
TPLP 24 (4): 716–736, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000395

716

Quantifying over Optimum Answer Sets∗

GIUSEPPE MAZZOTTA and FRANCESCO RICCA
University of Calabria, Arcavacata di Rende, Italy

(e-mails: giuseppe.mazzotta@unical.it, francesco.ricca@unical.it)

MIREK TRUSZCZYNSKI
University of Kentucky, Lexington, USA

(e-mail: mirek@cs.uky.edu)

submitted 14 August 2024; accepted 10 September 2024

Abstract

Answer Set Programming with Quantifiers (ASP(Q)) has been introduced to provide a natural
extension of ASP modeling to problems in the polynomial hierarchy (PH). However, ASP(Q)
lacks a method for encoding in an elegant and compact way problems requiring a polynomial
number of calls to an oracle in Σp

n (that is, problems in Δp
n+1). Such problems include, in par-

ticular, optimization problems. In this paper, we propose an extension of ASP(Q), in which
component programs may contain weak constraints. Weak constraints can be used both for
expressing local optimization within quantified component programs and for modeling global
optimization criteria. We showcase the modeling capabilities of the new formalism through var-
ious application scenarios. Further, we study its computational properties obtaining complexity
results and unveiling non-obvious characteristics of ASP(Q) programs with weak constraints.

KEYWORDS: design, analysis and implementation of languages, knowledge representation and
nonmonotonic reasoning, logic programming methodology and applications

1 Introduction

Answer set programming (ASP) (Gelfond and Lifschitz 1991; Brewka et al . 2011) has

been proposed over two decades ago as a variant of logic programming for modeling and

solving search and optimization problems (Marek and Truszczynski 1999; Niemelä 1999).

Today, it is among the most heavily studied declarative programming formalisms with

highly effective processing tools and an ever-growing array of applications (Brewka et al .

2011, 2016). Focusing on decision problems, the scope of applicability of ASP is that of

the class ΣP
2 (Dantsin et al . 2001). This class includes a vast majority of problems of prac-

tical interest. However, many important decision problems belong to higher complexity

classes (Stockmeyer 1976; Schaefer and Umans 2002). For this reason, several language

∗ Partially supported by MISE under project EI-TWIN n. F/310168/05/X56 CUP B29J24000680005,
and MUR under projects: PNRR FAIR - Spoke 9 - WP 9.1 CUP H23C22000860006, Tech4You CUP
H23C22000370006, and PRIN PINPOINT CUP H23C22000280006.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395
https://orcid.org/0000-0003-0125-0477
https://orcid.org/0000-0001-8218-3178
mailto:giuseppe.mazzotta@unical.it
mailto:francesco.ricca@unical.it
https://orcid.org/0000-0001-7277-1232
mailto:mirek@cs.uky.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000395&domain=pdf
https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 717

extensions have been proposed that expand the expressivity of ASP (Bogaerts et al . 2016;

Amendola et al . 2019; Fandinno et al . 2021). Among these, Answer Set Programming

with Quantifiers (ASP(Q)) (Amendola et al. 2019) has been recently introduced to offer

a natural declarative means to model problems in the entire Polynomial Hierarchy (PH).

Roughly speaking, the definition of a problem in ΣP
n can be often reformulated as

“there is an answer set of a program P1 such that for every answer set of a program P2,

. . . there is an answer set of Pn, so that a stratified program with constraint C, modeling

admissibility of a solution, is coherent,” (and a similar sentence starting with “for all

answer set of program P1” can be used to encode problems ΠP
n).

Both the original paper (Amendola et al. 2019) on ASP(Q), and the subsequent one

(Amendola et al . 2022) presented several examples of problems outside the class ΣP
2

that allow natural representations as ASP(Q) programs. Furthermore, Amendola et al .

(2022) first, and Faber et al. (2023) later, provided efficient tools for evaluating ASP(Q)

specifications providing empirical evidence of practical potential of ASP(Q).

However, ASP(Q) lacks a convenient method for encoding in an elegant way preference

and optimization problems (Buccafurri et al . 2000; Schaefer and Umans 2002).

In this paper, we address this issue by proposing an extension of ASP(Q) with weak

constraints or ASPω(Q), in short. Weak constraints were introduced in ASP by Buccafurri

et al., (2000) to define preferences on answer sets. They are today a standard construct

of ASP (Calimeri et al . 2020), used to model problems in the class ΔP
3 (i.e., the class

of problems that can be solved by a polynomial number of calls to a ΣP
2 oracle). In

ASPω(Q), weak constraints have dual purposes: expressing local optimization within

quantified subprograms and modeling global optimization criteria. Both features increase

the modeling efficacy of the language, which we demonstrate through example problems.

Further, we investigate the computational properties of ASP(Q) programs with weak

constraints and obtain complexity results that reveal some non-obvious characteristics of

the new language. Among these, the key positive result states that ASPω(Q) programs

with n alternating quantifiers can model problems complete for ΔP
n+1.

2 Answer Set Programming

We now recall Answer Set Programming (ASP) (Gelfond and Lifschitz 1991; Brewka

et al . 2011) and introduce the notation employed in this paper.

2.1 The syntax of ASP

Variables are strings starting with uppercase letters, and constants are non-negative inte-

gers or strings starting with lowercase letters. A term is either a variable or a constant.

A standard atom is an expression of the form p(t1, . . . , tn), where p is a predicate of arity

n and t1, . . . , tn are terms. A standard atom p(t1, . . . , tn) is ground if t1, . . . , tn are con-

stants. A standard literal is an atom p or its negation ∼p. An aggregate element is a pair

t1, . . . , tn : conj , where t1, . . . , tn is a non-empty list of terms, and conj is a non-empty

conjunction of standard literals. An aggregate atom is an expression f{e1; . . . ; en} ≺ T ,

where f ∈ {#count,#sum} is an aggregate function symbol , ≺ ∈ {<,≤, >,≥,=} is

a comparison operator, T is a term called the guard , and e1, . . . , en are aggregate

elements. An atom is either a standard atom or an aggregate atom. A literal is an atom

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.718

(positive literal) or its negation (resp. negative literal). The complement of a literal l is

denoted by l, and it is ∼a, if l= a, or a, if l=∼a, where a is an atom. For a set of literals

L, L+, and L− denote the set of positive and negative literals in L, respectively. A rule

is an expression of the form:

h← b1, . . . , bk,∼bk+1, . . . ,∼bm. (1)

where m≥ k≥ 0. Here h is a standard atom or is empty, and all bi with i∈ [1, m] are

atoms. We call h the head and b1, . . . , bk,∼bk+1, . . . ,∼bm the body of the rule (1). If

the head is empty, the rule is a hard constraint . If a rule (1) has a non-empty head and

m= 0, the rule is a fact . Let r be a rule, hr denotes the head of r, and Br =B+
r ∪B−

r

where B+
r (resp. B−

r) is the set of all positive (resp. negative) literals in the body of r.

A weak constraint (Buccafurri et al . 2000) is an expression of the form:

←w b1, . . . , bk,∼bk+1, . . . ,∼bm [w@l, T], (2)

where, m≥ k≥ 0, b1, . . . , bk, bk+1, . . . , bm are standard atoms, w and l are terms, and

T = t1, . . . , tn is a tuple of terms with n≥ 0. Given an expression ε (atom, rule, weak

constraint, etc.), V(ε) denotes the set of variables appearing in ε; at(ε) denotes the set

of standard atoms appearing in ε; and P(ε) denotes the set of predicates appearing in

ε. For a rule r, the global variables of r are all those variables appearing in hr or in

some standard literal in Br or in the guard of some aggregates. A rule r is safe if its

global variables appear at least in one positive standard literal in Br, and each variable

appearing into an aggregate element e either is global or appears in some positive literal

of e (Ceri et al . 1990; Faber et al . 2011); a weak constraint v of the form (2) is safe if

V(B−
v)⊆V(B+

v) and V({w, l})∪ V(T)⊆V(B+
v). A program P is a set of safe rules and

safe weak constraints. Given a program P , R(P) and W(P) denote the set of rules and

weak constraints in P , respectively, and H(P) denotes the set of atoms appearing as

heads of rules in P .

A choice rule (Simons et al . 2002) is an expression of the form: {e1; . . . ; ek}← l1, . . . , ln,

where each choice element ei is of the form ai : bi1, . . . , b
i
mi

, where ai is a standard atom,

mi ≥ 0, and bi1, . . . , b
i
mi

is a conjunction of standard literals. For simplicity, choice rules

can be seen as a shorthand for certain sets of rules. In particular, each choice element

ei corresponds to: ai← bi1, . . . , b
i
mi

, l1, . . . , ln, ∼nai, nai← bi1, . . . , b
i
mi

, l1, . . . , ln, ∼ai
where nai denotes the standard atom obtained from ai by substituting the predicate of

a, say p, with a fresh predicate p′ not appearing anywhere else in the program.

2.2 The semantics of ASP

Assume a program P is given. The Herbrand Universe is the set of all constants appearing

in P (or a singleton set consisting of any constant, if no constants appear in P) and

is denoted by HUP ; whereas the Herbrand Base, that is the set of possible ground

standard atoms obtained from predicates in P and constants in HUP , is denoted by

HBP . Moreover, ground(P) denotes the set of possible ground rules obtained from rules

in P by proper variable substitution with constants in HUP . An interpretation I ⊆HBP

is a set of standard atoms. A ground standard literal l= a (resp. l=∼a) is true w.r.t. I

if a∈ I (resp. a /∈ I), otherwise it is false. A conjunction conj of literals is true w.r.t. I if

every literal in conj is true w.r.t. I, otherwise it is false. Given a ground set of aggregate

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 719

elements S = {e1; . . . ; en}, eval(S, I) denotes the set of tuples of the form (t1, . . . , tm)

such that there exists an aggregate element ei ∈ S of the form t1, . . . , tm : conj and conj is

true w.r.t. I; I(S), instead, denotes the multi-set [t1 | (t1, . . . , tm)∈ eval(S, I)]. A ground

aggregate literal of the form f{e1; . . . ; en} � t (resp. ∼ f{e1; . . . ; en} � t) is true w.r.t. I if

f(I({e1, . . . , en}))� t holds (resp. does not hold); otherwise it is false. An interpretation

I is a model of P iff for each rule r ∈ ground(P) either the head of r is true w.r.t. I or

the body of r is false w.r.t. I. Given an interpretation I, P I denotes the FLP-reduct (cfr.

Faber et al . (2011)) obtained by removing all those rules in P having their body false,

and removing negative literals from the body of remaining rules. A model I of P is also

an answer set of P if for each I ′ ⊂ I, I ′ is not a model of P I . We write AS(P) for the

set of answer sets of P . A program P is coherent if it has at least one answer set (i.e.,

AS(P) = ∅); otherwise, P is incoherent . For a program P and an interpretation I, let

the set of weak constraint violations be ws(P, I) = {(w, l, T) | ←w b1, . . . , bm [w@l, T]∈
ground(W(P)), b1, . . . , bm are true w.r.t. I, w, and l are integers and T is a tuple of

ground terms}, then the cost function of P is C(P, I, l) =Σ(w,l,T)∈ws(P,I)w, for every

integer l. Given a program P and two interpretations I1 and I2, we say that that I1 is

dominated by I2 if there is an integer l such that C(P, I2, l)< C(P, I1, l) and for all integers

l′ > l, C(P, I2, l′) = C(P, I1, l′). An answer set M ∈AS(P) is an optimal answer set if it

is not dominated by any M ′ ∈AS(P). Intuitively, optimality amounts to minimizing

the weight at the highest possible level, with each level used for tie breaking for the

level directly above. The set OptAS(P)⊆AS(P) denotes the set of optimal answer sets

of P .

3 Quantified Answer Set Programming with weak constraints

In this section, we introduce an extension of Answer Set Programming with Quantifiers

(ASP(Q)) (Amendola et al . 2019) that explicitly supports weak constraints (Buccafurri

et al . 2000) for modeling optimization problems.

It is worth noting that ASP(Q) can be used to model problems with model preferences

and optimization criteria; however, this comes at the price of non-elegant and somehow

redundant modeling. For this reason, in analogy to what has been done for ASP, it makes

sense to contemplate weak constraints in ASP(Q).

A quantified ASP program with weak constraints (ASPω(Q) program) Π is of the form:

�1P1 �2P2 · · · �nPn :C :Cw, (3)

where, for each i= 1, . . . , n, �i ∈ {∃st, ∀st}, Pi is an ASP program possibly with weak

constraints, C is a (possibly empty) stratified program (Ceri et al . 1990) with constraints,

and Cw is a (possibly empty) set of weak constraints such that BCw ⊆BP1
. The number

of quantifiers in Π is denoted by nQuant(Π).

As it was in the base language, ASPω(Q) programs are quantified sequences of subpro-

grams ending with a constraint program C. Differently from ASP(Q), in ASPω(Q) weak

constraints are allowed in the subprograms Pi (1≤ i≤ n), that is, quantification is over

optimal answer sets. Moreover, the global weak constraints subprogram Cw is introduced

to specify (global) optimality criteria on quantified answer sets.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.720

Formally, the coherence of ASPω(Q) programs is defined as follows:

• ∃stP :C :Cw is coherent, if there exists M ∈OptAS(P) such that C ∪ fixP (M)

admits an answer set;

• ∀stP :C :Cw is coherent, if for everyM ∈OptAS(P), C ∪ fixP (M) admits an answer

set;

• ∃stP Π is coherent, if there exists M ∈OptAS(P) such that ΠP,M is coherent;

• ∀stP Π is coherent, if for every M ∈OptAS(P), ΠP,M is coherent.

where fixP (M) denotes the set of facts and constraints {a | a∈M ∩HBP } ∪ {← a | a∈
HBP \M}, and ΠP,M denotes the ASPω(Q) program of the form (3), where P1 is replaced

by P1 ∪ fixP (M), that is, ΠP,M =�1(P1 ∪ fixP (M)) �2P2 · · ·�nPn :C :Cw.

For an existential ASPω(Q) program Π, M ∈OptAS(P1) is a quantified answer set of

Π, if ((�2P2 · · ·�nPn :C) :Cw)P1,M is coherent. We denote by QAS(Π) the set of all

quantified answer sets of Π.

To illustrate the definitions above, let us consider the following ASPω(Q) program

Π= ∃stP1∀stP2 · · · ∃stPn−1∀stPn :C :Cw. “Unwinding” the definition of coherence yields

that Π is coherent if there exists an optimal answer set M1 of P ′
1 such that for every

optimal answer set M2 of P ′
2 there exists an optimal answer set M3 of P ′

3, and so on until

there exists an optimal answer set Mn−1 of P ′
n−1 such that for every optimal answer

set Mn of P ′
n, there exists an answer set of C ∪ fixP ′

n
(Mn), where P ′

1 = P1, and P ′
i =

Pi ∪ fixP ′
i−1

(Mi−1) with i≥ 2. Note that, as in ASP(Q), the constraint program C has

the role of selecting admissible solutions. Weak constraints could be allowed in C, but

they would be redundant. Indeed, C, being stratified with constraints, admits at most

one answer set, which would necessarily be optimal. In contrast, the local weak constraints

(possibly) occurring in subprograms Pi are essential for determining coherence.

Example 3.1 (Impact of local weak constraints).

Let Π1 = ∃P1∀P2 :C, and Π2 = ∃Q1∀Q2 :C, where C = {← d, f} and also:

P1 =

⎧⎪⎨
⎪⎩
{a; b}= 1←
{c; d}= 1←
←w c [1@1]

⎫⎪⎬
⎪⎭ P2 =

⎧⎪⎨
⎪⎩
{e, f}←
←∼e,∼f
←w e, f [1@1]

⎫⎪⎬
⎪⎭ Q1 =

{
{a; b}= 1←
{c; d}= 1←

}

Q2 =

{
{e, f}←
←∼e,∼f

}

Note that, Π2 can be obtained from Π1 by discarding weak constraints. First, we

observe that Π1 is incoherent. Indeed, the optimal answer sets of P1 are OptAS(P1) =

{{a, d}, {b, d}}. By applying the definition of coherence, when we consider M = {a, d},
we have that OptAS(P ′

2) = {{e, a, d}, {f, a, d}}. Once we set M ′ = {f, a, d}, the pro-

gram C ′ is not coherent, and so M = {a, d} is not a quantified answer set. Analogously,

when we consider the second answer set of P1, that is, M = {b, d}, we have that

OptAS(P ′
2) = {{e, a, d}, {f, a, d}}. But, when we set M ′ = {f, b, d}, the program C ′

is not coherent. Thus, Π1 is incoherent. On the contrary, Π2 is coherent. Indeed,

AS(Q1) = {{a, d}, {b, d}, {a, c}, {b, c}}=OptAS(P1)∪ {{a, c}, {b, c}}. The first two, we

know, do not lead to a quantified answer set. But, when we set M = {a, c}, since d is false,

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 721

it happens that C ′ is coherent (e.g., when we consider the answer set {e, a, c} of Q′
2).

Thus, local weak constraints can affect coherence by discarding not optimal candidates.

Global weak constraints in Cw do not affect coherence, but they serve to define opti-

mality criteria across quantified answer sets. For this reason, we require that Cw is defined

over the same Herbrand base of P1. Furthermore, note that Cw plays no role in universal

ASPω(Q) programs, where coherence is the sole meaningful task.

Given an existential ASPω(Q) program Π and two quantified answer sets Q1, Q2 ∈
QAS(Π), we say that Q1 is dominated by Q2 if there exists an integer l such that

C(P ∗
1 , Q2, l)< C(P ∗

1 , Q1, l) and for every integer l′ > l, C(P ∗
1 , Q2, l) = C(P ∗

1 , Q1, l), where

P ∗
1 = P1 ∪Cw. An optimal quantified answer set is a quantified answer set Q∈QAS(Π)

that is not dominated by any Q′ ∈QAS(Π).

Example 3.2 (Optimal quantified answer sets)

Let Π= ∃P1∀P2 :C :Cw be such that:

P1 = {{a; b; c}←} P2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{a′; b′; c′}←
← a′,∼b′
←∼a′,∼b′
← a′,∼c′
←∼a′,∼c′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

C =

⎧⎨
⎩
← a,∼a′
← b,∼b′
← c,∼c′

⎫⎬
⎭ Cw =

⎧⎨
⎩
←∼a [1@1, a]

←∼b [1@1, b]

←∼c [1@1, c]

⎫⎬
⎭

Given that QAS(Π) = {{}, {b}, {c}, {b, c}}, we have that: the cost of {} is 3, since it

violates all weak constraints in Cw; {b} and {c} cost 2, since {b} (resp. {c}) violates

the first and the third (resp. second) weak constraint; and, {b,c} costs 1, because it only

violates the first weak constraint.

Let Π=�1P1 . . .�nPn be an ASPω(Q) program. Π satisfies the stratified definition

assumption if for each 1≤ i≤ n, H(Pi)∩ at(Pj) = ∅, with 1≤ j < i. In what follows, we

assume w.l.o.g. that ASPω(Q) programs satisfy the stratified definition assumption.

It is worth noting that, standard ASP(Q) allows for the specification of preferences and

optimization. The basic pattern for obtaining optimal models in ASP(Q) is to “clone” a

program and use an additional quantifier over its answer sets. This allows us to compare

pairs of answer sets and, by means of a final constraint program, to select optimal ones.

For example, assume program P1 models the candidate solutions of a problem and, for

the sake of illustration, that we are interested in those minimizing the number of atoms of

the form a(X). This desideratum can be modeled directly in standard ASP by adding a

weak constraint ←w a(X)[1@1, X]. On the other hand, in ASP(Q) we can model it with

the program ∃P1∀P2 :C such that P2 = clones(P1), and C = {←#count{X : a(X)}=
K,#count{X : as(X)}<K}. Here, we are comparing the answer sets of P1 with all their

“clones”, and keep those that contain a smaller (or equal) number of atoms of the form

a(X). This pattern is easy to apply, but it is redundant; also note that checking coherence

of an ASP(Q) program with two quantifiers is in Σp
2 (Amendola et al . 2019), whereas

optimal answer set checking of a program with weak constraints is in Δp
2 (Buccafurri

et al . 2000). These observations motivate the introduction of weak constraints in ASP(Q),

which will be further strengthened in the following sections.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.722

4 Modeling examples

We showcase the modeling capabilities of ASPω(Q) by considering two example scenarios

where both global and local weak constraints play a role: the Minmax Clique problem

(Cao et al . 1995), and Logic-Based Abduction (Eiter and Gottlob 1995a).

4.1 Minmax Clique problem

Minimax problems are prevalent across numerous research domains. Here, we focus on

the Minmax Clique problem, as defined by Ko (1995), although other minimax variants

can be also modeled.

Given a graph G= 〈V, E〉, let I and J be two finite sets of indices, and (Ai,j)i∈I,j∈J

a partition of V . We write JI for the set of all total functions from I to J . For every

total function f : I→ J we denote by Gf the subgraph of G induced by
⋃

i∈I Ai,f(i).

The Minmax Clique optimization problem is defined as follows: Given a graph G, sets of

indices I and J , a partition (Ai,j)i∈I,j∈J , find the integer k (k≤ |V |), such that

k= min
f∈JI

max{|Q| :Q is a clique of Gf}.

The following program of the form Π= ∃P1∃P2 :C :Cw, encodes the problem:

P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v(i, j, a) ← ∀i∈ I, j ∈ J, a∈Ai,j

inI(i) ← ∀i∈ I
inJ(j) ← ∀j ∈ J
e(x, y) ← ∀(x, y)∈E

{f(i, j) : inJ(j)}= 1 ← inI(i)

{valK(1); . . . ; valK(|V |)}= 1 ←

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

P2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nf (X) ← f(I, J), v(I, J, X)

ef (X, Y) ← nf (X), nf (Y), e(X, Y)

{inClique(X) : nf (X)} ←
← inClique(X), inClique(Y), X < Y,∼ef (X, Y)

←w nf (X),∼inClique(X) [1@1, X]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

C =
{← valK(K),#count{X : inClique(X)} =K

}
Cw =

{←w val(K) [K@1]
}

The input is modeled in program P1 as follows: Node partitions are encoded as facts

of the form v(i, j, x) denoting that a node x belongs to the partition a∈Ai,j ; facts of

the form inI(i) and inJ(j) model indexes i∈ I and j ∈ J , respectively; and, the set of

edges E is encoded as facts of the form e(x, y) denoting that the edge (x, y)∈E. The

first choice rule in P1 guesses one total function f : I→ J , which is encoded by binary

predicate f(i, j) denoting that the guessed function maps i to j. The second choice rule

guesses one possible value for k, modeled by predicate valK(x). Thus, there is an answer

set of program P1 for each total function f and a possible value for k.

Given an answer set of P1, program P2 computes the maximum clique of the subgraph

of G induced by f , that is, Gf . To this end, the first rule computes the nodes of Gf in

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 723

predicate nf (X), by joining predicate f(I, J) and v(I, J, X). The second rule computes

the edges of Gf considering the edges of G that connect nodes in Gf . The largest clique

in Gt is computed by a (i) choice rule that guesses a set of nodes (in predicate inClique),

(ii) a constraint requiring that nodes are mutually connected, and (iii) a weak constraint

that minimizes the number of nodes that are not part of the clique. At this point, the

program C verifies that the size of the largest clique in the answer set of P2 is exactly

the value for k in the current answer set of P1. Thus, each quantified answer set of Π

models a function f , such that the largest clique of induced graph Gf has size k. Now,

the global weak constraints in Cw prefer the ones that give the smallest value of k.

The decision version of this problem is Πp
2-complete (Ko 1995). Thus, a solution to

the Minmax Clique can be computed by a logarithmic number of calls to an oracle

in Πp
2, so the problem belongs to ΘP

3 (Wagner 1990). It is (somehow) surprising that

we could write a natural encoding without alternating quantifiers (indeed, Π features

two existential quantifiers). This phenomenon is more general. We will return to it in

Section 6.

Logic-Based Abduction Abduction plays a prominent role in Artificial Intelligence as an

essential common-sense reasoning mechanism (Morgan 1971; Pople 1973).

In this paper we focus on the Propositional Abduction Problem (PAP) (Eiter and

Gottlob 1995a). The PAP is defined as a tuple of the form A= 〈V, T, H,M〉, where V is

a set of variables, T is a consistent propositional logic theory over variables in V ,H ⊆ V is

a set of hypotheses, and M ⊆ V is a set of manifestations. A solution to the PAP problem

A is a set S ⊆H such that T ∪ S is consistent and T ∪ S �M . Solutions to A, denoted
by sol(A), can be ordered by means of some preference relation <. The set of optimal

solutions to A is defined as sol<(A) = {S ∈ sol(A) | � S′ ∈ sol(A) such that |S′|< |S|}.
A hypothesis h∈H is relevant if h appears at least in one solution S ∈ sol<(A). The
main reasoning tasks for PAP are beyond NP (Eiter and Gottlob 1995a).

In the following, we assume w.l.o.g. that the theory T is a boolean 3-CNF formula over

variables in V . Recall that, a 3-CNF formula is a conjunction of clauses C1 ∧ . . .∧Cn,

where each clause is of the form Ci = l1i ∨ l2i ∨ l3i , and each literal lji (with 1≤ j ≤ 3) is

either a variable a∈ V or its (classical) negation ¬a.
Given a PAP problem A= 〈V, T, H,M〉 we aim at computing a solution S ∈ sol<(A).

To this end, we use an ASPω(Q) program of the form ∃P1∀P2 :C :Cw, where:

P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) ← ∀ x∈ V
lit(Ci, a, t) ← ∀ a∈ V | a∈Ci

lit(Ci, a, f) ← ∀ a∈ V | ∼a∈Ci

h(x) ← ∀ x∈H
m(x) ← ∀ x∈M
cl(X) ← lit(X, ,)

{s(X) : h(X)} ←
{tau(X, t); tau(X, f)}= 1 ← v(X)

satCl(C) ← lit(C, A, V), tau(A, V)

← cl(C),∼satCl(C)

← s(X), tau(X, f)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.724

P2 =

⎧⎪⎪⎨
⎪⎪⎩
{tau′(X, t); tau′(X, f)}= 1 ← v(X)

satCl′(C) ← lit(C, A, V), tau′(A, V)

unsatTS′ ← cl(C),∼satCl′(C)

unsatTS′ ← s(X),∼tau′(X, f)

⎫⎪⎪⎬
⎪⎪⎭

C =
{←∼unsatTS′, m(X), tau′(X, f)

}

Cw =
{←w s(X) [1@1, X]

}
The aim of P1 is to compute a candidate solution S ⊆H such that T ∪ S is consistent;

P2 and C ensure that T ∪ S �M , and Cw ensures that S is cardinality minimal. More in

detail, in program P1, the variables V , hypothesis H, and manifestations M , are encoded

by means of facts of the unary predicates v, h, and m, respectively. The formula T is

encoded by facts of the form lit(C, x, t) (resp. lit(C, x, f)) denoting that a variable x

occurs in a positive (resp. negative) literal in clause C. Then, to ease the presentation,

we compute in a unary predicate cl the set of clauses. The first choice rule guesses a

solution (a subset of H), and the last five rules verify the existence of a truth assignment

τ for variables in V , encoded with atoms of the form tau(x, t) (resp. tau(x, f)) denoting

that a variable x is true (resp. false), such that unsatTS is not derived (last constraint).

Note that, unsatTS is derived either if a clause is not satisfied or if a hypothesis is

not part of the assignment. Thus, the assignment τ satisfies T ∪ S, that is, T ∪ S is

consistent. It follows that the answer sets of P1 correspond to candidate solutions S ⊆H

such that T ∪ S is consistent. Given a candidate solution, program P2 has one answer

set for each truth assignment τ ′ that satisfies T ∪ S, and the program C checks that

all such τ ′ satisfy also the manifestations in M . Thus, every M ∈QAS(Π) encodes a

solution S ∈ sol(A). The weak constraint in Cw ensures we single out cardinality minimal

solutions by minimizing the extension of predicate s. Finally, let h be a hypothesis, we aim

at checking that h is relevant, that is, h∈ S s.t. S ∈ sol<(A). We solve this task by taking

the program Π above that computes an optimal solution and adding to Cw an additional

(ground) weak constraint, namely ←w ∼s(h) [1@0]. Intuitively, optimal solutions not

containing h violate the weak constraint, so if any optimal answer set contains s(h) then

h is relevant.

4.2 Remark

Checking that a solution to a PAP is minimal belongs to Πp
2 (Eiter and Gottlob 1995a),

so the task we have considered so far is complete for ΘP
3 (Wagner 1990). The programs

above feature only two quantifiers, whereas alternative encodings in ASP(Q) (i.e., without

weak constraints) would have required more. Moreover, we observe that the programs

above are rather natural renderings of the definition of the problems that showcase the

benefit of modeling optimization in subprograms and at the global level.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 725

5 Rewriting into plain ASP(Q)

In this section, we describe a mapping that transforms an ASPω(Q) program Π into a

plain (i.e., without weak constraints) quantifier-alternating ASP(Q) program Π′ that is
coherent iff Π is coherent. This transformation is crucial for enabling the study of the

complexity of the primary reasoning tasks of ASPω(Q). Additionally, it could be applied

in an implementation that extends current solvers such as that by Faber et al . (2023).

The transformation works by calling a number of intermediate rewritings until none of

them can be applied anymore. They (i) absorb consecutive quantifiers of the same kind;

and, (ii) eliminate weak constraints from a subprogram by encoding the optimality check

in the subsequent subprograms. We first introduce some useful definitions. Given program

Π of the form (3) we say that two consecutive subprograms Pi and Pi+1 are alternating if

�i =�i+1, and are uniform otherwise. A program Π is quantifier-alternating if �i =�i+1

for 1≤ i < n. A subprogram Pi is plain if it contains no weak constraint W(Pi) = ∅, and
Π is plain if both all Pi are plain, and Cw = ∅. In the following, we assume that Π is an

ASPω(Q) program of the form (3).

5.1 Rewriting uniform plain subprograms

Two plain uniform subprograms can be absorbed in a single equi-coherent subprogram

by the transformation col1(·) defined as follows.

Lemma 1 (Correctness col1(.) transformation)

Let program Π be such that n≥ 2 and the first two subprograms are plain and uniform,

that is, �1 =�2, and W(P1) =W(P2) = ∅, then Π is coherent if and only if col1(Π) =

�1P1 ∪ P2�3P3 . . .�nPn :C is coherent.

Intuitively, if the first two subprograms of Π are uniform and plain then Π can be refor-

mulated into an equi-coherent (i.e., Π is coherent iff col1(Π) is coherent) program with

one fewer quantifier.

5.2 Rewriting uniform notplain-plain subprograms

Next transformations apply to pairs of uniform subprograms P1, P2 such that P1 is not

plain and P2 is plain. To this end, we first define the or(·, ·) transformation. Let P be an

ASP program, and l be a fresh atom not appearing in P , then or(P, l) = {Hr←Br,∼l |
r ∈ P}.
Observation 1 (Trivial model existence)

Let P be an ASP program, and l be a fresh literal not appearing in P , then the following

hold: {l} is the unique answer set of or(P, l)∪ {l←}; and AS(or(P, l)∪ {← l}) =AS(P).

Intuitively, if the fact l← is added to or(P, l) then the interpretation I = {l} trivially

satisfies all the rules and is minimal, thus it is an answer set. On the other hand, if

we add the constraint ← l, requiring that l is false in any answer set, then the result-

ing program behaves precisely as P since literal ∼l is trivially true in all the rule

bodies.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.726

We are now ready to introduce the next rewriting function col2(·). This transformation

allows to absorbe a plain existential subprogram into a non plain existential one, thus

reducing by one the number of quantifiers of the input ASPω(Q) program.

Definition 1 (Collapse notplain-plain existential subprograms)

Let Π be an ASPω(Q) program of the form ∃P1∃P2 . . .�nPn :C, where W(P1) = ∅,
W(Pi) = ∅, with 1< i≤ n, and �i =�i+1 with 1< i< n, then:

col2(Π) =

⎧⎪⎨
⎪⎩
∃P1 ∪ or(P2, unsat)∪W :C ∪ {← unsat} n= 2

∃P1 ∪ or(P2, unsat)∪W ∀P ′
3 :C ∪ {← unsat} n= 3

∃P1 ∪ or(P2, unsat)∪W ∀P ′
3 ∃P4 ∪ {← unsat} . . .�nPn :C n> 3

where W = {{unsat}←} ∪ {←w unsat [1@lmin − 1]}, with lmin be the lowest level in

W(P1) and unsat is a fresh symbol not appearing anywhere else, and P ′
3 = or(P3, unsat).

Lemma 2 (Correctness col2(.) transformation)

Let Π be an ASPω(Q) program of the form ∃P1∃P2 . . .�nPn :C, where W(P1) = ∅,
W(Pi) = ∅, with 1< i≤ n, and �i =�i+1 with 1< i< n. Then Π is coherent if and only

if col2(Π) is coherent.

A similar procedure is introduced for the universal case.

Definition 2 (Collapse notplain-plain universal subprograms)

Let Π be an ASPω(Q) program of the form ∀P1∀P2 . . .�nPn :C, where W(P1) = ∅,
W(Pi) = ∅, with 1< i≤ n, and �i =�i+1 with 1< i< n, then:

col3(Π) =

⎧⎪⎨
⎪⎩
∀P1 ∪ or(P2, unsat)∪W : or(C, unsat) n= 2

∀P1 ∪ or(P2, unsat)∪W ∃P ′
3 : or(C, unsat) n= 3

∀P1 ∪ or(P2, unsat)∪W ∃P ′
3 ∀P4 ∪ {← unsat} . . .�nPn :C n> 3

where W = {{unsat}←} ∪ {←w unsat [1@lmin − 1]}, with lmin be the lowest level in

W(P1) and unsat is a fresh symbol not appearing anywhere else, and P ′
3 = or(P3, unsat).

Lemma 3 (Correctness col3(.) transformation)

Let Π be an ASPω(Q) program of the form ∀P1∀P2 . . .�nPn :C, where W(P1) = ∅,
W(Pi) = ∅, with 1< i≤ n, and �i =�i+1 with 1< i< n. Then Π is coherent if and only

if col3(Π) is coherent.

Roughly, if the first two subprograms of Π are uniform, P1 is not plain, P2 is plain,

and the remainder of the program is alternating, then Π can be reformulated into an

equi-coherent program with one fewer quantifier.

5.3 Rewrite subprograms with weak constraints

The next transformations have the role of eliminating weak constraints from a subpro-

gram by encoding the optimality check in the subsequent subprograms. To this end, we

define the check(·) transformation that is useful for simulating the cost comparison of

two answer sets of an ASP program P .

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 727

First, let ε be an ASP expression and s an alphanumeric string. We define clones(ε)

as the expression obtained by substituting all occurrences of each predicate p in ε with

ps which is a fresh predicate ps of the same arity.

Definition 3 (Transform weak constraints)

Let P be an ASP program with weak constraints, then

check(P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vc(w, l, T) ← b1, . . . , bm
∀c : ←w b1, . . . , bm[w@l, T]∈ P

clP (C, L) ← level(L), C =#sum{wc1 ; . . . ;wcn}
cloneo(vc(w, l, T) ← b1, . . . , bm)

∀c : ←w b1, . . . , bm[w@l, T]∈ P
cloneo(clP (C, L) ← level(L), C =#sum{wc1 ; . . . ;wcn})

diff (L) ← clP (C1, L), cloP (C2, L), C1 =C2

hasHigher(L) ← diff (L), diff (L1), L <L1

higest(L) ← diff (L),∼hasHigher(L)

domP ← higest(L), clP (C1, L), cloP (C2, L), C2<C1

where each wci is an aggregate element of the form W, T : vci(W, L, T).

Thus, the first two rules compute in predicate clP the cost of an answer set of P w.r.t.

his weak constraints, and the following two rules do the same for cloneo(P). Then, the

last four rules derive domP for each answer set of P that is dominated by cloneo(P).

We now introduce how to translate away weak constraints from a subprogram.

Definition 4 (Transform existential not-plain subprogram)

Let Π be an existential alternating ASPω(Q) program such that all subprograms are

plain except the first one (i.e., W(P1) = ∅, W(Pi) = ∅, 1< i≤ n), then

col4(Π) =

⎧⎪⎨
⎪⎩
∃R(P1)∀cloneo(R(P1))∪ check(P1) : {← domP1

} ∪C n= 1

∃R(P1)∀P ′
2 : {← domP1

} ∪C n= 2

∃R(P1)∀P ′
2∃P3 ∪ {← domP1

} . . .�nPn :C n≥ 3

where P ′
2 = cloneo(R(P1))∪ check(P1)∪ or(P2, domP1

).

Lemma 4 (Correctness col4(.) transformation)

Let Π be an existential alternating ASPω(Q) program such that all subprograms are

plain except the first, then Π is coherent if and only if col4(Π) is coherent.

Intuitively, for a pair M1, M2 ∈AS(P1), M1 is dominated by M2 if and only if

check(P)∪ fixP (M1)∪ cloneo(fixP (M2)) admits an answer set M such that domP ∈M .

Thus, coherence is preserved since domP1
discards not optimal candidates such as M1.

A similar procedure can be defined for universal subprogram.

Definition 5 (Transform universal not-plain subprogram).

Let Π be a universal alternating ASPω(Q) program such that all subprograms are plain

except the first one (i.e., W(P1) = ∅, W(Pi) = ∅ 1< i≤ n), then

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.728

Algorithm 1 Rewriting from ASPω(Q) to ASP(Q)

Input : An ASPω(Q) program Π
Output: A quantifier-alternating ASP(Q) program

1 begin
2 s := 0; Π0 := Π
3 do
4 stop := �
5 for all ProgramType ∈ [1, 5] do
6 Let i ∈ [1, n] be the largest index such that Π>i

s is of the type ProgramType
7 if i �= ⊥ then

8 Πs+1 := replace(Πs, i, colProgramType(Π
≥i
s))

9 s := s + 1;
10 stop := ⊥
11 break // go to line 12

12 while stop �= �;
13 return removeGlobal(Πs)

col5(Π) =

⎧⎪⎨
⎪⎩
∀R(P1)∃cloneo(R(P1))∪ check(P1) : or(C, domP1

) n= 1

∀R(P1)∃P ′
2 : or(C, domP1

) n= 2

∀R(P1)∃P ′
2∀P3 ∪ {← domP1

} . . .�nPn :C n≥ 3

where P ′
2 = cloneo(R(P1))∪ check(P1)∪ or(P2, domP1

).

Lemma 5 (Correctness col5(.) transformation)

Let Π be a universal alternating ASPω(Q) program such that all subprograms are plain

except the first, then Π is coherent if and only if col5(Π) is coherent.

Translate ASPω(Q) to ASP(Q).

Algorithm 1 defines a procedure for rewriting an ASPω(Q) program Π into an ASP(Q)

program Π′, made of at most n+ 1 alternating quantifiers, such that Π is coherent if

and only if Π′ is coherent. In Algorithm 1, we make use of some (sub)procedures and

dedicated notation. In detail, for a program Π of the form (3), Π≥i denotes the i-th

suffix program �iPi . . .�nPn :C, with 1≤ i≤ n (i.e., the one obtained from Π removing

the first i− 1 quantifiers and subprograms). Moreover, the procedure removeGlobal(Π)

builds an ASP(Q) program from a plain one in input (roughly, it removes the global

constraint program Cw). Given two programs Π1 and Π2, replace(Π1, i,Π2) returns the

ASPω(Q) program obtained from Π1 by replacing program Π≥i
1 by Π2, for example

replace(∃P1∀P2∃P3 :C, 2, ∃P4 :C) returns ∃P1∃P4 :C.

In order to obtain a quantifier alternating ASP(Q) program from the input Π,

Algorithm 1 generates a sequence of programs by applying at each step one of the colT
transformations. With a little abuse of notation, we write that a program is of type T

(T ∈ [1, 5]) if it satisfies the conditions for applying the rewriting colT defined above (cfr.,

Lemmas 1–5). For example, when type T = 1 we check that the first two subprograms of

Π are plain and uniform so that col1 can be applied to program Π. In detail, at each itera-

tion s, the innermost suffix program that is of current type T is identified, say Π≥i
s . Then

the next program Πs+1 is built by replacing Π>i
s by colT (Π

>i
s). Algorithm 1 terminates

when no transformation can be applied, and returns the program removeGlobal(Πs).

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 729

Theorem 1 (ASPΩ(Q) to ASP(Q) convergence and correctness)

Given program Π, Algorithm 1 terminates and returns an alternating ASP(Q) program

Π′ that is Π′ is coherent iff Π is coherent, and nQuant(Π′)≤ nQuant(Π) + 1.

Intuitively, the proof follows by observing that Algorithm 1 repeatedly simplifies the

input by applying colT (·) procedures (T ∈ [1, 5]) until none can be applied. This con-

dition happens when the resulting Π′ is plain alternating. Equi-coherence follows from

Lemmas 1-5. Unless the innermost subprogram of Π is not plain, no additional quantifier

is added by Algorithm 1, so nQuant(Π′)≤ nQuant(Π) + 1, hence the proof follows.

Proof

At each step s, Algorithm 1 searches for the innermost suffix subprogram Π≥i
s such

that either (i) Π≥i
s begins with two consecutive quantifiers of the same type (i.e.,

it is of type 1,2 or 3), or (ii) Π≥i
s begins with a not plain subprogram followed by

a quantifier alternating sequence of plain subprograms (i.e., it is of type 4 or 5).

In case (i), one of the subprocedures col1, col2, or col3 is applied, which results in

the computation of program Πs+1 having one less pair of uniform subprograms (i.e.,

nQuant(Πs+1) = nQuant(Πs)− 1). In case (ii), one of the subprocedures col4, col5 is

applied, which results in the computation of program Πs+1 such that its i-th subpro-

gram is plain. After applying col4, col5 we have that nQuant(Πs+1)≤ nQuant(Πs) + 1,

indeed if i= nQuant(Πs) one more quantifier subprogram is added. So the algorithm

continues until neither condition (i) nor (ii) holds. This happens when Πs is a plain

quantifier alternating program. Note that, unless the innermost subprogram of Π is not

plain, no additional quantifier is added during the execution of Algorithm 1 (if anything,

some may be removed), so nQuant(Π′)≤ nQuant(Π) + 1.

Additionally, it is easy to see that quantified answer set of existential programs can be

preserved if only atoms of the first subprogram are made visible.

Corollary 1.1 (Quantified answer set preservation)

Let Π be an existential ASPω(Q) program of the form (3) and Π′ be the result of the

application of Algorithm 1 on Π. Then, M ∈QAS(Π) if and only if there exists M ′ ∈
QAS(Π′) such that M ′ ∩HBP1

=M .

The Corollary above follows (straightforwardly) from Theorem 1 because the only cases

in which the first subprogram P1 of Π undergoes a modification during the rewriting is

through a collapse operation, which, by definition, does not “filter” out any answer sets

of the modified program. Since coherence is preserved by Theorem 1, a quantified answer

set of Π can be obtained from a quantified answer set of Π′ by projecting out atoms that

are not in HBP1
(i.e., those not in the “original” P1).

6 Complexity issues

In this section, we investigate the complexity of problems related to ASPω(Q) pro-

grams. We first study the complexity of the coherence problem. For that problem, global

constraints can be ignored. Interestingly, the presence of local constraints leads to some

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.730

unexpected phenomena. Next, we study the complexity of problems concerning member-

ship of atoms in optimal answer sets. For this study, we restrict attention to existential

programs with only global constraints.

Theorem 2 (Upper bound)

The coherence problem of an ASPω(Q) program Π is in: (i) Σp
n+1 for existential programs,

and (ii) Πp
n+1 for universal programs, where n= nQuant(Π).

Proof

Let Π′ be the result of applying Algorithm 1 to Π. Then, Π′ is a quantifier-alternating

plain program with at most n= nQuant(Π) + 1 quantifiers that is coherent iff Π is

coherent (Theorem 1). Thesis follows from Theorem 3 in the paper by Amendola et al.,

(2019).

Theorem 3 (Lower bound)

The coherence problem of an ASPω(Q) program is hard for (i) Σp
n for existential

programs, and hard for (ii) Πp
n for universal programs, where n= nQuant(Π).

The result above follows trivially from the observation that any quantifier-alternating

ASP(Q) program with n quantifiers is a plain ASPω(Q) program where Cw = ∅.
The lower and upper bounds offered by the two previous results do not meet in the

general case. However, for some classes of ASPω(Q) programs they do, which leads

to completeness results. For instance, note that Algorithm 1 produces a quantifier-

alternating plain ASP(Q) program with at most n quantifiers when the last subprogram

is plain.

Corollary 3.1 (First completeness result)

The coherence problem of an ASPω(Q) program where the last subprogram is plain

(i.e., W(Pn) = ∅) is (i) Σp
n-complete for existential programs, and (ii) Πp

n-complete for

universal programs, where n= nQuant(Π).

Proof. (Sketch)

The assertion follows from Theorem 3 in the paper by Amendola et al . (2019) and from

properties of Algorithm 1.

Note that, in plain ASP(Q) (as well as in related formalisms such as those considered by

Stockmeyer (1976) and Fandinno et al . (2021)), the complexity of coherence correlates

directly with the number of quantifier alternations (Amendola et al . 2019). Perhaps

somewhat unexpectedly at first glance, it is not the case of ASPω(Q). There, when local

constraints are present, one can “go up” one level with two consecutive quantifiers of the

same kind. This phenomenon is exemplified below.

Theorem 4 (Second completeness results)

Deciding coherence of uniform existential ASPω(Q) programs with two quantifiers (i.e.,

n= 2) such that P2 is not plain is Σp
2-complete.

Proof. (Sketch)

(Membership) By applying Algorithm 1 on a uniform existential ASPω(Q) programs with

two quantifiers where the program P2 is not plain, we obtain an equi-coherent ASP(Q) of

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 731

the form ∃P ′
1∀P ′

2 :C
′. Thus, the membership to ΣP

2 follows from Theorem 3 of Amendola

et al . (2019).

Hardness is proved by a reduction of an existential 2QBF in DNF by adapting the

QBF encoding in ASP(Q) from Theorem 2 of Amendola et al . (2019). In detail, a weak

constraint in P2 simulates the forall quantifier by preferring counterexamples that are

later excluded by the final constraint C.

The proof offers insights into this phenomenon, revealing that the second quantifier,

governing optimal answer sets, essentially “hides” a universal quantifier. The following

result closes the picture for uniform plain programs with two existential quantifiers.

Proposition 1 (Third completeness results)

Deciding coherence of plain uniform ASPω(Q) programs with 2 quantifiers is (i) NP-

complete for existential programs; and (i) coNP-complete for universal programs.

The result follows trivially from Lemma 1, once we observe that one application of col1
builds an equi-coherent program with one quantifier.

We will now turn our attention to problems involving optimal quantified answer sets.

Observe that, as for the case of plain ASP, verifying the existence of an optimal quanti-

fied answer set has the same complexity as verifying the existence of a quantified answer

set. Indeed, if a quantified answer set exists, there is certainly an optimal one. Thus, a

more interesting task is to verify whether an atom a belongs to some optimal quantified

answer sets . (This is important as it supports brave reasoning as well as allows one to

compute an optimal quantified answer set, if one exists).

We will now study this problem for plain ASPω(Q) programs with global constraints

that seem to be especially relevant to practical applications. Similarly to what was proved

by Buccafurri et al . (2000) for ASP, the task in question results in a jump in complexity.

Specifically, it elevates the complexity to being complete for ΔP
n in the general case.

Theorem 5 (Fourth completeness results)

Deciding whether an atom a belongs to an optimal quantified answer set of a plain

alternating existential ASPω(Q) program with n quantifiers is ΔP
n+1-complete.

Proof. (Sketch)

(Hardness) Hardness can be proved by resorting the observations used in the proof by

Buccafurri et al., (2000). More precisely, let X1, . . . , Xn be disjoint sets of propositional

variables, and Φ be a QBF formula of the form ∀X2∃X3 . . .QXn φ, where eachQ∈ {∃, ∀},
and φ is a formula over variables in X1, . . . , Xn in 3-DNF if n is even, otherwise it is in

3-CNF, and X1 = {x1, . . . , xm}. Deciding whether the lexicographically minimum truth

assignment τ of variables in X1, such that ∀X2∃X3 . . .QXn φτ is satisfied (assuming

such τ exists), satisfies the condition τ(xm) =� is a ΔP
n+1-complete problem (Krentel

1992). Such a problem can be encoded as a plain alternating ASPω(Q) program Π with

n quantifiers such that an atom xm appears in some optimal quantified answer set of Π

if and only if the answer to the problem is “yes”.

(Membership) As observed by Buccafurri et al . (2000) and Simons et al . (2002), an

optimal solution can be obtained with binary search on the value of maximum possible

cost, namely k. Since k can be exponential in the general case, then an optimal quantified

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.732

answer set of Π can be obtained with a polynomial number of calls to the oracle in ΣP
n ,

with n= nQuant(Π). Finally, an extra oracle call checks that the atom a appears in some

optimal quantified answer sets.

Another interesting result regards a specific class of plain ASPω(Q) programs, namely

those programs in which there is only one level and all the weights are the same. In

this particular case the complexity lowers to ΘP
n+1. Recall that, Θ

P
n+1 is the class of

problems that can be solved by a logarithmic number of calls to an oracle in ΣP
n , that in

the literature is also denoted by Δp
n+1[O(log m)] (Wagner 1986). The next result shows

ASPω(Q) can optimally encode optimization problems in this complexity class (Wagner

1986, 1990), such as the Propositional Abduction Problem discussed in Section 4.

Theorem 6 (Fifth completeness results)

Deciding whether an atom a belongs to an optimal quantified answer set of a plain

alternating existential ASPω(Q) program with n quantifiers is ΘP
n+1-complete if there is

only one level and all the weights are the same.

Proof

(Hardness) Let a QBF formula Φ be an expression of the form Q1X1 . . .QnXnφ, where

X1, . . . , Xn are disjoint sets of propositional variables, Qi ∈ {∃, ∀} for all 1≤ i≤ n, Qi =
Qi+1 for all 1≤ i < n, and φ is a 3-DNF formula over variables in X1, X2, . . . , Xn of the

form D1 ∨ . . .∨Dn, where each conjunct Di = li1 ∧ li2 ∧ li3, with 1≤ i≤ n. A k-existential

QBF formula Φ is a QBF formula where n= k and Q1 = ∃.
Given a sequence of m k-existential QBF formulas Φ1, . . . ,Φm, with k being even

and greater than or equal to 2, and such that if Φj is unsatisfiable then also Φj+1 is

unsatisfiable, where 1≤ j <m, deciding whether v(Φ1, . . . ,Φm) =max{j | 1≤ j ≤m∧
Φj is satisfiable} is odd is Θk+1-complete (Buccafurri et al . 2000).

The above problem can be encoded into an ASPω(Q) program Π such that a lit-

eral, namely odd, appears in some optimal quantified answer set of Π if and only if

v(Φ1, . . . ,Φm) is odd. For simplicity, we introduce notation for some sets of rules that

will be used in the construction of Π. More precisely, given a QBF formula Φ, sat(Φ)

denotes the set of rules of the form satΦ← li1, l
i
2, l

i
3, where Di = li1 ∧ li2 ∧ li3 is a conjunct

in φ; whereas for a set of variables Xi = {xi
1, . . . , x

i
n} in Φ, and an atom a, choice(Xi, a)

denotes the choice rule {xi
1; . . . ; x

i
n}← a. We are now ready to construct the program Π.

First of all, we observe that all the formulas Φ1, . . . ,Φm have the same alternation

of quantifiers. Thus, there is a one-to-one correspondence between the quantifiers in the

QBF formulas and those in Π. Let Π be of the form �1P1�2P2 . . .�kPk :C :Cw where

�i = ∃ if Qi = ∃ in a formula Φj , otherwise �i = ∀. The program P1 is of the form

P1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{solve(1); . . . ; solve(m)}= 1 ←
unsolved(i) ← solve(j) ∀ j, i∈ [1, . . . , m]s.t. i > j

odd ← solve(j) ∀j ∈ [1, . . . , m]s.t. j is odd

choice(Xj
1 , solve(j)) ∀1≤ j ≤m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

while, for each 2≤ i≤ k, the program Pi is of the form

Pi =
{
choice(Xj

i , solve(j)) ∀1≤ j ≤m
}
,

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 733

where each Xj
i denotes the set of variables appearing in the scope of the i-th quantifier

of the j-th QBF formula Φj . Finally, the programs C and Cw are of the form

C =

{
sat(Φj) ∀1≤ j ≤m

← solve(j), ∼satΦj
∀1≤ j ≤m

}

Cw =
{←w unsolved(i) [1@1, i] ∀1≤ i≤m

}
.

Intuitively, the first choice rule in P1 is used to guess one QBF formula, say Φj , among

the m input ones, for which we want to verify the satisfiability. The guessed formula

is encoded with the unary predicate solve, whereas, all the following formulas Φi, with

i > j, are marked as unsolved by means of the unary predicate unsolved.

Then, P1 contains different rules of the form odd← solve(j) for each odd index j

in [1, m]. Thus the literal odd is derived whenever a QBF formula Φj in the sequence

Φ1, . . . ,Φm is selected (i.e., solve(j) is true) and j is odd. The remaining part of P1 shares

the same working principle of the following subprograms Pi, with i≥ 2. More precisely,

for each QBF formula Φj in the sequence Φ1, . . . ,Φm, they contain a choice rule over the

set of variables quantified by the i-th quantifier of Φj . Note that the atom solve(j) in the

body of these choice rules guarantees that only one gets activated, and so the activated

choice rule guesses a truth assignment for the variables in the i-th quantifier of Φj .

Similarly, the constraint program C contains, for each QBF formula Φj in the sequence

Φ1, . . . ,Φm, (i) a set of rules that derives an atom satφj
whenever the truth assignment

guessed by the previous subprograms satisfies φj , and (ii) a strong constraint imposing

that is not possible that we selected the formula Φj (i.e., solve(j) is true) and φj is

violated (i.e., satΦj
is false). Thus, there exists a quantified answer set of Π if and only if

there exists a formula Φj in the sequence Φ1, . . . ,Φm such that Φj is satisfiable. Since the

program Cw contains the set of weak constraints of the form ←w unsolved(j) [1@1, j]

for each j ∈ [1, . . . , m], the cost of each quantified answer set is given by the index j

of the selected formula. Thus, by minimizing the number of unsolved formulas we are

maximizing the index of the satisfiable formula Φj . Thus, an optimal quantified answer

set corresponds to a witness of coherence for a formula Φj , s.t. for each Φj′ , with j′ > j,

Φj′ is unsatisfiable. By construction odd is derived whenever j is odd and so the hardness

follows.

(Membership) According to Theorem 3 of Amendola et al . (2019), we know that the

coherence of an existential plain alternating program with n quantifiers falls within the

complexity class ΣP
n -complete. By following an observation employed in the proofs by

Buccafurri et al . (2000), the cost of an optimal solution can be obtained by binary search

that terminates in a logarithmic, in the value of the maximum cost, number of calls to an

oracle in ΣP
n that checks whether a quantified answer set with a lower cost with respect

to the current estimate of the optimum exists. Once the cost of an optimal solution is

determined, one more call to the oracle (for an appropriately modified instance), allows

one to decide the existence of an optimal solution containing a. Since each weak constraint

has the same weight and the same level, then we can consider as the maximum cost

the number of weak constraint violations. Thus, the number of oracle calls is at most

logarithmic in the size of the problem and the membership follows.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.734

7 Related work

Disjunctive ASP programs can be used to model problems in the second level of the PH

using programming techniques, such as saturation (Eiter and Gottlob 1995b; Dantsin

et al . 2001), but it is recognized that they are not intuitive. As a consequence, many

language extensions have been proposed that expand the expressivity of ASP (Bogaerts

et al . 2016; Amendola et al . 2019; Fandinno et al . 2021). This paper builds on one of

these, namely: Answer Set Programming with Quantifiers (ASP(Q)) (Amendola et al .

2019). ASP(Q) extends ASP, allowing for declarative and modular modeling of problems

of the entire PH (Amendola et al . 2019). We expand ASP(Q) with weak constraints to be

able to model combinatorial optimization problems. In Section 4, we show the efficacy of

ASPω(Q) in modeling problems that would require cumbersome ASP(Q) representations.

The two formalisms most closely related to ASP(Q) are the stable–unstable semantics

(Bogaerts et al . 2016), and quantified answer set semantics (Fandinno et al. 2021). We are

not aware of any extension of these that support explicitly weak constraints or alternative

optimization constructs.Amendola et al . (2019) and Fandinno et al. (2021) provided an

exhaustive comparison among ASP extensions for problems in the PH.

It is worth observing that ASPω(Q) extends ASP(Q) by incorporating weak con-

straints, a concept originally introduced in ASP for similar purposes (Buccafurri et al .

2000). Clearly, ASPω(Q) is a strict expansion of ASP, indeed it is easy to see that any

ASP program P is equivalent to a program of the form (3) with only one existential

quantifier, where P1 =R(P), Cw =W(P), C = ∅. Related to our work is also a formal-

ism that has been proposed for handling preferences in ASP, called asprin (Brewka

et al . 2023). asprin is effective in defining preferences over expected solutions, nonethe-

less, the complexity of main reasoning tasks in asprin is at most ΣP
3 (Brewka et al .

2023), with optimization tasks belonging at most to ΔP
3 (Brewka et al . 2023); thus, in

theory, ASPω(Q) can be used to model more complex optimization problems (unless

P=NP).

8 Conclusion

We proposed an extension of ASP(Q) enabling the usage of weak constraints for express-

ing complex problems in Δp
n, called ASPω(Q). We demonstrated ASPω(Q)’s modeling

capabilities providing suitable encodings for well-known complex optimization problems.

Also, we studied complexity aspects of ASPω(Q), establishing upper and lower bounds

for the general case, and revealing intriguing completeness results. Future work involves

tightening the bounds from Theorem 2 for arbitrary n, extending ASPω(Q) to support

subset minimality, and design a complexity-aware implementation for ASPω(Q) based

on the translation of Section 5 and extending the system PyQASP (Faber et al . 2023).

Supplementary material

The supplementary material for this article can be found at http://dx.doi.org/10.1017/

S1471068424000395.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

Quantifying over optimum answer sets 735

References

Amendola, G., Cuteri, B., Ricca, F. and Truszczynski, M. 2022. Solving problems in the
polynomial hierarchy with ASP(Q). In Proceedings of LPNMR, vol. 13416 of LNCS, Springer,
373–386,

Amendola, G., Ricca, F. and Truszczynski, M. 2019. Beyond NP: Quantifying over answer
sets. Theory and Practice of Logic Programming 19, 5-6, 705–721.

Bogaerts, B., Janhunen, T. and Tasharrofi, S. 2016. Stable-unstable semantics: Beyond NP
with normal logic programs. Theory and Practice of Logic Programming 16, 5-6, 570–586.

Brewka, G., Delgrande, J. P., Romero, J. and Schaub, T. 2023. A general framework for
preferences in answer set programming. Artificial Intelligence 325, 104023.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Brewka, G., Eiter, T. and Truszczynski, M. 2016. Answer set programming: An introduction
to the special issue. AI Magazine 37, 3, 5–6.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing disjunctive datalog by constraints.
IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N.,Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-core-2 input language format. Theory
and Practice of Logic Programming 20, 2, 294–309.

Cao, F., Du, D.-Z., Gao, B., Wan, P.-J. and Pardalos, P. M. (1995) Minimax Problems in
Combinatorial Optimization. Boston, MA, pp. 269–292

Ceri, S., Gottlob, G. and Tanca, L. (1990) Logic Programming and atabases, Surveys in
Computer Science

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Eiter, T. and Gottlob, G. 1995a. The complexity of logic-based abduction. Journal of the
ACM 42a, 1, 3–42

Eiter, T. andGottlob, G. 1995b. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15b, 3-4, 289–323.

Faber, W., Mazzotta, G. and Ricca, F. 2023. An efficient solver for ASP(Q). Theory and
Practice of Logic Programming 23, 4, 948–964.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175, 1, 278–298.

Fandinno, J., Laferrière, F., Romero, J., Schaub, T. and Son, T. C. 2021. Planning with
incomplete information in quantified answer set programming. Theory and Practice of Logic
Programming 21, 5, 663–679.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3-4, 365–386.

Ko, K. I. and Lin, C.-L. 1995. On the complexity of min-max optimization problems and their
approximation, Boston, MA, pp. 219–239.

Krentel, M. W. 1992. Generalizations of Opt P to the polynomial hierarchy. Theoretical
Computer Science 97, 2, 183–198.

Marek, V. W. and Truszczynski, M. 1999. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm - A 25-Year Perspective, 375–398.

Morgan, C. G. 1971. Hypothesis generation by machine. Artificial Intelligence 2, 2, 179–187.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

Pople, H. E. 1973. On the mechanization of abductive logic. In Proceedings of IJCAI , 147–152

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

G. Mazzotta et al.736

Schaefer, M. and Umans, C. 2002. Completeness in the polynomial-time hierarchy:
A compendium. SIGACT News 33, 3, 32–49.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 1-2, 181–234.

Stockmeyer, L. J. 1976. The polynomial-time hierarchy. Theoretical Computer Science 3, 1,
1–22.

Wagner, K. W. 1986. More complicated questions about maxima and minima, and some
closures of NP. In ICALP, vol. 226 of Lecture Notes in Computer Science, 434–443.

Wagner, K. W. 1990. Bounded query classes. SIAM Journal on Computing 19, 5, 833–846.

https://doi.org/10.1017/S1471068424000395 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000395

	Introduction
	Answer Set Programming
	The syntax of ASP
	The semantics of ASP

	Quantified Answer Set Programming with weak constraints
	Modeling examples
	Minmax Clique problem
	Remark

	Rewriting into plain ASP(Q)
	Rewriting uniform plain subprograms
	Rewriting uniform notplain-plain subprograms
	Rewrite subprograms with weak constraints

	Complexity issues
	Related work
	Conclusion
	References

