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Abstract

A handlebody link is a union of handlebodies of positive genus embedded in 3-space,
which generalises the notion of links in classical knot theory. In this paper, we consider
handlebody links with a genus two handlebody and n — 1 solid tori, n > 1. Our main result is
the classification of such handlebody links with six crossings or less, up to ambient isotopy.

2020 Mathematics Subject Classification: 57M15, 57K12 (Primary); 57M05, 05C10
(Secondary)

1. Introduction

Early works on knot tabulation, motivated by Kelvin’s vortex theory, can be traced back
as early as the 19th century. To date, all prime knots up to 16 crossings are classified
[S, 9]. Knot tabulation has been further generalised to other contexts in recent years. [23]
and [25] tabulate prime theta curves and handcuff graphs up to seven crossings, and based on
this, [13] subsequently enumerates all irreducible handlebody knots of genus two up to six
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Table 1. Non-split, irreducible handlebody links up to six crossings
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crossings. The primary goal of knot tabulation is to classify embedded objects by their com-
plexity. At the same time it provides abundant examples, allowing us to better understand
knot properties, such as topology and symmetry of knot complements.

The aim of this paper is to extend the classification of handlebody knots of genus two
in [13] (see also [14, 19]) to handlebody links with n > 1 components having total genus
n—+ 1 (Table 1); we call such a handlebody link an (n,1)-handlebody link; it consists of
exactly one genus two handlebody and n — 1 solid tori. Our classification theorem is based
on classifications of minimal diagrams and of not necessarily connected spatial graphs with
small crossing number (compare with [23, 24]).

While the chirality of some handlebody knots in [13] is hard to detect [11, 14, 19,
26], and remains unknown for some of them [12], the chirality of all handlebody links in
Table 1 can be determined. The investigation also reveals that complements of handlebody
links can behave quite differently; there are irreducible (#,1)-handlebody links, n > 2, with
d-reducible complements, a phenomenon not occurring with handlebody knots of genus two
(see [33] and Remark 3-3). The following theorems summarise the main results of the paper.
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THEOREM 1-1. Table 1 enumerates all non-splitl, irreducible® (n, 1)-handlebody links,
up to ambient isotopy and mirror image, by their minimal diagrams, up to six crossings.

41 and 51 in Table 1 are the only non-split, irreducible (n,1)-handlebody links with four
and five crossings, respectively. Among the 15 handlebody links with six crossings, some
of them have n > 2 components. We remark that 65 in Table 1 represents the famous figure
eight puzzle devised by Stewart Coffin [3]. Thus, its unsplittability implies the impossibility
of solving the puzzle (Remark 3-2). Also, (62,64) and (611, 614) are pairs of inequivalent
handlebody links with homeomorphic complements.

Our task with respect to Table 1 is two-fold: we need to show firstly that there is no
extraneous entry, that is, all entries in the table:

U.1 represent non-split handlebody links,
U.2 represent irreducible handlebody links,
U.3 are mutually inequivalent, up to mirror image,

U.4 attain minimal crossing numbers,

and secondly that the table is complete; namely, no missing handlebody links exist with
crossing number ¢ < 6.

In Section 3 we prove U.1-U.3, making use of invariants such as the linking number [22],
irreducibility criteria [2], and the Kitano—Suzuki invariant [16] (Theorems 3-2, 3-7, and 3-1,
respectively). We prove the completeness of Table 1 by exhausting all—except for those
obviously non-minimal—diagrams of non-split, irreducible (n,1)-handlebody links up to six
crossings (Section 4).

Observe that the underlying plane graph of a diagram of a non-split, irreducible (n,1)-
handlebody link necessarily has edge connectivity 2 or 3. For the sake of simplicity, we say
a diagram has connectivity e if its underlying plane graph has edge connectivity e. Diagrams
with connectivity 3 up to six crossings are generated by a computer code (Appendix A),
whereas handlebody links represented by diagrams with connectivity 2 are recovered by
employing the knot sum—the order-2 vertex connected sum—of spatial graphs [23]. In
more detail, a minimal diagram D with connectivity 2 can be decomposed by decompos-
ing circles® into simpler tangle diagrams, each of which induces a spatial graph that admits
a minimal diagram with connectivity 3 or 4, as illustrated in Figure 1-1. This decomposi-
tion allows us to recover the handlebody link represented by D by performing the knot sum
between prime links and a spatial graph that admits a minimal diagram with connectivity 3.

Once a list containing all possible minimal diagrams of non-split, irreducible handlebody
links is produced, we examine each entry on the list manually (Appendix A), and show that
it either is non-minimal or represents a handlebody link ambient isotopic to one in Table 1
with the same crossing number, up to mirror image. This proves the completeness, and also
implies U.4 by induction on crossing number.

THEOREM 1:2. 51, 63, 66, 67, 63, 610 are the only chiral handlebody links in Table 1.

" A handlebody link HL is split if there is a 2-sphere & C S’ with & N HL = ¢ separating HL into two parts.

* A handlebody link HL is reducible if there is a 2-sphere & C S* with & N HL an incompressible disk in
HL.

3 A circle that intersects D at two different arcs.
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decomposing circle

induced spatial graphs knot sum of spatial graphs

Fig. 1-1. Decomposing a minimal diagram with connectivity 2.

The proof of Theorem 1-2 occupies Section 5-2, and the main tool is Theorem 5-2, where we
prove a uniqueness result for decomposition of non-split, irreducible handlebody links with
no genus g > 2 component, in terms of order-2 connected sum (Definition 5-1). A unique
decomposition theorem in a more general form for handlebody knots of arbitrary genus is
given in [17, appendix B] (see also [14]).

THEOREM 1-3. Table 5 enumerates all non-split, reducible (n, 1)-handlebody links up to
six crossings, up to ambient isotopy and mirror image.

Theorem 1-3 follows from the irreducibility of handlebody links in Table 1 and a uniqueness
factorisation theorem (Theorem 6-1) for non-split, reducible (n,1)-handlebody links in terms
of order-1 connected sum (Definition 6-1).

The structure of the paper is the following. Basic properties of handlebody links are
reviewed in Section 2. Uniqueness, unsplittability, and irreducibility of handlebody links
in Table 1 are examined in Section 3. The completeness of Table 1 is discussed in Section 4.
Section 5 introduces the notion of decomposable handlebody links, and uses it to examine
the chirality of handlebody links in Table 1. A classification of non-split, reducible handle-
body links up to six crossings is given in Section 6. Section 7 concludes the paper with a
discussion of questions arising from the work. In the appendix we include an analysis on the
output of the code available at http://dmf.unicatt.it/paolini/handlebodylinks/.

Throughout the paper we work in the PL category; for the illustrative purposes, the draw-
ings often appear smooth. In the case of 3-dimensional submanifolds in S3, the PL category
is equivalent to the smooth category due to [4, theorem 5], [8, theorems 7-1, 7-4], [27,
theorems 8-8, 9-6, 10-9].

2. Preliminaries
2.1. Handlebody links and spatial graphs

Definition 2-1 (Embeddings in S*). A handlebody link HL (resp. a spatial graph G) is
an embedding of finitely many handlebodies of positive genus (resp. a finite graph*) in the
oriented 3-sphere S°.

The genus of a handlebody link is the sum of the genera of its components; a spatial graph is
trivalent if the underlying graph is trivalent (each vertex has degree 3). By a slight abuse of

* A finite graph is a graph with finitely many vertices and edges; to exclude trivial objects, we require that
no component has positive Euler characteristic. A circle is regarded as a graph without vertices as in [10].
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notation, we also use HL (resp. G) to denote the image of the embedding in S*. The mirror
image of HL (resp. G) is denoted by rHL (resp. rG).

Definition 2-2 (Equivalence). Two handlebody links HL, HL' (resp. spatial graphs G, G')
are equivalent if they are ambient isotopic; they are equivalent up to mirror image if HL
(resp. G) is equivalent to HL' or rHL' (resp. G’ or rG).

A regular neighbourhood of a spatial graph defines a handlebody link, up to equivalence
[30, 3-24], and a spine of a handlebody link HL is a spatial graph G C HL such that HL is a
regular neighbourhood of G [10]. Here we are mainly concerned with trivalent spines.

LEMMA 2-1. Every handlebody link admits a (trivalent) spine.

Proof. Tt suffices to prove the connected case. Suppose HK is a handlebody knot of
genus g, and {Dy,..., D3, 3} is a set of disjoint incompressible disks in HK such that
the complement of the tubular neighbourhoods N(D;) of D; in HK consists of 3-balls
Bi,i=1,...,2(g — 1), each of which intersects with ]_[?i 1_3 dN(D;) at three disks. Note that
such a disk system always exists.

Let disks D1, Dip, Di3 be components of B,-ﬂ( 12513 N(Dk)), and choose points
Vi1, Vi2, Vi3 in the interior of D;1, Djp, D3 and a point v; in the interior of B;. Then, join-
ing v; to v;; by a path for each j gives us a trivalent vertex. Repeat the construction for every
i, and then glue the v;; together so that the vertices v;; and vy are identified if they are in
the same N(Dy), for some k. This way, we obtain a connected trivalent spine of HK with

2(g — 1) trivalent vertices.

In general, a trivalent spine of a n-component handlebody link of genus g has 2(g — n) = 2¢
trivalent vertices, and we call such a handlebody link a (n, f)-handlebody link. This paper is
primarily concerned with the case r = 1.

2.2. Diagrams

Let S¥ =R U co. Without loss of generality, it may be assumed handlebody links or
spatial graphs are away from oco.

Definition 2-3 (Regular projection). A regular projection of a spatial graph G is a
projection 7:S% \ 0o — S? \ 0o such that the set 7~ !(x) NG is finite with its cardinality
#(r ' (x) N G) <2 for any x € S?\ oo, and no O-simplex of the polygonal subset G of
S3 is in the preimage of a double point, a double point being a point x € S*\ oo with
#x~'x)NG)=2.

As with the case of knots, up to ambient isotopy, every spatial graph admits a regular
projection: the idea is to choose a vector v neither parallel to a 1-simplex in the polygonal
subset G C R? =S3 \ 0o nor in a plane containing a 0-simplex and a 1-simplex or two 1-
simplices; then isotopy G slightly to remove those points x with #7 '¥) NG > 2, where 7,
is the projection onto the plane normal to v.

Definition 2-4 (Diagram of a spatial graph). A diagram of a spatial graph G is the image
of a regular projection of G with relative height information added to each double point.
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The convention is to make breaks in the line corresponding to the strand passing
underneath; thus each double point becomes a crossing of the diagram.

Definition 2-5 (Diagram of a handlebody link). A diagram of a handlebody link HL is a
diagram of a spine of HL.

A diagram of G (resp. HL) is trivalent if it is obtained from a regular projection of a
trivalent spatial graph (resp. spine).

Definition 2-6 (Crossing number). The crossing number c(D) of a diagram D of a han-
dlebody link HL (resp. of a spatial graph G) is the number of crossings in D. The crossing
number c¢(HL) of HL (resp. ¢(G) of G) is the minimum of the set

{c(D) | D a diagram of HL (resp. G)}.

Definition 2-7 (Minimal diagram). A minimal diagram D of a handlebody link HL (resp.
of a spatial graph G) is a diagram of HL (resp. G) with ¢(D) = c¢(HL) (resp. c(D) = ¢(G)).

Every multi-valent vertex in a minimal diagram D can be replaced with some trivalent ver-
tices by the inverse of the contraction move [10, figure 1] without changing the crossing
number, so for a handlebody link (resp. a spatial graph) there always exists a trivalent min-
imal diagram. From now on, we use the term “a diagram” to refer to a trivalent diagram of
either a spatial graph or a handlebody link.

Now, regarding each crossing in a diagram as a quadrivalent vertex, we obtain a plane
graph, a finite graph embedded in the 2-sphere. If we work backwards, and start with a
plane graph having only trivalent and quadrivalent vertices, we can produce diagrams by
replacing quadrivalent vertices with under- or over-crossings. If the plane graph has 21 triva-
lent vertices and ¢ quadrivalent vertices, then from it we can recover 2¢~! diagrams, up to
mirror image. In particular, a c-crossing (n, t)-handlebody link can be recovered from one
of these plane graphs. Therefore, if one can enumerate all plane graphs with 2t trivalent ver-
tices and up to ¢ quadrivalent vertices, then one can recover all (n, f)-handlebody links up to
¢ crossings.

2.3. Moves

Definition 2-8 (Moves). Local changes in a diagram depicted in Fig. 2-1 and Fig. 2.2
are called generalised Reidemeister moves, and the local change in Fig. 2-3 is called an
IH-move.

Note that spines of equivalent handlebody links might be inequivalent as spatial graphs;
indeed, the following holds.

THEOREM 2-2 ([15, theorem 2-1], [35]). Two trivalent spatial graphs are equivalent
if and only if their diagrams are related by a finite sequence of generalised Reidemeister
moves.

THEOREM 2-3 ([10, corollary 2]). Two handlebody links are equivalent if and only if
their trivalent diagrams are related by a finite sequence of generalised Reidemeister moves
and IH-moves.
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Fig. 2-1. Classical Reidemeister moves of type I, II, III.
/N~ T -~ e\

AN V

Fig. 2-2. Reidemeister moves IV and V involve a trivalent vertex.

L

IH-move

Fig. 2-3. The IH-move.

When analysing the data from the code (Section 4 and Appendix A), we adopt the con-
vention: a diagram is called /H-minimal if the number of crossings cannot be reduced by
generalised Reidemeister moves and IH moves, that is, “minimal” as a diagram of a handle-
body link, and a diagram is called R-minimal if the number of crossings cannot be reduced
by generalised Reidemeister moves, that is, “minimal” as a diagram of a spatial graph.

2.4 Non-split, irreducible handlebody links

Definition 2-9 (Edge-connectivity of a graph). The edge-connectivity of a graph is the
minimum number of edges whose deletion disconnects the graph.

Definition 2-10 (Connectivity of a diagram). A diagram has connectivity e if its underly-
ing plane graph has edge-connectivity e.

Definition 2-11 (Split handlebody link). A handlebody link HL is split if there exists a 2-
sphere & C S? such that & N HL = @ and both components of the complement S? \ & have
non-trivial intersection with HL.

Definition 2-12 (Reducible handlebody link). A handlebody link HL is reducible if its
complement admits a 2-sphere & such that G NHL is an incompressible disk in HL;
otherwise it is irreducible.

Note that G in Definition 2-12 factorises HL into two handlebody links, each of which is
called a factor of the factorisation of HL.
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A diagram with connectivity O (resp. connectivity 1) represents a split (resp. reducible)
handlebody link, so only diagrams with connectivity greater than 1 are of interest to us; on
the other hand, the connectivity of a diagram of a (n, f)-handlebody link with # > O cannot
exceed 3.

Now, we recall the order-2 vertex connected sum between spatial graphs [23] for pro-
ducing handlebody links represented by minimal diagrams with connectivity 2. A trivial
ball-arc pair of a spatial graph G is a 3-ball B with G N B a trivial tangle in B; it is oriented
if an orientation of G N B is given.

Definition 2-13 (Knot sum). Given two spatial graphs G, G, with oriented trivial ball-arc
pairs By, By of G, Gy, respectively, their order-2 vertex connected sum (Gy, B1)#(G2, B2)
is a spatial graph obtained by removing the interiors of By, B> and gluing the resulting

manifolds S3 \ By and S3 \ B; by an orientation-reserving homeomorphism
n:(0(S5\B1).0(GinB1)) — (3(ST\B2).0(G2 N B2) ).

The notation G;#G, denotes the set of order-2 vertex connected sums of G, G, with all
possible trivial ball-arc pairs.

Since an order-2 vertex connected sum depends only on the edges of Gi, G; intersecting
with Bj, B, and their orientations, G;#G5 is a finite set.

3. Uniqueness, non-splittability, and irreducibility
Recall that, given a finite group G, the Kitano—Suzuki invariant ksg(HL) of a handlebody

link HL is the number of conjugate classes of homomorphisms from s (S3 \ HL) to G [16].
Table 2 lists the invariants ks, (HL) and ksa (HL) of each handlebody link HL in Table 1,

as well as an upper bound of the rank of 7| (83 \ HL) computed by Appcontour [28], where
Ay is the alternating group on £ letters.

The entry “split” refers to the split handlebody link HL given by a trivial handlebody knot
and an unknotted solid torus; the entry “fake 65 is the split handlebody link consisting of the
handlebody knot HK 41, Ishii-Kishimoto—Suzuki—Moriuchi’s 4; in [13], and an unknotted
solid torus; the entry “fake 611" is 611 in Table 1 with one of the bottom crossings reversed,
thus making the lower solid torus component split off.

THEOREM 3-1 (Uniqueness). Entries in Table 1 are all inequivalent.

Proof. All entries in Table 1 except for the pairs (63, 64) and (611, 614) are distinguished
by comparing their ksa,- and ksa-invariants (shown in Table 2). On the other hand, 6;
and 64 cannot be equivalent because the removal of the “unknot” component produces
inequivalent handlebody knots: one being trivial, the other being HK 4. Similarly, one can
distinguish 611 and 614 by removing the solid torus component having a non-trivial link-
ing number with the genus two handlebody component [22] in each of them, and observing
that, for 614, the resulting handlebody link is 41, whereas for 6], we get the trivial split
handlebody link.

Remark 3-1. The pairs (62, 64) and (611, 614) in fact have homeomorphic complements, and
hence the fundamental group cannot discriminate. Fig. 3-1 and 3-2 illustrate how to obtain
the complements of 6, and 6;; from 64 and 614, respectively, via twisting (indicated by
arrows).
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Table 2. Kitano—Suzuki invariant for entries in Table 1

handlebody link components ksp, ksp, rank
split trivial 4+ unknot 178 3675 3
44 trivial + unknot 114 600 3
51 trivial + unknot 98 660 <4
61 trivial 4+ unknot 90 600 3
6; trivial 4+ unknot 106 689 3
63 trivial + unknot 90 469 3
64 HK4 + unknot 106 689 3
65 HK4; + unknot 210 <4
fake 65 HK4 + unknot 274

66 trivial + unknot 130 1380 3
67 trivial 4+ unknot 98 597 <4
63 trivial + unknot 114 1401 3
69 trivial + 2 unknots 310 1841 4
610 trivial + 2 unknots 326 4
611 trivial 4+ 2 unknots 486 5876 4
fake 61 trivial + 2 unknots 694

612 trivial + 2 unknots 502 5883 4
613 trivial + 2 unknots 822 4
614 trivial + 2 unknots 486 5876 4
615 trivial + 3 unknots 1242 5

Fig. 3-1. 67 and 64 have homeomorphic complements.

D () & &8 X7
Q?QQ?%’)* > 09

Fig. 3-2. 611 and 614 have homeomorphic complements.

Remark 3-2. 65 viewed as a diagram of a spatial graph is the notorious figure eight puzzle
devised by Stewart Coffin [3]. The goal of the puzzle is to free the circle component from
the knotted handcuff graph, i.e. to obtain the fake 65 as a spatial graph. The impossibility of
solving the puzzle then follows from computing ksa,( e ) of 65 and fake 65 (Table 2). See
[1, 21] for other proofs of this.

THEOREM 3-2 (Unsplittability). Entries in Table 1 are all unsplittable.

Proof. In most cases (51, 61, 62, 63, 64, 67, 69, 61¢) unsplittability follows by computing
the linking number [22] between pairs of components of a handlebody link. There are a few
cases where the linking number vanishes, and we deal with these cases by computing the
ksp,- and ksp,-invariants of the corresponding split handlebody links (Table 2).
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If 65 were split, then 65 would be equivalent to the fake 65 but this is not possible by
Table 2. In the case of 41, 6¢, 63, if any of them were split, than it would be equivalent to
“split” in Table 2, but that is not the case. A similar argument can be applied to 611 and 614:
if one of them were split, it would be equivalent to the fake 611, in contradiction to Table 2.
Lastly, we observe that 617 and 613 are non-split, for otherwise 4; would be split.

Below we recall the irreducibility test developed in [2]. An r-generator link is a link whose
knot group, the fundamental group of its complement, is of rank r.

LEMMA 3-3. If the trivial knot is a factor of some factorisation of a reducible (n, 1)-
handlebody link HL, then

12| ksp,(HL)+6-3"+2-4" and 60]ksa;(HL)+14-4" +19.3"4+22.5". (3:1)

LEMMA 3-4. If a 2-generator knot is factor of some factorisation of a reducible (n, 1)-
handlebody link HL, then

12 4+ 24p | ksp,(HL) + (6 4+ 16p) - 3" + (24 6p) - 4", where p=0 or 1. (3-2)

LEMMA 3-5. If a 2-component, 2-generator link is a factor of some factorisation of a
reducible (n, 1)-handlebody link HL, then

48 + 24p | ksp,(HL) + (26 + 16p) - 3"~ + (8 + 6p) - 4"~ where p=0,1,2,3 or 4. (3-3)

From the above lemmas, one derives the following irreducibility test (see [2] for more
details), making use of the Grushko theorem [7].

COROLLARY 3-6 (Irreducibility test). A 3-generator (2, 1)-handlebody link is irreducible
if it fails to satisfy (3-1), a 4-generator (2, 1)-handlebody link is irreducible if it fails to
satisfy (3-2); a 4-generator (3, 1)-handlebody link or a 5-generator (4, 1)-handlebody link
is irreducible if it fails to satisfy (3-1) and (3-3).

THEOREM 3-7 (Irreducibility). Entries in Table 1 are irreducible.

Proof. Corollary 3-6, together with Table 2, shows that all but 69, 617 are irreducible. The
irreducibility of 61 and 69 follows from computing the linking number between each pair
of components in each of them. Specifically, if 617 (resp. 69) is reducible, then either the
trivial knot or a 2-generator 2-component link is a factor of some factorisation of 612 (resp.
69). For 617, the former case is not possible by (3-1); the latter impossible too, for otherwise
the two solid torus components would have a trivial linking number. The same argument
implies that 69 cannot have a 2-generator 2-component link as a factor, and the trivial knot
cannot be its factor either, since the homomorphism of integral homology

H\ (V) ® H\(V2) — H\(S*\ W)
is onto, where V1, V; are the solid torus components, and W the genus two component.

Remark 3-3. The complement of 69 is in fact d-reducible; one can see this by performing
the twist operation, indicated by the arrow in Fig. 3-3(a), where it shows that its comple-
ment is homeomorphic to the complement of the order-1 connected sum (Definition 6-1)
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(b) m

9868 8050 5D

Fig. 3-3. TIrreducible handlebody links with a d-reducible complement.

<>»<X‘

Fig. 4-1. Possible configurations for loops and double arcs.

between two Hopf links (Fig. 3-3(a), right). The same argument implies that Fig. 3-3(b) is
an irreducible (m + 3, 1)-handlebody link with d-reducible complement, m > 0.

4. Completeness

This section discusses completeness of Table 1. Recall first that a minimal diagram of a
non-split, irreducible handlebody link has either connectivity 2 or 3. IH-minimal diagrams
with connectivity 3 are obtained from a software code, and handlebody links represented by
IH-minimal diagrams with connectivity 2 are recovered by knot sum of spatial graphs.

4.1. Minimal diagrams with connectivity 3

We consider plane graphs with two trivalent vertices and up to six quadrivalent vertices
satisfying the properties:

(i) each of them has edge-connectivity 3 as an abstract graph;

(i1) their double arcs can only connect two quadrivalent vertices as abstract graphs; and

(iii) their double arcs only form a “bigon” (a polygon with two sides; the case ‘i’ in
Fig. 4-1) as plane graphs.

The reason of considering only double arcs connecting two quadrivalent vertices with a
bigon configuration is because all the other cases lead to either non-R-minimal diagrams
or diagrams with connectivity less than 3 (see Fig. 4-1, where “d, e, f, g, h” illustrate
those double arcs connecting at least one trivalent vertex and “j, k, 1’ those connecting two
quadrivalent vertices with a non-bigon configuration).

We enumerate such plane graphs by the software code, and then recover diagrams from
these plane graphs by adding an over- or under-crossing to each quadrivalent vertex. Note
that the number (n in Table 3) of components of the associated spatial graphs is independent
of how over/under-crossings are chosen. To provide a glimpse of how the code works, we
record in Table 3 the number of such plane graphs with ¢ quadrivalent vertices for each
n. To recover (n,1)-handlebody links with n > 1 represented by IH-minimal diagrams with
connectivity 3, we need to consider the cases with n > 1 in Table 3. On the other hand, to
produce (n,1)-handlebody links represented by IH-minimal diagrams with connectivity 2,
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Table 3. Plane graphs given by the code

c n=1 n=2 n=3 total
2 1 1
3 2 1 3
4 8 2 10
5 29 8 37
6 144 34 3 181

Table 4. Spatial graphs up to four crossings

S RCAAY

spatial graphs admitting an R-minimal diagram with connectivity 3 up to 4 crossings are
required; thus all cases with ¢ <4 have to be examined.

IH-minimal diagrams. We examine IH-minimality of diagrams produced by plane graphs
with n > 2, and discard those obviously not IH-minimal. This excludes all diagrams pro-
duced by the code up to 5 crossings (Table 7), but for diagrams with 6 crossings, some
diagrams are potentially IH-minimal: they represent handlebody links 61, 6,2, 63 or 69 in
Table 1.

LEMMA 4-1. An IH-minimal diagram with connectivity 3 has crossing number ¢ > 6, and
if c =6, it represents a handlebody link equivalent to 61, 62, 63 or 69, up to mirror image.

Note that we cannot conclude diagrams of 61, 62, 63 and 69 in Table 1 are [H-minimal yet,
as they might admit diagrams with connectivity 2 and fewer crossings.

R-minimal diagrams. To produce minimal diagrams with connectivity 2 up to 6 crossings, we
need R-minimal diagrams up to 4 crossings. Inspecting R-minimality of diagrams produced
by the code (Table 6) gives us the following lemma.

LEMMA 4-2. An R-minimal diagram with connectivity 3 and crossing number less than
5 represents one of the spatial graphs in Table 4, up to mirror image.

4.2 Minimal diagrams with connectivity 2

Recall a diagram D with 2-connectivity can be decomposed into finitely many simpler
tangle diagrams such that each associated diagram of spatial graphs has connectivity 3 or
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4 (Figure 1-1). Furthermore, if D is R-minimal, each induced spatial graph diagram is also
R-minimal. In particular, an IH-minimal diagram with connectivity 2 can be recovered by
performing the order-2 vertex connected sum between spatial graphs admitting a minimal
diagram with connectivity k > 2. Since we are interested in (,1)-handlebody links, only one
summand is a spatial graph with two trivalent vertices, and the rest are links admitting a min-
imal diagram with connectivity 4. Note that the simplest minimal diagram with connectivity
4 represents the Hopf link, and since we only consider minimal diagrams up to 6 crossings,
there are at most three link summands. Thus, IH-minimal diagrams with connectivity 2 can
be recovered by considering the seven possible configurations below:

(i) G#Lq, (iv) ((GHL))#Lo)#L3,
(i) (GHL)#Lo, (v)  (GHL1)#(Lo#L3),
(iii) G#(Li#Ly), (vi)  (G#(Li#Ly))#L3,

(vii)  G#((Li#Lo)#L3),

where G is a spatial graph admitting a minimal diagram with connectivity 3, and L; is a link
admitting a minimal diagram with connectivity 4. In general it is not known if a minimal
diagram with connectivity 4 always represents a prime link; it is the case, however, when
crossing number is less than 5. In fact, there are only four minimal diagrams with connec-
tivity 4 up to 4 crossings, and they represent the Hopf link, the trefoil knot, the figure eight,
and Solomon’s knot (L4al), respectively.

Cases 4 through 7 are easily dealt with since G must have no crossings, and hence it is
the trivial theta curve GO1, and thus each L; is necessarily the Hopf link, so the knot sums
actually consist in ‘inserting a ring” somewhere to the result of the previous knot sums. To
produce irreducible handlebody links there is only one possibility, that is, adding one Hopf
link to each of the three arcs of the trivial theta curve, and this gives us entry 615 in Table 1.

Cases 2 and 3 force G to have 2 crossings at most. It cannot have zero crossing (GO0;),
for otherwise, it produces only reducible handlebody links. On the other hand, there is no
R-minimal diagram with 1 crossing, and one R-minimal diagram with 2 crossings, this is,
G2 in Table 4 (Moriuchi’s 21 in [24]).

Now, to add two Hopf links to G2, namely to place two rings successively, we observe
that one of them must be placed around the connecting arc of the handcuff graph by irre-
ducibility. The second ring can be placed in three inequivalent ways, which yield entries 612,
613 and 614 of Table 1.

Case 1 is more complicated, and we divided it into subcases based on the crossing number
c:= ¢(G). The case ¢ =0 is immediately excluded by irreducibility, so three possibilities
remain: ¢ € {2,3,4}.

Subcase ¢(G) =2. G is necessarily G2; in Table 4, and L cannot be a knot. Since the
crossing number of L cannot exceed 4, L is either L2al (Hopf link) or L4al (Solomon’s
knot). In either case, L is to be added to the connecting arc of the handcuff graph to produce
irreducible handlebody links, yielding entries 41 and 6g in Table 1.

Subcase ¢(G) = 3. G is necessarily G3; (Moriuchi’s theta curve 31 in [23]), so L cannot
be a knot, and hence is the Hopf link. There is only one place to add L by irreducibility, and
this leads to entry 5; in Table 1.

Subcase c(G) = 4. In this case, L has to be the Hopf link; and there are five possible spatial
graphs for G, namely G4, G4,, G43, G44, and G45:
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(i) for G4 in Table 4 (Moriuchi’s non-prime handcuff graph 2;#32 [25]), there are two
inequivalent ways to add L which produce entries 64 and 65;

(ii) for G4, and G43 in Table 4 (Moriuchi’s prime handcuff graph 4; [24] and prime
theta-curve 41 [23], respectively), there is only one way to add the Hopf link in each
case because of irreducibility, and this gives 6¢, 67 in Table 1, respectively;

(iii) for G44 and G4s in Table 4, again by irreducibility, there is only one way to add the
Hopf link in each case, which result in 619 and 611 in Table 1, respectively.

We summarise the above discussion in the following:

LEMMA 4-3. A non-split, irreducible handlebody link admitting an IH-minimal diagram
with connectivity 2 and crossing number ¢ < 6 is equivalent, up to mirror image, to one of

the following handlebody links:
41,52, 64, 65, 66, 67, 63, 610, 611, 612, 613, 614. 4-1)

By Lemma 4-1, if any of (4-1) admits an IH-minimal diagram with connectivity 3, it is
equivalent to one of 61, 62, 63, 69, while by Lemma 4-1 if 61, 63,63 or 69 admits an IH-
minimal diagram with connectivity 2 and less than 6 crossings, it is equivalent to 4 or 51,
but neither situation can happen by Theorem 3-1.

COROLLARY 4-4. Diagrams in Table 1 are all IH-minimal.

5. Chirality
5.1. Decomposable links
Here we consider order-2 connected sums of handlebody-link-disk pairs; compare with
Definition 6-1. A handlebod-link-disk pair is a handlebody link HL with an oriented
incompressible disk D C HL. A trivial knot with a meridian disk is regarded as a trivial
handlebody-link-disk pair.

Definition 5-1 (Order-2 connected sum). Given two handlebody-link-disk pairs
(HL{, D), (HL,, Dy) the order-2 connected sum (HL;, D{)#(HL,, D;) is obtained as fol-
lows: choose for each i a 3-ball neighbourhood B; of D; in S3 with BN HL; a tubular
neighbourhood N(D;) of D; in HL;. Next, identify N(D;) with D; x [0, 1] via the orienta-
tion of D;. Then (HL{, D1)#(HLy, D,) is given by removing B; and gluing the resulting
manifolds via an orientation-reversing homeomorphism:

h:9(S3\B1) — 3(S?\By) with h(Dy x {j}) =Ds x {k},k=j+ 1 mod 2.

A handlebody link is decomposable if it is equivalent to an order-2 connected sum of some
non-trivial handlebody-link-disk pairs.

LEMMA 5-1. Given a non-split, irreducible handlebody link HL, HL is decomposable
if and only if S3\ HL admits an incompressible, d-incompressible annulus A with dA
inessential in HL.

Proof. This follows from the definition of (3-) incompressibility.
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The “d-incompressible” above can be replaced with “non-boundary parallel” in view of
the irreducibility of HL.

Definition 5-2. A properly embedded annulus A in S3 \ HL is a decomposing annulus of
HL (resp. of (HL, D)) if A is incompressible and d-incompressible (with A N dD = ), and
0A is inessential in HL.

THEOREM 5-2. Given a non-split, irreducible handlebody link HL with no component of
HL having genus g > 2, suppose A, A’ are decomposing annuli inducing

HL =~ (HL,, Dy) # (HL,, D,) , HL >~ (HL}, D}) # (HL}, D}) , respectively, (5-1)

and (HL;, D;), i = 1,2, admit no decomposing annulus. Then A and A’ are isotopic, in the
sense that there exists an ambient isotopy f;:S® — S* fixing HL with fi(A) = A’.

Proof. Note first that if A, A" are disjoint, then the assumption implies that they must be
parallel and hence isotopic. Suppose A N A’ # . Then we isotopy A such that the number of
components of A N A’ is minimised.

Claim: any circle or arc in AN A’ is essential in both A and A’. Observe first that a circle
component C or an arc component [ of A N A’ is either essential in both A and A’ or inessential
in both A and A’ by the incompressibility and d-incompressibility of A and A’.

Suppose C is inessential in both A and A’, and is innermost in A’. Then C bounds disks D,
D’ in A, A’, respectively. Since HL is non-split, D U D’ bounds a 3-ball B in S? \ HL. Isotopy
D across B to D' induces a new annulus A isotopic to the original one with A N A’ having
less components, contradicting the minimality.

Suppose [ is inessential in both A and A’ and an innermost arc in A’. Then [ cuts off a disk
D' from A’ and a disk D from A. Let D:= DU D'. If 3D is inessential, then we can remove
the intersection / by isotopying A across the ball bounded by D and the disk bounded by oD
in d HL, contradicting the minimality.

If 3D is essential, then isotopying D, we can disjoin D from A. Now, it may be assumed
that Dy is in a genus one component of HL{, and hence D; is in a component of HL, with
genus g < 2. Since 8D is essential, D has to be in a genus two component of HL, containing
D,. Because 9D N D> =@, if 3D is essential on the boundary of the embedded solid torus
(HL2 \ N (D2)) c'S?, 9D would be its longitude, where N(D;) is a tubular neighbourhood
of D», disjoint from D, in HL,. Particularly, HL, and therefore HL. would be reducible, a
contradiction. On the other hand, if 8D bounds a disk on 9 (HL2 \ NV (Dz)) that contains some
components of IN(D»), then D is inessential in HLy, and hence in HL, again contradicting
the irreducibility of HL.

The claim is proved, and A N A’ contains either essential circles or essential arcs.

No essential circles. Suppose C is an essential circle, and a closest circle to dA’. Let R’ be
the annulus cut off by C from A” with A N R’ = C and R an annulus cut off by C from A. We
isotopy the incompressible annulus R := R U R’ away from A. Since components of 3R are
inessential in HL, by the assumption, R is either parallel to A or boundary-parallel. In the
former case, replacing A with R leads to a contradiction since R N A’ has less components
than A N A’. In the latter case, isotopying R through the solid torus V bounded by R and the
part of 0HL parallel to R gives a new A isotopic to the original one but with less components
in A NA’, contradicting the minimality.
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HLy HLg
D1 x {1}
ofﬁ
By -
Dg x {1}

Fig. 5-1. Knot sum of handlebody-link-disk pairs

No essential arcs. Suppose [ is an essential arc. Then choose the essential arc [, next to [
in A’ such that the disk D’ cut off by /1, [, from A’ has D' N A = [ U [ and is on the side of A
containing components of HL;. Let D be a disk cut off by /1, [, from A. It may be assumed,
by pushing D away from A, that DU D’ is disjoint from A, and hence is on the genus one
complement of HL; containing Dj. Since A:=DUD is disjoint from Dy, it is necessarily
an annulus, for if it were a Mobius band, we would get a non-orientable surface embedded
in S3. Furthermore, each component of A is necessarily inessential in HLj, so it either
bounds a meridian disk or is inessential in 8 HL;. Note also it cannot be the case that one
component of 9A is essential in  HL; and the other inessential by the irreducibility of HL.
Suppose both components are inessential in d HL|. Then A, together with disks on d HL|
bounded by A, bounds a 3-ball, with which we can isotopy A to remove the intersection
[1, I, contradicting the minimality. Suppose both components bound meridian disks in HL;.
Then A = D€ U D’ has dA inessential in 9 HL;, where D¢ :m. Thus we reduce it to the
previous case.

5.2. Chirality

We divide the proof of Theorem 1-2 into two lemmas.
LEMMA 5-3. All handlebody links except for 51, 63, 6¢, 67, 63, 619 in Table 1 are achiral.

Proof. An equivalence between 6; and r6; is depicted in Figure 5-2; the chirality of the
other handlebody links are easy to see.

LEMMA 5-4. 54, 63, 6¢, 67, 63, 61¢ in Table 1 are chiral.

Proof. Recall that, given a handlebody link HL, if HL and rHL are equivalent, then there
is an orientation-reversing self-homeomorphism of S sending HL to HL.

Observe that each of 51, 6¢, 63, 610 admits an obvious decomposing annulus satisfying
conditions in Theorem 5-2; particularly the annulus in each of them is unique. Their chirality
then follows readily from the fact that torus links are chiral.

To see chirality of 63, we observe that, given a (2,1)-handlebody link HL, any self-
homeomorphism of S? preserving HL sends the meridian m and the preferred longitude [ of
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(a) (b)

o

Pair (T, D). Dual pair (K41, «). Seifert surface S.

Fig. 5-3. figure 5-3

(b)

link number =1

link number = —1

Hopf links with different orientations.

Induced Hopf link.

Fig. 5-4. figure 5-4

the circle component to m*! and /*!, respectively. In particular, any isomorphism on knot

groups induced by such a homeomorphism sends the conjugacy class of m - [ in 1 (S3 \ HL)
to the conjugacy class of m-1, m™' -1, m-1~! or m™'-I~!, depending on whether the
homeomorphism is orientation-preserving.

Let N be the number of conjugacy classes of homomorphisms from 7y (S3 \ HL) to a finite
group G that sends m - [ (and hence m~! - I=1) to 1, and rN the number of conjugacy classes
of homomorphisms from 4 (S3 \ HL) to G that sends m - [~ (and hence m~! - ) to 1. Now,
if HL and its mirror image rHL are equivalent, then N = rN. This is however not the case
with 63; when G = As, we have (N, rN) = (77, 111) as computed by [28].

In the case of 67, by Theorem 5.2 every self-homeomorphism f of S* sending 67 to
itself induces a self-homeomorphism f sending the handlebody-knot-disk pair (7, D) in
Figure 5.3(a) to itself, or equivalently sending the (fattened) figure eight with an arc (K4, «)
in Figure 5-3(b) to itself, where « is the dual one-simplex to D.

Let S be a minimal Seifert surface of the figure eight (Figure 5-3(c)) containing the arc
o, and Dy, D_ be two disjoint meridian disks containing do, respectively. By the standard
covering space argument [29], one can assume f(3S) N (D4 U D_) = da = df («), and hence
we can further isotope f so that f(N(«)) = N(«) for some tubular neighbourhood N(«) of «
in S.

Both complements S \ N(«) and f(S) \ N(«) are Seifert surfaces of the induced Hopf link
(Figure 5-4(a)), and up to ambient isotopy, the Hopf link only admits two minimal Seifert
surfaces, among which only one is compatible with N(«). Thus S\ N(«) and f(S) \ N(«) are
ambient isotopic. Now if f is orientation-reversing, it implies the two oriented Hopf links in
Figure 5-4(b) are ambient isotopic, contradicting their link numbers.
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Table 5. Reducible links with up to six crossings

crossings c(Ly) + c(Ly) description |Li-- Lo|
2 (D) 042 unknot -- Hopf 1
44) 0+4 unknot -- L4al 1
unknot -- Hopf#Hopf 2
242 Hopf -- Hopf 1
54) 0+5 unknot -- Whitehead 1
unknot -- Trefoil#Hopf 2
342 trefoil -- Hopf 1
6(17) 0+6 unknot -- L6ai,i=1,...,5 1
unknot -- L6n1 1
unknot -- L4al#Hopf 3
unknot -- (Hopf#Hopf)#Hopf 4
244 Hopf -- L4al 1
Hopf -- Hopf#Hopf 2
442 K4al -- Hopf 1

6. Reducible handlebody links

In this section, we show that Table 5 classifies, up to ambient isotopy and mirror image,
all non-split, reducible (n,1)-handlebody links up to six crossings (Theorem 1-3). We begin
by considering the order-1 connected sum for handlebody links.

6.1. Order-1 connected sum

A handlebody-link-component pair (HL, /) is a handlebody link HL with a selected
component / of HL.

Definition 6-1 (Order-1 connected sum). Let (HL{, h1) and (HL,, A7) be two handlebody-
link-component pairs. Then their order-1 connected sum (HL{, A1)--(HLo, A7) is given by
removing the interior of a 3-ball B (resp. By) in S3 with By N 9HL| = By N 8k (resp. B N
0HL, = B, N dhy) a 2-disk, and then gluing the resulting 3-manifolds S3 \ By, S3 \ B; via
an orientation-reversing homeomorphism f:(dB1, (dB1) N hy) — (082, (dB2) N hy). We use
HL;--HL; to denote the set of order-1 connected sums between HL, HL, with all possible
selected components.

The following generalises the case of handlebody knots in [33, theorem 2].

THEOREM 6-1 (Uniqueness). Given a non-split, reducible (n, 1)-handlebody link HL, if
HL =~ (HLy, 1) -- (HLy, h2), and HL >~ (HL, i}) -- (HL), h}), then (HL;, hj) =~ (HL}, h}),
i=1,2, up to reordering.

Proof. Note first that, since HL is non-split and reducible, HL;, HL;, i=1,2, are non-

split, and 771 (S® \ HL) is a non-trivial free product Gy * Gy, where G; is the knot group of
HL;,i=1,2.

Let D and D' be the separating disks in S? \ HL given by the factorisations HL =~

(HL4, h1)--(HL, hp) and HL ~ (HL’] , h’l) -- (HL/Z, h/z), respectively. Suppose neither G| nor
G is isomorphic to Z. Then, up to isotopy, D' N D = @ by the innermost circle/arc argument.
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TEr-&Er

ho
HLl HL2 (HLl, hl)--(HLQ7 hz)

Fig. 6-1. Order-1 connected sum of (HL, i1)--(HLj, h7).

Fig. 6-2. h(D;) and Y.

Suppose one of G;, i =1, 2, say Gy, is isomorphic to Z, that is, HL is a trivial solid torus
in S*. Then G, must be non-cyclic, since n > 1. Let D; be the disk bounded by the longitude
of HL1, and isotope D, D; so that the number 7 (resp. n;) of components of D’ N D (resp.
D' N D;) is minimized.

Claim: n; = 0. Note first that the minimality implies that D’ N D; contains no circle compo-

nents. Now, consider a tubular neighbourhood N(D;) of D; in S? \ HL small enough such
that N(D;) N D =@ and N(D;) N D’ are some disks, each of which intersects Df (resp. D;")

at exactly one arc on its boundary, where DljE C dN(D;) are proper disks in S3 \ HL paral-
lel to D;. The claim then follows once we have shown that N(D;) can be isotopied away
from D'.

To see this, we construct a labelled tree Y from the complement of the intersection D’ N
DljE in D/, where ch = Df UDj . Regard each component of D'\ (D’ ODZJE) as a node
in Y, and each arc in D' N ch as an edge in Y connecting the two nodes representing the
components of D'\ (D’ N Df) whose closures intersect at the arc. Since each arc in D' N DfE
cuts D' into two, Y is a tree. The first two figures from the left in Figure 6-2 illustrate the
construction.

We label nodes and edges of T as follows: a node is labelled with / if the corresponding
componentof D'\ (D' N Dli) is inside N(Dy); otherwise the node is labelled with O. An edge
of Y is labelled with + if the corresponding component of D’ N Dli is in D;“; otherwise, it
is labelled with a minus sign.

The labelling on Y has the following properties: (a) adjacent nodes have different labels;
(b) a node with label I is bivalent, and the two adjacent edges are labelled with + and —,
respectively, whereas a node labelled with O could be multi-valent; (c) a one-valent node
corresponds to an innermost arc in D', and always has label O.

Consider a maximal path I' C Y starting from a one-valent node and with the property
that adjacent edges of I' have different labels. Then the other end point of the path must
be labelled with O and it is either a one-valent node of T or a multi-valent node with all
adjacent edges having the same label; the two figures from the right in Figure 6-2 illustrate
two possible maximal paths.
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T

Fig. 6:3. Sliding over D",

Without loss of generality, we may assume that the adjacent edge of the starting one-
valent node of I is labelled with +. Denote the closure of the corresponding component of
D'\ (D' N Df) by D}.. Then dD}. bounds a disk T on (HL UN(Dy)). If TN D;” =, then
DN D= and hence T N D = by the minimality of n; however, if it were the case, one
could reduce n; by isotopying D; across the 3-ball bounded by Dy. and 7. Hence 7' must
contain D; . Since the adjacent edge of the starting node is labelled with +, adjacent edges
of the end node of I" in Y are labeled with —. Denote by DY, the closure of the component
corresponding to the end node. Then dD{. bounds a disk in d(HL U N(Dy)) that is contained
in T and has no intersection with Dl+‘ Particularly, DT. N D = ¢ by the minimality of n, and

there is an arc in dDf. cutting a disk D" off T\ D;” with D" N D" = D" N D =, so one can
slide N(D;) over D" (Figure 6-3) to decrease n;, a contradiction.

Consequently, such a path I' cannot exist, but this can happen only if Y is empty. The
claim is thus proved. It implies that HL|, HL’1 are trivial solid tori in S?, and HL,, HL’2 are
equivalent to N(D;) U HL.

6.2. Non-split, reducible handlebody links

Table 5 lists all non-split, reducible (#,1)-handlebody links obtained by performing order-
1 connected sum on pairs of links (L{, L) with crossing numbers (c1, ¢z) and ¢ + ¢2 <6,
the notation L e ae or L e ne refers to links in the Thistlethwaite link table. Since n > 1,
one of L, Ly is a link with more than one component, and by convention we let L, be
the factor. The number in parentheses indicates the total number of inequivalent reducible
handlebody links of the given crossing number. By Theorem 6-1, isotopy types of L; and
L, with selected components determine the isotopy type of the resulting handlebody link in
Li--L. Thus there are no duplicates in Table 5.

On the other hand, by Lemmas 4-1 and 4-3 and Theorem 3-7, minimal diagrams of non-
split, reducible (n,1)-handlebody links up to 6 crossings cannot have connectivity k > 1. This
shows the completeness of Table 5.

7. Perspectives

Our classification of non-split (r,1)-handlebody links, and [13], provide examples that
shed light on several interesting properties of (7,1)-handlebody links. Here we collect some
questions arising from the study.

Crossing number.

The result in Section 6 implies that every handlebody link in Table 5 admits a minimal
diagram with connectivity 1; not all their minimal diagrams have connectivity 1 though.
Thus we ask the following question.
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Question 7-1. Does every non-split, reducible handlebody link always admit a minimal
diagram with connectivity 1?

An affirmative answer to Question 7-1, together with Theorem 6-1 and [32, theorem
2], implies the additivity of crossing number, a reminiscence of a one-hundred years old
problem in knot theory (see [18, 20] and references therein).

CONJECTURE 7-2. If (HLy, hy)--(HLo, hy) is an (n, 1)-handlebody link, then
C((HLl,hl)—-(HLg,hz)) =C(HL1) +C(HL2). (7-1)

Decomposability.

Decomposability is reflected in the connectivity of minimal diagrams in most examples
here; in general one may ask the following question.

Question 7-3. Does every minimal diagram of a non-split, irreducible, decomposable
handlebody link have connectivity 2?7

A positive answer to Question 7-3 implies that 61, 6, 63 and 69 in Table 1 are inde-
composable. As Question 7-3 is expected to be hard, easier methods might be required to
determine indecomposability.

Problem 7-4. Find computable criteria for indecomposability of handlebody links.

Handlebody link complement.

The question of whether irreducibility of a handlebody link implies d-irreducibility of its
complement has been studied in several situations. In the case of handlebody knots of genus
two, this is always true [33, theorem 1], whereas for handlebody knots of genus g > 2,
there are counterexamples [31, example 5-5], [33, section 5]. Now, Remark 3-3 provides
counterexamples in the case of non-split, irreducible (n,1)-handlebody links with n > 2. We
ask whether n = 2 is the largest n for such a phenomenon to happen.

Question 7-5. Is the complement of a non-split, irreducible (2,1)-handlebody link always
d-irreducible?

Appendix A. Output of the code
A.1 Minimal diagrams from the code

The software code used in the paper exhaustively enumerates 3-edge-connected plane
graphs with two trivalent vertices and ¢ quadrivalent vertices, 0 < g < 6, without double arcs
that form a non-bigon. Note that the trivial theta curve is the only 3-edge-connected plane
graph without quadrivalent vertices. The output of the code is examined and summarized in
Table 3, while the detailed list is available on http://dmf.unicatt.it/paolini/handlebodylinks/,
where each plane graph is described by its adjacent matrix together with a fixed ordering
(clockwise or counterclockwise) of the edges adjacent to every vertex, as determined by the
planar embedding.
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Table 6. Diagrams with up to 4 crossings

quad. v. ref. no. induced diagrams
1 none none
2 #1 R-minimal; G2 in Table 4; not IH-minimal
3 #1, not R-minimal
#2.#3 R-minimal; G3; in Table 4; not IH-minimal
4 #1,#2 IH-minimal; G4, in Table 4
#3 R-minimal; G3, in Table 4; not IH-minimal
#4, #8 R-minimal; G4, in Table 4; not IH-minimal
#5, #6, #7 R-minimal; G43 in Table 4; not IH-minimal
#9 R-minimal; G44 in Table 4; not IH-minimal
#10 R-minimal; G45 in Table 4; not IH-minimal

Table 7. Diagrams with 5 crossings

ref. no. description
#6, #11, #14 not R-minimal
#22, #26, #35 not IH-minimal
#36 not IH-minimal
#37 not R-minimal

A.1.1 Four crossings or less

In Table 6, we analyse the output of the code up to 4 quadrivalent vertices, where the
column “quad. v.” lists the number of quadrivalent vertices and “ref. no.” the reference
number of each plane graph in the output of the code. The column “induced diagrams”
describes minimality of diagrams induced by each plane graph. Most induced diagrams are
not minimal, and we record their isotopy types as special graphs or handlebody links, up to
mirror image. No IH-minimal diagram with more than one component is found in this case.

A.1.2 Five and six crossing cases

In the 5 crossing case, the code finds 8 plane graphs with more than one components, out
of a total of 37 planar embeddings. Table 7 records the analysis for their induced diagrams;
none of them gives IH-minimal diagrams. In the 6 crossing case, out of 181 plane graphs, 37
induces diagrams with more than one components. Table 8 records the minimality of their
induced diagrams.

Figure A-1. exemplifies how the analysis is done. Figure A-1(a) shows how the diagrams
induced by Plane Graph #5 are equivalent to those by #161 and #165 in the case of 6 cross-
ings, and Figure A-1(b) explains non-minimality of diagrams induced by Plane Graphs #168,
#1609, #170, #171.

A.1.3 Inequivalent planar embeddings

As a side remark, Figure A-2 illustrates two examples of abstract graphs with inequivant
planar embeddings: one with five quadrivalent vertices and the other with six. Note that the
abstract graphs have vertex connectivity 2, consistent with the Whitney uniqueness theorem
[34].
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Table 8. Diagrams with 6 crossings

ref. no. description

#5 61 in Table 1
#15, #22, #34, #45, #54 not R-minimal
#56 61 in Table 1
#60 6, in Table 1
#70 63 in Table 1
#73 not R-minimal
#83 6, in Table 1
#84 61 in Table 1

#86, #91, #92, #93
#104, #105, #114, #117, #123
#134, #135, #137, #144

not R-minimal
not IH-minimal
not IH-minimal

#161, #165 67 in Table 1
#168, #169, #170,#171 not IH-minimal
#175 69 in Table 1
#176 not IH-minimal
#177 not R-minimal
#179, #180 not IH-minimal
#181 69 in Table 1

Equivalent handlebody links from plane graphs. Non-minimal diagrams

Fig. A-1. Examples of the analysis.

(a) (b)
#14 #15 #91 @ #89

Five-quadrivalent-vertex graph. Six-quadrivalent-vertex graph.

Fig. A-2. Inequivalent planar embeddings.

Acknowledgements. The first author benefits from the support of the GNAMPA
(Gruppo Nazionale per 1’Analisi Matematica, la Probabilita e le loro Applicazioni) of
INdAM (Istituto Nazionale di Alta Matematica). The second author benefits from the sup-
port of the Swiss National Science Foundation Professorship grant PPOOP2_179110/1. The
fourth author gratefully acknowledges the support from National Center of Theoretical
Sciences during the preparation of the manuscript.

https://doi.org/10.1017/S0305004122000263 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004122000263

222 G. BELLETTINI, G. PAOLINI, M. PAOLINI AND Y.-S. WANG

REFERENCES

[1] I. BERTUCCIONI. A topological puzzle. Amer. Math. Monthly. 110 (2003), 937-939.

[2] G. BELLETTINI, M. PAOLINI and Y.-S. WANG. Numerical irreducibility criteria for handlebody
links. Topology Appl. 284 (2020), 107361, 14 pp.

[3] J. BOTERMANS and P. VAN DELFT. Creative Puzzles of the World (Abrams, New York, 1975).

[4] M. BROWN. Locally flat imbeddings of topological manifolds. Ann. Math., Second Series. 75, (1962),
331-341.

[5] J. H. CONWAY. An enumeration of knots and links, and some of their algebraic properties, In
Computational Problem in Abstract Algebra. Proc. Conf. Oxford. (1970), 329-358.

[6] W. CHONGCHITMATE and L. NG. An atlas of Legendrian knots. Exp. Math. 22 (2013), no. 1, 26-37.

[7]1 I. A. GRUSHKO. On the bases of a free product of groups. Matematicheskii Sbornik. 8 (1940),
169-182.

[8] M. W. HIRSCH and B. MAZUR. Smoothings of Piecewise Linear Manifolds, (AM-80) (Princeton
University Press, Princeton, NJ, 1974).

[9] J. HOSTE, M. THISTLETHWAITE and J. WEEKS. The first 1,701,936 knots. Math. Intelligencer 20
(1998), 33-48.

[10] A. IsHIL. Moves and invariants for knotted handlebodies. Algebr. Geom Topol. 8 (2008), 1403-1418.

[11] A. IsHII and M. IWAKIRI. Quandle cocycle invariants for spatial graphs and knotted handlebodies.
Canad. J. Math. 64 (2012), 102-122.

[12] A. IsHII, M. IWAKIRI, Y. JANG and K. OSHIRO. A G-family of quandles and handlebody-knots.
Lllinois J. Math. 57 (2013), 817-838.

[13] A. IsHIIL, K. KISHIMOTO, H. MORIUCHI and M. SUZUKI. A table of genus two handlebody-knots
up to six crossings. J. Knot Theory Ramifications 21 (2012), no. 4, 1250035, 9 pp.

[14] A. IsHII, K. KISHIMOTO and M. OzZAWA. Knotted handle decomposing spheres for handlebody-
knots. J. Math. Soc. Japan 67 (2015), 407-417.

[15] L. H. KAUFFMAN. Invariants of graphs in three-space. Trans. Amer. Math. Soc. 311 (1989), no. 2,
679-710.

[16] T. KITANO and M. SUZUKI. On the number of SL(2, Z/pZ)-representations of knot groups. J. Knot
Theory Ramifications. 21 (2012), no. 1, 1250003, 18 pp.

[17] Y. KODA and M. OzAWA, with an appendix by C. Gordon. Essential surfaces of non-negative Euler
characteristic in genus two handlebody exteriors. Trans. Amer. Math. Soc. 367 (2015), no. 4, 2875—
2904.

[18] M. LACKENBY. The crossing number of composite knots. J. Topol. 2 (4) (2009), 747-768.

[19] J. H. LEE and S. LEE. Inequivalent handlebody-knots with homeomorphic complements. Algebr.
Geom. Topol. 12 (2012), 1059-1079.

[20] A. V. MALYUTIN. On the question of genericity of hyperbolic knots. Int. Math. Res. Notices. (2018),
1073-7928.

[21] P. MELVIN. A topological menagerie. Amer. Math. Monthly. 113 (2006), 348-351.

[22] A. Mi1zUSAWA. Linking numbers for handlebody-links. Proc. Japan Acad. 89, Ser. A (2013), 60-62.

[23] H. MORIUCHI. An enumeration of theta-curves with up to seven crossings. J. Knot Theory
Ramifications. 18 (2009), 67-197.

[24] H. MORIUCHI. A table of handcuff graphs with up to seven crossings. OCAMI Studies Vol 1. Knot
Theory for Scientific objects (2007), 179-300.

[25] H. MORIUCHI. A table of #-curves and handcuff graphs with up to seven crossings. Adv. Stud. Pure
Math. Noncommutativity and Singularities: Proceedings of French—Japanese symposia held at IHES
in 2006, J.-P. Bourguignon, M. Kotani, Y. Maeda and N. Tose, eds. (Tokyo: Mathematical Society of
Japan, 2009), 281-290.

[26] M. MOTTO. Inequivalent genus two handlebodies in $* with homeomorphic complements. Topology
Appl. 36(3) (1990), 283-290.

[27] J. MUNKRES. Elementary Differential Topology, (AM-54). (Princeton University Press, Princeton, NJ,
1966).

[28] M. PAOLINI. Appcontour. Computer software. Vers. 2.5.3. Apparent contour, (2018)
<http://appcontour.sourceforge.net/>.

[29] D. ROLFSEN. Knots and Links. (AMS Chelsea Publishing, vol. 364, 2003).

https://doi.org/10.1017/S0305004122000263 Published online by Cambridge University Press


http://appcontour.sourceforge.net/
https://doi.org/10.1017/S0305004122000263

Handlebody link table 223

[30] C.P. ROURKE and B. J. SANDERSON. Introduction to Piecewise-Linear Topology. (Springer-Verlag,
Berlin-New York, 1982).

[31] S. SuzUkl, On surfaces in 3-sphere: prime decompositions. Hokkaido Math. J. 4 (1975), 179-195.

[32] Y. TsuKkuUI, On surfaces in 3-space. Yokohama Math. J. 18 (1970), 93-104.

[33] Y. TsuKkuUI, On a prime surface of genus 2 and homeomorphic splitting of 3-sphere. Yokohama Math.
J. 23 (1975), 63-75.

[34] H. WHITNEY, Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 (1932), 150-168.

[35] D. N. YETTER, Category theoretic representations of knotted graphs in S°. Adv. Math. 77 (1989),
137-155.

https://doi.org/10.1017/S0305004122000263 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004122000263

	Introduction
	Preliminaries
	Handlebody links and spatial graphs
	Diagrams
	Moves
	Non-split, irreducible handlebody links

	Uniqueness, non-splittability, and irreducibility
	Completeness
	Minimal diagrams with connectivity 3
	Minimal diagrams with connectivity 2

	Chirality
	Decomposable links
	Chirality

	Reducible handlebody links
	Order-1 connected sum
	Non-split, reducible handlebody links

	Perspectives
	Minimal diagrams from the code
	Four crossings or less
	Five and six crossing cases
	Inequivalent planar embeddings



