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The estimation of genotypic probabilities in an adult
population by the analysis of descendants
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Summary

There are instances, the most typical being inversion polymorphism in Drosophila, where the
genotype is not directly accessible in the adult organism, but can be observed in young life-stages.
In these cases, if we want to estimate genotypic probabilities in adult populations, we must
examine an offspring sample from adults. In this paper we derive the maximum likelihood
estimators, and their errors, for genotypic probabilities in an adult population, according to a
standard protocol in which collected parents of a random sample are individually crossed with
individuals of a laboratory stock with known homozygous genotype, and a fixed number of their
offspring is genetically examined in young life-stages. Arnold’s probabilistic model for one locus
with two alleles is developed for our estimates. An optimum design which generates a minimum

variance is proposed, consisting of examining a moderate offspring number (3-4) per parent.
Finally, we propose maximum likelihood estimates when several samples with different numbers of
parents per sample, and/or examined progeny per parent are obtained.

1. Introduction

One of the descriptive parameters of a genetic
polymorphism in a Mendelian population is the
relative frequency or probability of a genotype
(p(4, A;)). Although this descriptor is often used with
the aim of estimating genic frequencies (p(4,)), it
contains per se other interesting information too. So,
if we compare it with other descriptors we can obtain
evidence of (@) the structure of the population (whether
it is in Hardy-Weinberg equilibrium, HWE, or not,
e.g. Selander, 1970), (b) the action of natural selection
(Dobzhansky & Levene, 1948 ; Christiansen & Fryden-
berg, 1973; Stalker, 1976; Barbadilla et al. 1992) or
(¢) the association with characters other than fitness
(White & Andrew, 1960, 1962; Prevosti, 1966;
Krimbas & Loukas, 1980; Ruiz er al. 1991).

When genotypes can be determined directly in
adults, the maximum likelihood estimators (MLEs) of
their different probabilities are inferred from the
counts or observed frequencies of each genotype
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(Weir, 1990). There are cases, though, where genotypes
are cryptic in adult organisms but visible in young life-
stages, being then necessary to examine an offspring
sample to estimate their probabilities. A typical
example is inversion polymorphism in Drosophila,
which is accessible only in third-instar larvae. There
are many other examples of missing parental data in
other organisms, usually when dealing with allozyme
loci (Luykx, 1981; Samollow er al. 1983; and
references in Arnold & Morrison, 1985). In cases like
these, the estimation of genotypic and genic fre-
quencies in adult populations can be made according
to two different experimental protocols: (1) A random
sample of inseminated females is taken in an adult
population and brought to the laboratory, where n
individuals of each offspring are examined and used to
estimate the parental genotypes. (2) Males (females)
are collected at random in an adult population and
are individually crossed with females (males) of a
laboratory stock with a known homozygous genotype.
The genotypic and/or genic probabilities in the adult
population are then estimated through the exam-
ination of n descendants of each cross.

Arnold (1981), Arnold & Morrison (1985), and
Sobel ef al. (1986) have investigated the properties of
different estimators of genic probabilities for both
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protocols. Their estimators are obtained from a model
that assumes HWE and Mendelian segregation.
Barbadilla & Naveira (1988) have developed MLEs,
together with their errors, of the probabilities of
mated genotypic pairs (p(A4, A,, A, 4,), where 4, 4;isa
parental genotype and A, A4, the other one) for
protocol 1. The model in this case was dependent on
two assumptions: Mendelian segregation and single
female insemination (or a high degree of sperm
predominance). [t should be pointed out that estimates
of genotypic frequencies by each protocol do not
correspond exactly to the same adult population.
Those from the first protocol are genotypic frequencies
in the mated population [p(A4, 4,| mated population)],
whereas those from the second one are genotypic
frequencies in the adult base population [p(A4, 4, | base
population)]. Thus, if we want to estimate the
frequencies in the adult (base) population without any
additional assumption (such as, for example, that
there is neither sexual selection, nor panmixia), or if
we are studying sexual selection, then only protocol 2
is suitable.

The aim of this work is to obtain estimators with
optimum statistical properties for the different geno-
typic probabilities in an adult natural population,
when protocol 2 is followed. The usual procedure in
earlier estimates consisted of determining the parental
genotype through the analysis of 6 or more descen-
dants per parent (Dobzhansky, 1944; Dobzhansky &
Levene, 1948; Stalker, 1976; Salceda & Anderson,
1988; Ruiz et al. 1991). Here, we propose MLEs
together with their variances, for any fixed number of
examined offspring (n = 2). In addition, we have
studied the experimental design that generates a
minimum variance (or maximum information) for a
given experimental effort. It is shown that the best
strategy does not consist of determining the parental
genotype but of estimating it through a moderate
number of descendants (3—4). Lastly, we also propose
ML estimates when several samples with different
numbers of parents per sample and/or examined
progeny per parent are available.

Our probabilistic model is an extension to k alleles
of a one locus—-two alleles Arnold’s model (Arnold,
1981). HWE is not assumed, the only assumption
being Mendelian segregation, i.e. the absence of any
process that may produce a deviation from the 1:1
ratio in the analysed offspring of a heterozygous
parent. A test for this assumption will be shown later.

2. Probabilistic model
(i) One locus with two alleles

Consider one locus with two alleles (4 and a). A
collected individual carries y copies of the allele a
(y = 0,1,2). The analysis of a fixed number n of its
offspring (n = 2) yields a profile n = (x,n—x) where x
and n— x are the respective numbers of @ and A4 alleles
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inherited from the parent. Family profiles are defined
in a sample space A = {n:0 < x < n}. Three mutually
exclusive events can be obtained, which are shown in
the first column of Table 1. These events constitute a
partition of the different possible family profiles n in
the sample space A. This partition identifies family
profiles by the presence or absence of an allele in the
family. The probabilities K, K,, K, of each of these
three events can be computed from the model
specification

2
prob(n|©,0,,0,) = ¥ prob(n|y)

y=0

prob(y|9,,0,,0,),

and are shown in the second column of Table 1.
©,,0,,0, are the probabilities of the different geno-
types in the base population. a is the probability,
according to Mendelian segregation, that a hetero-
zygous parent is assigned correctly after the analysis
of n descendants.

Our problem is to infer ©,,®,, ©,, the probabilities
of the different genotypes. In a collection of N parents,
the numbers Ny, N,, N, are the counts of the different
types of family profiles, based on the presence or
absence of one or other allele. The probability density
of N = (N,, N,,N,) is multinomial, and is given by

prob(¥10,,0,,0,) = ) K" k¥

where

(Z) = N/N,IN,IN,!

For a random sample from the base population, the
list of counts N = (N,, N,, N,) is a sufficient statistic
for the estimation of the probabilities of the events K,
K., K,, that is to say, N contains all the available
information of the sample for the estimation of the
probabilities. Since the number of independent par-
ameters of the model is equal to the number of degrees
of freedom, then we can find the MLEs for the
parameters of the model equating the observations
with their expected values from the model specification
of Table 1 (Bailey, 1951), as follows:

é0 = NO/N_(%)nél
©, = N,/Na 1)
0,=1-(0,+06).

These estimators (denoted by a circumflex) are
consistent, unbiased and of minimum variance. The
asymptotic variances and covariances are given in the
Appendix.

An optimum experimental design is that which
produces maximum information per unit of obser-
vation cost. If we fix a given experimental effort T
(T = Nn = total number of examined offspring; N =
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Fig. 1. Optimum distribution for a given experimental
effort (T = Nn) between N (number of collected parents)
and n (number of examined descendants per parent) which
minimizes the variance of the estimators ©, ( ) and O,
(—@®@—). The variance of ©, is a function of ®,. The
variance of ©, depends on both ®; and ©,.

number of collected parents; » = number of examined
offspring per parent), it is possible to find the optimum
distribution of effort between N and a, that is, the
value of n and N = T/n that produces a minimum
(maximum) variance (information) of the estimator of
a genotypic probability. In Fig. 1 the values of »n that
minimize the variance of each one of the estimators of
the independent parameters (@0 and (:)1) are graphed.
The variance of @1 (single line) is a function of O,
while that of @, (lines with solid symbols) depends on
both @, and @,. As the graph shows, unless @, is high
(> 0-7), the best strategy to obtain the maximum
information from the sample consists of analysing 3—4
descendants per collected parent. This result means
that if we want to estimate genotypic probabilities in
the base population, then it is better to examine few
descendants from each parent, but a large number of
parents, than to examine a large offspring number
from a reduced sample of parents. The increase in
efficiency may be substantial. For example, if ®, = 0-5
and we apply an effort T= Nn of 1001 examined
descendants, distributed to N = 143 parents, and
n = 7 descendants per parent, then the variance of the
estimate of @, would be the same as in a second design
with 7 = 712 descendants, distributed to N =178
parents and n = 4 descendants per parent. This latter
design implies a saving of 289 descendants, that is,
29% of T for the first design!

(ii) One locus with k alleles

The extension of the estimators of genotypic prob-
abilities to more than two alleles is straightforward.
Let @,, be the probability of homozygote A4, 4, and (:),,
(i % j) that of heterozygote 4, 4,. Following the same
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reasoning as before, the optimum estimators of the
probability of the different genotypes are:

C:)ii = Nii/N_(%)" é)i.
®, = N,/Na,

where N,; and N,; are the counts (observations) of the
homozygous 4, 4, and heterozygous A4, 4, genotypes,
respectively, and ©, = Zf—l,w ©j; is the estimate of
the frequency of all heterozygotes carrying the allele i.
Variances of the estimators are given in the
Appendix. As for the case of two alleles, unless @, is
high, the best strategy to minimize variances is to
analyse 3—4 descendants per collected parent.

(iii) Several samples with different N and n

Frequently we have several independent samples from
different collections, or only one sample with different
subsamples differing in the number of parents (N)
and/or in the number of examined offspring by parent
(n). The probability density of N = (N, ,, N, ), where
I refers to the sample and i and ij to homozygous and
heterozygous genotypes respectively, is multinomial.
MLEs must be found from the likelihood function.
The log likelihood of density function is, for k alleles,

m ok
InL=%3%N,,In@,,+3"0, )
I=1i=1

m k i-1

+X3X 2 Nij,z In(a, ®ij,l)’ 2
l=1i=2 jm=1

where m is the number of samples and #, and «, the
number of examined descendants and the probability
of a correct assignation of a heterozygous individual
in the sample /, respectively. No simple algebraic
expressions to find the MLEs and their errors exist,
but numerical maximisation is straightforward (see
Section 3).

The values of é)n.', and (:)w for each sample may
not be estimating the same parameters, ©, and 0,,.
We can test for this, computing the value of the
likelihood ratio test statistic or G statistic (Sokal &
Rohlf, 1981) given by the expression

n Ny,
N(O;+ (@)™ O,)

+§:é§Nu,zm Nl“ ] (€))

=1 i=2 j=1 N, 0‘1@11

m k
G= 2[2 ZNH.I]

l=1i=1

This value can be compared with a y®-distribution
with (m—1) (k(k+1)—1) degrees of freedom. If the
G value is significant, then this indicates that the
differences among samples for ©,, , and O, , are too
large to be attributed to sampling errors.

(iv) Estimation of gene frequencies

It we define the gene frequency of aiieie 4, as a
function of genotype frequencies, @, = @,+(3)O,,
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Table 1. Specification of the probabilistic model

Event Probability Count (N) Score Example
Ag={n:x=0} K,=0,+(®"0, N, 0 AA, Aa
A={n0<x<n K =a0, N, 1 Aa

A, ={n:x=n} K,=0,+(}"0, N, 2 aa, Aa

0,, 0,, ©,: probabilities of the different genotypes. For a locus with two alleles,
0 = only one allele, 1 = both alleles, 2 = only the other allele. & = [1—(£)"'].

then we can estimate O, from the estimators of ®,, and When we have several samples with different
©,. The MLE is number of examined offspring per parent, the statistic
&, = NoJN+N, /2N, (4a) °

m 2
where N, 2;‘_1 i+s Ny This equation is ‘Dobzhan- G=% % N, lnN_lg, (5b)
sky’ sestimator”’ (Dobzhansky & Epling, 1944 ; Arnold, 1=1y=0 N,K,,

1981) or ‘gene counting’ estimator. [ts vartance is where I refers to the sample and y to the genotype. G

Var(0®,) = Var (©,)+ @ Var ((:)i.) is y’-distributed with 2m—1 D.F. when HWE holds.
A oA For k alleles, the statistic would be the same, but

+Cov(0,,0,). (45) changing the limits of values of y, ranging from 1 to

Arnold (1981) has investigated the properties of this k(k+1)/2 (the number of karyotypes). The degrees
estimator under the assumption of HWE. In this case, of freedom of the y*-distribution would be

the variance simplifies to: m[ik+1)—1]—(k—1).
- 0, (1 (OB
Var(©,) = Ca 4+
©) = =55 1+ 3. An illustration
When HWE is assumed, the Dobzhansky’s es- Our research team is carrying out an exhaustive
timator is not the MLE of the gene frequency (©,,,). study of the inversion polymorphism of the species

The likelihood equation of ®,,, is given by Arnold Drosophila buzzatii in a natural population from
(1981) in his result 5. Arnold shows, however, that the =~ Carboneras (Almeria, Spain). Ruiz et al. (1986) give a
Dobzhansky S estlmator is hlgh]y efficient and easier detailed description of the population. In this popu-
to compute than @,,,, hence it can alternatively be  lation D. buzzarii is polymorphic for 2 out of 4
used as valid approximation. (excluding the dot chromosome) autosomes (this
polymorphism has been described by Ruiz er al.
1984). In July 1990 a random sample of males and
(v) Testing for HWE females was collected. A total of 314 males was
individually crossed with two females of a homo-
karyotypic control stock and 2 larvae in each
offspring family were examined. Among the collected
females, 173 of them were crossed with two males of
the same stock, and 8 larvae were examined in each
offspring to determine the maternal karyotype. The
control stock has an inversion (5]) that is not present
in natural populations. It appeared in a genetically
unstable line produced by introgressive hybridization
(In(5)F2b; F2e, Naveira & Fontdevila, 1985). This
inversion was used as a chromosome marker, to be
N sure that the progeny of wild females were fathered by
G=2Ny lnﬁlf_’ (54)  the laboratory stock males. Previously, we showed the
v Y existence of a high degree of sperm predominance of
where 1& are computed from equations of second the last mated male in other laboratory stocks of the
column in Table 1. In these equations, the ©, values same species (Barbadilla et al. 1991).
are estimated from the MLE of @ (@ML) the gene Columns 1 and 3 in Table 2 show the counts of each
frequency of allele A4, according to HWE. But, as has type of family profile for males and females, re-
been pointed out, © can be approximated from (4). If  spectively, for the polymorphism of chromosome 4.
genotypic frequencies are in HWE, the G statistic will This polymorphism is due to two inversions, 4st
be y2-distributed with 1 D.F. (standard) and 4s. From these data we want to obtain

The likelihood ratio test can also be used to test HWE.
The standard procedure consists of comparing the
observed number of the different genotypes with the
expected values according to HWE. But in our case,
the observed number, N, y = 0, 1,2 for two alleles, is
not, in general, the actual number of each genotype
in the sample, due to the error of misdiagnosis. Thus,
the expected number to be compared with the observed
number should include both HWE and probability of
misdiagnosis. The likelihood ratio test statistic is
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¥ =0, 1, 2) and estimates of genotypic

probabilities (C:)y) Jrom the collected sample of adults in Carboneras

(Almeria, Spain) in July, 1990. ®, = p(4st/st), ©, = p(4st/s),

0, = p(4s/s)

Males Females Total

Ny = 207 @ = 0-560+0-069 N, =111 @ = 0-640+0-072 @ = 0-598 + 0-049
N, = 62 @ = 0-39540-088 N = 53 @ = 0-309 £ 0-069 @ " =0349+0-052
N,= 45 @ = 0-045+0-04 N = 9 @ = 0-051+0-033 G) —-0053+0027
N =314 N= 173

Data from Barbadilla, Ruiz, Santos & Fontdevila (unpublished).

the following information: (a) an estimation of
karyotypic frequencies in males and females in the
base population, (b) a test of the differences between
males and females in these frequencies, (¢) if differences
between sexes are not significant, an estimation of
karyotypic frequencies in the whole population,
irrespectively of sex, (d) an estimation of inversion
frequencies, and a test of whether the population is in
HWE, (e) finally, we would like to know whether the
assumption of Mendelian segregation in the offspring,
is actually fulfilled in the progeny of heterozygous
females.

Columns 2 and 4 in Table 2 show the estimates+
their 95 % confidence semi-interval ( + 1-96 v/ variance)
of the probabilities of different karyotypes. We have
applied formulae (1) and (A 1). The value of the G
statistic computed from (3) to compare both samples
was not significant, G =2-594, 2D.F., P = (-228.
Hence we may accept the null hypothesis that there
are no differences in frequencies between sexes.

The MLE:s for genotypic frequencies in the whole
population were computed with the help of LE
program from the BMDP statistical software (Dixon,
1990). This program obtains ML estimates that
maximize the likelihood function, using the iterative
Newton—Raphson algorithm. The program also esti-
mates the asymptotic standard errors and the cor-
relation matrix of the estimated parameters. Given the
multinomial distribution of our data, we have followed
the example LE.4 (pp. 730-2). The program needs to
use an initial estimate (initial guess) for @ and ® (the
independent parameters). The simple average from
both samples, ©, = 0600 and ©, = 0352, were
chosen. In column 5, the ML estimates for the whole
population together with their 95% confidence semi-
interval are given.

The estimate of stz inversion frequency (+196
y/variance) from (4) was © = 0-773+0-030. The G
statistic value [from equation (54)] to test HWE was
G =2607, 3D.F.,, P=0456. So, we can infer that
karyotype frequencies are in HWE.

Finally, we test the assumption of Mendelian
segregation. If the number of examined progeny per
parent is > 3, then it is always possible to test whether
the aileies of a heterozygous individuai appear in the
same proportion in the progeny (1:1). For 424
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inversions coming from 53 heterozygous females
(53 x8 =424), 211 inversion are st and 213 s.
Therefore, the null hypothesis of Mendelian segrega-
tions is accepted (y* = 0-094, 1 D.F., P = (-759).

4. Discussion

The probabilistic model presented in this paper has
led to MLE:s of genotypic probabilities, together with
their variances. Estimates for a heterogeneous set of
samples have also been proposed. All these estimates
do not assume HWE. Therefore, any deviation from
expected frequencies can be tested, and evidence of
selection or information on the structure of the
population be obtained.

We have also seen that the examination of 3-4
descendants per parent is the design that produces
most information on the parameters to be estimated,
for a given experimental effort. In our initial model n
was fixed. A uniformly most efficient design would be
to stop examining the progeny of an individual
whenever a definitive combination is obtained (a
combination that allows an unequivocal identification
of the parental karyotype), instead of examining all
the n-prefixed descendants (Sobel et al. 1986). In this
case, the average saving in the number of larvae per
individual (E(SL)) is:

E(SL) = E(n)— E*(n),

where E(n) = n is the expected number of examined
larvae per individual when the prefixed number is
actually examined, and E*(n) is the expectation when
we stop as soon as we get a definitive combination.
This last expectation is given by the equation:

E*(n) =[0,+0,+(})"'0O,]n+0, Zz(’)‘ 1

=2
With ©, = 0-25, 0-50, or 075, E*(n)s and E(SL)s
(within parentheses) for n=4, and n =8 are as
follows

n=4 n=_§

E*(n)(E(SL)) E*(n) (E(SL))
0, =025 3-687 (0-312) 6-746 (1-254)
6, =050 3-375 (0-625) 5-492 (2-:508)
0, =075 3-062 (0-937) 4238 (3-762)
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Although the strategy of stopping the analysis as
soon as we find a definitive combination is more
efficient, analysing all the prefixed progeny could be
interesting if we want to test the hypothesis of
Mendelian segregation. If no evidence on this aspect is
available, it would be more advisable to examine all
the prefixed progeny, at least for the first time.

One of the processes that may produce a deviation
of the ratio 1:1 in the analysed offspring is viability
differences among the carriers of different inversions
under laboratory conditions (Stalker, 1976). If there
were a deviation of Mendelian segregation and its
magnitude were known, then it could easily be
introduced into the model, substituting in equation
(1) the 1/2 ratio for both alleles, 4 and a, by pand 1 —p
respectively, where p is the proportion of allele 4 in
the progeny of a heterozygous parent. The estimator
of p and its error may be derived from the estimators
for incomplete binomial distributions given by Mantel
(1951) and Li (1970).
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ministerial de la Ciencia y la Tecnologia (CICYT), Spain.
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The estimation of genotypic frequencies

Appendix
Variances and covariances for a locus with k alleles

For a locus with & alleles the asymptotic variances and
covariances associated with the estimators of different
genotypic probabilities are the following:

Var (©,) = {0, + 10,111 ~(©,+ ()" 0,) |

+(Q2" )10, (1-a0,)+0, "
x[0,+ (3" 0,1}

0,(1-20,)

Var ((:)i].) = Na

Cov(8,,0,) = {10, (9, + ()"0, (A1)

+0,(0,+(®"0,)]
+(2*" ) [0, — a0, 0,]
—(0,+(®"0,)(0,+(3)"0,)}

Ao 1
Cov (@ii, ®ij) = ]T/[(%)" a-l(aGij ®i. - Otj)

- G)il(@li + (%)" Gt.)]- J

Two kinds of errors are incorporated in all these

https://doi.org/10.1017/50016672300030342 Published online by Cambridge University Press

137

formulae: that due to the examined offspring per
individual (error of diagnosis of the parental genotype)
and that due to the size of the sample of parents in the
base population (error of sampling from the popu-
lation). Both kinds of errors affect the estimation of
genotypic frequencies in the population.

As an example of the derivation of these formulae
we examine the variance of a heterozygote (ij). Since

_ Ny
47 Na’
we have that
Var (0,) = Var[N,/(Na)] = Var (K,;/)
= [Var (Ktj)]/az'

The variance of K, is that of a binomial distribution,
SO

Var(K,) = K,(1—K,)/N
and
Var (©,) = K, (1 —K,))/Na>.
Putting K; as a function of ®,; (Table 1) we obtain

0,(1—aB,)

Var(®,) = N

GRH 59
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