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Loss and revival of coherence in the interaction
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We study the interaction between a positron beam in the single-particle regime in an
interferometric configuration and a microwave electromagnetic field. We discuss the
conditions under which quantum interference can be affected by the field and we outline its
possible experimental study in the framework of QUantum interferometry and gravitation
with Positrons and LASers (QUPLAS) experiment.
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1. Introduction

The study of open quantum systems describes the possible interactions of a system
showing quantum properties with any kind of external perturbation. They can be
distinguished between two major categories: a first group in which the characteristics
contained in the quantum system are being irreversibly lost or degraded (Markovian
systems), and a second in which information is transmitted or exchanged between the
quantum system and the environment (non-Markovian systems) (Breuer et al. 2016).

Matter–wave experiments performed in vacuum allow the investigation of the first
category, for example, by observing the loss of contrast of the interferometric pattern while
degrading the vacuum level of the experimental set-up, as was demonstrated in Hornberger
et al. (2003) and Schütz et al. (2015). Here, the quantum phase information is lost and the
interference patterns are irreversibly washed away by a series of scatterings of the particles
with the residual gas.

In the second category, we can find the quantum systems that interact coherently with
other physical systems possessing well-defined phase properties, thereby making possible
the exchange of the information between the two systems. They are based on the fact
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that the interaction is non-dissipative in its essence. Under these conditions, the change
in visibility of an interferometric pattern might show the effect of ‘quantum revival’:
an oscillatory behaviour of the visibility as the interaction parameter between the two
systems monotonically increases. This is, for instance, the case when an interferometric
pattern is suitably made to interfere with a laser system. Such revivals can also be found
by investigating other aspects such as coherence, entanglement and quantum correlations
(Maniscalco, Olivares & Paris 2007; Vasile et al. 2010; Benatti, Floreanini & Olivares
2012; Cialdi et al. 2019).

Focusing on matter–wave interference experiments in the non-Markovian case, this
condition has been studied and observed in Chapman et al. (1995), where an atom
interferometer has been subjected to the perturbation induced by single photons. Our
study here differs from Chapman et al. (1995) in two fundamental aspects: first of all,
we consider the quantum revival effect between an antiparticle (as opposed to a particle)
and a coherent electromagnetic field. Secondly, we discuss an interaction case where the
massive system (and not the photon) is in the single-particle mode.

In essence, we pave the way for studying the revival effect in a single-particle mode,
never studied before (by using antiparticles).

The basis and inspiration for this work is the first detection of antiparticle (positron)
interference in our QUPLAS (QUantum interferometry and gravitation with Positrons
and LASers) experiment (Sala et al. 2019). This interference, obtained with a Talbot–Lau
configuration (Sala et al. 2015; Sala, Giammarchi & Olivares 2016), has been obtained in
single-particle mode, similarly to the historical experiment with electrons performed by
Merli, Missiroli & Pozzi (1976).

2. The strategy

The first stage of the QUPLAS experiment featured a positron beam coupled with a
Talbot–Lau interferometer and a high-resolution emulsion detector (Anzi et al. 2020;
Ariga et al. 2020). In the experimental configuration, the two gratings have different
periods (d1 = 1.2 μm and d2 = 1 μm, respectively) so that the configuration acts as a
magnifier of the diffraction pattern. The distance L1 between the two gratings (see figure 1)
is set to L1 = d1d2/λ (Sala et al. 2019), where λ = h/mv is the De Broglie wavelength,
with m and v the positron mass and velocity, respectively, and h Planck’s constant. In
order to obtain the maximum contrast on the detector, this is located at a distance L2 from
the second grating given by the relation L2 = d2L1/(d1 − d2).

The experiment is powered by a 50 mCi 22Na positron source. After a few preparation
steps, an almost monochromatic (energy spread of a few eV) positron beam with energies
tuneable in the range 10–20 keV is obtained. At these velocities, the particles pass through
the interferometer in a fraction of μs. Taking into account all the losses due to solid angle,
moderation and other processes, the flux turns out to be � 104 particles s−1. Taking into
account the paucity of this beam and the fact that the radioactive material is an incoherent
fermionic source, the experiment is definitely in the single-particle regime.

The present configuration, featuring two silicon nitride material gratings, will be
supplemented by a microwave cavity, located after the second grating, as shown in figure 1,
providing a standing (∼10 GHz) electromagnetic field. Therefore, the positrons crossing
the second grating will interact with the photons in the microwave cavity. This interaction
can be described by a Hamiltonian of the form (Friedman et al. 1988; Henke et al. 2021)

Ĥ � �g(â†b̂ + âb̂†), (2.1)
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FIGURE 1. The QUPLAS configuration for this study and principle of operation. A collimated
positron beam is followed by a system of gratings. The interference pattern is recorded by a
high-resolution emulsion detector. The set-up is equipped with a microwave cavity to study the
proposed particle–wave interaction.

where a and a† are the boson field annihilation and creation operators, [a, a†] = 1, g is
a coupling constant and b the positron-energy ladder operator, reducing its energy by
the energy of one microwave photon and changing its linear momentum. This interaction
produces an entanglement between positrons and photons, having the form

|ψe, ψγ 〉 �
∑

n

cn|E − n�ω〉|n〉, (2.2)

where n is the number of exchanged photons (having frequency ω) and cn are amplitudes.
Different effects are then obtained as a function of the power in the microwave cavity,
which is related to the number of photons in the expansion. In the case of a small coupling
constant, |ψe, ψγ 〉 is dominated by the effect of one or two photons

|ψe, ψγ 〉 � |E〉|0〉 + g|E − �ω〉|1〉 + g2|E − 2�ω〉|2〉. (2.3)
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In the presence of a macroscopic, monochromatic microwave field, namely, a coherent
state of the radiation field, we can substitute for â in (2.1) the complex amplitude α of the
microwave field, that reduces to a momentum-displacement operation, in analogy with the
same kind of operation in quantum optics (Olivares 2021).

In principle, one should solve the Schrödinger equation with the above Hamiltonian
for the proposed experimental configuration. In order to simplify the problem we have
developed two complementary approaches:

(i) the two-slit model;
(ii) the Gaussian–Schell model (GSM).

In the two-slit model, the grating structure is geometrically simplified down to the simplest
Young-like configuration, taken to grasp the essence of the phenomenon. The idea is
to model a single positron passing through the interferometer and interacting with the
microwave cavity. On the other hand, the GSM is an analytical model used for the
statistical treatment of partially coherent beams. Both models will be shown to give
consistent results.

3. The two-slit model

The two-slit model assumes that the essence of the phenomenon is equivalent to
considering two neighbouring slits belonging to the second grating, as shown in figure 2.
We assume that a non-relativistic positron is propagating along the z direction, while the
grating slits are parallel to the x direction (orthogonal to the ( y, z) plane shown in figure 2);
under these conditions, interference will show up along the y axis. The microwave cavity
is modelled as a rectangular wave guide with length w and transverse dimensions a
and b. Considering only the fundamental mode TE10 of the wave guide, the stationary
field is characterized by a longitudinal wavenumber

kL =
√(

2πν0

c

)2

−
(

2πνc

c

)2

, (3.1)

where ν0 is the frequency of the microwave field, and νc = c/2a the cutoff frequency of
the TE10 mode.

The vector potential of the confined microwave field in the cavity is given by

Az = E0

ω
cos

(πx
a

)
sin(kLy) cos(ωt + ϕ), (3.2)

where E0 is the amplitude of the electric field, ω = 2πν0 and ϕ is a phase. The origin of
the coordinates is placed at the centre of the opening for the passage of positrons into the
microwave cavity. Assuming the diameter of this opening is much smaller than the linear
dimensions of the microwave cavity and of the wavelength of the TE10 mode inside the
cavity, the potential (3.2) can be simplified as

Az � E0

ω
kLy cos(ωt + ϕ). (3.3)

The amplitude of the wave electric field in the wave guide can be written in terms of the
time-averaged (over a wave period) peak power P by means of the relation

E0 =
√

4Pη
wa

, (3.4)

where η = 1/ε0c
√

1 − (νc/ν0)2 is the wave impedance.
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FIGURE 2. The two-slit model can be visualized as two independent sources located at the end
of the second grating of QUPLAS, where a microwave cavity is positioned. The x axis is pointing
into the figure, away from the reader.

Neglecting the term proportional to the square of the vector potential (low amplitude
wave electric field), the Hamiltonian of the interaction between the particle and the field
reads

H � − e
m

Azpz, (3.5)

where e is the positron charge, and pz � mv (neglecting the transverse velocity
components of the particle).

The effect due to two neighbouring slits is summarized by an overall shift


φ(P, ϕ; w, a, ω, d2) = −1
�

∫ τ

0
H2 dt + 1

�

∫ τ

0
H1 dt

� −1
�

√
Pη

w
a

e
πv

kLd2
1
τ

∫ τ

0
cos(ωt + ϕ)

= −1
�

√
Pη

w
a

e
πv

kLd2
sin(ωτ + ϕ)− sin(ϕ)

ωτ
, (3.6)

where τ � w/v is the crossing time of the positron in the wave field, and H1 and H2 denote
the interaction Hamiltonian relevant to the passage of the particle through slits 1 and 2,
respectively, separated by a distance d2 (i.e. the period of the second grating).

For a uniform random distribution of the phase ϕ, the degree of decoherence introduced
by the stationary field can be quantified by means of

D(P; w, a, ω, d2) = 1
2π

∫ π

−π

exp[i
φ(P, ϕ; w, a, ω, d2)] dϕ. (3.7)

The function D is real and coincides with the visibility of the interference pattern. An
example of the dependence of D on microwave power is given in figure 3.
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FIGURE 3. Visibility of the fringes as a function of the power of the microwave field in both the
two-slit model and in the GSM model for positrons with 14 keV kinetic energy, ν0 = 10 GHz,
w = 4 mm, a = 21.2 mm and d2 = 1 μm. The additional data used in the GSM model are d1 =
1.2 μm, l0 = 0.65 nm, w0 = 2.8 mm; the two gratings are assumed to have a transparency f1 =
f2 = 0.5. The visibility is computed at the z-coordinate of the Talbot–Lau maximum.

4. The Gaussian–Schell model

The same physical problem has been addressed by means of a simulation that makes use
of an analytical description of the beam, namely the GSM (McMorran & Cronin 2008).

In the GSM, the partial coherence and wavefront curvature of a beam are taken into
account by using a series of parameters describing the non-ideality of both the beam
and of the related grating system. This approach has a great versatility, and can describe
a variety of interferometric situations in different regimes (Talbot–Lau, Fraunhofer,
Mach–Zehnder. . .).

The model describes a partially coherent beam as a statistical distribution of Gaussian
modes, characterized by its initial width, coherence length and wavefront curvature. In the
simulation, we have assumed that only the transverse part contributes to the coherence
length; this is due to the good monochromaticity of the QUPLAS positron beam (good
longitudinal coherence) (Ariga et al. 2020). The ingredients used in the GSM calculation
are:

(i) The mutual intensity function.
(ii) Its propagation in free space.

(iii) Its modification due to the effect of the gratings and microwave cavity.

The mutual intensity function is used in partially coherent optics, where it is considered
that a beam has some momentum distribution in the direction transverse to propagation. It
is defined by

J(xa, xb, z) = 〈Φ∗(xa, z, t)Φ(xb, z, t)〉 , (4.1)

where Φ is a field, xa, xb are coordinates orthogonal to the z propagation direction of the
beam and the angular brackets denote a time average over the statistical fluctuations of the
field. This quantity describes both the spatial coherence of the beam and its intensity, as
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given by the relation

I(x, z) = J(x, x, z). (4.2)

Once this function is given at z = 0, the beam propagation in space can be described by
means of the Van Cittert–Zernike theorem, that links the mutual intensity function J to the
Fourier transform of the intensity of a partially incoherent source, enabling us to devise a
free propagation law for J

J(x,
x, z) = 1
λ2z2

∫
d
x′

∫
dx′ exp(−(2πi/λz)(x′ ·
x′ − x′ ·
x − x ·
x′ + x ·
x))

J(x′,
x′, 0), (4.3)

where x = (xa + xb)/2 and 
x = xb − xa. This law gives the mutual intensity function J
at some z, given its form at z = 0 for the case of free propagation.

The structure of the initial mutual intensity function is specified as

J(x,
x, 0) = exp(−π(x2/w2
0 +
x2/l2

0 + 2ix ·
x/λr0)), (4.4)

where w0 is the beam opening (width), l0 the transverse coherence length and r0 the radius
of curvature of the wavefront. In the free propagation of the beam from z0 = 0 to a generic
position z, the mutual intensity function J retains the Gaussian structure, with the values
of the parameters evolved as

w(z) = w(z0)

√(
1 + z

r0

)2

+
(
λz

w0l0

)2

, (4.5)

l(z) = l(z0)

√(
1 + z

r0

)2

+
(
λz

w0l0

)2

, (4.6)

r(z) = z
[

(1 + z/r0)
2 + (λz/w0l0)

2

(z/r0)(1 + z/r0)+ (λz/w0l0)2

]
. (4.7)

Concerning the initial beam parameters, they were experimentally determined by a series
of runs in the standard QUPLAS configuration (without the microwave cavity) as l0 =
0.65 nm and w0 = 2.4 mm, neglecting the effect of the curvature radius (Sala 2018).

The action of a grating is represented by means of its transmission function μ, so that
the mutual intensity function at the z-coordinate of the grating is changed as

J′(x,
x, z) = μ∗(x −
x/2)μ(x +
x/2)J(x,
x, z). (4.8)

In order to describe material gratings realized as open slits in a substrate, μ is simply
assumed in each period d as 1 in an interval of width fd (open slit), and 0 in a following
interval of width (1 − f )d (substrate), where f is the transparency of the grating.

After an initial phase of free propagation, the operation (4.8) is performed a first time in
the position of the first grating (period and transparency d1 and f1, respectively), followed
by a new phase of free propagation for the modified J up to the second grating. Then
the mutual intensity function is changed again on the basis of (4.8) in the position of the
second grating (period and transparency d2 and f2, respectively).
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The insertion of the microwave cavity changes the propagation after the second grating.
Its effect is modelled again using (4.8) with a transmission function μ = exp(Φ̃). Using
the same approximations adopted in the two-slit model

Φ̃ � − i
�

∫ τ

0
H dt � 2i

ev
�ω2

√
ηP
wa

kLy [sin(ωτ + ϕ)− sin(ϕ)] . (4.9)

The intensity at the z-coordinate of the detector is finally computed after a final phase
of free propagation, and averaging over the phase ϕ. The resulting visibility of the
interferometric pattern is shown for fixed values of the relevant parameters and compared
with the result of the two-slit model in figure 3.

5. Conclusion

We have proposed and analysed the non-Markovian interaction between an antiparticle
and a carefully prepared electromagnetic microwave field. The results indicate the
feasibility of the experiment, currently being planned as an upgrade of the QUPLAS
set-up.

This experiment can shed light on the interaction and the mutual exchange of coherence
between a quantum system and an electromagnetic field, in particular, in the unexplored
regime where the field interacts with a single antiparticle. We believe that such a proposal
and the related experiment is an important step to improving the fundamental aspect
of quantum mechanics beyond the ‘matter’ realm, but also to foster new experimental
techniques that can be used in other anti-matter related experiments.
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