## Notes

# 107.14 Does a trapezium exist whose side lengths form a geometric progression?

It is known that there is no trapezium whose lengths of consecutive sides form an arithmetic progression [1]. Is this true also for a geometric progression?

Let in trapezium ABCD with BC //AD the lengths of consecutive sides form a geometric progression with common ratio q > 1.

Obviously it is enough to consider two cases. In the first case the geometric progression starts at *AB* and in the second case it starts at *BC*.

*Case* 1. Without loss of generality we can assume that AB = 1, then BC = q,  $CD = q^2$ ,  $DA = q^3$ .



FIGURE 1

Let CE //AB (see Figure 1). It is necessary and sufficient that the sides of triangle ECD satisfy the triangle inequality. Since CE = AB < CD, we have to check the inequalities: (a) CE + ED > CD and (b) CE + CD > ED.

- (a)  $1 + q^3 q > q^2 \Leftrightarrow q^3 q^2 q + 1 > 0 \Leftrightarrow (q+1)(q-1)^2 > 0$ . Since q > 1, this inequality obviously holds.
- (b)  $1 + q^2 > q^3 q \Leftrightarrow q^3 q^2 q 1 < 0$ .  $f(q) = q^3 q^2 q 1$  has  $q_{\max} = -\frac{1}{3}$  and  $q_{\min} = 1$  and  $f(-\frac{1}{3}) < 0$ . Then f(q) has only one real root (see Figure 2), which can be approximately calculated:  $q_0 \approx 1.839$ . Since q > 1, we obtain  $1 < q < q_0$ .

Thus for  $1 < q < q_0$  there exists a trapezium *ABCD* with the lengths of consecutive sides *AB*, *BC*, *CD*, *DA* forming a geometric progression with common ratio q.

*Case* 2: Let BC = 1, CD = q,  $DA = q^2$ ,  $AB = q^3$ . Let us check the triangle inequality for  $\triangle ECD$ :  $EC = q^3$ , CD = q,  $ED = q^2 - 1$ . Since CE > CD it is enough to check the inequalities: (a) CD + ED > CE and (b) CD + EC > ED.

(a)  $q + q^2 - 1 > q^3 \Leftrightarrow q^3 - q^2 - q + 1 < 0$ . Since q > 1 this inequality does not hold (see (a) of Case1) and so there is no need to check (b).

So, the trapezium exists only if the geometric progression (q > 1) of the lengths of the sides begins at one of the legs of the trapezium and  $q < q_0 \approx 1.839$ .







#### References

1. M. Stupel, V. Oxman, Trapezium whose side lengths form an arithmetic progression, *Math. Gaz.* **107** (March 2023) pp. 147

10.1017/mag.2023.60 © The Authors, 2023 Published by Cambridge University Press on behalf of The Mathematical Association VICTOR OXMAN Western Galilee College, Acre, Israel MOSHE STUPEL Shaanan College, Gordon College, Haifa, Israel

### **107.15** Fruit diophantine equation

#### Introduction

A popular problem making the rounds in social media (stated as a problem about distribution of fruits) is the possibility of finding positive integer solutions in x, y, z of the equation that appears in the statement below. In this short note, we prove:

Theorem 1

The equation

$$y^2 - xyz + z^2 = x^3 - 5$$

has no integer solutions.

Note that the special case asserting that  $y^2 = x^3 - 5$  has no integer solutions is already of interest.

The problem originated from the question "What is the smallest unsolved diophantine equation?" that was posed by user Zidane in MathOverflow [1]. In this question, the notion of size of a polynomial is the following one: