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ABSTRACT. The basic aspects of wave propagation in a magnetic flux tube are 
reviewed, with particular emphasis on the types of flux tube that occur in the solar 
atmosphere. Two fundamental speeds arise naturally in a description of wave 
propagation in a flux tube: the slow magnetoacoustic (cusp) speed c-r, which is both sub-
sonic and sub-AlfV6nic, and a mean Alfven speed Cfc. Both surface and body modes are 
supported by a tube. It is stressed that a flux tube may act as a wave guide, similar to the 
guidance of light by a fibre optic, or sound in an ocean layer, or seismic waves in the 
Earth's crust. 

1. I N T R O D U C T I O N 

The evidence for the occurrence of magnetic flux tubes in astrophysical plasmas is 
increasing all the time. Flux tubes (or flux ropes) are believed to occur in extragalactic 
jets, in the magnetospheres of some planets, and in the Sun. Indeed, in the case of the 
Sun almost all of the magnetic flux emerging through the photospheric surface is found to 
occur in concentrated forms, ranging in scale from the visible sunspot to the sub-
telescopic intense flux tubes. Thus, the source of coronal and solar wind magnetism is to 
be found in concentrated roots of magnetic field emerging from the deep interior. The 
field strengths in these sources, where they can be directly measured or indirectly 
inferred, are generally high: in a photospheric tube the field is as high as 0.2T (= 2kG), 
confined to a radius of about 100 km, whereas in a sunspot the field is typically 0.2-0.3T 
(= 2-3kG) and covers a wide area of the solar surface. 

The concept of a magnetic flux tube goes back to the work of Michael Faraday 
(1791-1867) and James Clerk Maxwell (1831-1879). Faraday, the intuitive scientist with 
no formal training in mathematics, used the concept as a useful guide to a physical 
understanding of electrical and magnetic phenomena. Maxwell, with his more 
mathematical bent, gave the idea a more formal development and substance. Faraday was 
a little surprised, and no doubt pleasantly, to see the concept of a flux tube responding to 
Maxwell's mathematical overtures without exhibiting any undue signs of strain. It is 
amusing to note the manner in which Faraday, writing on the 4th May 1885 to the 
engineer Isambard Kingdom Brunei, puts his feelings: "I sometimes feel glad that I am 
not a mathematician for though Mathematical science is sure, I do not find that the 
conclusions of its professors can be trusted much more than those of other Professors" 
(Faraday 1885). Good advice indeed! 

159 

E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, 159-174. 
© 1990 IAU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900087891 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900087891


160 

The mathematical substance that Maxwell gave to the concept of a magnetic flux tube 
rested on a very general definition. In his paper 'On Faraday's Lines of Force', Maxwell 
puts it thus: "If upon any surface which cuts the lines of fluid motion we draw a closed 
curve, and if from every point of this curve we draw a line of motion, these lines of 
motion will generate a tubular surface which we may call a tube of fluid motion" 
(Maxwell, 1855/6). By the term 'fluid' Maxwell means a purely imaginary substance 
and by 'lines of fluid motion' we would now say field lines. 

The types of flux tubes that we are interested in astrophysical plasmas are more 
specific than those resting upon the rather general definition Maxwell gives us, for the 
interior and exterior of a tube are commonly distinct from one another by reason of 
physical differences additional to magnetism, though magnetism may well be the cause of 
such differences. For example, the field outside of sunspots and intense photospheric 
tubes is negligible in comparison with the interior field; so these objects are isolated flux 
tubes (see Roberts 1990a for a recent review). Such tubes are in magnetostatic pressure 
balance with their non-magnetic surroundings, so there is a deficit in gas pressure inside 
the tube: the tube is partially evacuated. For sunspots, the tube is also cooler than 
surroundings so there is a temperature deficit as well. The picture is more complicated 
for intense tubes, the temperature structure varying with height. (For recent reviews of 
solar magnetism and magnetic flux tubes see Schussler (1987, 1990), Solanki (1987), 
Stenflo (1989) and Roberts (1990a).) 

The tubes of the solar corona are different from those of the photosphere, for the 
corona is dominated by magnetic field and so there are no isolated tubes there. Instead, 
inhomogeneities in density and temperature give rise to magnetic flux tubes in which the 
magnetic field fills all of space; the interior of a coronal tube is generally denser than 
surroundings. Such coronal loops make up the coronal plasma in active regions. 

What can magnetic flux tubes do? Firstly, we note that a tube is a wave guide. It 
permits waves to propagate without spatial attenuation. Thus a tube is likely to be a good 
communication channel between one region of a plasma and another, perhaps providing a 
connection between an energy source and an energy sink. For example, photospheric 
flux tubes connect the convection zone - an ample source of energy, especially in 
granules - with the chromosphere and corona, and so are almost certainly central to the 
question of heating of those regions. Also, they guide spicular material that produces the 
spicule jets in the chromosphere. Secondly, we observe that a magnetic flux tube is an 
elastic object (and so an elastic, not rigid, wave guide) and as such is likely to respond to 
sudden changes by guiding waves. Sunspots, for example, are known to support a 
variety of wave phenomena (see Evans and Roberts (1990) for a recent discussion). 
Finally, we point out that flux tubes may both leak waves to and absorb waves from 
their environment (see Roberts and Webb 1979; Spruit 1982; Cally 1985, 1986; Davila 
1985). Braun, Duvall and LaBonte (1987, 1989), for example, have discovered that 
sunspots may be absorbing over 50% of the sound waves (p-modes) in their vicinity. 

2. OSCILLATIONS OF AN ISOLATED TUBE 

2.1 Propagation Speeds 

We consider the modes of oscillation of an isolated magnetic flux tube of strength Bo 

embedded in a field-free gas of pressure p e and density p e . If such a tube is subjected to 
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a sudden twisting motion it will respond by producing a torsional oscillation of the tube; 

such a torsional motion may propagate as an Aljvin wave with speed V A = BoAjipo)1^2, 
for a tube with gas density po and magnetic permeability ji. On the other hand, a 
symmetric squeezing of the tube may produce the sausage mode(scc Figure 1), Here 
both the gas and magnetic field within the tube are expanded and contracted in the 

motion. Compressions of the gas are characterized by its sound speed c s = (YPo/po) 1^ 
for a tube with gas pressure po, whilst magnetic compressions are represented by the 
Alfven speed V A . The two speeds c s and V A combine in the form 

to produce the basic speed CT . The tube speed C T is both sub-sonic and sub-Alfvenic and 
therefore relates to the slow magnetoacoustic wave; see Roberts (1985a, 1990b) and 
Hollweg (1986) for a general discussion of magnetohydrodynamic waves. 

It is interesting to note that any elastic tube will have a characteristic propagation 
speed of the form given by equation (1) for one dimensional waves (see Lighthill 1978). 
For example, a blood vessel is an elastic tube with a speed V A arising from the elasticity 
of the vessel's membrane and c s being the speed of sound in blood. In this example, the 
speed c s is much greater than the 'elastic1 speed V A and so the propagation speed C T is 
close to the elastic speed. Another example is provided by water in a hose-pipe and the 
phenomenon of 'water-hammer'. If the pipe is made of metal, then the elastic speed V A 
is much greater than the sound speed in water, and so the propagation speed c j is 
approximately the sound speed in water (about 1.4 km s - 1 ) . On the other hand, for water 
in a plastic pipe the ordering in the speeds is reversed and now the propagation speed C T 
is close to the elastic speed and so much lower (about 10 ms"1). In the case of a magnetic 
flux tube under photospheric conditions, the sound and Alfven speeds are roughly 
comparable at about 10 km s"1 and so the tube speed C T is reduced to about 7 km s"1. 

Asymmetric disturbances of the tube produce kink (or serpentine) modes. This may 
be viewed as similar to the waves on an elastic string, producing a propagation speed of 

(T/p)!/2. The tension T in the string is clearly here due to magnetic tension, so T = 
2 

Bo/|io- The density p is here taken to be the sum of the gas density po within the tube 
and the gas density p c in the environment, reflecting the fact that the vibrating tube 
displaces about the same amount of material in its surroundings as that in the tube itself. 
Thus, with p = po + pe we obtain a characteristic kink speed Ck given by 

ct (1) 

(2) 

The kink speed Ck is sub-Alfv6nic but not necessarily sub-sonic 
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2.2 Modes of Oscillation 

To describe the modes of oscillation of an isolated tube in greater detail, we consider 
the usual equations of ideal magnetohydrodynamics as applied to a tube. The tube is 

taken to have a field strength Bo, gas pressure po, density po, and sound speed en (= 

(YPo/po)1^2)* confined to a radius a by a field-free environment of gas pressure p e , 

density p e , and sound speed c e (= (YPe/pe)1^2)- Then pressure balance across the 
boundary of the tube implies that 

Pe = PO + — . (3) 

which combined with the ideal gas law implies that 

^ = — . (4) 
PO c\ 

Modes of oscillation of this equilibrium configuration may be sought by requiring in 

cylindrical coordinates (r,0,z) that perturbations in flow, pressure and field be of the 
form 

f(r,t) = f(r) eKcot+nG-kz), (5) 

representing a wave of frequency co, longitudinal wave number k, azimuthal wave 
number n, and amplitude f(r). The geometry of the modes is then described in terms of 
the integer n: sausage modes correspond to n = 0; kink modes to n = 1; and fluting 
modes to n > 2. Additionally, the radial behaviour of the amplitude f(r) within r < a may 
be either oscillatory or decaying. Oscillating modes are classified as body waves; 
decaying or evanescent modes as surface waves (Roberts 1981 a,b). See Figure 1. 

It proves convenient to work in terms of the total pressure perturbation PT, made up 
of the sum of the gas pressure perturbation and the magnetic pressure perturbation. For 
P T is readily shown (see Edwin and Roberts 1983) to satisfy Bessel's equation: 

where the effective transverse wavenumber (squared) is given by 

(lAjQ-a^Xk 2 ^-© 2 ) 
2 (7) 

^ " (CJ+v2)(k24-co2) ' 
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Fig. 1. Surface and body waves in a flux tube, showing the sausage (n=0) and kink 
(n=l) modes. 

One solution of equation (6) which we should not overlook is the apparently 
uninteresting case of p j = 0. In fact, with px = 0 the motions are torsional (i.e. ve * 0, 
v r = v z = 0) and incompressible (i.e. div v = 0); these are the torsional Alfven waves 
satisfying the wave equation 

3^VQ _ 2 A^YE 

AT* " A A Z 2 • W 

Returning to equation (6) we may construct its general solution in terms of Bessel 
functions. Requiring pj to be bounded at the centre of the tube gives 

PT = i 
Aoln(mor), rru > 0 , 

2 ( r < a ) , ( 9 ) 
An J n (nor), m^ < 0 , 

where I n is the modified Bessel function (of order n) and J n is the Bessel function. We 

use the form I n (mnr) for surface waves ( m n > 0), giving exponential decay from the 

boundary at r = a, and the form J n (nor), giving oscillatory behaviour, for body waves 

(m^<0) . HerenQ = -m^. 

The region outside the tube may be treated in a similar fashion. Pressure 
2 

perturbations in r > a are governed by an equation of the form (6), with niQ replaced by 
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m; (the equivalent form of the squared transverse wave number for the environment). In

the absence of an external magnetic field, m; is given by

(10)

We consider pressure variations in the environment that are evanescent, declining to
zero as we move away from the tube (i.e. PT (r > a) ~ 0 as r ~ 00). The vibrations of
the tube are then confined to the region within and close to the tube. Such solutions

require m; > 0, so that ro2 < k2c;, and give an external pressure perturbation of the form

PT= Ae Kn(Il1er), r > a. (11)

(12)

Matching of the interior and exterior of the tube at r = a by requiring continuity of the
radial velocity and the total pressure perturbation then yields the required dispersion
relation, with the result (McKenzie 1970; Roberts and Webb 1978; Wilson 1980; Spruit
1982; Edwin and Roberts 1983; Abdelatif 1988; Evans and Roberts 1990)

P ro2mo I~ (~) + Po(k2v2 - ro2)1lle K~(~) =0,
e In(rnoa) A Kn(lllea)

where the dash denotes the derivative of the Bessel function. Equation (12) is valid for

m; > 0. The derivation of the dispersion relation (12) given in Roberts and Webb (1978)

was for n = 0 (sausage) modes only. It is interesting to note that a structurally similar
relation was obtained by Tayler (1957) in a stability analysis of a twisted tube with a
vacuum environment.

The dispersion relation (12) is transcendental and so obtaining its solutions is a
complicated and largely numerical process, though certain cases (e.g. thin tubes,
Ikla« 1) may be investigated analytically. In the special case of an incompressible

medium (CO ~ 00, Ce~ 00), for which m~ ~ k2, m~ ~ k2 and CT ~ VA, the

transcendental nature of equation (12) is removed and the solutions become transparent
(Dungey and Loughhead 1954; Roberts and Webb 1978; Uberoi and Somasundaram
1980, 1982; Edwin and Roberts 1983)

k2V~ () ,___ 1 _ Pe In (lkJa)Kn(lkla)
ro2 - Po In(lkla)K~ (Ikla) ·

(13)

The modes described by dispersion relation (13) are surface waves (since m~ =

k2>0); they propagate dispersively, a reflection of the fact that the tube provides a
lengthscale, namely its radius, against which the waves may be measured. In the thin
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tube limit (Ikla « 1), the sausage mode (n=0) propagates with a speed close to V A (= cj, 
since the medium is incompressible) and the kink (n=l) mode with a speed close to Ck. 

The modes of the compressible case (equation (12)) are more complicated to 
describe, their character depending upon the relative orderings between the speeds c e , en, 
and v A (Edwin and Roberts 1983; Cally 1985,1986; Davila 1985; Abdelatif 1988; Evans 
and Roberts 1990). For example, a magnetic flux tube with c e > en > V A , typical of 
conditions below the surface layers of a sunspot, supports a slow surface wave, with 
speed close to C T for Ikla « 1, as well as the harmonics of slow and fast body waves; a 
fast surface is unable to propagate under these conditions. The slow body waves have 
phase speeds between cj and V A - The fast body waves have phase speeds between the 
two sound speeds and are particularly interesting in that, with the exception of the 
fundamental sausage mode, they possess propagation cutoffs, corresponding to total 
internal reflection of the fast modes on the boundary of the tube. 

By contrast, for a flux tube with speeds ordered as V A > c e > en, typical of 
conditions in an intense flux tube or in the upper layers of a spot, the fast body waves no 
longer arise and instead fast surface waves may propagate; the slow body waves remain 
much as before and there is a slow sausage surface mode. See diagrams in Edwin and 
Roberts (1983) and Evans and Roberts (1990). 

in the umbra 
Level of t c = 1 

Fast Body Modes "leak" 
energy away from the spot 
as v A approaches c M 

A A A 4 J 
it ji 

P-modes driving Fas 
Body Modes ? 

Slow Body Modes driven by 
overstable convection. 

Fig. 2. A sketch of the various waves possible in a sunspot on the basis of a simple flux 
tube model. After Evans and Roberts 1990. 
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The fact that fast body waves in the deep layers of a spot, regarded as a simple flux 
tube, give way to fast surface waves in its upper layers has lead Evans and Roberts 
(1990) to suggest that p-modes in the environment of a spot will generate fast body 
modes within the spot, and these in turn will be ducted up or down the spot. 
Consequently, sunspots will act as sinks for p-modes. This is consistent with the 
observations by Braun et al (1987, 1988), of sunspots absorbing p-modes, though a 
detailed theory of the effect has yet to be worked out. The fast body modes thus 
generated in the spot will then convert to fast surface waves in the upper layers of the 
spot. Such surface modes may in fact be the running penumbral wave (see Small and 
Roberts 1984; Miles and Roberts 1989). A schematic of the complex structure of modes 
possible in a sunspot flux tube is given in Figure 2. 

3. CORONAL LOOPS AS COMMUNICATION CHANNELS 

The isolated magnetic flux tubes of the photosphere act as communication channels 
between the dense energy reservoir of the convection zone, with its granules, 
supergranules and p-modes, and the relatively tenuous atmosphere of the chromosphere 
and corona. In much the same way the loops of magnetic field in the coronal atmosphere 
may act as communication channels there, covering distances of the order of 10 5km. Of 
course, such flux tubes are quite different from photospheric tubes, since the magnetic 
field of the corona fills all of the coronal gas and in general dominates the plasma both 
mechanically (the plasma beta is low) and thermally (heat conduction across the field is 
severely limited, allowing regions of different temperature to exist in close proximity to 
one another). 

The magnetoacoustic modes of such a situation can be modelled in terms of a 
magnetic cylinder of radius a surrounded by a uniform magnetic field. For a low beta 
plasma, the Alfven speeds within and external to the cylinder will be much larger than the 
corresponding sound speeds en and c e . The dispersion relation for such circumstances 
(see Edwin and Roberts 1983) can be obtained much as for the isolated tube discussed 
above. There are basically two distinct cases, depending upon whether the Alfven speed 
V A within the tube is greater than or less than the Alfven speed VAe * n the tube's 
environment. If the tube has a gas density that is higher than that in the surroundings, 
then V A < VAe. provided the magnetic field is not too different from a uniform one; this is 
the "top-hat" profile of Alfv6n speed. The opposite case, corresponding to a region of 
low density, gives V A > VAe and looks like an "inverted top hat"; see Roberts (1990b). 

The coronal plasma provides examples of both structures, with coronal loops 
matching the top hat profile (in Alfven speed) and coronal holes the inverted hat. Coronal 
loops with V A < VAe act as wave guides, ducting fast magnetoacoustic waves along the 
structure, much the same as light is guided along an optical fibre (Edwin and Roberts 
1983; Roberts, Edwin and Benz 1984). Coronal holes or indeed any regions of the 
atmosphere with high Alfv6n speed, V A > VAe* are leaky wave guides (Spruit 1982; 
Edwin and Roberts 1983; Cally 1985,1986; Davila 1985) for fast modes. The slow 
mode is ducted irrespective of whether V A > VAe or V A < VAe-

The guided fast body modes are analogous not only to light in a fibre optic but also 
to Love waves in the Earth's crust and Pekeris waves in an internal ocean layer (Edwin 
and Roberts 1983; Roberts et al. 1984). This rather pleasing mathematical analogy 
implies that coronal loops are likely to produce seismic signatures when fast waves are 
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impulsively generated within them (Roberts et al. 1984). Such signatures could provide 
a diagnostic means of determining magnetic conditions in the corona (Roberts 1986b; 
Edwin and Roberts 1986). Also, because the waves propagate with high phase speeds, 
between V A and VAe. the pulsations they produce are likely to be rapid, of the order of the 
crossing time for the diameter of the structure. For example, a loop with diameter Mfikm 
and Alfven speed of order 10 3 km s _l will sustain fast waves with timescales of the order 
of a second. Such rapid oscillations may in fact be the long-observed radio pulsations 
(see Aschwanden 1987 for a review). 

4. THIN FLUX TUBE THEORY 

The thin flux tubes of the photosphere provide important communication channels 
between the convection zone, photosphere, and chromosphere. This region of the solar 
atmosphere is the most strongly stratified part of the Sun, for here the pressure scale 

height A(z) of the atmosphere is smallest: A is about 100 km at the temperature 
minimum, compared with some 10 5km in the high temperature corona. Additionally, the 
upper layers of the convection zone are strongly super-adiabatic. These effects of 
stratification have important consequences for the modes of oscillation of a tube. 

Analyzing the modes of oscillation of a magnetic tube in a stratified atmosphere is 
fraught with difficulties, not least beause the very equilibrium profile of the tube is 
complicated and has largely to be determined numerically (e.g., Pizzo 1986; Pneuman et 
al 1986; Fiedler and Cally 1990). Analytical progress has, however, proved possible for 
thin tubes. The idea has been to utilize the fact that physical variables such as pressure, 
density and longitudinal velocity are not likely to vary strongly across the tube, their main 
variations being along the tube. Other variables, such as the radial component of 
velocity, may vary linearly about the axis of the tube. A systematic expansion (in a 
Taylor series) of the magnetohydrodynamic equations about the axis of a tube is possible 
and provides the thin tube equations for symmetric modes of the tube (Roberts and Webb 
1978): 

| P A + ^ p v A = 0, (14) 

3v dv 1 
(15) 

(16) 

p + — = 
2\i 

Pe, (17) 

BA = constant. (18) 

Here B(z,t) is the longitudinal field strength, A(z,t) the cross-sectional area of the tube, 

v(z,t) the longitudinal flow speed, and p(z,t) and p(z,t) the gas pressure and density 
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within the tube. The external gas pressure p e(z,t) is calculated on the boundary of the 
tube. 

Equations (14)-(18) are the thin tube equations for the sausage (n=0) mode of 
oscillation. The equilibrium of the tube is one of hydrostatic stratification, with gas 
pressure po(z) and density po(z) satisfying 

Pd(z) = -gpo(z) (19) 

for gravity g (= 274 m s"2). The temperature structure may be arbitrary. 

In general, the isolated tube expands with height z as it maintains pressure balance 

with its surroundings (eqn (17)). Specifically, the equilibrium magnetic pressure p m ( z ) = 
2 

BQ(Z)/2|I, for a tube with longitudinal magnetic field strength Bo(z), satisfies 

Pm= g(p0(z) - Pe(z)). (20) 

Introducing the ideal gas law, viz. 

P = ^ p T , (21) 
m 

for Boltzmann's constant ke, mean particle mass m, and temperature T, applied both 
inside and outside the tube, gives 

*"i[(1-%>°-%p4 (22) 

where Ao = po/gpo is die pressure scaleheight inside the tube. (We have assumed that the 

levels of ionization, represented by m, are the same inside and outside the tube.) If the 
temperatures inside and outside the tube are the same (To(z) = T e(z)), then 

1 
Pm= - — Pm. (23) 

Ao 

Thus, the magnetic pressure declines at the same rate as the hydrostatic pressures po and 
p e , and so the magnetic field strength BQ(Z) declines at half the gas pressure rate. 
Consequently, the tube expands in height. 

It should be noticed that the nonlinear set of equations (14)-(18) may be grouped into 
two sets, equations (14)-(16) describing longitudinal motions in any elastic tube and 
equations (17) and (18) defining that elasticity as specifically magnetic. This property 
affords a convenient way of identifying a variety of effects and attributing those effects 
appropriately to the tube's elasticity, shape or magnetism. 
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4.1 Linear Disturbances 

The case of linear disturbances is readily treated by the thin tube equations, though 
the algebra is tedious. Linear motions satisfy an equation of the Klein-Gordon type for 
amplitude Q(z,t), related to velocity v(z,t) (see Rae and Roberts 1982): 

Here C T is the tube speed (defined in eqn (1)) and Q ^ ^ z ) is a complicated expression 

involving the equilibrium profile of the tube and its atmosphere. In deriving equation 
(24) it was assumed that p e(z,t) is in fact the undisturbed external gas pressure field. 

If the atmosphere is isothermal (Aq = constant) the coefficients in the Klein-Gordon 

wave equation (24) become constants, with Qsaus given by (Defouw 1976; Roberts and 

where co a = co/2Ao is the acoustic cutoff frequency of the atmosphere and P = 

2|iopo(z)/B0(z) is the usual plasma beta (a constant). It is possible to identify the first 

term on the right of equation (25) as arising from the geometry (shape) of the expanding 
tube and the second term as arising from the elasticity of the tube. Accordingly, the 

frequency QSaus is reduced by the elasticity of the tube. A rigid tube corresponds to 

Observe that in the absence of stratification (g=0) ii Saus = 0, and we obtain the 

simple wave equation with dispersion relation co 2 = k 2 ^ . The thin tube equations, then, 

relate to the slow sausage mode; in fact, they relate to the slow surface wave. 

Kink modes may also be described by thin tube equations, though of a somewhat 
different form from equations (14)-(18); see Spruit (1981). Indeed, Spruit's thin tube 
equations for the kink mode also lead to a Klein-Gordon equation (see also Roberts 
1986a): 

(24) 

Webb 1978) 

p = 0 . 

(26) 

with 
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As with equation (24), the external pressure field is assumed to be its unperturbed value. 
In the absence of stratification (g=0), equation (26) reduces to the simple wave equation, 

with dispersion relation co 2 = k 2 ^ . 

What is the significance of the occurrence of the Klein-Gordon equation? In an 
isothermal atmosphere both Klein-Gordon equations have constant coefficients, and so 
both have dispersion relations of the form 

co 2 = k 2 c2 + Q2 ( 28) 

for propagation speed c (= C T or Ck) and frequency Q (= £2 S aus o r ^kink)- A dispersion 

relation of the form (28) possesses propagation cutoff\ high frequencies (co > Q) 

propagate vertically (k 2 > 0) whereas low frequencies (co < Q) are evanescent (k 2 < 0). 
(This is much the same as for the vertical propagation of sound waves in an isothermal 

atmosphere, with c there becoming the sound speed c s and Q the acoustic cutoff coa.) 
Impulsively generated disturbances lead to a wave front propagating with the speed c, 
behind which an oscillating wake arises (Rae and Roberts 1982). 

It is of interest to compare the sausage and kink modes for an isothermal atmosphere 
(Spruit and Roberts 1983; Roberts 1986a). Taking photospheric values of An = 125 km 
and co = V A = 7.5 km s"1, we find that both modes e-fold in a distance of 500 km (four 
scale heights), to be compared with a vertically propagating sound wave which e-folds in 
two scale heights (250 km). The propagation speeds of the two modes are similar, about 
5.3 km s _ 1 for the sausage mode and 4.5 km s _ l for the kink mode. However, the 

frequencies Qsslus/2k and Qkink/2rc are quite different, being 4.8 mHz (period 208s) for 
the sausage mode but only 1.4 mHz (period 700 s) for the kink mode. (The sausage 
mode's frequency is close to the acoustic cutoff frequency.) This marked difference in 
the two frequencies has lead Spruit (1981) to suggest that kink modes are likely to be 
more readily generated and propagated in the solar atmosphere than sausage modes. 

What observational evidence is there for the existence of tube waves in the 
photosphere? Solanki and Roberts (1990) have argued that the asymmetry observed in 
the Stokes profile formed in photospheric lines may be explained as a consequence of 
tube waves. The waves are of relatively strong amplitude, about 1 km s"1, and contribute 
significantly to the heating of the chromosphere. Evidence for the existence of waves in 
flux tubes also comes from observations by Deubner and Fleck (1990), who report the 
existence of waves on the chromospheric magnetic canopy propagating along the canopy 
and ultimately down the converging funnels provided by the tubes! It would seem that 
photospheric flux tubes are both sources for tube modes and receptors for canopy modes. 
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4.2 Nonlinear Waves 

The stratification in the upper photosphere and above makes it likely that tube waves 
will grow in amplitude and possibly form shocks. There are, however, a number of 
effects working against the tendency for wave amplitudes to grow. The photosphere-
chromosphere is a region of the solar atmosphere where nonadiabatic effects (radiative 
losses) are likely to be significant, and such effects work to limit the amplitude of waves 
as their energy is irreversibly dissipated in the form of heat. Also, it is known that in the 
absence of gravity flux tubes can support solitons (Roberts and Mangeney 1982; Roberts 
1985b; Weisshaar 1989), nonlinear waves in which the amplitude is in balance with 
dispersive effects. These dispersive effects arise from the inertia of the tube's 
surroundings, an effect evident in the linear theory (Section 2.2) and included in thin flux 
tube theory by retaining the effect of p e(z,t) in equation (17). (The derivations of the 
Klein-Gordon equations (24) and (26) for sausage and kink modes neglects this effect.) 
How important all these effects are likely to be in a fully stratified, radiative flux tube is 
presently unknown and will no doubt require detailed numerical simulations (e.g. 
Herbold et al 1985; Musielak et al. 1989) to fully assess. 

Nonlinear effects are reviewed in detail by Ryutova (1990a,b). 

5. C O N C L U S I O N S 

The magnetic flux tubes we have described here are basically simple structures, 
involving sharp changes in density and/or pressure. The role of the magnetic field is to 
provide a channel connecting one region of the solar atmosphere with another; such 
channels are elastic. Despite this simplicity the waves that such tubes support are not 
especially simple to describe. This complexity springs from the fact that in 
magnetohydrodynamics there are three basic waves in a magnetic medium and 
additionally that a tube can duct these modes in essentially two ways (as a surface wave 
or a body wave). In reality, of course, photospheric and coronal magnetic flux tubes will 
be more intricate objects than the simple models explored here. Nonetheless, we trust 
that some of our descriptions remain and that the simple concept of a tube, grounded in 
the work of Faraday, is also a guide to the reality of magnetism in the solar atmosphere. 
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D I S C U S S I O N 

UBEROI: In your last part of the talk you pointed out an anology with Pekeris's work 
on surface waves in the ocean. The source in the Pekeris work is located inside the 
ocean bed (I think). In your case is the source inside or outside? If it is outside does 
this analogy hold good? 

Comment: Regarding your existence of surface waves for VA > VAe I like to point out 
that I have published a paper in 1982 in Solar Physics studying the parametric analysis 

of the dispersion equation and giving the parameters (p,B) for which the surface waves 
will exist and if these parameters are not suitable surface waves will not exist. 

ROBERTS: Concerning your question about Pekeris waves, Roberts et al. (1984) 
assumed that the source was located in the coronal loop wave-guide, say at the bottom 
of the loop. Locating the source off centre or outside the loop would of course give 
slighdy different results. But one would expect a flare, say, to generate waves across a 
number of loops, and each loop would exhibit a dispersive wave-packet behaviour that 
is of the general form as given for a symmetric source. It would be interesting to see 
what differences do in fact arise but the aim in Roberts et al. was more to exhibit the 
impulsive signature of a rapid pulsation, and that is most simply done in the case of a 
symmetric disturbance. 

Regarding your comment, thank you for the reference [Uberoi (1982), Sol. 
Phys. 78 , 351]. In my paper in 1981 [Roberts (1981a)] I pointed out that two 
magnetoacoustic waves may arise at a single interface, one fast and one slow surface 
mode. The slow surface wave is generally present but the fast surface wave exists only 
under certain conditions, as you have also noted. This topic is being investigated 
further (see Miles and Roberts 1989; Jain and Roberts, in preparation). 

RUDERMAN: What do you say about the thin tube approximation conveniency in the 
solar atmosphere? 

ROBERTS: I think that the thin tube approach is very valuable for photospheric tubes 
and gives a good guide to the behaviour of the slow surface (sausage) mode and the 
slow kink mode. Body modes, however, have a different lateral structure and so need 
to be treated differently; curiously, though, slow body waves have phase-speeds that 
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are very close to the thin tube speed, cj. It should also be kept in mind that the external 
pressure field on the boundary of the tube, sometimes neglected in analytical and 
numerical studies of stratified tubes, is important in some circumstances and so should 
be retained in the thin tube equations. Indeed, its retention gives dispersive corrections 
to wave speeds and these are important for nonlinear studies. In fact the thin tube 
equations, with the external pressure term included, lead to flux tube solitons, as 
shown, for example, in Roberts and Mangeney (1982) and Roberts (1985). 

AL-KHASHLAN: What other things can magnetic flux tubes do besides supporting a 
variety of magnetohydrodynamic waves? 

ROBERTS: I have of course concentrated on the wave aspects of a flux tube but a 
tube, in general terms, transmits stresses and strains and also may provide a duct for 
flows and for spicules. Coronal flux tubes are also liable to ideal mhd instabilities, 
ballooning modes, etc. - see, for example, work by A W Hood. Such instabilities of 
coronal tubes and coronal arcades may be important for prominence eruption. 
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