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Influence of thermal buoyancy on the wake
dynamics of a heated square cylinder
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Direct numerical simulation of the three-dimensional (3-D) wake transition of
a heated square cylinder subjected to horizontal cross-flow is performed in the
presence of buoyancy. In order to capture the effects of large-scale heating, a
non-Oberbeck–Boussinesq model is utilized, which includes the governing equations for
compressible gas flow. All computations are performed at low free stream Mach number
M = 0.1 using air (free stream Prandtl number, Pr = 0.71) as the working fluid. The 3-D
instability modes A and B, which correspond to free stream Reynolds numbers of 180
and 250, are observed with longer and shorter spanwise wavelengths, respectively, and the
onset of three-dimensionality is triggered at a Reynolds number of 173. In the presence
of buoyancy, baroclinic vorticity production in the near-wake plays an important role for
streamwise vorticity generation. The chaotic wake of the Mode-A instability bifurcates
into periodic and quasiperiodic wakes at various heating levels, expressed by the overheat
ratio, ε = (Tw − T∞)/T∞, where Tw and T∞ are the temperature of the cylinder surface
and the ambient air, respectively. At low heating (ε = 0.2), the 3-D Mode-A instability
is suppressed leading to a two-dimensional wake flow. Further increase in heating, again
brings back the three-dimensionality in the wake through Mode-E instability. The variation
of thermophysical properties and the effective Reynolds number with increase in heating
level around the cylinder is examined. It is shown that the effect of thermophysical
properties competes with the baroclinic streamwise vorticity generation at higher levels
of heating (ε � 0.4) to control the 3-D modes and wake dynamics.
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1. Introduction

In recent decades, the wake dynamics behind bluff bodies has captured the interest
of fluid dynamicists. This growing attention is due to the enhanced availability of
computational resources and advanced experimental techniques, which enable a deeper
understanding of the two-dimensional (2-D) and three-dimensional (3-D) wake transition
flow behind a bluff body. Numerous studies have emerged in the literature examining wake
transitions in the flow around canonical bluff bodies, with significant emphasis on the
wake dynamics behind an unheated cylinder. However, investigating the wake dynamics
behind a heated bluff body is crucial for various industrial and engineering applications,
including electronic cooling, combustion chambers and compact heat exchangers (Zebib
& Wo 1989; Yang & Fu 2001; Patel, Sarkar & Saha 2018).

In the study of wake transition flow, the surface of a cylinder can be uniformly heated,
resulting in two distinct flow regimes: the small-scale heating regime (where β�T � 1,
with β representing the thermal expansion coefficient, typically denoted as β = 1/T∞
for air, and �T representing the temperature difference between the cylinder surface
and the free stream) and the large-scale heating regime, where β�T approaches the
order of unity. In previous research on both heating regimes, the majority of studies on
forced and mixed convection have concentrated on 2-D transitional flow in the wake
of a heated bluff body, such as a circular or square cylinder, at low Reynolds numbers
(Re = U∞D/ν∞). Here, U∞ and ν∞ represent the free stream velocity and free stream
kinematic viscosity, respectively, while D is the side length of the square cylinder or the
diameter in the case of a circular cylinder. In 2-D transition flow studies, the small-scale
heating regime yielded precise outcomes through an incompressible model employing
the Boussinesq approximation (Dennis, Hudson & Smith 1968; Lee & Richardson 1974;
Lecordier, Hamma & Paranthoen 1991; Dumouchel, Lecordier & Paranthoën 1998; Kieft
et al. 2003; van Steenhoven & Rindt 2003; Sahu, Chhabra & Eswaran 2009; Hasan &
Ali 2013; Ali et al. 2024; Kumar, Murali & Sethuraman 2024), where density changes are
significant only under the influence of a body force. Conversely, in the large-scale heating
scenario, where significant variations occur in thermophysical and transport properties
alongside thermal straining in fluid particles, a non-Oberbeck–Boussinesq (NOB) model
is employed, utilizing compressible flow equations (Collis & Williams 1959; Wang,
Trávníček & Chia 2000; Darbandi & Hosseinizadeh 2006; Hasan & Saeed 2017; Arif
& Hasan 2019, 2020, 2021). For 3-D transition flow in mixed convection in the presence
of aiding and cross-buoyancy (the focus of the present study), there is limited literature
available.

In the presence of aiding buoyancy (where free stream cross-flow is aligned opposite
to gravity), Noto, Ishida & Matsumoto (1984) and Badr (1984) experimentally studied
the effects of heating on the vortex dynamics in the wake of a heated circular cylinder,
using air as the working fluid. These studies clarified that the shedding frequency,
i.e. Strouhal number, increases on increasing the value of the Richardson number, i.e.
Ri = gβ�TD/U2∞, where g represents gravity. Above a critical Richardson number, the
vortex shedding is suppressed, with twin attached vortices with the cylinder, and the
Strouhal number becomes zero. These twin vortices disappear and turn into thermal
plumes as the Richardson number increases further. Furthermore, in the experimental
study of Noto & Matsushita (2001) and Noto & Fujimoto (2001), the vortex dynamics
above a triangular cylinder and a circular cylinder at Re � 103 are compared and it is
observed that the vortex dislocation above a circular cylinder wake is remarkable. The
effects of aiding buoyancy are further investigated numerically at Re = 300 and Ri = 0.3
(Noto & Fujimoto 2006, 2007). These studies discussed vortex dislocations in a heated
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wake above a circular cylinder and compared the computed results with those of an
isothermal wake. In conclusion, all research on 3-D transitional flows in the presence of
aiding buoyancy has observed the heating effect on vortex shedding, vortex dislocations
and the three-dimensionality near the cylinder wake. However, these investigations did not
report the shape and wavelength of the 3-D instability modes.

In the case of cross-buoyancy flow where the free stream is perpendicular to gravity, the
3-D transition flow around a heated circular cylinder immersed in water (Prandtl number
Pr = 7) has been studied experimentally and numerically (Ren, Rindt & van Steenhoven
2006a,b, 2007). In these studies, it has been shown that the onset of three-dimensionality
occurs at a lower Re than for the unheated case. In the near-wake of the cylinder, their
investigation observes a difference in the strength of the upper and lower vortices with an
increase in Richardson number and finds that the discrepancy in strength of these vortices
is due to the production of baroclinic vorticity. Moreover, the Mode-E instability with
spanwise wavelength λz/D = 2 is observed for the Reynolds number range 75 � Re � 117
and the Richardson number range 0.35 � Ri � 2.5. In addition, Λ-shaped structures have
been observed in the near-wake and mushroom-type structures in the far-wake. The effect
of cross-buoyancy on the 3-D flow transition around a square cylinder in mixed convection
is further studied numerically by Mahir & Altaç (2019) for Re = 55–250 and Ri = 0–2. In
order to examine the wake dynamics and flow characteristics, this study uses air (Pr = 0.7)
and water (Pr = 7) as the working fluid. In this study, it is shown that the velocity and mass
flow rate of the fluid particles at the bottom of the cylinder rise as buoyancy increases.
Further, Kumar & Lal (2020) examined the influence of the Prandtl number on 3-D
coherent structures and observed Mode-E instability in the wake of a heated cylinder,
for the parameter ranges 75 � Re � 150, 0.5 � Ri � 2 and 0.25 � Pr � 10. Recently, the
3-D transition flow around a square cylinder (exposed to air) near a moving wall was
studied numerically (Tanweer, Dewan & Sanghi 2020, 2021). These studies report several
3-D instability modes that correspond to various Richardson numbers and gap ratios
(between the cylinder and the moving wall). Additionally, global flow parameters such
as the force coefficient, the Strouhal number and the Nusselt number are investigated in
these investigations. In summary, these investigations primarily centred on wake structures
and the overall flow characteristics within the small-scale heating regime, employing the
incompressible solver with the Boussinesq approximation.

For flow past an unheated cylinder, a sequence of 3-D transition regimes has been
reported using experimental, direct numerical simulation (DNS) and Floquet approaches.
These transition regimes are associated with a range of free stream Reynolds numbers.
The shape and spanwise wavelength of the vortical structure in the bluff-body wake serve
to identify the 3-D instability modes. In the case of an isolated square cylinder, three
distinct 3-D instability modes have been observed. The first instability mode, i.e. Mode-A,
a tongue-shaped streamwise vortical structure with longer wavelength (λz/D � 5–5.8), is
observed at Reynolds number between 150 and 200 (Robichaux, Balachandar & Vanka
1999; Sohankar, Norberg & Davidson 1999; Luo, Chew & Ng 2003; Sheard, Fitzgerald
& Ryan 2009; Choi, Jang & Yang 2012; Agbaglah & Mavriplis 2017; Jiang, Cheng & An
2018). For Re = 200–250, a second instability mode (denoted as Mode-B) that generates
a rib-like streamwise vortical structure with shorter wavelengths (λz/D � 1.2–1.5) is
detected (Robichaux et al. 1999; Luo, Tong & Khoo 2007; Sheard et al. 2009; Choi
et al. 2012; Agbaglah & Mavriplis 2017; Jiang & Cheng 2018; Jiang et al. 2018). A
third instability mode (denoted as Mode-QP) with an intermediate wavelength (λz/D �
2.6–2.8) has been observed using the Floquet method in the Reynolds number range
200 � Re � 219 (Robichaux et al. 1999; Sheard et al. 2009).
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Based on the above discussion, it can be concluded that most research involving 3-D
wake transition focused on the flow past an unheated cylinder. In the mixed convective
flow regime, the 3-D flow transitions around a heated cylinder have mostly been studied
in the small-scale heating regime using the Boussinesq approximation. In the context of
large-scale heating influenced by cross-buoyancy, which is the focus of present study, the
investigation of 3-D transitional flow has been mostly overlooked. The exception is a recent
numerical study by Ali, Hasan & Sanghi (2023), where a non-Boussinesq compressible
model at low Mach number (M = 0.1) was utilized. This study mainly investigated
different instability modes at various heating levels, with a Reynolds number of 250. So far,
in previous research, the impact of thermophysical and transport properties on 3-D wake
transition flow remains unexplored. Additionally, in the large-scale heating regime, the
influence of cross-buoyancy on the strength of vortex shedding and three-dimensionality
has not been thoroughly investigated.

In the present numerical study, we aim to explore the 3-D flow transition around a heated
square cylinder immersed in air with cross-buoyancy in a large-scale heating regime. The
scenario and mechanism of wake transitions at Re = 180 (which corresponds to Mode-A
instability for the unheated case) as the heating levels increase will be presented and
analysed. The influence of baroclinic vorticity production on the wake dynamics behind
the heated cylinder will be investigated. Additionally, the flow behaviour and its correlation
with variations in thermophysical and transport properties around a heated square cylinder
will be highlighted.

2. Numerical model

For small-scale heating, accurate results can be obtained by employing the Boussinesq
approximation, where density variations are only significant with body forces. However,
in the large-scale heating scenario, there are significant effects of molecular transport
property variations and thermal straining in fluid particles (Hasan & Saeed 2017; Arif
& Hasan 2019, 2021). To capture these variations, an in-house solver based on the NOB
model has been developed. This NOB model employs the governing equations for a
compressible gas flow.

2.1. Governing equations
The non-dimensional governing equations for compressible gas flow, expressed in a
strong-conservative form in 3-D Cartesian coordinates, are given as

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= J , (2.1)

where U is a solution vector, F , G and H are the flux vectors, and J is the source vector.
These vectors are expressed as

U =

⎡
⎢⎢⎢⎣
ρ

ρu
ρv

ρw
ρE

⎤
⎥⎥⎥⎦ , (2.2)
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F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρu

ρuu + p − 2μ
Re

{
∂u
∂x

− 1
3
(∇ · V )

}

ρuv − μ

Re

(
∂v

∂x
+ ∂u
∂y

)

ρuw − μ

Re

(
∂u
∂z

+ ∂w
∂x

)

ρuE − γ κ

RePr
∂T
∂x

+ γ (γ − 1)M2pu + γ (γ − 1)M2μ

Re
DF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.3)

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρv

ρvu − μ

Re

(
∂v

∂x
+ ∂u
∂y

)

ρvv + p − 2μ
Re

{
∂v

∂y
− 1

3
(∇ · V )

}

ρvw − μ

Re

(
∂v

∂z
+ ∂w
∂y

)

ρvE − γ κ

RePr
∂T
∂y

+ γ (γ − 1)M2pv + γ (γ − 1)M2μ

Re
DG

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρw

ρwu − μ

Re

(
∂w
∂x

+ ∂u
∂z

)

ρwv − μ

Re

(
∂w
∂y

+ ∂v

∂z

)

ρww + p − 2μ
Re

{
∂w
∂z

− 1
3
(∇ · V )

}

ρwE − γ κ

RePr
∂T
∂z

+ γ (γ − 1)M2pw + γ (γ − 1)M2μ

Re
DH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.5)

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

(1 − ρ)/Fr2

0

γ (γ − 1)(1 − ρ)

(
M
Fr

)2

v − (γ − 1)(∇ · V )

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.6)

The quantities DF, DG and DH , corresponding to the energy components of the flux
vectors F , G and H are, respectively,

DF =
[

2
3

u
(

−2
∂u
∂x

+ ∂v

∂y
+ ∂w
∂z

)
− v

(
∂v

∂x
+ ∂u
∂y

)
− w

(
∂w
∂x

+ ∂u
∂z

)]
, (2.7)

DG =
[

2
3
v

(
∂u
∂x

− 2
∂v

∂y
+ ∂w
∂z

)
− u

(
∂v

∂x
+ ∂u
∂y

)
− w

(
∂w
∂y

+ ∂v

∂z

)]
, (2.8)

DH =
[

2
3

w
(
∂u
∂x

+ ∂v

∂y
− 2

∂w
∂z

)
− u

(
∂w
∂x

+ ∂u
∂z

)
− v

(
∂w
∂y

+ ∂v

∂z

)]
. (2.9)
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In the above equations, all variables are expressed in a dimensionless form, which
are non-dimensionalized by their respective free stream values. Here x, y, z are the
dimensionless Cartesian coordinates, and t is the non-dimensional time. The components
of the dimensionless fluid velocity vector V are represented by u, v and w along the x,
y, and z directions, respectively. The symbols ρ, T , p, μ, κ and E are representing the
density, temperature, thermodynamic pressure, dynamic viscosity, thermal conductivity
and total specific energy in non-dimensional form. The various scales employed for
non-dimensionalization of the governing equations are ρ∞, T∞, ρ∞U2∞, μ∞, κ∞
and Cv∞T∞ for density, temperature, gauge pressure (p − p∞), dynamic viscosity,
thermal conductivity and total specific energy, respectively. The Cartesian coordinates are
non-dimensionalized using the cylinder side length (D). The free stream conditions are
indicated by the subscript ‘∞’.

In the NOB model, the conversion of the governing equations from dimensional to
non-dimensional form gives dimensionless parameters such as Reynolds number Re =
ρ∞U∞D/μ∞, Mach number M = U∞/a∞ (where a∞ is the free stream sound speed),
Prandtl number Pr = μ∞Cp∞/κ∞ and Froude number Fr = U∞/

√
gD.

To close the above governing equations, the thermodynamic state relations expressed in
the non-dimensional form are

ρ = 1 + γM2p
T

, (2.10)

E = e + γ (γ − 1)
2

M2(u2 + v2 + w2). (2.11)

The quantity e = ∫ T
1 Cv(T) dT + e∞ is the dimensionless specific internal energy where

Cv represents dimensionless constant volume-specific heat, and the value of e∞ (which
serves as a datum) is taken as unity. The specific heat ratio γ is taken as 1.4.

A low Mach number (M = 0.1) is used to minimize pressure compressibility effects,
and the Froude number is fixed at Fr = 1.0. The molecular transport properties (such
as μ, κ and Cv) vary only with temperature, assuming air to be a thermally perfect
gas. Sutherland’s law is used to compute the molecular viscosity, and it is stated in the
dimensionless form as

μ = T3/2
(

1 + σ

T + σ

)
. (2.12)

Here, σ = S/T∞, where S = 110 K is Sutherland’s constant, and T∞ = 300 K is the
free stream reference temperature. The dimensionless equations of state for thermal
conductivity, specific heat and specific internal energy are given as

κ = A + BT + CT2, (2.13)

Cv = 1 + C1(T − 1)+ C2(T − 1)2 + C3(T − 1)3, (2.14)

e = T + C1

2
(T − 1)2 + C2

3
(T − 1)3 + C3

4
(T − 1)4, (2.15)

where A = 2.811 × 10−2, B = 1.074, C = −9.918 × 10−2, C1 = 1.201 × 10−2,C2 =
6.528 × 10−2, C3 = −1.576 × 10−2 are the constants based on property data on taking
T∞ as a reference (Ghoshdastidar 2012; Hasan & Saeed 2017; Arif & Hasan 2019).
Equation (2.15) is also used to generate (T, e) data over a wide range 1 � T � 3 in order
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–0.5

0

0.5

1.0

(b)(a)

Figure 1. (a) A square cylinder subjected to horizontal free stream cross-flow, and (b) a magnified view of
the grid near the cylinder in the x–y plane.

to develop the inverse relation for (2.15) given as

T = 1 + B1(e − 1)+ B2(e − 1)2 + B3(e − 1)3 + B4(e − 1)4 + B5(e − 1)5, (2.16)

where B1 = 1.0, B2 = 5.479 × 10−3, B3 = 2.336 × 10−2, B4 = 7.122 × 10−3 and B5 =
6.897 × 10−4 are the constants. This inverse relation is utilized to obtain temperature from
the knowledge of e obtained via the energy equation.

In the present computations, the governing equations for compressible flow in the
Cartesian coordinate system, given in (2.1), are transformed to the body-fitted coordinate
system (Appendix A) and solved using a variant of the PVU-M+ (particle-velocity
upwind) scheme (Appendix B). The PVU-M+ scheme (Hasan, Khan & Shameem
2015) has been shown to be a robust, accurate and efficient flux-based scheme for
Euler/Navier–Stokes equations over a wide range of Mach numbers (M = 0.1–10).

2.2. Computational domain and grid generation
Figure 1(a) shows an infinite-span square cylinder with a truncated spanwise periodic
domain having length ‘Hz’ heated to a uniform temperature Tw and exposed to a uniform
horizontal free stream in cross-flow. The flow field is described in a Cartesian coordinate
system. The x, y and z coordinates are aligned in streamwise, transverse and spanwise
directions, respectively. The square cylinder is surrounded by a cylindrical surface, whose
axes is coincident with the axis of the square cylinder. The cylindrical surface radius
is fixed at Rd = 60D using a domain size independence test (Appendix C) to minimize
computing expense and yet produce accurate results.

The value of spanwise length is decided on the basis of previous numerical studies
reported by Sohankar et al. (1999), Saha, Biswas & Muralidhar (2003) and Agbaglah
& Mavriplis (2017). In these studies, it has been shown that Hz = 6D is appropriate for
capturing the largest wavelength of the 3-D instability modes. Thus, Hz = 6D is employed
in the current simulation to lower the computational cost and capture all spanwise
wavelengths of 3-D instability modes with various heating levels. As the spanwise length
extends infinitely, the 3-D modes can be effectively captured by confining the spanwise
domain using a periodic boundary condition.
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Types of waves Subsonic inflow (VN > 0) Subsonic outflow (VN < 0)

Acoustic waves VN + c > 0; R+
N = (R+

N )∞
VN − c < 0; R−

N = (R−
N )i

VN + c > 0; R+
N = (R+

N )∞
VN − c < 0; R−

N = (R−
N )i

Shear waves VT = (VT )∞
w = (w)∞

VT = (VT )i
w = (w)i

Entropy waves p = 0 Non-reflecting characteristic
boundary condition for

pressure (2.19)

Table 1. Boundary conditions for the various types of waves at inflow and outflow.

The present computations are carried out on an O-type body-fitted grid in the x–y plane
that is extruded in the z-direction (spanwise direction). In order to generate a 3-D grid,
an initial O-type, 2-D, body-fitted grid is created in the x–y plane. Then, this 2-D grid
is uniformly replicated for a spanwise length Hz = 6D in the z-direction. The methods for
constructing an O-type grid are described in Thompson, Warsi & Mastin (1985). A suitable
grid size having 281, 355 and 61 grid points in the ξ , η and z directions, respectively,
is chosen using a grid independence test (Appendix C) in order to get accurate and
trustworthy data. A magnified view of a 2-D grid near a square cylinder with a minimum
dimensionless spacing of 1.7 × 10−3 is shown in figure 1(b). For this grid size, a time
step of �t = 10−4 is employed for the simulation of flow around an unheated cylinder,
while a time step of�t = 5 × 10−5 is utilized for the simulation of flow around the heated
cylinder.

2.3. Initial and boundary conditions
In the present computations, the undisturbed free stream conditions that exist at an
infinitely large distance from the cylinder are employed in the entire flow field as initial
conditions. These initial conditions expressed in non-dimensional form are V = 1î + 0ĵ +
0k̂, T = 1, ρ = 1, p = 0.

At the surface of the cylinder, no-slip and no-penetration conditions are specified for
the velocity. The surface of the cylinder is uniformly heated to an elevated temperature
Tw. The normal momentum equation is used to determine the pressure, and the density is
obtained via the equation of state.

At the inflow and outflow region along the local normal direction of the artificial
boundary, the characteristic numerical boundary conditions based on wave speed have
been employed (Hirsch 2007). In the family of waves, two acoustic waves are employed
to determine the two non-dimensional Riemann invariants R±

N = VN ± 2
√

T/M(γ − 1),
while one shear wave regulates local tangential velocity (VT ) and spanwise velocity (w),
and one entropy wave governs pressure, as listed in table 1. When waves enter the flow
domain, the associated characteristic variables are set to the free stream conditions, while
for waves exiting the flow domain, these variables are extrapolated from the interior
(table 1). The use of Riemann invariants is consistent with the local one-dimensional
inviscid approximation at the artificial boundary (Hirsch 2007).

The Riemann invariants at any boundary point are based on the normal acoustic wave
speeds VN ± c which determine the entering/leaving acoustic family of waves as shown
in table 1. Here VN and c represent the local normal velocity component and the local
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Influence of thermal buoyancy on the wake dynamics

sound speed, respectively, in non-dimensional form. In table 1, the subscript ‘i’ is for
the interpolated value from interior data. Once the Riemann invariants are fixed at the
boundary points, the values of the local normal velocity component and temperature are
determined as

VN = R+
N + R−

N
2

, (2.17)

T = M2(R+
N − R−

N )
2

4(γ − 1)2
. (2.18)

At the artificial boundary in a given spanwise plane, the tangential velocities w and VT are
set to the free stream value at the inflow and interpolated from the interior at the outflow.
Once the values of VN and VT are determined, they are used to calculate the Cartesian
components (u, v) in a specific spanwise x–y plane.

At the inflow, pressure is set equal to the free stream value, temperature is calculated via
(2.18) and density is determined through the equation of state. While at the outflow, as for
pressure, the linearized characteristics boundary condition, as given by Bayliss & Turkel
(1982), is employed and expressed as

∂p
∂t

−
(

1
M

)
∂VN

∂t
= 0. (2.19)

For the temperature at the outflow, it is calculated using interior values, and the density
is determined using the equation of state based on the calculated values of pressure and
temperature.

In the present computational study, the 2-D von Kàrmàn instability leading to vortex
shedding originates naturally without imposing any external perturbation in the flow. This
instability occurs due to small perturbations introduced in the flow via truncation and
round-off errors. However, these errors lack sufficient strength to induce 3-D instabilities
in the wake of the cylinder. Therefore, a spanwise random perturbation with an order of
10−7 is added to the density at the initial condition in the near wake of the cylinder for
triggering 3-D instabilities. In the study conducted by Agbaglah & Mavriplis (2017), a
similar order of perturbation (10−7) was also used to observe three-dimensionality in the
cylinder wake.

3. Model validation

3.1. The St–Re and C̄D–Re characteristics
The in-house NOB compressible model solver is validated with the reported data for
the problem of cross-flow of an approaching uniform stream of air past an unheated
infinite-span square cylinder. In figure 2, the values from present computations of the
Strouhal number (St) and the time-averaged-drag coefficient (C̄D) at ε = 0.0 have been
compared with the reported values from previous studies obtained using experimental,
DNS and the Floquet methods for Reynolds numbers ranging from 50 to 300. The present
numerical values of St and C̄D at ε = 0.0 are obtained using data from fully developed
flow between t = 1000 and t = 3000. The lift coefficient (CL) values are used to compute
the dominant frequency or the St value shown in figure 2(a). In the St–Re plot, the St
values of the 2-D time-periodic flow increases smoothly with Re and agrees well with the
values reported by Sheard et al. (2009) and Jiang et al. (2018) (figure 2a). Similarly, in
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Okajima (1982) (exp.)
Sheard et al. (2009) (Floquet)
Jiang et al. (2018) (DNS)
Present (DNS)

St

Recr = 173

Mode-A with vortex dislocation

Re

1.2

1.4

1.6

1.8

2.0

Robichaux et al. (1999) (Floquet)
Sohankar et al. (1999) (DNS)
Jiang & Cheng (2018) (DNS)
Present (DNS)


CD

(b)

(a)

Figure 2. The present values of 2-D and 3-D wake transitions at ε = 0.0 and M = 0.1 compared with the
reported values obtained using various methodologies showing in the plots of (a) St–Re and (b) C̄D–Re.

the C̄D–Re plot, the 2-D flow values of C̄D obtained in the present computation at various
Re agree well with the numerical values reported by Sohankar et al. (1999) and Jiang &
Cheng (2018) (figure 2b).

In the case of 3-D transition flow (Re > Recr), the present computed values deviate
slightly from other reported values. Figure 2(a) shows that the present St values are
close (around 4 % deviation) to the values obtained by DNS study of Jiang et al. (2018).
Similarly, the present C̄D values agree well (with less than 3 % deviation) to the numerical
values reported by Jiang & Cheng (2018) as shown in figure 2(b). It can be seen from
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Influence of thermal buoyancy on the wake dynamics

both the plots that the present DNS results are comparable to the DNS results that were
reported in the previous studies. As far as deviations are concerned, it is worth mentioning
that previous DNS studies on the unheated square cylinder utilized the incompressible
flow model, whereas the present computations involve a compressible flow model with
low but finite Mach number effects. This fact, in addition to differences in numerical
methodologies, accounts for the slight deviations observed in the results between the
current computations and those found in the existing literature. The values of St and C̄D
obtained by the experimental and Floquet methods deviate more from the present DNS
values. This is due to the fact that in Floquet studies, three-dimensionality in the flow is
achieved using a 2-D base flow solver with 3-D perturbations, whereas in comparing with
the experimental studies, the greater deviations observed can be attributed to the finite
cylinder end-conditions.

The sudden drop in the values of St and C̄D (as shown in figure 2a,b) indicates the
presence of large-scale vortex dislocations in the flow field. These dislocations account
for the large intermittent velocity irregularities that Roshko (1954) and Bloor (1964) first
identified to define the transition. Williamson (1992) later noted that the development of
vortex dislocations in the flow is caused by primary von Kàrmàn vortices that are out of
phase with one another in the near wake and later descend into large-scale structures. The
discontinuity is not observed in the St–Re and C̄D–Re plots in the data reported by the
experimental and DNS studies of Okajima (1982) and Sohankar et al. (1999), respectively,
due to the fact that their analysis utilized larger steps in Re values. In the present study,
the onset of three-dimensionality is triggered at a critical Reynolds number (Recr) of 173,
a value in close agreement with those reported in previous investigations using different
techniques (figure 2).

3.2. Tongue-shaped and rib-like vortical structure
In the wake of the cylinder, various shapes of vortical structures involving streamwise
vorticity (Ωx), transverse vorticity (Ωy) and spanwise vorticity (Ωz) are observed. These
vorticities are defined as follows:

Ωx = ∂w
∂y

− ∂v

∂z

Ωy = ∂u
∂z

− ∂w
∂x

Ωz = ∂v

∂x
− ∂u
∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. (3.1)

The shape of the vortical structure and their spanwise wavelength in the wake of a square
cylinder characterize the 3-D modes A and B. The tongue-shaped vortical structure in
the cylinder wake with a large spanwise wavelength of streamwise vorticity shows the
Mode-A instability at Re = 180 and ε = 0.0 (figure 3a). While, at Re = 250 and ε = 0,
the rib-like vortical structure with a small wavelength indicates the Mode-B instability
(figure 3b). In figure 3(a), the tongue-shaped vortical structure of the regular Mode-A
pattern becomes visible at t = 400 when three-dimensionality initiates in the flow. For
longer time integration, this regular pattern of Mode-A instability is disrupted by the
presence of large-scale vortex dislocations in the flow field (see the vortical structure at
ε = 0.0 in figure 4a). At Re = 250 in the Mode-B instability, the change in the wake
pattern with time integration is negligible as the dislocation appears with a smaller scale.
In the present DNS investigation, the spanwise wavelength is determined based on the
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Figure 3. Isocontours of Ωx in the isothermal wake of a square cylinder at ε = 0.0 and M = 0.1, showing
(a) the tongue-shaped vortical structure with longer wavelength of Mode-A instability at t = 400 for Re =
180, Ωx = ±0.05 and (b) the rib-like vortical structure with shorter wavelength of the Mode-B instability at
t = 300 for Re = 250, Ωx = ±0.3. The blue and light-yellow colours represent positive and negative vortices,
respectively.
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Figure 4. The vortical structure (Q-criterion) in a square cylinder wake coloured by Ωx at Re = 180 and
t = 1300 for (a) ε = 0.0, (b) ε = 0.2, (c) ε = 0.4, (d) ε = 0.6, (e) ε = 0.8 and ( f ) ε = 1.0.

vortex pair of Ωx in the wake of the cylinder. The existing wavelengths of the Mode-A
and Mode-B wake instabilities in a fully developed flow are quite near to all previously
published values as listed in table 2. Furthermore, the current numerical value of Recr
closely aligns with the reported values obtained using DNS and Floquet approaches (as
listed in table 2).
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Influence of thermal buoyancy on the wake dynamics

Author(s) Method Recr λz/D for Mode-A λz/D for Mode-B

Present computation DNS 173 ∼5.5 1.2
Robichaux et al. (1999) Floquet 162 ± 12 5.22 1.2
Sohankar et al. (1999) DNS 150–200 ∼5 ∼1
Blackburn & Lopez (2003) Floquet — 5.51 1.15
Luo et al. (2003) Experiment 160 5.2 1.2
Luo et al. (2007) Experiment 160 ± 2 5.1 1.3
Sheard et al. (2009) Floquet 164 5.22 1.12
Agbaglah & Mavriplis (2017) DNS 170–180 ∼5.8 ∼1.5
Jiang et al. (2018) DNS 165.7 4.96 1.12

Table 2. Comparison of the present numerical values of Recr and λz/D (for Mode-A and Mode-B) at ε = 0.0
with the values reported in previous studies for flow past an unheated square cylinder.

4. Numerical results

4.1. Wake bifurcation to Mode-E instability
In the presence of a buoyant force, the wake dynamics of 3-D flow transitions is a
phenomenon of great interest to fluid dynamicists. The Q-criterion visualises the vortex
formations, which adds to the understanding of wake dynamics. The following expression
gives the Q values:

Q = 1
2(||Ω||2 − ||S||2), (4.1)

where Ω = 1
2(∇u − ∇uT) and S = 1

2 (∇u + ∇uT) represent the skew-symmetric
vorticity tensor and symmetric strain rate tensor. The presence of a vortex is indicated
by Q > 0.

Figure 4 shows the vortical structures (visualized using the Q-criterion) with positive
and negative values of streamwise vorticity in the wake of a square cylinder at Re = 180
and t = 1300 for various heating levels. At ε = 0.0, a single streamwise vortex pair with
large-scale dislocations is observed across the whole spanwise domain, indicating the
Mode-A instability, as depicted in figure 4(a). When the surface of the cylinder is heated
to ε = 0.2, the vortex pair disappears even at Ωx = ±0.01 (figure 4b), which clearly
indicates that the three-dimensionality in the flow is suppressed. As the heating level is
raised to ε = 0.4, three-dimensionality reemerges, characterized by the presence of three
pairs of Ωx vortices in the cylinder wake for x < 15. The number of these vortex pairs
is unaffected even in longer time integration and for an increase in the surface heating
up to ε = 1.0 (figure 4d–f ). However, these vortex pairs can also be seen in the far-wake
(x > 15) during large-scale heating as depicted in figures 4(e) and 4( f ). Based on these
vortex pairs (within the entire span length, Hz = 6D), the value of λz/D is estimated to be
�2 for ε = 0.4 − 1.0. In the earlier 3-D transition flow studies involving mixed convection
(Ren et al. 2006a,b; Kumar & Lal 2020), the vortical structure with λz/D ∼ 2 in a circular
cylinder wake is described as the Mode-E instability. These numerical investigations were
carried out using an incompressible model with the Boussinesq approximation. Therefore,
the present 3-D transition at Re = 180 for ε = 0.4 − 1.0 is also designated as the Mode-E
instability. Furthermore, it is worth noting that the vortex dislocation (which appears at
ε = 0.0 in the Mode-A instability) is suppressed in the Mode-E instability (figure 4c–f ).
The bifurcation in the wake of a square cylinder from Mode-A to Mode-E with an increase
in surface heating is due to the baroclinic vorticity production (see detailed explanation in
§ 4.3).
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Figure 5. Time history of spanwise velocity (w) in a square cylinder wake (x = 2, y = 0, z = 3) at Re = 180
and M = 0.1 for ε = 0.0 − 1.0.

4.2. Chaotic, periodic and quasiperiodic behaviour of wake
Three-dimensionality in the cylinder wake is indicated by the appearance of spanwise
velocity (w) in the cylinder wake, which results in the generation of Ωx and Ωy vortices.
Figure 5 shows the time history of w located in the near-wake (x = 2, y = 0, z = 3) at
Re = 180 for heating level ε = 0.0 − 1.0. It is shown that the fluctuations in w of the
Mode-A instability have very small amplitude at ε = 0.0. At slight heating ε = 0.2, these
small amplitude fluctuations are suppressed which shows a 2-D flow field and can be seen
in figure 4(b) with the vanishing of Ωx vortices. With further increase in heating level,
the amplitude of w increases with a nonlinear saturation value in large time limit except
at ε = 1.0. In large-scale heating at ε = 1.0, a strong buoyancy force is generated around
the square cylinder that disturbs the flow field and the amplitude of w appears to fluctuate
(figure 5). These fluctuations at ε = 1.0 are accompanied by a slight disorder in Ωx pairs
in the cylinder wake, as depicted in figure 4( f ). It is worth noting that with the increase
of heating (ε � 0.4), the time taken for onset of the three-dimensionality (t′) decreases
(figure 5). This indicates that the growth of 3-D perturbation is faster as ε is increased for
ε � 0.4.

The temporal behaviour of the wake largely depends on the surface heating of the
square cylinder in mixed convection. In figure 6(a), the wake behaviour is analysed
using spanwise velocity data for various heating levels over a short period of time (t =
1400 − 1500). At ε = 0.0, an irregular/chaotic 3-D wake appears behind an isolated square
cylinder (figure 6a). With increase of heating levels, this chaotic wake is first suppressed
in the 2-D wake (ε = 0.2), then it appears as a 3-D periodic wake (ε = 0.4 − 0.8),
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Figure 6. The wake behaviour of a square cylinder at Re = 180 and M = 0.1 for various heating levels
(ε = 0.0 − 1.0) shown by (a) spanwise velocity (w) located at the near-wake (x = 2, y = 0, z = 3), and its
(b) frequency spectra, f .

and finally it transforms into a 3-D quasiperiodic wake (ε = 1.0). The chaotic, periodic
and quasiperiodic wake behaviours can be better understood by the spectrum of w. In
figure 6(b), the frequency spectra of w is obtained using the fast Fourier transform (FFT)
algorithm from its fully developed data for t = 1000 − 1700. Distinct frequencies in the
spectra are denoted by the symbols fo, f1, f2 and so on, as depicted in figure 6(b). At
ε = 0.0, the presence of numerous large- and small-scale peaks at irregular intervals in
the spectrum suggests chaotic behaviour in the cylinder wake. For ε = 0.4 − 0.8, the
harmonic spectra indicate the periodic nature of the wake. Whereas, at ε = 1.0, the
presence of small-scale peaks with incommensurate frequencies in the spectrum indicates
a quasiperiodic state (figure 6b).
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A quantitative measure for characterizing the temporal states of the wake is the largest
Lyapunov exponent (LLE). The Lyapunov exponent is essential for understanding the
stability and chaos in dynamical systems (Wolf et al. 1985; Rosenstein, Collins & De Luca
1993). It characterizes the sensitivity of a system to its initial conditions and is used to
distinguish chaotic, periodic and quasiperiodic behaviours. In this study, the Rosenstein
algorithm is employed to calculate the LLE values using temporal data of spanwise
velocity across different heating levels. As illustrated in figure 6(a), the LLE values go
from a strongly positive value of 0.107 at ε = 0.0 to a nearly zero value of 0.001 for
ε = 0.4 − 0.8, culminating in 0.053 at ε = 1.0. For periodic flow, LLE values are either
zero or negative. The difference between the LLE values for various ε is further correlated
to the spectra of the time series. The flow state for ε = 0.0 is clearly chaotic, as the LLE
is strongly positive and the spectra exhibit several large and small peaks. For flow states at
ε = 0.4 − 0.8, the spectra reveal a periodic state with peaks observed at equal intervals,
indicating harmonics. The LLE values corresponding to these states are nearly zero (of
the order of 10−3). For ε = 1.0, the LLE values increase again to 0.053, and the spectra
show large peaks along with some smaller peaks at slightly irregular intervals. These
two characteristics combined together are an indication of a quasiperiodic state. Hence,
it can be inferred that as the cylinder heating increases, it exerts a notable influence on the
wake behaviour of the cylinder, shifting the wake dynamics from chaotic to periodic or
quasiperiodic patterns.

4.3. Baroclinic vorticity production
The vorticity transport equation (VTE) is obtained by taking the curl of the momentum
equation given in (2.1). The non-dimensional VTE in vector form is expressed as

DΩ

Dt
= (Ω · ∇)V − (∇ · V )Ω + 1

ρ2 ∇ρ × ∇p − 1
ρ2 ∇ρ × fv

+ (Γxî + Γzk̂)+ 1
ρ
(∇ × fv). (4.2)

Here fv = ∇· ¯̄σ represents the viscous force per unit mass. The dimensionless viscous
stress tensor components σij are given as

σij = 2μ
Re

[
Sij − 1

3
∂uk

∂xk
δij

]
, (4.3)

where Sij is the strain rate tensor and δij represents the Kronecker delta.
In (4.2), the operator D/Dt represents material derivative and Ω is the vorticity vector.

The expressions (Ω·∇)V and (∇·V )Ω are the vortex stretching and production terms due
to volumetric straining, respectively. The term (1/ρ2)∇ρ × ∇p represents the baroclinic
production of vorticity due to the interaction of density gradients and pressure gradients.
Moreover, the term (1/ρ2)∇ρ × fv represents the production of vorticity resulting from
stratification effects and their interaction with viscous forces. Lastly, the expression
(1/ρ)(∇ × fv) signifies the diffusion of vorticity through molecular viscous stresses or
forces.

The terms Γx = (1/Fr2)((1/ρ2)(∂ρ/∂z)) and Γz = −(1/Fr2)((1/ρ2)(∂ρ/∂x)) in (4.2)
are the baroclinic streamwise and spanwise vorticity production rate due to presence
of buoyant force (stratification interacting with gravity). In the presence of buoyancy,
the density gradients (∂ρ/∂x, ∂ρ/∂z) are significant in the near-wake of square cylinder.
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Figure 7. Isosurfaces at t = 1300 of positive (brown) and negative (light-yellow) streamwise baroclinic
vorticity Γx = ±0.05 in a square cylinder wake at Re = 180 and M = 0.1 for (a) ε = 0.4, (b) ε = 0.6,
(c) ε = 0.8 and (d) ε = 1.0.

Therefore, the quantities Γx, Γz have a significant role in the production of baroclinic
vorticity in the near wake of the cylinder.

Figure 7 shows the vortical structures generated by Γx in the near-wake of a heated
square cylinder at Re = 180 for ε = 0.4 − 1.0. At ε = 0.4, both positive and negative
vorticity generation via Γx appear in the cylinder wake for x � 10, as shown in figure 7(a).
The production due to Γx increases with a further increase of heating level (ε = 0.6 − 1.0),
which results in vortical structures appearing farther downstream in the wake for x � 10
(figure 7). It is evident that as the heating rises, Γx vortices are generated over larger
downstream distances in the wake. This explains why the 3-D mode (with a larger area
of Ωx vortices in the cylinder wake) grows faster as the heating level is increased in the
range 0.4 � ε � 1.0. In the case of low heating (ε = 0.2), the creation of Γx vortices
is limited by the weak effects of buoyancy. Therefore, the instability naturally triggered
by inertia effects overcoming viscous effects is suppressed by the influence of heating
on thermophysical and transport properties (see detailed discussion in § 4.6). From the
ongoing discussion, it can be concluded that in the mixed convection flow regime, the
generation of Ωx vortices for ε � 0.4 is due to the baroclinic production term Γx. This
conclusion agrees well with the experimental and numerical investigations of Ren et al.
(2006b, 2007).

For the heating range ε = 0.4 − 1.0, the number of vortex pairs produced by Γx
(figure 7) is comparable to that of Ωx vortices (as depicted in figure 4). In addition,
the production of Γx vortices in the near-wake is also responsible for the suppression of
the vortex dislocation that appears in the wake of an isolated square cylinder at ε = 0.0.
Therefore, it can be concluded that Γx plays a significant role in wake transition and wake
dynamics in the mixed convective flow regime.

4.4. Translational and rotational energy norms
The growth of the 3-D mode requires some energy that is either available in the 2-D
base flow or the energy is transformed from the thermal field by baroclinic effects as
represented by the streamwise vorticity production term Γx. This picture of energy transfer
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Overheat ratio Translation energy Rotational energy Baroclinic production rate

ε 〈E(w)〉 〈E(Ωx)〉 〈E(Ωy)〉 〈E(Γx)〉
0.0 0.392 5.005 1.897 0.0
0.2 0.0 0.0 0.0 0.0
0.4 0.136 6.999 4.382 0.031
0.6 0.196 10.217 6.775 0.095
0.8 0.239 12.719 7.673 0.193
1.0 0.316 14.650 8.420 0.296

Table 3. The transfer of time-averaged 3-D energy shown at Re = 180 in the form of translational and
rotational energy norms for ε = 0.0 − 1.0.

with increasing heating levels is quantitatively presented in table 3 containing the data
representing the various time-averaged energy norms. Specifically, it focuses on additional
energy modes for 3-D flow: E(w); E(Ωx); E(Ωy). In addition to these energy norms, the
time-averaged magnitudes of the Γx are also estimated using the norm E(φ). These energy
norms (per unit span), encompassing translational and rotational energy, are defined as

〈E(φ)〉 = 1
τHz

∫∫∫∫
φ2(x, y, z, t) dV dt, (4.4)

where τ represents the overall duration between t = 1200 and t = 1500, during which a
total of 61 snapshots are taken with an equal time interval of five units for the purpose of
time averaging. In (4.4), the symbol V is the volume of the near-wake region for x = 0 to
20, y = −5 to 5 and the entire spanwise length.

Table 3 reveals that the zero values of both the translational and rotational energy norms
(at ε = 0.2) indicate a complete transformation of the energy from the 3-D wake into a
2-D wake, leading to the suppression of three-dimensionality in the cylinder wake. For
the heating levels in the range of 0.4 � ε � 1.0, 3-D energy reappears and increases as
the heating levels rise (table 3). The results also reveal an increase in the strength of
Γx and Ωx as heating levels rise from ε = 0.4 to ε = 1.0. Therefore, the role of energy
transformations from thermal mode via buoyancy in feeding the 3-D states (as listed in
table 3), with increasing heating levels, are evident in the form of generation ofΩx through
Γx for ε = 0.4–1.0 over large downstream distances in the cylinder wake (figures 4 and 7).

4.5. Spanwise vorticity in the near wake
As discussed in § 4.3, with the increase in heating levels (ε = 0.4 − 1.0), the baroclinic
vorticity production by Γx is strengthened and plays a significant role in wake dynamics
behind the heated cylinder, specifically in the generation and strengthening of the Ωx
structures. In a similar vein, this section explores the impact of spanwise baroclinic
vorticity production by Γz on the dynamics of the near wake, with a specific focus on
the spanwise vortex (Ωz). To elucidate, figure 8 displays the spatial distribution of Ωz and
Γz in the near wake at ε = 0.2, 0.6 and 1.0. It is observed that with an increase in heating
level, the magnitude of Ωz decreases (figure 8a,c,e), even though the magnitude of Γz
increases (figure 8b,d, f ).

Furthermore, an increase in asymmetry is also observed in the magnitude of the upper
and lowerΩz vortex with an increase in heating level (figure 8a,c,e). This asymmetry arises
from the production of Γz vorticity of opposite sense to that of Ωz. From figure 8(b,d, f ),
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Figure 8. Spatial distribution of Ωz (a,c,e) and Γz (b,d, f ) in the wake of the midspan of a heated square
cylinder at Re = 180 for ε = 0.2, 0.6 and 1.0.

it can be observed that the positive Γz region is increasing over the top surface, while
the negative Γz region is increasing near the bottom surface around the right-hand corner.
As a result, Γz creates an asymmetric reduction in the magnitude of Ωz near the top and
bottom surfaces of the cylinder. Kieft et al. (2003) and Ren et al. (2006b) also revealed
that spanwise vorticity production by Γz plays a crucial role in the variations in strength
between the lower and upper spanwise vortices in the near wake of a heated circular
cylinder. Nonetheless, their research is confined to small-scale heating scenarios using
the Boussinesq model. In the current computations, the overall reduction in the magnitude
of Ωz with an increase in heating level, accompanied by an increase in energy norms for
Ωx and Ωy, suggests a transfer of rotational energy from spanwise vortices. Hence, Γz is
also indirectly responsible for the sustenance and growth of the 3-D modes in the wake of
the heated square cylinder.

4.6. Effective thermophysical properties
The thermophysical properties (such as μ, κ , ρ and Cv) of fluid particles around a square
cylinder vary as the heating level ε is increased using the present NOB model. The
average over space and time of these properties constitutes the effective thermophysical
and transport properties of the fluid near the heated cylinder. The effective value in the
dimensionless form of any of these properties can be defined as

ψeff = 1
(T )(V)

∫∫∫∫
ψ(x, y, z, t) dV dt, (4.5)
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Figure 9. The changes in thermophysical and transport properties of fluid particles with increasing heating
level at Re = 180 and M = 0.1 around a square cylinder within radial distances of 5D, 15D and 25D shown in
the plots of (a) μeff − ε, (b) κeff − ε, (c) ρeff − ε, (d) Cveff − ε, (e) Preff − ε and ( f ) Reeff − ε.

where T is the duration of the dimensionless time interval for time averaging. The symbol
V represents the total volume of fluid particles around a square cylinder within a radial
distance r at a certain time t.

The variation of the effective dimensionless thermophysical properties (such as μeff ,
κeff , ρeff and Cveff ) with increasing heating level is depicted in figure 9 at Re = 180 for
r = 5D, r = 15D and r = 25D. A total of 61 snaps (between t = 1200 and t = 1500) are
used for time averaging of the thermophysical properties. As the heating level increases,
it can be seen that the values of μeff , κeff and Cveff increase (figure 9a,b,d) while the
value of ρeff decreases (figure 9c). In addition, a small change is noticed in the values of
these properties for r = 15D and r = 25D compared with the change in values obtained
in going from r = 5D to r = 15D. This shows that at r = 15D, the values of the effective
fluid properties converge and can be assumed to be nearly independent of radial distance
or volume size, as per (4.5).

Owing to changes in thermophysical properties during heating, the Prandtl number
and Reynolds number of fluid flow around the cylinder is affected and is referred to as
the effective Prandtl number (Preff ) and effective Reynolds number (Reeff ). These are
expressed as

Reeff = ρeff

μeff
Re, (4.6)

Preff = (Cveff )(μeff )

κeff
Pr. (4.7)

The concept of the effective Reynolds number was initially introduced experimentally
by Lecordier et al. (1991) and Dumouchel et al. (1998) to explore the control of
laminar vortex shedding behind heated circular cylinders at low Reynolds numbers.
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Subsequently, Wang et al. (2000) experimentally investigated the effect of temperature
on the vortex shedding frequency of a heated circular cylinder, utilizing the effective
Reynolds number concept, which incorporates a kinematic viscosity calculated from
an ‘effective temperature’. In the current numerical study of 3-D transitional flow, the
effective Reynolds number is crucial for understanding the flow dynamics behind a heated
cylinder.

Therefore, it can be argued that the concept of an ‘effective Reynolds number’ from
previous studies, which primarily aimed to represent the effects of heating on fluid
properties via a single dimensionless effective Reynolds number on vortex-shedding
frequency, is also useful for representing the effects of heating on the 3-D transitional
wake dynamics. This aspect opens a new pathway for the physical understanding of
flows with large-scale heating. Further, the computations of ρeff , μeff and keff , unlike in
previous studies, are not based on an ‘effective temperature’ whose values are assigned
to develop accurate empirical (curve fit) relations for heat transfer, Strouhal number and
drag characteristics. Rather, using the volumetric numerical data, averaged measures of
various thermophysical properties in the near field of the heated square cylinder have been
employed.

As shown in figure 9(e, f ), it can be seen that Preff decreases by a very small margin as
the heating level rises, while the value of Reeff is significantly reduced. Therefore, it can
be concluded that as the heating increases, the effective thermophysical properties differ
significantly resulting in a decrease in the effective Reynolds number around the cylinder.
On the other hand, with an increase in heating, the strength of streamwise vorticity
increases via baroclinic vorticity production. These two factors oppose each other, and
the dominance of one over the other results in either the weakening or suppression of
three-dimensionality in the wake, as observed with slight heating (ε = 0.2). However,
at higher heating levels (ε � 0.4), despite the significant reduction in Reeff value, the
main reason for the occurrence of three-dimensionality leading to stronger Ωx is the
production of streamwise baroclinic vorticity in the heated cylinder wake, as explained
in § 4.3.

4.7. Lift coefficient and frequency spectra
Figure 10 shows the variation in the time history of the lift coefficient (CL) at Re = 180
with increasing heating level from ε = 0.0 to ε = 1.0. At various heating levels, a drop in
the CL amplitude (except at ε = 0.2) is observed in temporal data, indicating the transition
to 3-D flow (figure 10a). A rectangular box is employed to highlight the transition in CL
data, including the temporal data at ε = 0.2. A detailed view of the CL data within this
highlighted zone, over a short time interval (�t = 150 for ε = 0.0 − 1.0), is depicted in
figure 10(b). At low heating (ε = 0.2), the constant CL amplitude with time reveals a 2-D
flow, as shown in figure 10. It is observed that the onset time of three-dimensionality
decreases with the increase of heating (figure 10a) and can also be seen in the time history
of the spanwise velocity (figure 5). At ε = 0.0, the fluctuations in the time history of CL
for t > 700 (where the flow is fully developed) indicate the presence of vortex dislocation
in the wake. These fluctuations are suppressed with the increase of heating from ε = 0.2
to ε = 1.0 (figure 10a).

Moreover, it is observed that the CL amplitude reduces as the heating rises except at
ε = 0.2 (figure 10). The reduction in CL amplitude is due to the decrease ofΩz strength in
the near-wake of a heated square cylinder (figure 8). In contrast, at ε = 0.2, a large value
of the CL amplitude is observed due to high strength of Ωz (as shown in figure 8a). In
figure 10, it can be seen that the average magnitude of CL increases with an increase in the
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Figure 10. (a) Temporal variation of CL, and (b) a close-up view of onset of three-dimensionality in a small
time interval, shown at Re = 180 and M = 0.1 for ε = 0.0 − 1.0.

heating level. Furthermore, in comparison with the isothermal wake at ε = 0.0, the heated
wake exhibits an earlier initiation of vortex shedding (figure 10a) owing to variations in
the strength of positive and negative Ωz vortices (figure 8).

The frequency spectra of CL for the heating level ε = 0 to 1 at Re = 180 are shown
in figure 11. An FFT algorithm is used to determine the vortex-shedding frequency ( fL)
using the fully developed CL data for the dimensionless time interval t � 700 − 1700. In
figure 11, several small-scale peaks are visible at ε = 0.0 in the frequency spectrum due
to the vortex dislocation in the Mode-A instability. At ε = 0.2, the dominant frequency
and its amplitude (i.e. the amplitude of CL) have a large value indicating strong 2-D
vortex shedding (figure 11). With further increase of heating from ε = 0.2 to ε = 1.0,
the decrease in the value of CL amplitude (figure 11) suggests a weaker form of 3-D vortex
shedding. This result reveals that vortex shedding is weakened due to the low strength of
spanwise vorticity.
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5. Conclusions

This paper presents a detailed numerical study of the 3-D flow transition in the wake of
a heated square cylinder subjected to cross-flow perpendicular to gravity in the mixed
convection flow regime. In the wake of an unheated square cylinder, a tongue-shaped
vortical structure with a longer spanwise wavelength (λz/D ∼ 5.5) of the Mode-A
instability is shown at Re = 180. While a rib-like vortical structure is depicted at Re = 250
with a shorter wavelength (λz/D ∼ 1.2) of the Mode-B instability. The presence of
large-scale vortex dislocations is detected by the discontinuity in the St–Re and C̄D–Re
plots. Furthermore, the critical Reynolds number for onset of three-dimensionality is found
to be Recr = 173 in the wake of the unheated square cylinder.

In the mixed convection flow regime, when heat is added to the cylinder surface at
Re = 180, the 3-D chaotic wake (of the Mode-A instability) is first suppressed into a
2-D wake (ε = 0.2), then bifurcates into a 3-D periodic wake (ε = 0.4 − 0.8), and finally
transforms into a 3-D quasiperiodic wake (ε = 1.0). The creation of streamwise vorticity
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behind the heated cylinder is significantly influenced by the baroclinic vorticity production
in the streamwise direction. For ε = 0.4 − 1.0, using the NOB compressible model with
a low Mach number (M = 0.1), the production of Γx structures in the near-wake leads to
the appearance of Ωx structures (having λz/D ∼ 2), which is designated as the Mode-E
instability. Ren et al. (2006b) also reported a similar wake structure (referred as Mode-E
instability) for Re = 75 − 117 and Ri = 0.35 − 2.5. However, their findings are limited
to the small-scale heating scenario for the flow around a heated circular cylinder under
horizontal water flow, utilizing the Boussinesq model.

In the heated cylinder wake, it is observed that the magnitude of the streamwise vorticity
production rate increases with the increase of heating levels from ε = 0.4 to ε = 1.0.
As a result, the strength of the Ωx vortices increases causing the onset time of three
dimensionality to be reduced. The streamwise baroclinic production is shown to be directly
correlated with the energy fields associated with spanwise translational energy (w2),
streamwise rotational energy (Ω2

x ) and transverse rotational energy (Ω2
y ). Furthermore, in

the near wake, the production of baroclinic vorticity in the spanwise direction significantly
contributes to the reduction in the magnitudes of positive as well as negative Ωz vorticity.
Hence the spanwise baroclinic production of vorticity indirectly plays a role in the transfer
of rotational energy from Ωz vortices to Ωx and Ωy vortices.

The strong and weak vortex shedding largely depends on the strength of the Ωz vortices
in the cylinder wake. As the heating increases, a decrease in the strength of theΩz vortices
causes weaker vortex shedding which is indicated by the decreasing value of the CL
amplitude. In the case of low heating (ε = 0.2), the baroclinic vorticity production in
the streamwise direction is weak. However, the temperature-dependent variations in the
thermophysical and transport properties, result in lowering of effective Reynolds number
around the heated cylinder which suppresses the typical Mode-A instability that would
exist for an unheated cylinder at Re = 180.
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Appendix A. Governing equations in body-fitted coordinates

The governing equations from (2.1) are converted into body-fitted curvilinear coordinates
ξ(x, y), η(x, y) as follows:

∂U
∂t

+ ∂F̃
∂ξ

+ ∂G̃
∂η

+ ∂H
∂z

= J̃ , (A1)

where

F̃ = ξxF + ξyG, G̃ = ηxF + ηyG (A2a,b)

and

J̃ = J +
(
∂ξx

∂ξ
+ ∂ηx

∂η

)
F +

(
∂ξy

∂ξ
+ ∂ηy

∂η

)
G. (A3)
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Appendix B. Numerical scheme

The present computations are carried out using the PVU-M+ scheme with a few
adjustments. In order to solve the Euler/Navier–Stokes equations of compressible flow
models using the finite difference approach, Hasan et al. (2015) originally proposed a
high-resolution TVD (total variation diminishing) flux-based scheme. The robustness of
this scheme allows it to be used for a wide range of Mach numbers, from M = 0.1
(incompressible regimes) to M = 10 (hypersonic regimes). The PVU-M+ scheme uses
a two-step, predictor–corrector, second-order temporal integration method to integrate the
compressible flow equations in time. The scheme’s primary concept is the division of the
total flux vectors (given in (2.1)) into convective and non-convective flux vectors.

Recently, a modified version of the PVU-M+ scheme was utilized by Ahmad, Hasan &
Sanghi (2020) in carrying out DNS study on starting axisymmetric compressible jets at
moderately high Reynolds numbers. The complex features of subsonic and supersonic
jets were resolved quite accurately by a modified version of this scheme. Apart from
providing a good blend of robustness, efficiency and accuracy, the scheme also offers
excellent scalability for parallelization. Ahmad et al. (2020) observed a three-way splitting
of the total flux into convective flux, pressure flux and viscous flux. They employed
central difference with intercell values for estimating viscous flux derivatives, which
resulted in much better resolution with negligible numerical noise compared with the
older version of the PVU-M+ scheme. The older version of the scheme employed
forward/backward differencing of the combined pressure and viscous flux (non-convective
flux). The forward/backward differencing for pressure flux was retained in their modified
version of the PVU-M+ scheme.

In the present study, when this modified version of the PVU-M+ scheme is utilized at
low Mach numbers, some non-physical oscillations in the pressure field are observed near
the sharp corners of the square cylinder. It is found that employing central differencing for
both pressure and viscous flux using intercell values leads to the elimination of spurious
oscillations in the pressure field. Therefore, the derivatives of the non-convective fluxes
(pressure and viscous) are discretized by central difference scheme utilizing intercell
values (see (B1) and (B2)).

The predictor and corrector steps at an ith grid point in the one-dimensional framework
used to construct the solution vector of (A1) at the new time level (n + 1) are given as
follows:

the predictor step,

U∗ = Un −�t

{
F̃

c
i+1/2(U

n)− F̃
c
i−1/2(U

n)

ξi+1/2 − ξi−1/2
+ F̃

nc
i+1/2(U

n)− F̃
nc
i−1/2(U

n)

ξi+1/2 − ξi−1/2
− J̃

n
i

}
;

(B1)
the corrector step,

Un+1 = (U∗ + Un)

2

− �t
2

{
F̃

c
i+1/2(U

∗)− F̃
c
i−1/2(U

∗)
ξi+1/2 − ξi−1/2

+ F̃
nc
i+1/2(U

∗)− F̃
nc
i−1/2(U

∗)
ξi+1/2 − ξi−1/2

− J̃
∗
i

}
.

(B2)
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The convective and non-convective flux vectors are represented here by the symbols F̃
c

and F̃
nc

. The intercell convective flux F̃
c
i+1/2 is expressed as

F̃
c
i+1/2 = ui+1/2φi+1/2, (B3)

where ui+1/2 represents intercell numerical velocity and φi+1/2 = [ρ ρu ρvρw ρE]T
i+1/2

is the intercell convective property vector. The estimation of ui+1/2 and φi+1/2 is
accomplished by combining a fourth-order central interpolation and second/first-order
upwind biased interpolation with appropriate weight functions. The weight functions
are designed to control the blending weight of higher/lower-order approximations. This
allows the scheme to handle abrupt changes in the flow field, such as the appearance of
discontinuities, in a relatively smooth flow field. The work of Hasan et al. (2015) provides
more information about the PVU-M+ scheme and related spatial discretization of fluxes.

The intercell non-convective flux F̃
nc
i+1/2 is obtained using the values at neighbouring

node points. The flow field variable f (of non-convective flux) and its derivatives at the
intercell or midway location (i + 1/2, j, k) are

fi+1/2 = fi+1 + fi
2

, (B4)

∂f
∂ξ

∣∣∣∣
i+1/2

= fi+1 − fi
ξi+1 − ξi

= fi+1 − fi
�ξ

, (B5)

∂f
∂η

∣∣∣∣
i+1/2

or
∂f
∂z

∣∣∣∣
i+1/2

= ∂f
∂(η, z)

∣∣∣∣
i+1/2

=
∂f

∂(η, z)

∣∣∣∣
i+1

+ ∂f
∂(η, z)

∣∣∣∣
i

2
. (B6)

Here, ∂f /∂η is discretized using second-order central and one-sided differencing at the
interior and boundary nodes of the grid, respectively. The variables and their derivatives
at other midway locations (i, j + 1/2, k) and (i, j, k + 1/2) can be expressed, in a similar
manner.

Appendix C. Domain and grid independence studies

Tests for domain size and grid independence are carried out to ensure accurate results and
prevent high computational costs. These tests are carried out at M = 0.1 and Re = 500 for
large-scale heating (ε = 1.0). In these tests, the variation in the values of time-averaged
force coefficients (C̄D and C̄L), time-averaged Nusselt number (Nu) and Strouhal number
(St) with different domain and grid sizes have been examined. The force coefficients are
defined as

CD = 2FD

ρ∞U∞2DHz
, (C1)

CL = 2FL

ρ∞U∞2DHz
, (C2)

where FD and FL represent the integrated drag and lift forces on the entire cylinder,
respectively. These force coefficients using the surface stress distribution are expressed
in the form of curvilinear coordinates as

CD = D
Hz

∫ {∮
2

|J̃|

(
−p + 4

3Re
μ∇ · V

)
ηx dξ − 2

Re

∮
1

|J̃|μΩzηy dξ
}

dz, (C3)
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CL = D
Hz

∫ {∮
2

|J̃|

(
−p + 4

3Re
μ∇ · V

)
ηy dξ + 2

Re

∮
1

|J̃|μΩzηx dξ
}

dz. (C4)

Here, J̃ = ξxηy − ξyηx is the determinant of the Jacobian matrix. The vortex-shedding
frequency, i.e. Strouhal number St, expressed as

St = fLD
U∞

, (C5)

where fL represents the dominant frequency in the lift force spectrum obtained from the
time history of CL using the FFT algorithm. The Nusselt number is defined as

Nu = hD
k̄∞

= Q̄
4k̄∞(T̄w − T̄∞)

, (C6)

where h represents convective heat transfer coefficient of the flow and the quantity Q is
the heat transfer rate from the cylinder expressed as

Q̄ = −k̄∞DT̄∞
∫ ∮

kw(∇T · n̂)(dl) dz. (C7)

Here, the symbol n̂ stands for the local outward normal vector to the cylinder wall,
and dimensional quantities are indicated by an overbar. The symbol dl denotes the
dimensionless differential line element at the cylinder boundary, expressed as follows:

dl = 1

|J̃|

(√
ηy2 + ηx2

)
dξ. (C8)

In the body-fitted coordinates, the final expression for the Nusselt number is given as

Nu = D
Hz

∫ {
−kw

4ε

∮
1

|J̃|

(
∂T
∂η

)
w
(η2

x + η2
y) dξ

}
dz. (C9)

For assessing domain size independence, an O-type coarse grid with 249, 327 and 31
mesh points in the ξ , η and z directions is used. Initially, the artificial boundary of the
grid is set at a dimensionless distance of 100 from the centre of the cylinder. This initial
grid is then truncated to obtain different grids with the same cell size at non-dimensional
distances Rd (namely 80, 60, 40 and 20) from the centre of the cylinder. The values
of the flow properties at the same flow conditions (Re = 500, M = 0.1 and ε = 1.0)
corresponding to the truncated grid are listed in table 4. Beyond Rd = 60, the variations in
the values C̄D, C̄L and Nu are relatively small. Furthermore, the changes in the values of
St are negligible. Therefore, the far boundary at Rd = 60 is considered to be suitable for
the entire computations.

For Rd = 60, the grid independence test is initially performed on three grids (G1, G2
and G3) refined in the ξ − η plane with fixed spanwise grid points listed in table 5.
From G2 to G3, a maximum deviation of 0.71 % in the values of flow properties such
as C̄D, C̄L, Nu and St is observed. Therefore, the grid G2 is selected and refined in the
z-direction to form new grids (G4 and G5). Table 6 demonstrates that the C̄D, Nu and St
values are reduced insignificantly by 0.15 %, 0.15 % and 0.46 %, while utilizing grid G5 in
comparison with grid G4, whereas the C̄L value is reduced slightly by 1.27 %. Therefore,
to save computation time, grid G4 is considered for the present simulations.
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Rd C̄D C̄L Nu St

20 1.5986 −0.2620 9.2835 0.1529
40 1.5837 −0.2715 9.3124 0.1498
60 1.5587 −0.2701 9.3105 0.1510
80 1.5583 −0.2705 9.3107 0.1510
100 1.5581 −0.2711 9.3111 0.1503

Table 4. Domain size independence check at Re = 500 and ε = 1.0.

Grid Grid size C̄D C̄L Nu St

G1 249 × 323 × 31 1.5587 −0.2701 9.3105 0.1510
G2 281 × 355 × 31 1.5540 −0.2796 9.2774 0.1505
G3 345 × 419 × 31 1.5528 −0.2816 9.2615 0.1502

Table 5. Grid refined in the ξ–η plane at Re = 500 and ε = 1.0.

Grid Grid size C̄D C̄L Nu St

G4 281 × 355 × 61 1.5184 −0.2602 9.2153 0.1502
G5 281 × 355 × 81 1.5161 −0.2635 9.2011 0.1495

Table 6. Grid G2 refined in the z-direction at Re = 500 and ε = 1.0.
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