly sharpens the main theorem in the recent
paper [20] by the author: in that paper, it was proved that ct + ct ′ > 1 − ε if t contains many
blocks of 1s; here t ′ = 3 · 2λ − t , where 2λ ≤ t < 2λ+1. The new Theorem 1·1 gives a bound
for individual values ct .

Finally, we note that the proof presented below allows to explicitly compute a bound
L = L(ε) for Theorem 1·1. This is the case since all of the implied constants appearing in
the proof are effective.

Notation. In this paper, 0 ∈N. For an integer n > 0, we use the notation ν2(n) to denote
the largest k such that 2k | n. We will use Big O notation, employing the symbol O. For an
integer t ≥ 1, the number of blocks in t is the number of blocks of 1s in the binary expansion
of t plus the number of blocks of 0s in the proper binary expansion of t/2ν2(t). Clearly, if
� is the number of blocks of 1s in the binary expansion of t , then 2� − 1 is the number of
blocks in t . We also define the number of blocks in 0 to be 0. The variable r is used to denote
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the number of blocks in t . We let e(x) denote e2π i x for real x , and ‖x‖ = mink∈Z|x − k| is
the distance to the nearest integer. For convenience, we define the maximum over an empty
index set to be 0.

The remainder of this paper is dedicated to the proof of Theorem 1·1.

2. Proof of the main theorem

The proof consists of several steps. We consider the characteristic function γt of a certain
probability distribution. Using the link between γt and ct expressed by (2·3), we see that
we have to find upper bounds for Im γt . We do so in two stages: for ϑ not close to Z, we
estimate the absolute value of γt(ϑ) using a matrix identity from [16]. For ϑ close to Z, we
estimate the imaginary part of γt(ϑ) using the link (2·16) to the moments mk(t). The prin-
cipal part of the proof is concerned with finding upper bounds for these moments (captured
in Proposition 2·6), thus extending the study performed by Emme and Prikhod’ko [12], and
Emme and Hubert [10, 11].

2·1. Relating ct to a characteristic function

For ϑ ∈R and t ≥ 0, we define

γt(ϑ) = lim
N→∞

1

N

∑
0≤n<N

e
(
ϑs(n + t) − ϑs(n)

)
.

These limits exist, see Bésineau [5], and we have

γt(ϑ) =
∑

−∞≤ j<m

δ( j, t) e( jϑ) (2·1)

for some m (which can be shown by induction easily). We have

δ( j, t) =
∫ 1

0
γt(ϑ) e(−ϑ j) dϑ (2·2)

(see [16]); using these identities and a geometric sum, we will prove the following identity.

PROPOSITION 2·1. Let t ≥ 0. We have

ct = 1

2
+ δ(0, t)

2
+ 1

2

∫ 1

0
Im γt(ϑ) cot(πϑ) dϑ, (2·3)

where the integrand is a bounded function.

In the proof of this statement, we are also going to use the following fact.

LEMMA 2·2. For k ≥ 1 we have∫ 1

0
sin(2πkϑ) cot(πϑ) dϑ = 1, (2·4)

where the integrand is bounded on (0, 1).
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Proof. For k ≥ 1 and ϑ ∈ (0, 1), we have

sin(2πkϑ) cot(πϑ)

= sin
(
2π(k − 1)ϑ

)
cos(2πϑ) cot(πϑ) + cos

(
2π(k − 1)ϑ

)
sin(2πϑ) cot(πϑ)

= sin
(
2π(k − 1)ϑ

)(
1 − 2 sin2(πϑ)

)cos(πϑ)

sin(πϑ)

+ 2 cos
(
2π(k − 1)ϑ

)
sin(πϑ) cos(πϑ)

cos(πϑ)

sin(πϑ)

= sin
(
2π(k − 1)ϑ

)
cot(πϑ)

− sin
(
2π(k − 1)ϑ

)
sin(2πϑ) + cos

(
2π(k − 1)ϑ

)(
cos(2πϑ) + 1

)
= sin

(
2π(k − 1)ϑ

)
cot(πϑ) + cos(2πkϑ) + cos

(
2π(k − 1)ϑ

)
.

Assume first that k = 1. The first summand is identically zero on (0, 1), the integral from
0 to 1 of the second summand equals zero, and the third summand is identically 1. For k ≥ 2
the first summand is bounded by the induction hypothesis and its contribution to the inte-
gral is 1. The other summands contribute nothing to the integral. The statement is therefore
proved.

Proof of Proposition 2·1. Let m be so large that (2·1) holds. Necessarily we have δ( j, t) = 0
for j ≥ m. It follows from (2·2) that

ct =
∑

0≤ j<m

δ( j, t) =
∫ 1

0
γt(ϑ)

∑
0≤ j<m

e(− jϑ) dϑ =
∫ 1

0
Re γt(ϑ)

1 − e(−mϑ)

1 − e(−ϑ)
dϑ; (2·5)

we have the formulas

Re
1

1 − e(−ϑ)
= 1

2
and Im

1

1 − e(−ϑ)
= 1

2
cot(−πϑ). (2·6)

Since δ( j, t) =O (
2−| j |) for j → ∞ (where the implied constant depends on t), we

have Im γt(ϑ) =∑
k∈Z δ( j, t) sin(2πkϑ) =O(ϑ) for ϑ → 0; also, cot(−πϑ) =O(1/ϑ).

Equations (2·5) and (2·6) imply

ct =
∫ 1

0
Re

γt(ϑ)

1 − e(−ϑ)
− Re

γt(ϑ) e(−mϑ)

1 − e(−ϑ)
dϑ

=
∫ 1

0
Re

γt(ϑ)

1 − e(−ϑ)
− 1

2
Re
(
γt(ϑ) e(−mϑ)

)
+ 1

2
Im
(
γt(ϑ) e(−mϑ)

)
cot(−πϑ) dϑ,

(2·7)

where all occurring summands are bounded functions. Since
∑

j<m δ( j, t) = 1, it follows
that

γt(ϑ) e(−mϑ) =
∑
�≥1

a� e(−�ϑ)
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for some nonnegative a� such that
∑

�≥1 a� = 1. Since m is large enough, the integral over
the second summand in the second line of (2·7) is zero. We obtain

ct =
∫ 1

0
Re

γt(ϑ)

1 − e(−ϑ)
+ 1

2

∑
�≥1

a� sin(−2π�ϑ) cot(−πϑ) dϑ.

The partial sums
∑

1≤�<L a� sin(−2π�ϑ) cot(−πϑ) dϑ are bounded, uniformly in L , by
an integrable function on [0, 1], therefore the statement follows by interchanging the
summation and the integral, an application of the identity (2·4), and another application
of (2·6).

2·2. Moments of μt

Define

m̃k(t) =
∑
j∈Z

δ( j, t) j k .

The moment generating function is

Mt(x) =
∑
k≥0

m̃k(t)

k! xk .

The moments exist and the moment generating function is convergent for t = 1 and |x | <
log 2; this is just a geometric distribution and we obtain

M1(x) = ex

2 − e−x
= 1 + x2 − x3 + 19

12
x4 − · · · (2·8)

(see entry A052841 in Sloane’s OEIS1 ). By basic analytic combinatorics [13], we obtain

mk(t) ∼ c(log 2)−k (2·9)

for some absolute c, as k → ∞.
For t ≥ 2, we note that the recurrence relation (1·2) implies that δ( j, t) = c2 j for

j < −λ, where 2λ ≤ t < 2λ+1. This implies that m̃k(t) exists for all k and |m̃k(t)| �
λk + m̃k(1). Considering also the series for the exponential function and the asymptotic
estimate (2·9), we see that the series for Mt(x) is convergent as long as |x | < log 2.

From (1·2) we wish to derive a recurrence for the moment generating functions. We define

mk(t) = m̃k(t)

k! ,

such that Mk(x) =∑
k≥0 mk(t)xk .

LEMMA 2·3. Assume that |x | < log 2 and t ≥ 0. We have

M2t(x) = Mt(x) and

M2t+1(x) = ex

2
Mt(x) + e−x

2
Mt+1(x).

(2·10)

1http://oeis.org
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In particular,

mk(2t) = mk(t) and

mk(2t + 1) = 1

2

∑
0≤�≤k

1

�!
(
mk−�(t) + (−1)�mk−�(t + 1)

)
.

(2·11)

Note that setting t = 0, we obtain (2·8).

Proof. The first line of (2·10) is trivial since δ( j, 2t) = δ( j, t). Concerning the second line,
we have

Mt(x) =
∑
j∈Z

δ( j, t)e jx ,

therefore by (1·2)

M2t+1(x) =
∑
j∈Z

δ( j, 2t + 1)e jx = 1

2

∑
j∈Z

δ( j − 1, t)e jx + 1

2

∑
j∈Z

δ( j + 1, t + 1)e jx

= ex

2
Mt(x) + e−x

2
Mt+1(x)

after a shift of indices. The “in particular”-part follows from expanding Cauchy products.

The first few moments are as follows: m0(t) = 1, m1(t) = 0, and m2(t) satisfies the
recurrence

m2(0) = 0, m2(1) = 1, m2(2t) = m2(t), m2(2t + 1) = m2(t) + m2(t + 1) + 1

2
.

This particular sequence also arises in a different context: it is the star-discrepancy of the
van der Corput sequence in base 2 [9, 19]. It is known that

m2(t) ≤ log t

3 log 2
+ 1 (2·12)

for all t ≥ 1 (see Bejian and Faure [4]). The following interesting exact representation of
m2(t) follows from Proı̆nov and Atanassov [17], and Beck [3] (as was pointed out to the
author by the anonymous referee of the article [19]); see the remark after [19, corollary 2·5]:
if t =∑

0≤i≤ν εi 2i with εi ∈ {0, 1}, we have

m2(t) =
∑

0≤i≤ν

εi −
∑

0≤i< j≤ν

εiε j 2
i− j . (2·13)

At this point we wish to emphasise the usefulness of the moments as opposed to δ( j, t). In
order to compute δ( j, t), we need to consider values δ( j + �, t ′) for large � (depending on
the number of 1s and 0s in the binary expansion of t/2ν2(t)); for computing mk(t) we only
need to consider moments mi (t ′) for i ≤ k. In particular, mk is a 2-regular sequence [1],
while this is not so clear and perhaps wrong for δ( j, ·).

Using Chebyshev’s inequality and the bound (2·12) for m2(t) we can already find a
nontrivial bound related to Cusick’s conjecture: with σ =√

(log t)/(3 log 2) + 1 we have
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| j |≤Kσ δ( j, t) ≥ 1 − 1/K 2. In particular, choosing K close to

√
2, we obtain∑

j≥−√
log t−1

δ( j, t) ≥
∑

j≥−√
log t+2

δ( j, t) > 1/2 (2·14)

for t ≥ 1.
We are going to establish recurrences for the values

ak(t) = mk(t) + mk(t + 1),

bk(t) = mk(t) − mk(t + 1),

and the corresponding generating functions

Ft(x) =
∑
k≥0

ak(t)xk and Gt(x) =
∑
k≥0

bk(t)xk .

By (2·11), we have

2ak(2t) = 2mk(t) + mk(t) + mk(t + 1) +
∑

2≤�≤k
2|�

1

�!ak−�(t) +
∑

1≤�≤k
2��

1

�!bk−�(t)

= ak(t) +
∑

0≤�≤k
2|�

1

�!ak−�(t) + bk(t) +
∑

1≤�≤k
2��

1

�!bk−�(t)

and

2bk(2t) = 2mk(t) − mk(t) − mk(t + 1) −
∑

2≤�≤k
2|�

1

�!ak−�(t) −
∑

1≤�≤k
2��

1

�!bk−�(t)

= ak(t) −
∑

0≤�≤k
2|�

1

�!ak−�(t) + bk(t) −
∑

1≤�≤k
2��

1

�!bk−�(t).

We want to write this as a matrix recurrence; we define

C(x) = cosh(x) = 1

2

(
ex + e−x

)=
∑
j≥0

x2 j

(2 j)! ;

S(x) = sinh(x) = 1

2

(
ex − e−x

)=
∑
j≥0

x2 j+1

(2 j + 1)! .

We are concerned with the matrix

M0 = 1

2
(A0 + B0),

where

A0 =
(

C(x) S(x)

−C(x) −S(x)

)
and B0 =

(
1 1
1 1

)
.
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We also study appending 1 to the binary expansion.

2ak(2t + 1) = mk(t) + mk(t + 1) + 2mk(t + 1) +
∑

2≤�≤k
2|�

1

�!ak−�(t) +
∑

1≤�≤k
2��

1

�!bk−�(t)

= ak(t) +
∑

0≤�≤k
2|�

1

�!ak−�(t) − bk(t) +
∑

1≤�≤k
2��

1

�!bk−�(t)

and

2bk(2t + 1) = mk(t) + mk(t + 1) − 2mk(t + 1) +
∑

2≤�≤k
2|�

1

�!ak−�(t) +
∑

1≤�≤k
2��

1

�!bk−�(t)

= −ak(t) +
∑

0≤�≤k
2|�

1

�!ak−�(t) + bk(t) +
∑

1≤�≤k
2��

1

�!bk−�(t).

Clearly, we are interested in the matrix

M1 = 1

2
(A1 + B1),

where

A1 =
(

C(x) S(x)

C(x) S(x)

)
and B1 =

(
1 −1

−1 1

)
.

Using Cauchy products and the recurrence formula (2·11), we see that(
F2t(x)

G2t(x)

)
= M0

(
Ft(x)

Gt(x)

)
and

(
F2t+1(x)

G2t+1(x)

)
= M1

(
Ft(x)

Gt(x)

)
. (2·15)

Note that these identities are also valid for t = 0 (since (2·11) is also valid for t = 0).

2·3. Estimating the characteristic function using moments

For ϑ ≤ ϑ0, where ϑ0 is defined later, we will use a representation of Im γt(ϑ) in terms of
moments. For this, we use Taylor approximation of the sine function and (2·1): for all j ∈Z

there exists ξ j between 0 and 2πϑ such that

Im γt(ϑ) = Im
∑
j∈Z

δ( j, t) e( jϑ) =
∑
j∈Z

δ( j, t) sin(2π jϑ)

=
∑
j∈Z

δ( j, t)
∑

0≤k<K

(−1)k

(2k + 1)! (2πϑ)2k+1 j2k+1 +
∑
j∈Z

δ( j, t)(−1)K

(2K + 1)! j2K+1ξ 2K+1
j

and therefore

|Im γt(ϑ)| ≤
∑

0≤k<K

(2πϑ)2k+1 |m2k+1(t)| + (2πϑ)2K+1

(2K + 1)!
∑
j∈Z

δ( j, t)| j |2K+1.
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Applying the Cauchy–Schwarz inequality to the sum∑
j∈Z

δ( j, t)| j |2K+1 =
∑
j∈Z

√
δ( j, t)| j |K

√
δ( j, t)| j |K+1,

we obtain ∣∣Im γt(ϑ)
∣∣≤ ∑

0≤k<K

(2πϑ)2k+1 |m2k+1(t)|

+ (2πϑ)2K+1

√
(2K )!(2K + 2)!

(2K + 1)! m2K (t)1/2m2K+2(t)
1/2.

(2·16)

The moments m2K and m2K+2 will give us a factor (K !(K + 1)!)1/2 ≥ K ! in the denominator,
which we will see later; this gain will enable us to prove that for all ε > 0, we have ct >

1/2 − ε for most t (the exceptional set depending on ε).

2·4. Upper bounds for the moments of μt

We wish to study repeated application of the recurrence (2·11), corresponding to
appending a block of 0s or 1s to the binary expansion of t .

Using an elementary proof by induction, we obtain

Am
0 = (

C(x) − S(x)
)m−1

A0 = e−(m−1)x A0

and
Bm

0 = 2m−1 B0

for m ≥ 1. Moreover, B0 A0 = (
0 0
0 0

)
and A0 B0 = (

C(x) + S(x)
)
D0 = ex D0, where D0 =(

1 1−1 −1

)
. Appending a block of 0s of length m corresponds to the matrix power Mm

0 .
Noting that A0 and B0 do not commute, we consider all ordered products of A0 and B0 of

length m0; since B0 A0 vanishes, we are only interested in the products Am0−�
0 B�

0 . This yields

2m0 Mm0
0 =

∑
0≤�≤m0

Am0−�
0 B�

0 = e−(m0−1)x A0 + 2m0−1 B0 +
∑

1≤�≤m0−1

Am1−�
0 B�

0 .

We have ∑
1≤�≤m1−1

Am0−�
0 B�

0 =
∑

1≤�≤m0−1

e−(m0−�−1)x A02�−1 B0

= e(3−m0)x D0

∑
0≤�≤m1−2

(2ex)
� = ex 2m0−1 − e(1−m0)x

2 − e−x
D0,

which is also valid for m = 1, and therefore

2Mm0
0 =

(
e−x

2

)m0−1

A0 + B0 + ex

2 − e−x

(
1 −

(
e−x

2

)m0−1)
D0. (2·17)

Also, we study appending a block of 1s. By induction, we obtain

Am
1 = (

C(x) + S(x)
)m−1

A1 = e(m−1)x A1

and

Bm
1 = 2m−1 B1
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for m ≥ 1. Moreover, B1 A1 = (
0 0
0 0

)
and A1 B1 = (

C(x) − S(x)
)
D1 = e−x D1, where D1 =(

1 −1
1 −1

)
. Appending a block of 1s of length m corresponds to the matrix power Mm

1 . Again,
the matrices A1 and B1 do not commute, but B1 A1 vanishes. This yields

2m1 Mm1
1 =

∑
0≤�≤m1

Am1−�
1 B�

1 = e(m1−1)x A1 + 2m1−1 B1 +
∑

1≤�≤m1−1

Am1−�
1 B�

1 .

We have ∑
1≤�≤m1−1

Am−�
1 B�

1 =
∑

1≤�≤m1−1

e(m1−�−1)x A12�−1 B1

= e(m1−3)x D1

∑
0≤�≤m1−2

(
2

ex

)�

= 1

ex

2m1−1 − e(m1−1)x

2 − ex
D1,

which is also valid for m = 1, and therefore

2Mm1
1 =

(
ex

2

)m1−1

A1 + B1 + e−x

2 − ex

(
1 −

(
ex

2

)m1−1)
D1. (2·18)

We are interested in the entries of these matrix powers; they are generating functions in
the variable x , convergent in the whole of C, and we consider their coefficients. First, we
prove a statement on the low powers of x .

LEMMA 2·4. Assume that m ≥ 1. Let

Mm
0 =

(
a0(x) b0(x)

c0(x) d0(x)

)
.

Then as x → 0,

a0(x) = 1 + 2m − 1

2m+1
x2 +O(x3); b0(x) = 2m − 1

2m
+O(x);

c0(x) = −2m − 1

2m+1
x2 +O(x3); d0(x) = 1

2m
+O(x).

(2·19)

Let

Mm
1 =

(
a1(x) b1(x)

c1(x) d1(x)

)
.

Then

a1(x) = 1 + 2m − 1

2m+1
x2 +O(x3); b1(x) = −2m − 1

2m
+O(x);

c1(x) = 2m − 1

2m+1
x2 +O(x3); d1(x) = 1

2m
+O(x).

(2·20)

Proof. The proof of this statement is easy, using (2·17) and (2·18), and the expansions
of (e±x)m , e±x/(2 − e∓x), C(x), and S(x). We leave the details of this straightforward
calculation to the reader.
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We also prove bounds for the error terms occurring in Lemma 2·4. That is, we need
upper bounds for the coefficients [xs] ai(x) and [xs] ci(x) for s ≥ 3, and for the coefficients
[xs] bi (x) and [xs] di (x) for s ≥ 1.

LEMMA 2·5. Let f ∈ {a0, b0, c0, d0, a1, b1, c1, d1}. Then for k ≥ 1,

[
xk
]
f(x) ≤ 2

(log 2)k
.

Proof. We first note that

[
xk
]
(ex/2)

m = mk

2mk! .

This function in m attains its maximum at m = k/ log 2, yielding

[
xk
]
(ex/2)

m ≤
(

k

e

)k 1

k!
1

(log 2)k
≤ 1√

2πk

1

(log 2)k
,

using Robbins [18]. Also, the third summands in (2·17) and (2·18) can be estimated by
resorting to an asymptotic formula for the Fubini numbers (the coefficients of the exponen-
tial generating function for 1/(2 − ex)). Such an estimate follows easily from basic analytic
combinatorics [13]: as k → ∞, we have[

xk
] 1

2 − ex
= 1

2(log 2)k+1
(1 + o(1)).

Taking all singularities of 1/(2 − ex) into account, we obtain the exact formula [2]

[
xk
] 1

2 − ex
= 1

2

∞∑
n=−∞

(
log(2) + 2π in

)−k−1
, (2·21)

valid for k ≥ 1. The contribution of the terms |k| ≥ 1 can be estimated using an integral: for
n ≥ 1 we have ∑

k≥1

k−n−1 ≤ 1 +
∫ ∞

1
x−n−1 dx = 1 + 1

n
≤ 2.

Therefore [
xk
] 1

2 − ex
≤ 1

2(log 2)k+1
+ 2

(2π)k+1
≤ 1

(log 2)k
(2·22)

for k ≥ 1, the outer estimate also being valid for k = 0.
For the estimation of coefficients of Mm

i , we are also interested in partial sums. We show
the statements for M1. The case M0 can be obtained replacing ±x by ∓x , noting that for
a generating function H(x), the generating functions H(x) and H(−x) differ only by the
sign of their respective coefficients. We first show that k �→ [

xk
]

1/(2 − ex) is nondecreas-
ing, using (2·21). Passing from k to k + 1, the summand in (2·21) corresponding to n = 0
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increases by a quantity bounded below by 0.6. The other terms, in total, change by less, as
we show now. For an integer n ≥ 1, we have∣∣∣(log 2 + 2π in

)−k−2 − (
log 2 + 2π in

)−k−1
∣∣∣≤ ∣∣(log 2 + 2π in

)−k−1∣∣∣∣(log 2 + 2π in
)−1 − 1

∣∣
≤ 2 · (6n)−k−1,

and since ζ(2) = π2/6, it is clear that the total contribution of n �= 0 is bounded above by 0.6.
Also, we have [x1]1/(2 − ex) = [x0]1/(2 − ex) = 1, and therefore monotonicity for k ≥ 0
follows.

Next, this monotonicity implies that
[
xk
]

e−x/(2 − ex) is nonnegative and bounded by[
xk
]

1/(2 − ex): expanding the Cauchy product e−x · (2 − ex)−1, we see that the coefficients
are given by an alternating sum of nonincreasing values, which immediately implies the
claim.

Using this nonnegativity property, and also the fact that ex has nonnegative coefficients,
we obtain∣∣∣∣∣[xk

] e−x

2 − ex

(
1 −

(
ex

2

)m0−1)∣∣∣∣∣≤ [xk
] e−x

2 − ex
≤ [xk

] 1

2 − ex
≤ 1

(log 2)k
.

Moreover, since C has nonnegative coefficients bounded by the coefficients of ex , we have∣∣[xk
]
(ex/2)

m0−1 C(x)
∣∣≤ 2

[
xk
]
(ex/2)

m0 ≤ 2√
2πk

1

(log 2)k
.

The same is true for S in place of C . It follows that the coefficients of the entries of Mm
0 and

Mm
1 are bounded by

1

2
+ 1√

2πk(log 2)k
+ 1

2(log 2)k
≤ 2

(log 2)k

for k ≥ 1. This finishes the proof of Lemma 2·5.

In particular, using (2·8), it follows from this proof that

ak(0) ≤ (log 2)−k and |bk(0)| ≤ (log 2)−k for k ≥ 1. (2·23)

We are now prepared to prove upper bounds for the moments mk(t).

PROPOSITION 2·6. Set Ak = 2 · (3/2)k−1/k! for k ≥ 1. There exist constants Bk, Ck, and Ek

(for k ≥ 1) and Dk (for k ≥ 2) such that for all r ≥ 1, and all t ≥ 1 having r blocks we have:

k = 0 k = 1 k ≥ 2

|a0(t)| = 2; |a2(t)| ≤ A1r + B1; |a2k(t)| ≤ Akrk + Bkrk−1;
|a1(t)| = 0; |a3(t)| ≤ C1r; |a2k+1(t)| ≤ Ckrk;
|b0(t)| = 0; |b2(t)| ≤ 1; |b2k(t)| ≤ Ak−1rk−1 + Dkrk−2;
|b1(t)| = 0; |b3(t)| ≤ E1; |b2k+1(t)| ≤ Ekrk−1.

Proof. We proceed by induction on k, using Lemmas 2·4 and 2·5. Clearly, the statement is
true for k = 0, since m0(t) = 1 and m1(t) = 0 for all t ≥ 0.
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We begin with the treatment of the even moments. The first step is to verify the following
identities for the case k = 1:

a2(2
mt) = a2(t) + 2m − 1

2m
+ 2m − 1

2m
b2(t);

b2(2mt) = − 2m − 1

2m
+ 1

2m
b2(t);

a2(2mt + 2m − 1) = a2(t) + 2m − 1

2m
− 2m − 1

2m
b2(t);

b2(2mt + 2m − 1) = 2m − 1

2m
+ 1

2m
b2(t).

(2·24)

In the induction step, we will make use of the following identities, valid for k ≥ 2: we have

a2k(2
mt) = a2k(t) + 2m − 1

2m+1
a2k−2(t) + 2m − 1

2m
b2k(t) + O(rk−2);

b2k(2mt) = − 2m − 1

2m+1
a2k−2(t) + 1

2m
b2k(t) + O(rk−2);

a2k(2mt + 2m − 1) = a2k(t) + 2m − 1

2m+1
a2k−2(t) − 2m − 1

2m
b2k(t) + O(rk−2);

b2k(2mt + 2m − 1) = 2m − 1

2m+1
a2k−2(t) + 1

2m
b2k(t) + O(rk−2),

(2·25)

where the implied constants only depend on k. It is notable that only even moments are
involved in these identities!

Proof of (2·24) and (2·25). We begin with the first and third lines of (2·24) and (2·25).
Appending a block of 0s or 1s of length m to t , we obtain t ′; by (2·15) we have(

Ft ′(x)

Gt ′(x)

)
= Mm

i

(
Ft(x)

Gt(x)

)
,

where i ∈ {0, 1}. Using Lemma 2·4 and expanding Cauchy products, we obtain

a2k(t
′) = a2k(t) + 2m − 1

2m+1
a2k−2 +

∑
3≤�≤2k

a2k−�(t)
[
x�
]
a0(x)

± 2m − 1

2m
b2k(t) +

∑
1≤�≤2k

b2k−�(t)
[
x�
]
b0(x).

(2·26)

Here, the “+”-part corresponds to appending a block of 0s and the “−”-part to appending a
block of 1s. . Clearly, for k = 1 we have∑

3≤�≤2k

a2k−�(t)
[
x�
]
a0(x) =

∑
1≤�≤2k

b2k−�(t)
[
x�
]
b0(x) = 0,

which implies the statements concerning a2 in (2·24).
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Inserting the estimates for the coefficients of Mm
i (Lemma 2·5) and the induction

hypothesis, we obtain for k ≥ 2, using a0(t) = 2,

S1 :=
∑

3≤�≤2k

a2k−�(t)
[
x�
]
a0(x) ≤

∑
4≤�≤2k

2|�

a2k−�(t)
2

(log 2)�
+

∑
3≤�≤2k−1

2��

a2k−�(t)
2

(log 2)�

≤ 4
(
log 2

)−2k +
∑

2≤ j<k

(
Ak− j r

k− j + Bk− j r
k− j−1

) 2

(log 2)2 j
+
∑

2≤ j<k

Ck− j
2rk− j

(log 2)2 j−1
.

The sums are identically zero if r = 0 or k < 3; for the other cases, we note that for all
integers m ≥ 1, ∑

0≤ j<m

(log 2)−2 j = (log 2)−2m − 1

(log 2)−2 − 1
≤ (log 2)−2m (2·27)

since the appearing denominator is greater than 1. Therefore∑
2≤ j<k

Ak− j
r k− j

(log 2)2 j
≤ max

1≤ j≤k−2
A j

rk−2

(log 2)4

∑
0≤�<k−2

1

(log 2)2�
≤ rk−2

(log 2)2k
max

1≤ j≤k−2
A j ,

which is also valid for A replaced by B resp. C . We obtain for k ≥ 2

S1 ≤ d (1)

1 (k)rk−2,

where

d (1)

1 (k) = 2
(
log 2

)−2k
(

2 + max
1≤ j≤k−2

A j + max
1≤ j≤k−2

Bj + max
1≤ j≤k−2

C j

)
.

Here and in the following the maximum over the empty index set is defined as 0.
In an analogous fashion, we treat the second sum in (2·26), which is nonzero only if k ≥ 2.

We use the hypothesis |b2(t)| ≤ 1, and obtain for k ≥ 2

S2 :=
∑

1≤�≤2k

b2k−�(t)
[
x�
]
b0(x) ≤

∑
2≤�≤2k

2|�

b2k−�(t)
2

(log 2)�
+

∑
1≤�≤2k−1

2��

b2k−�(t)
2

(log 2)�

≤
∑

1≤ j≤k−2

(
Ak− j−1rk− j−1 + Dk− j r

k− j−2
) 2

(log 2)2 j
+ 2

(
log 2

)−2k+2

+
∑

1≤ j≤k−1

Ek− j r
k− j−1 2

(log 2)2 j−1
.

Similarly to the treatment of S1, using (2·27), we have for k ≥ 2

S2 ≤ d (2)

1 (k)rk−2,

where

d (2)

1 (k) = 2(log 2)−2k

(
1 + max

1≤ j≤k−2
A j + max

2≤ j≤k−1
D j + max

1≤ j≤k−1
E j

)
.
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This implies the statements for a2k in (2·25). We proceed to b2k and obtain

b2k(t
′) = ∓ 2m − 1

2m+1
a2k−2(t) +

∑
3≤�≤2k

a2k−�(t)
[
x�
]
c0(x)

+ 1

2m
b2k(t) +

∑
1≤�≤2k

b2k−�(t)
[
x�
]
d0(x).

(2·28)

Again, for k = 1, the sums vanish, and we obtain the second and fourth lines of (2·24).
For k ≥ 2, the two sums occurring in (2·28) can be estimated by d (1)

1 (k)rk−2 and
d (2)

2 (k)rk−2 respectively. This follows by replacing a by c and b by d and recycling the
argument from above. This implies lines two and four of (2·25).

It follows that d1(k) = d (1)

1 (k) + d (2)

1 (k) is an admissible constant for all of the four
formulas in (2·25).

Deriving bounds for the even moments. We apply the eight equations in (2·24) and (2·25)
successively in order to obtain the “even part” of the statement, that is, the estimates for
a2k(t) and b2k(t).

We begin with b2 and show |b2(t)| ≤ 1 by induction: we have b2(0) = m2(0) − m2(1) =
−1, and by (2·24) we obtain

|b2(t
′)| ≤ 2m − 1

2m
+ 1

2m
≤ 1

for both t ′ = 2mt and t ′ = 2mt + 2m − 1. Moreover, a2(0) = 1 and

a2(t
′) = a2(t) + 2m − 1

2m
± 2m − 1

2m
b2(t) ≤ a2(t) + 2,

which implies a2(t) ≤ 2r + 1 for all t ≥ 0 having r blocks. We therefore set A1 = 2 and
B1 = 1. Clearly |a2(t)| ≤ A1r 1 + B1r 0, and the estimates for a2 and b2 in the proposition are
proved.

We assume now that k ≥ 2 and we consider b2k : we have∣∣b2k(t
′)
∣∣≤ ∣∣∣∣∓2m − 1

2m+1
a2k−2(t) + 1

2m
b2k

∣∣∣∣+ d1(k)rk−2 ≤ |b2k(t)| + a2k−2(t)

2
+ d1(k)rk−2,

where t ′ results from t by appending 0s (if t is odd) or by appending 1s (if t is even).
Here r is the number of blocks in t . By iteration, exploiting the denominator 2 (geometric

series!), and by applying the induction hypothesis and

|b2k(0)| ≤ 1

(log 2)2k
,

we obtain

|b2k(t)| ≤ Ak−1rk−1 + Bk−1rk−2 + 2d1(k)rk−2 + 1

(log 2)2k

if t has r blocks. We therefore set Dk = Bk−1 + 2d1(k) + (log 2)−2k and this case is com-
pleted. We proceed to the case a2k , where k ≥ 2: each time we append a block of 0s or 1s to
t , we add at most
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′) − a2k(t)

∣∣≤ 2m − 1

2m+1
a2k−2(t) + 2m − 1

2m
|b2k(t)| + d1(k)rk−2

≤ 1

2
a2k−2(t) + |b2k(t)| + d1(k)rk−2

≤ 3

2
Ak−1rk−1 + (Bk−1 + Dk + d1(k)) rk−2.

This follows from (2·25) and line three of the induction statement. We wish to successively
append a block of 0s or 1s; this corresponds to summing this inequality in r . For � ≥ 1 and
N ≥ 0 we have ∑

1≤n<N

n�−1 ≤
∫ N

1
n�−1 dn ≤ N �

�
.

Noting that a2k(0) = m2k(1) ≤ (log 2)−2k for k ≥ 1 by (2·23), we obtain therefore

a2k(t) ≤ Akrk + Bkrk−1

with

Ak = 3

2k
Ak−1 and

Bk = 1

k − 1

(
Bk−1 + Dk + d1(k)

)+ 1

(log 2)2k

= 1

k − 1

(
2Bk−1 + 3d1(k)

)+ 2

(log 2)2k
,

(2·29)

which proves the part of the induction statement concerning the even moments.

Deriving bounds for the odd moments. For the odd case, concerning a2k+1 and b2k+1, we
proceed similarly. Suppose that k ≥ 1. Using (2·15), Lemma 2·4 and expanding Cauchy
products, we obtain

a2k+1(t
′) = a2k+1(t) +

∑
2≤�≤2k+1

a2k+1−�(t)
[
x�
]
a0(x)

± 2m − 1

2m
b2k+1(t) +

∑
1≤�≤2k+1

b2k+1−�(t)
[
x�
]
b0(x),

where “+” corresponds to appending a block of 0s. By Lemma 2·5 and the induction
hypothesis, using a1(t) = 0 and a0(t) = 2, we have for k ≥ 1∑

2≤�≤2k+1

a2k+1−�(t)
[
x�
]
a0(x) ≤

∑
2≤�≤2k

2|�

a2k+1−�(t)
2

(log 2)�
+

∑
3≤�≤2k+1

2��

a2k+1−�(t)
2

(log 2)�

≤
∑

1≤ j<k

Ck− j r
k− j 2

(log 2)2 j
+
∑

1≤ j<k

(
Ak− j r

k− j + Bk− j r
k− j−1

) 2

(log 2)2 j+1

+ 4

(log 2)2k+1
≤ d (1)

2 (k)rk−1,
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where

d (1)

2 (k) = 2 (log 2)−2k−1

(
2 + max

1≤ j≤k−1
A j + max

1≤ j≤k−1
Bj + max

1≤ j≤k−1
C j

)
.

Moreover, using also the even case proved above and |b2(t)| ≤ 1, we get∑
1≤�≤2k+1

b2k+1−�(t)
[
x�
]
b0(x) ≤

∑
2≤�≤2k

2|�

b2k+1−�(t)
2

(log 2)�
+

∑
1≤�≤2k+1

2��

b2k+1−�(t)
2

(log 2)�

≤
∑

1≤ j<k

Ek− j r
k− j−1 2

(log 2)2 j

+
∑

1≤ j<k

(
Ak− j r

k− j + Dk− j+1rk− j−1
) 2

(log 2)2 j−1
+ 2

(log 2)2k−1

≤ d (2)

2 (k)rk−1,

where

d (2)

2 (k) = 2 (log 2)−2k−1

(
1 + max

1≤ j≤k−1
A j + max

2≤ j≤k
D j + max

1≤ j≤k−1
E j

)
.

This estimate is valid for k ≥ 1. Therefore

a2k+1(t
′) = a2k+1(t) ± 2m − 1

2m
b2k+1(t) +O1

(
d2(k)rk−1

)
, (2·30)

where r is the number of blocks in t and d2(k) = d (1)

2 (k) + d (2)

2 (k), and where we use the
symbol O1 to indicate that the implied constant is bounded by 1.

Concerning b2k+1, we obtain from Lemma 2·4

b2k+1(t
′) =

∑
2≤�≤2k+1

a2k+1−�(t)
[
x�
]
c0(x) + 1

2m
b2k+1(t) +

∑
1≤�≤2k+1

b2k+1−�(t)
[
x�
]
d0(x),

and therefore by the above argument (replacing a and b by c and d respectively)

b2k+1(t
′) = 1

2m
b2k+1(t) +O1

(
d2(k)rk−1

)
. (2·31)

By repeated application of this identity, using (2·23), we obtain

|b2k+1(t)| ≤ 1

2
|b2k+1(0)| + 2d2(k)rk−1 ≤ Ekrk−1

for all t , where Ek = 2d2(k) + (log 2)−2k−1 for k ≥ 1. Inserting this into (2·30), we obtain

|a2k+1(t
′)| ≤ |a2k+1(t)| +

(
3d2(k) + (log 2)−2k−1

)
rk−1

and therefore by summation, using (2·23) again,

a2k+1(t) ≤ Ckrk,

where Ck = 3d2(k)/k + 2(log 2)−2k−1. This is valid for all k ≥ 1. The proof is complete.
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Summarising, the recurrence for the quantities A j through E j , used in the proof, is as
follows:

k = 1 k ≥ 2

A1 = 2; Ak = 3Ak−1/(2k);
B1 = 0; Bk = (

2Bk−1 + 3d1(k)
)
/(k − 1) + 2(log 2)−2k;

C1 = 3d2(1); Ck = 3d2(k)/k + 2(log 2)−2k−1;
Dk = Bk−1 + 2d1(k) + (log 2)−2k;

E1 = 2d2(1); Ek = 2d2(k) + (log 2)−2k−1,

where

d1(k) = 2

(log 2)2k

(
3 + 2 max

1≤ j≤k−2
A j + max

1≤ j≤k−2
Bj

+ max
1≤ j≤k−2

C j + max
2≤ j≤k−1

D j + max
1≤ j≤k−1

E j

)
for k ≥ 2 and

d2(k) = 2

(log 2)2k+1

(
3 + 2 max

1≤ j≤k−1
A j + max

1≤ j≤k−1
Bj

+ max
1≤ j≤k−1

C j + max
2≤ j≤k

D j + max
1≤ j≤k−1

E j

)
for k ≥ 1. Using this recurrence, it is easy to compute explicit bounds for the values A j

through E j , in particular, choosing ε < 1/4, this leads to an effective bound r0 such that
ct > 1/4 as soon as t has at least r0 blocks. However, we do not believe that these numerical
values are particularly enlightening (and fairly large). We therefore limit ourselves to a short
summary: for k = 1, we see that d2(1) = 6(log 2)−4, from which we obtain C1 and E1. In the
step k − 1 → k, we have to compute d1(k) first; then Bk and Dk can be obtained, and d2(k)

as the next step (note that for the maximum max2≤ j≤k D j we need Dk). Finally, Ck and Ek

can be computed.

2·5. Bounding the characteristic function using a matrix product

The correlations γt(ϑ) satisfy the following recurrence (see Bésineau [5]): for all t ≥ 0,

γ0(ϑ) = 1, γ2t(ϑ) = γt(ϑ), γ2t+1(ϑ) = e(ϑ)

2
γt(ϑ) + e(−ϑ)

2
γt+1(ϑ).

In order to capture this using a matrix product, we define

A(0) =
(

1 0
e(ϑ)/2 e(−ϑ)/2

)
, A(1) =

(
e(ϑ)/2 e(−ϑ)/2

0 1

)
.

In [16] we used the representation

γt(ϑ) = (
1 0
)

A(ε0) · · · A(εν)

(
1
u

)
,

where t = (εν . . . ε0)2 and u = γ1(ϑ) = e(ϑ)/(2 − e(−ϑ)).
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Using this matrix identity, we proved [20, Lemma 2] an upper bound for γt(ϑ) depending
on the number r of blocks of 1s occurring in t . By a slight variation (we handled the values
ωt(ϑ) = γt(ϑ)/u, where u is bounded by 1 in absolute value) we obtain the following
statement.

LEMMA 2·7. Assume that t ≥ 1 contains at least 4M + 1 blocks. Then

|γt(ϑ)| ≤
(

1 − 1

2
‖ϑ‖2

)M

.

2·6. Splitting the integral

We are interested in bounding the integral∫ 1/2

0
Im γt(ϑ) cot(πϑ) dϑ

by ε. (Note that the integrand is an even function and therefore the integrals over [0, 1/2]
and [1/2, 1] yield the same value.) We split the integration at the point ϑ0 = r−1/2 R, where
the integer R is chosen in a moment and r is the number of blocks in t .

We begin with the estimation of the right part of the integral. Let M be maximal such that
4M + 1 ≤ r . Then by Lemma 2·7, we have

∣∣γt(ϑ)
∣∣≤(1 − 1

2
‖ϑ‖2

)M

≤ exp

(
− M

2
‖ϑ‖2

)
.

We have (r − 4)/4 ≤ M ≤ (r − 1)/4 (because (r − 5)/4 ≥ M is impossible due to the max-
imality of M , therefore 4M + 5 > r , which implies 4M + 4 ≥ r ). Also, for 0 ≤ x ≤ π/2, we
have the elementary inequality

cot x ≤ 1/x . (2·32)

We obtain∫ 1/2

ϑ0

Im γt(ϑ) cot(πϑ) dϑ ≤
∫ 1/2

ϑ0

1

ϑ
exp

(
− M

2
‖ϑ‖2

)
dϑ

≤
∞∑

m=R

∫ (m+1)r−1/2

mr−1/2

1

ϑ
exp

(
− M

2
ϑ2

)
dϑ ≤ r−1/2

∞∑
m=R

1

mr−1/2
exp

(
− M

2
m2/r

)

≤
∞∑

m=R

1

m
exp

(
−m2

8

(
1 − 4

r

))
≤

∞∑
m=R

1

m
exp

(
−m2

16

)
.

This is valid for r ≥ 8. Since exp(−m2/16) = O(1/m) for m → ∞, this infinite sum is
bounded by c/R for some absolute (effective) constant c. We therefore choose the integer
R = R(ε) large enough such that c/R ≤ ε/3, and we obtain∫ 1/2

ϑ0

Im γt(ϑ) cot(πϑ) dϑ ≤ ε

3
. (2·33)

The left part of the integral will be estimated using upper bounds for the odd moments,
which is Proposition 2·6.
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From the estimate of a2k+1(t) and b2k+1 in Proposition 2·6 we get by the triangle inequality

|m2k+1(t)| ≤ E ′
kr k

for some constant E ′
k only depending on k. Moreover, from the estimate for a2k(t) we obtain

by nonnegativity of the even moments

m2K (t) ≤ AK r K + BK−1r K−1

and

m2K+2(t) ≤ AK+1r K+1 + BK r K .

For r greater than some r0(K ) we therefore have

m2K (t) ≤ 2AK r K and m2K+2(t) ≤ 2AK+1r K+1 (2·34)

for all t having at least r blocks. Let K be large enough so that

L K = 2

√
(2K )!(2K + 2)!AK AK+1(2π)2K+1

(2K + 1)! ≤ ε/3

R2K+1
. (2·35)

Note that for this inequality, we use the factor k! in the denominator of Ak in an essential
way! By (2·16) and (2·34) we obtain for r ≥ r0(K )∣∣Im γt(ϑ)

∣∣≤ ∑
0≤k<K

(2πϑ)2k+1 E ′
kr k + L K ϑ2K+1r K+1/2.

Using (2·32), we obtain for ϑ ≤ ϑ0∣∣Im γt(ϑ) cot(πϑ)
∣∣≤ ∑

0≤k<K

(2π)2k+1 E ′
kϑ

2k
0 rk + L K ϑ2K

0 r K+1/2

=
∑

0≤k<K

(2π)2k+1 E ′
k R2k + L K R2K r 1/2.

Integrating from 0 to ϑ0 yields for r ≥ r0(K )∫ ϑ0

0
Im γt(ϑ) cot(πϑ) dϑ ≤ r−1/2

∑
0≤k<K

(2π R)2k+1 E ′
k + L K R2K+1.

The second summand is bounded by ε/3, using (2·35). The sum over k does not depend on
r . For r ≥ r1(K ), we therefore have∫ ϑ0

0
Im γt(ϑ) cot(πϑ) dϑ ≤ 2ε

3

and the theorem is proved.

Remark 2·8. We plan to prove more detailed estimates for the moments mk in the future.
For example, it is known [10] that m2k(t) is usually of size rk/(2kk!), where r is the number
of blocks in t (we skip the precise formulation of the property proved in [10]). We wish
to sharpen this estimate, and consequently prove a lower bound for the values δ(0, t) =∫ 1

0 Re γt(ϑ) dϑ for T −O (
T 1−ε

)
many t < T . Using (2·3), and also improving the estimates

of the odd moments, we hope to obtain ct > 1/2 for these t in this way, thus significantly
improving the error term in the result [8] by Drmota, Kauers and the author.
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[17] P. D. PROĬNOV and E. Y. ATANASSOV. On the distribution of the van der Corput generalised
sequences. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 895–900.

[18] H. ROBBINS. A remark on Stirling’s formula. Amer. Math. Monthly 62 (1955), 26–29.
[19] L. SPIEGELHOFER. Discrepancy results for the van der Corput sequence. Unif. Distrib. Theory 13

(2018), 57–69.
[20] L. SPIEGELHOFER. Approaching Cusick’s conjecture on the sum-of-digits function. Integers 19

(2019).
[21] L. SPIEGELHOFER and M. WALLNER. The Tu–Deng conjecture holds almost surely. Electron. J.

Combin. 26 (2019)
[22] Z. TU and Y. DENG. A conjecture about binary strings and its applications on constructing Boolean

functions with optimal algebraic immunity. Des. Codes Cryptogr. 60 (2011), 1–14.
[23] Z. TU and Y. DENG. Boolean functions optimizing most of the cryptographic criteria. Discrete Appl.

Math. 160 (2012), 427–435.

https://doi.org/10.1017/S0305004121000153 Published online by Cambridge University Press

http://arxiv.org/abs/1810.11234
https://doi.org/10.1017/S0305004121000153


https://doi.org/10.1017/S0305004121000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000153

	A lower bound for Cusick's conjecture on the digits of n+t
	Introduction and main result
	Proof of the main theorem
	Relating ct to a characteristic function
	Moments of t
	Estimating the characteristic function using moments
	Upper bounds for the moments of t
	Bounding the characteristic function using a matrix product
	Splitting the integral



