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Abstract
Kelvin wakes are fluid motions generated by a moving disturbance at a free surface. We present a machine learning-
based framework for inferring the properties of such moving disturbances from the Kelvin-wake patterns. We
perform phase-resolved simulations to establish a dataset of nearly half a million Kelvin wakes generated by dis-
turbances of varying propagating speed, length scale and geometry. Trained with the augmented data, the neural
network achieves accuracies of 99.7% and 92.4% in predicting the velocity and the length scale of the disturbance,
respectively, even if a random noise has been added to the training data. The explainability of the neural network is
demonstrated by quantifying the contribution of the input data to the prediction, which shows a strong connection
with the diverging and transverse waves. The accuracy of the neural network in predicting the disturbance length
scale is sensitive to wave nonlinearity.

Impact Statement
Ship wakes are known to influence coastal sediment transport and affect the habitats of marine life. Monitoring
ships is crucial for enforcing drug and fishery regulations as well as for controlling port traffic. In this study, we
apply a machine learning-based technique to analyse surface disturbances that can serve as indicators of real
ships. Our findings demonstrate the effectiveness of convolutional neural networks in characterising both the
velocity and length scale of ships from their wakes. Consequently, this technique has the potential to greatly
enhance ship monitoring in operational settings.

1. Introduction
A distinct wave pattern is generated when a disturbance moves at a constant speed at the water’s sur-
face. This phenomenon, also known as the Kelvin wake (Thomson, 1887), has been extensively studied
because the wake structure is closely related to the kinematics and geometry of the sources of the dis-
turbance. Note that Kelvin wakes should not be mistaken for Kelvin waves, which are produced by the
geostrophic balance between the Coriolis force and gravity in the direction transverse to wave propa-
gation (Kundu et al., 2016). Ship-induced Kelvin wakes represent an important anthropogenic impact
in the coastal environment. For instance, a recent study measured the shipping events in the Venice
Lagoon and identified ship wakes as one of the causes of shoreline erosion (Scarpa et al., 2019). Hence,
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understanding the hydrodynamics of these ship-related motions is critical for reducing their adverse
environmental impact. On the other hand, ship wakes have enabled the remote sensing-based monitor-
ing of maritime traffic, in which the ship’s location and velocity data prove valuable for ship collision
prevention.

Because of the complexity in surface wave–ship structure interaction, the study of Kelvin wakes is
often facilitated by applying a moving pressure to the free surface of an ideal fluid. For selected distur-
bance velocity and geometry, one can then derive an analytical solution for the wake angle, ϕmax, defined
as the angle between trendlines consisting of local maxima of the surface elevation. In linear theory
(Thomson, 1887), ϕmax was found to be a constant value of arcsin (1/3)= 19.5◦, independent of the speed
of the disturbance. However, this was found to contradict observations. Rabaud and Moisy (2013) exam-
ined satellite images of ship wakes and obtained a scaling law for large Froude numbers ϕmax ∼Fr−1

by arguing that the waves generated by the surface disturbance may not exceed the ship length L, which
imposes a lower limit on the characteristic wavenumber of the wake (here, Fr =U/

√
gL, where U is the

ship velocity and g is the acceleration due to gravity). This hypothesis was later proved unnecessary as
Darmon et al. (2014) derived the asymptotic value of the angle corresponding to the maximum ampli-
tude of the waves and reproduced the same scaling law. In a following study, Benzaquen et al. (2014)
extended their result to an elliptical pressure disturbance and discovered the relation ϕmax ∼

√
W/Fr,

where W is the ellipse aspect ratio. Miao and Liu (2015) studied the wave patterns formed when the pres-
sure disturbance is arbitrary. By decomposing the pressure into Fourier components and integrating the
surface response corresponding to each individual component, they found that ϕmax may be a complex
function of the Froude number. For example, they showed that, in the presence of a rectangular uniform
pressure, the scaling law becomes ϕmax ∼Fr−2. It is worth noting that ϕmax is a nonlinear function of
the disturbance parameter (e.g. the speed U), even for an infinitesimally small pressure disturbance, and
the resulting linear wave response (see the scaling laws mentioned above). Besides the aforementioned
transition with Froude number, the wake angle is also known to be a function of the disturbance geom-
etry. In general, a theoretical expression derived from asymptotic analysis is applicable only to highly
idealised free surface disturbances.

Ship detection and characterisation from remote sensing images is an active area of research, where
the objectives may include identification of a ship and the prediction of the ship’s velocity. A widely used
technique for wake identification is the Radon transform (e.g. Copeland et al., 1995), which integrates
a raw two-dimensional (2-D) signal along all possible lines. Hence, the Radon transform performs best
when used for identifying linear patterns in an image, such as the asymptotic wakes mentioned above.
However, the wake angle is not a well-defined variable, as the definition of a local maximum of the
surface elevation can be ambiguous as a result of the contamination by background surface waves and
the observational errors in remote sensing. Recent years have seen the application of emerging machine
learning techniques to the inverse problems in ship wake characterisation. For example, dynamic mode
decomposition, an unsupervised learning technique, has been applied to the separation of the ship wake
pattern from the background wind waves (Zhang and Jiang, 2020). Supervised learning methods based
on the convolutional neural network (CNN) have also been used for detecting ship wakes from remote
sensing images. Kang and Kim (2019) applied CNN to satellite images, where the output data of the
neural network are the latitude and longitude coordinates of a subregion marked as the ship, wake or sea.
The ship velocity was then estimated from the azimuth offset by performing edge detection and Radon
transform of the subregion. In another study (Xue et al., 2022), the output of the CNN not only includes
the coordinates of a subregion, but also the ship’s location and the angle of the wakes. A majority of
these studies focus on the feasibility and accuracy in terms of operational applications while neglecting
the hydrodynamics constraints.

In this study, we investigate the inverse problem of inferring the properties of a moving disturbance
from Kelvin wakes using CNNs. Unlike existing studies that typically focus solely on predicting velocity,
we explore the potential of CNNs to simultaneously predict both velocity and the disturbance length
scale. Additionally, we aim to interpret the CNN’s prediction capabilities and assess the impact of wave
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nonlinearity on accuracy. The remainder of this paper is organised as follows. In § 2, we introduce the
techniques needed for building the prediction framework, which include a phase-resolved wave model
for obtaining the training and testing data, the mathematical function for a free disturbance and the neural
networks used. We outline the simulation set-up and training data generation in § 3. The training results
are provided in § 4. Conclusions are given in § 5.

2. Methodology
2.1 Wave model
In this study, we assume that the water is incompressible, inviscid and irrotational, while the ship is
modelled as a surface pressure disturbance. This strategy allows for an acceptable computational cost
and has been widely used in theoretical and numerical studies of Kelvin wakes (see e.g. Benzaquen et al.,
2014; Miao and Liu, 2015; Pethiyagoda et al., 2021). In the present study, the deep-water assumption is
adopted, as the focus is on the generation of Kelvin wakes. In future studies, their impact on sediment
transport can be evaluated as these waves propagate into shallower waters. Under the potential flow
assumption, it can be shown that the surface gravity waves in deep water are uniquely determined by the
surface elevation η(x, y, t) and the surface velocity potential ΦS(x, y, t)≡Φ(x, y, η(x, y, t),t) (Zakharov,
1968).

For a steady pressure distribution moving at a constant speed U, it is convenient to rewrite the
Zakharov equations in the moving frame of reference (Dommermuth and Yue, 1988)

ηt −Uηx +∇η · ∇ΦS − (1 +∇η · ∇η)WS = 0, (2.1)

ΦS
t −UΦS

x + gη +
1
2
∇ΦS · ∇ΦS − 1

2
(1 +∇η · ∇η)W2

S +
pa (x)
ρw

= 0, (2.2)

where the gradient operator in the horizontal plane is defined as ∇≡ (∂/∂x, ∂/∂y), x= (x, y) is the
horizontal coordinate vector, WS =Φz is the surface vertical velocity, pa(x, t) is the external pressure
disturbance imposed at the surface and ρw is the density of water.

The above equations can be solved with the high-order spectral (HOS) method (Alam et al., 2009;
Alam, 2012; Dommermuth and Yue, 1987) in a periodic domain by assuming that the velocity potential
can be expanded in a perturbation series Φ(x, z, t) =

∑M
1 Φ

(m) (x, z, t) with respect to a characteristic
wave steepness, where M is the maximum perturbation order. At each order, it is assumed that Φ(m) ,
as Φ, satisfies the Laplace equation, ∇2Φ(m) = 0, and the deep-water boundary condition, ∇Φ(m)(x, z→
−∞, t)→ 0. Further assuming periodic boundary conditions in the horizontal directions, Φ(m) can be
written as the eigenfunction of the Laplace equation

Φ(m) (x, z, t) =
∞∑
j=1

∞∑
l=1

Φ
(m)
jl

(t) exp
(
|k jl |z + ik jl · x

)
, (2.3)

where Φ(m)
jl

(t) are the Fourier coefficients to be calculated from Φ(S) , and kjl = (2jπ/Lx, 2lπ/Ly), with
Lx and Ly being the computational domain size in the x and y directions, respectively. To determine
Φ

(m)
jl

(t), the Dirichlet problem is first solved

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψ (1) =ΦS (x, y, t), m = 1

ψ (m) = −
m−1∑
l=1

ηl

l!
∂lψ (m−l )

∂zl
. m = 2,3, · · · ,M,

(2.4)

where ψ(m) ≡Φ(m)(x, 0, t), m= 1, 2, · · · , M. Subsequently, the coefficients Φ(m)
jl

(t) can be computed in
an efficient manner by taking the 2-D Fourier transform of ψ(m).
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(a)

(c)

(b)

Figure 1. Schematic of (a) the computational domain, (b) the pressure distributions representing dif-
ferent ship types and (c) the CNN-based prediction framework. In (a), the region for extracting the
training data is marked by the shaded square in red. In (b), the coordinates are shifted such that the
geometric centres of the pressure distributions are at the origin (i.e. X= x− xc and Y= y− yc), and the
normalised pressure is defined as p∗= (p−pmin)/(pmax−pmin), where pmin and pmax denote the minimum
and maximum pressures.

The vertical velocity at the free surface is calculated by

WS =

M∑
m=1

M−m∑
l=0

ηl

l!
∂l+1ψ (m)

∂zl+1
. (2.5)

The system can then be integrated in time from η and ΦS prescribed at t = 0. While the HOS method
was originally developed for solving the Zakharov equations, it can also be directly applied to the sys-
tem in the moving frame of reference (Dommermuth and Yue, 1988; Miao and Liu, 2015). To avoid
numerical instabilities caused by excessive local steepness, an adaptive low-pass filter may be applied
to η and ΦS at each time step when M > 1 (Xiao et al., 2013).

2.2 Pressure disturbance
In our simulations, the pressure disturbance is placed near the end of the domain to allow for the wake
pattern formation (see figure 1a). To reduce wave reflection, we impose a relaxation zone at the bound-
aries of the computational domain (Mei et al., 2005). In the present study, we consider three types of
pressure distributions that have been widely used in previous studies for generating Kelvin wakes. For
each type of pressure distribution, an example of their spatial distribution is shown in figure 1(b).

For an elliptical pressure distribution, we follow the definition of Dommermuth and Yue (1988)

Pe (x, y) = P0e−Π(r/R) , (2.6)

https://doi.org/10.1017/flo.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2025.4


Flow E9-5

where r = (X2+Y2/W2)1/2, X = x − xc, Y = y− yc, P0 is the peak magnitude of the pressure and Π is a
smooth function. Here, xc and yc are the coordinates of the geometric centre, R is the radius of the
ellipse and W is the ellipse aspect ratio. While the exact form of Pe varies slightly in different studies,
the impact on the far-field Kelvin-wake pattern is expected to be small.

The pressure distribution corresponding to a monohull is defined as the sum of two circular
distributions

Pm (x, y) = P0

[
e−γ[(X−Lh/2)2+Y2] − e−γ[(X+Lh/2)2+Y2]

]
, (2.7)

where Lh is the hull length and γ is the bow and stern geometry parameter.
The catamaran is defined as the sum of two monohull distributions at a distance of B

Pc (x, y) = Pm (x, y − B/2) + Pm (x, y + B/2). (2.8)

2.3 Convolutional neural network
The basis of a CNN is the convolutional layer, which can be written as

Bi, j =

Δ∑
l=−Δ

Δ∑
m=−Δ

Al,mwi+l, j+m + u, (2.9)

where A and B denote the input and output data of the layer, respectively, w is a weighting matrix, u is an
optional bias matrix and Δ is the filter size. Both w and u are determined in the training process. Hence,
B can be seen as the discretised convolution (more accurately, cross-correlation) between a 2-D array
A and w when u= 0. Hence, compared with a fully connected layer used in a multi-layer perceptron, a
convolutional layer can identify the spatial structures of the data and is therefore suitable for image-like
input.

LeNet-5 is a classical CNN architecture originally designed for handwritten digit recognition (Lecun
et al., 1998). It comprises three convolutional layers followed by pooling layers and two fully con-
nected layers, which proved to be sufficiently accurate in classifying handwritten digits. While LeNet-5
demonstrated the power of CNNs in extracting spatial structures from 2-D data, it has a modest com-
plexity compared with contemporary models. A more widely used modern CNN is the residual network
(ResNet) (He et al., 2016), which utilises the residual connections and addresses the vanishing gradi-
ent problem during training. The residual blocks enable the network to focus on the difference between
the input and output of each layer, which significantly improves the network’s ability to learn deeper
representations and enhances its overall performance. In the present study, LeNet-5 and ResNet-18, a
residual neural network with 18 layers, are used. The prediction framework is shown in figure 1(c) (see
the Supplementary Material for the architectures of the CNNs).

2.4 Wave model validation
To demonstrate the accuracy and numerical capability of the HOS method, we perform simulations of
Kelvin wakes produced by an elliptical pressure forcing applied to the free surface. We first vary the
speed U (equivalently Fr) of the disturbance, while keeping the magnitude of the ellipse aspect ratio
W and the semi-minor axis R constant (see dataset VFr in table 1). For the dataset VW, we change the
values of W instead. Figure 2(a) shows an example of the Kelvin wakes generated. Here, the normalised
surface elevation is defined as η∗ = (η − ηmin )/(ηmax − ηmin ), where ηmin ) and ηmax ) denote the
minimum and maximum elevations, respectively. From the instantaneous surface wave field, we identify
the maximum elevation along each y direction and perform a linear regression to obtain the wake lines
(see also the white dashed lines in figure 2a) and the wake angle ϕmax . The Froude number is defined
as Fr =U/

√
gR. The computed wake angles are then plotted as a function of Fr (figure 2b) and W

(figure 2c), respectively. For both datasets, our simulation results agree well with the theoretical scaling
law of ϕmax ∼

√
W/Fr, derived by Benzaquen et al. (2014).
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Table 1. Parameters used in the HOS-based simulations for asymptotic analysis and
model validation, where Nx and Ny are the grid numbers in the x and y direc-
tions, respectively, L is a characteristic length scale and U is the speed of pressure
disturbance

Datasets M Nx, Ny Lx/L, Ly/L U/
√
gL R/L W

VFr 1 256 200 1.4− 7.1 2 0.5
VW 1 512 400 8.9 20 0.0625− 1
VM 2− 5 512 400 8.9 2 0.5

(a)

(b) (c)

Figure 2. Simulation results for validating the response of the wave system: (a) an example of the (nor-
malised) surface elevation; (b) the maximum surface elevation angle as a function of Froude number;
(c) the maximum surface elevation angle as a function of the ellipse aspect ratio. In (a), the locations of
the local maximum surface elevation are denoted by the white dashed lines. The theoretical scaling law
ϕmax ∼

√
W/Fr (Benzaquen et al., 2014) is denoted by the black dashed lines in (b) and (c).

We then examine the nonlinear error related to the perturbation expansion in the HOS method. Let
ε =max(η2

x + η
2
y )1/2 denote the characteristic steepness of the surface wave field, the error e = ‖ηM −

ηtrue ‖ then should scale as e~ε (M+1) , where ηM is the surface elevation obtained from HOS simulations
performed at order M and ηtrue is the corresponding ground truth. This strategy is equivalent to the
validation of the HOS method by examining the error in Φz , which was adopted in the simulations of
Stokes wave (Dommermuth and Yue, 1987) and nonlinear surface capillary waves (Pan, 2020). Ideally,
ηtrue needs to be calculated from analytical solutions, such as the Crapper wave used by Pan (2020).
However, no such solutions exist for the nonlinear waves generated by the moving pressure of an arbitrary
shape and we treat ηM (M = 5) as ηtrue instead.

Simulations are performed for M = 2, 3, 4, 5 (see datasets VM in table 1). For each M, we repeat the
simulations at different characteristic wave steepnesses by adjusting the strength of the peak pressure
P0. Figure 3 shows the variations of the normalised error e/e0 with the steepness at different maximum
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Table 2. Parameters used in the HOS-based simulations for training data generation. Note that
each case includes multiple simulation runs at varying parameters, and the subscripts ‘e’, ‘m’ and
‘c’ in the case names denote the ellipse, monohull and catamaran types of disturbance, respectively

Datasets Nx, Ny Lx/L, Ly/L U/
√
gL R/L W γLh

2 Lh/L B/Lh
T e 1024 200 0.6− 3 2− 5 0.125− 1 − −
Tm 1024 200 0.6− 3 − − 1− 400 1− 10 −
T c 1024 200 0.6− 3 − − 4− 256 2− 8 0.25− 4

Figure 3. Simulation error as a function of the characteristic wave steepness. The errors are normalised
by e0, their corresponding values at the smallest steepness. The black-dashed lines correspond to the
theoretical scaling of the error with the steepness e ∼ εM+1, where M is the maximum perturbation order
used in the simulations.

perturbation orders. As expected, the error growth with increasing M agrees well with the theoretical
prediction.

3. Training data generation
We perform 787 simulations to generate the training data across a wide range of parameters (see datasets
Te, Tm and Tc in table 2). Since the length scales of the far-field Kelvin-wake patterns are often much
larger than the characteristic size of the pressure distribution (see the validation cases in figure 2 for
example), we choose larger grid numbers and smaller domain lengths compared with the validation
cases to further reduce the impact of the (possible) Gibbs phenomenon. In all simulations, the surface
elevation data are collected at a time instant when the Kelvin wakes are sufficiently close to the end of
the domain. To reduce the computational cost, we set the pressure to an infinitesimally small amplitude
and perform the simulations using the linear model by setting M = 1. We note that a novel machine
learning-based technique has been developed to extend the HOS method, enabling predictions for ocean
surface gravity waves to be made more than two orders of magnitude faster than with the original method
(Mohaghegh et al., 2021). This strategy offers an efficient way to generate data for future studies.

To obtain the input to the neural network, the far-field wake pattern η in the region of
(Lx/4 ≤ x ≤ 3Lx/4, Ly/4 ≤ y ≤ 3Ly/4) is first extracted from the raw simulation data such that the neural
network does not memorise the surface pattern near the location of the pressure forcing (see figure 1a).
A downsampling operation is then applied to the resulting 513× 513 matrix to create the training data.
Two spatial resolutions are considered: (Lx/64, Ly/64) and (Lx/128, Ly/128). The corresponding matrix
sizes of the training data are 33× 33 and 65× 65, respectively. To increase the size of training samples,
we then apply an affine transformation to the surface elevation data, including rotating between 0◦ and
360◦ at an interval of 10◦ and scale up to 160 % of the original image. The details on data augmentation
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(a) (b)

Figure 4. An example of normalised surface elevation (a) computed using the HOS method (i.e. raw
data); and (b) obtained from the raw data using augmentation technique.

are provided in the Supplementary Material. To improve the training stability, the augmented surface
elevation is normalised, η∗= (η−ηmin)/(ηmax−ηmin). In the final step, different levels of random error
up to 30 % of the maximum wave elevation are added to η∗ to address the overfitting issue commonly
faced in deep learning, resulting in 4.53× 105 images in total as the input data (training data available
in UC San Diego’s data archive https://doi.org/10.6075/J0GH9JCX).

To demonstrate the effect of affine transformation, we show an example of the raw surface elevation
data obtained from the HOS simulation (figure 4a) and the transformed data (figure 4b), obtained by per-
forming a 50◦ rotation, scaling at a ratio of 1.6 uniformly in both directions, and adding a random noise
of up to 30 % of (ηmax−ηmin). The output of the neural network includes the speed U and the length scale
of the moving pressure L, which corresponds to R for the elliptical pressure distributions, and Lh for the
monohull and catamaran distributions. A similar normalisation is performed to obtain the actual output
of the neural network v= [U∗ L∗]T where U∗ = (U−Umin)/(Umax−Umin) and L∗ = (L−Lmin)/(Lmax−Lmin).

In the training process, we define the loss function as the mean squared error between the neural
network prediction and the ground truth J = (vpred−vtrue)2, where vpred and vtrue correspond to the CNN
prediction and the ground truth of the vector v= [U∗ L∗]T , respectively. The Adam optimiser is adopted
and the initial learning rate is 0.001 (Kingma and Ba, 2015). All input images are first randomly shuffled
and approximately 4.1× 105 samples are then selected for training, while the other 4.5× 104 samples are
reserved for validation. Both models are used for training, and for the 65× 65 input resolution, ResNet-18
has approximately 11 million parameters while LeNet-5 has 0.33 million.

4. Training results
4.1 Loss function and accuracy
For both models and input resolutions, the loss function converges within approximately 400 epochs
(figure 5). At both resolutions, the LeNet-5 model shows a faster convergence rate than the ResNet-18
model because of its smaller parameter size. Meanwhile, the loss function decreases by approximately
three orders of magnitude for the ResNet-18 model, which is significantly better than LeNet-5. We
remark that using images at a different resolution may affect the performance of the ResNet-18 model.

To examine the performance of each model, we reconstruct the output vector v when the input data
are selected from the validation data. The CNN predictions are plotted against the ground truth in
figure 6 for resolution 65× 65. For the velocity, the neural network shows an excellent performance
with few outliers, whereas for the length scale, more outliers exist across all ranges of the length
scale. We further define the accuracy function A(x) as the percentage of validation data that satisfies
‖xpred − xtrue ‖2/‖xtrue ‖2 < 5%, and evaluate its value for U and L, respectively. As shown in table 3,
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Figure 5. Convergence of the loss function J normalised by its initial value J0.

(a) (b)

Figure 6. The CNN prediction and ground truth of the normalised (a) velocity U∗ and (b) length scale
L∗ of the disturbance. Plotted are results for ResNet-18 trained using images with a resolution of 65× 65.
The black dashed lines correspond to a perfect prediction. Here, the size of the markers increases with
the number of data points they denote.

increasing the input resolution from 33× 33 to 65× 65 appears to have limited impact on the prediction
accuracy, while using the ResNet-18 model significantly increases the prediction performance. When
ResNet-18 is used, the accuracy for predicting U is close to perfect. Despite the outliers observed in
figure 6(b), the corresponding accuracy A(L) is 92.4 %, suggesting that the ResNet-18 model can pro-
vide a reasonable prediction of the length scale. We have also examined the performance of ResNet-18
on local data, which generally shows a robust performance (see details in the Supplementary Material).

For comparison, an analysis based on the Radon transform (Radon, 1986) is performed for three
selected examples of pressure disturbances (figure 7). These three examples are chosen such that the rota-
tion angles used in the affine transformation for producing the training data are identical. Note that, for
monohull and catamaran types of pressure disturbance, the wakes produced often show an interference
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Table 3. Summary of training configuration, loss and accuracy. Here, the normalised
loss at convergence is calculated by taking the average of their values in the last 100
epochs

CNN model Input resolution Loss at convergence J/J0 A(U) A(L)
LeNet-5 33× 33 0.10 65.8% 15.3%
ResNet-18 33× 33 1.8× 10−3 97.4% 77.4%
LeNet-5 65× 65 1.9× 10−2 76.8% 19.4%
ResNet-18 65× 65 1.2× 10−3 99.7% 92.4%

(a)

(b)

(c)

Figure 7. Radon transform analysis for selected examples of pressure disturbances of type: (a) ellipse,
(b) monohull and (c) catamaran. The left, middle and right columns correspond to the input data (i.e. the
normalised surface elevation η∗), the Radon space of the data, R[η](θ, s) and the reconstructed Kelvin
wakes, η̂, respectively. The reconstruction, η̂, is computed using R[η](θ1, s) and R[η](θ2, s), where θ1
and θ2 correspond to the two local peaks (denoted by the white dots) in the Radon space.

pattern (for more details, see the visualisations of the raw surface elevation at https://doi.org/10.6075/
J0RN386Z). The mathematical expression for the Radon transform is given by

R[η](θ, s) =
∫ ∞

−∞
η(z sin θ + s cos θ,−z cos θ + s sin θ)dz, (4.1)

where θ is the angle of the line pattern, and s is the arc length. In practice, the integration limits should
be replaced by the size of an image. Similar to the study by Zilman et al. (2004), the local peaks at
angles θ1 and θ2 corresponding to the diverging wake patterns are identified (see the white dots plotted
on R[η] in figure 7). Additionally, the surface elevation reconstructed from R[η](θ1, s) and R[η](θ2, s)
reproduces the line patterns of the asymptotic wakes.
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However, a direct comparison between the Radon transform and the CNN prediction is challenging
for several reasons. Technically, these local peaks must be identified manually, which prevents automatic
operations on large datasets. Furthermore, the local peaks in the Radon space shown in figure 7 are less
distinct than the clusters identified from the Radon transform of satellite data used by Zilman et al.
(2004) (an example where the local peaks cannot be identified from the training data is shown in the
Supplementary Material). This is likely because the relatively high spatial resolution and small domain
size of the training data (compared with satellite data) reduce the signal to noise ratio of the asymptotic
line patterns.

4.2 Result interpretation
One caveat of pure data-driven machine learning models is that the training process is a ‘black box’,
which poses challenges to the interpretation of the result. To address this issue, we resort to the Shapley
value, a concept originally developed for quantifying the contribution of each player in game theory
(Shapley, 1953) for interpreting the prediction capability of neural network. The classical Shapley value
is defined as

φi =
∑

S⊆F\{i }

|S |!(|F | − |S | − 1)!
|F |! [ fS∪{i }

(
xS∪{i }

) − fS (xS )] , (4.2)

where f (x) is the model to be evaluated, with x being the input vector, F the (full) set of all features and
φi measures the contribution of the ith component of x. Here, the summation loops over all subsets S of
F when the ith component is excluded in the prediction.

Directly computing (11) is computationally too demanding, because the number of subsets |S| grows
fast with the dimension of the input data. Therefore, we compute the SHAP (SHapley Additive exPla-
nation) values that are the Shapley values of a conditional expectation function of the original model
(Lundberg and Lee, 2017). The results for three example inputs are shown in figure 8. The spatial dis-
tributions of large SHAP value show a strong correlation with both the diverging and transverse waves
in the Kelvin wakes, suggesting that the CNN prediction is based on the wave kinematics identified. As
a comparison, the asymptotic wake angle (see figure 2) only identifies the local maximum of surface
elevation that is heuristically determined.

4.3 Impact of nonlinearity
To evaluate the impact of nonlinearity on the prediction performance of CNN, we perform nonlin-
ear simulations of Kelvin wakes generated by an elliptical pressure. The parameters of the surface
disturbance are U/

√
gL = 0.6, R/L = 5 and W = 0.5, belonging to the dataset Te. Six simulations

are performed with varying pressure amplitude such that the characteristic wave steepness ε varies
between 2.5× 10−3 (weakly nonlinear) and 0.29 (strongly nonlinear). To demonstrate the nonlinear
effect on the wave profiles, we plot the surface elevation along the transverse (y) direction at three
locations behind the geometric centre of the surface disturbance (figure 9a). As shown, the broaden-
ing in the wake angle with increased nonlinearity agrees well with the findings of Dommermuth and
Yue (1988).

Using the same data augmentation for generating the training data, the raw data in these nonlinear
simulations are transformed into a validation dataset, which is then fed into the pretrained CNN model
for predicting the velocity and the length scale. In figure 9(d), the prediction accuracy A(U) and A(L) are
plotted as function of the characteristic wave steepness ε , an indicator of nonlinearity. As ε increases,
A(U) is largely unchanged. Therefore, to train a neural network model for predicting the velocity of the
disturbance, it is sufficient to generate Kelvin-wake patterns from a linear wave model. In contrast, A(L)
sees a significant decrease with increased nonlinearity. The sensitivity of A(L) to nonlinearity suggests
that the CNN model better captures the wave dynamics compared with the velocity.
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(a)

(b)

(c)

Figure 8. The SHAP values computed for selected examples of pressure disturbance of type: (a) catama-
ran, (b) ellipse, (c) monohull. Here, the left, middle and right columns correspond to the input data (i.e.
the normalised surface elevation), SHAP value corresponding to the prediction of U and the prediction
of L, respectively.

5. Conclusions
We have presented a CNN-based framework for predicting ship characteristics. By leveraging a phase-
resolved wave model, we have simulated Kelvin wakes produced by surface disturbances of varying
types. It is found that the CNN model trained from the wave data shows an excellent performance in
predicting the disturbance speed and a satisfactory performance when predicting the disturbance length
scale. We have revealed two important features of the prediction performance of CNN in inferring the
disturbance properties that were rarely explored in pure data-driven based studies. First, it is found that
the SHAP values are strongly correlated with the transverse and diverging wave patterns, which not only
substantiates the capability of CNN as a reliable prediction tool but also paves the way for building a
further connection between CNN and Kelvin-wake dynamics in future studies. Additionally, we have,
for the first time, demonstrated that the nonlinearity impact on the prediction accuracy of the pretrained
CNN model varies significantly depending on the prediction quantity.

The present study has demonstrated several advantages of supervised machine learning based on
CNNs over unsupervised algorithms. For unsupervised algorithms, such as the Radon transform, an
empirical relation is required to quantify the disturbance velocity and length scale from the features
extracted from the raw data (see discussions by Zilman et al., 2004). In contrast, this step is unnecessary
for CNNs, as the labelled training data are generated from physics-based simulations. In other words, the
CNN model itself serves as a reduced-order model of the underlying wave physics. Additionally, given
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(a) (b)

Figure 9. (a) Normalised surface elevation along various transverse locations in the weakly
(ε = 0.0025) and strongly (ε = 0.29) nonlinear cases and (b) prediction accuracy as a function of the
characteristic wave steepness.

the universal approximation capability of deep neural networks (Hornik et al., 1989), the CNN-based
prediction framework can be readily adapted to predict other quantities, such as the type of disturbance.
From an efficiency perspective, while producing the training data and training a CNN model are com-
putationally expensive, making predictions using a trained ResNet-18 model can be done in real time
on modern CPUs and GPUs.

We remark that the present study also sees several promising extensions in future studies. For instance,
the performance of the CNN can be further examined against a physics-based data assimilation frame-
work that leverages the HOS method to incorporate the surface wave dynamics (Wang and Pan, 2021;
Wang et al., 2022; Wu et al., 2022; Wu et al., 2023). While we have only considered the Kelvin-wake part
of ship wakes in this study, the same approach can be applied to non-Kelvin-wake parts, such as break-
ing waves, bubbly flows and viscous wakes (Reed and Milgram, 2002; Spedding, 2014) provided that
the training data are generated by turbulent simulations based on the Navier–Stokes equations. Finally,
the process for extending this framework to realistic remote sensing data is outlined. The training data
(i.e. the synthetic normalised radar cross-section) can be generated by applying a transfer function to
the surface elevation data (see review by Rizaev et al., 2022). A CNN model can then be trained using
the synthetic satellite data as input to predict the ship characteristics.

Supplementary material. Supplementary information are available at https://doi.org/10.1017/flo.2025.4.
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