
J. Fluid Mech. (2024), vol. 999, A17, doi:10.1017/jfm.2024.673
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The penetration of a spherical vortex into turbulence is studied theoretically and
experimentally. The characteristics of the vortex are first analysed from an integral
perspective that reconciles the far-field dipolar flow with the near-field source flow. The
influence of entrainment on the vortex drag force is elucidated, extending the Maxworthy
(J. Fluid Mech., vol. 81, 1977, pp. 465–495) model to account for turbulent entrainment
into the vortex movement and vortex penetration into an evolving turbulent field. The
physics are explored numerically using a spherical vortex (initial radius R0, speed Uv0),
characterised by a Reynolds number Re0(= 2R0Uv0/ν, where ν is the kinematic viscosity)
of 2000, moving into decaying homogeneous turbulence (root-mean-square u0, integral
scale L) with turbulent intensity It = u0/Uv0. When the turbulence is absent (It = 0), a
wake volume flux leads to a reduction of vortex impulse that causes the vortex to slow
down. In the presence of turbulence (It > 0), the loss of vortical material is enhanced
and the vortex speed decreases until it is comparable to the local turbulent intensity
and quickly fragments, penetrating a distance that scales as I−1

t . In the experimental
study, a vortex (Re0 ∼ 1490–5660) propagating into a statistically steady, spatially varying
turbulent field (Ive = 0.02 to 0.98). The penetration distance is observed to scale with
the inverse of the turbulent intensity. Incorporating the spatially and temporally varying
turbulent fields into the integral model gives a good agreement with the predicted trend of
the vortex penetration distance with turbulent intensity and insight into its dependence on
the structure of the turbulence.

Key words: vortex breakdown, vortex interactions, vortex shedding

1. Introduction

Vortex rings, dipoles and line vortices (see Pullin & Saffman 1998) are fundamental
components of turbulence (see Synge & Lin 1943; Saffman 1997). As these
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vortical structures are basic elements of complex flows, their interactions with flow
inhomogeneities provide a crucial starting point for exploring fundamental flow processes.
In this paper, we investigate the interaction between a vortex ring and turbulence as an
initial step toward examining critical layers between regions of turbulence.

The pivotal advance in understanding the dynamics of turbulent vortex rings came from
Maxworthy’s (1974) interpretation of Osborne Reynolds’ observation that vortices lose
mass and slow down. Figure 1(a) (see also figure 10, discussed later) depicts a turbulent
vortex propagating into a quiescent flow, with the mass loss evident from the detrainment
of dyed fluid behind the vortex, as is discussed in more detail in § 6. This mass loss leads
to a decrease in the vortex impulse and a reduction in the vortex speed, which are often
incorrectly interpreted as a drag force. This interpretation has a wider significance beyond
the dynamics of vortices, such as in problems where entrainment exerts an equivalent force
(or impulse decrease) that occurs even in the absence of solid boundaries. Maxworthy
(1974) noted that vortex progression in stationary fluids is not universally consistent over
time but develops through well-defined sequential steps, each with distinct scaling laws.

While most idealised studies have considered a vortex propagating in a quiescent
flow, real-world scenarios typically involve some level of ambient turbulence affecting
the longevity and persistence of these structures. Many related studies have considered
well-behaved laminar vortex rings in an ambient fluid at rest, dominated by a diffusive
dynamics and relatively small entrainment effects (see e.g. recent works such as Tinaikar,
Advaith & Basu 2018, and references therein). Maxworthy (1977) demonstrated how
external processes like buoyancy, stratification and turbulence, dramatically influence a
vortex’s lifetime. Arnold (1974) conducted the first detailed experimental study of a vortex
ring moving into turbulence created in a water channel. The vortices were observed to grow
faster in size and slow down more rapidly due to the background turbulence (Arnold 1974;
Maxworthy 1977). Although the reduction of the vortex speed and increase in vortex radius
were evident, the final stages of the vortex propagation and arrestment were not observed.
This forms an essential component of this study.

Several relevant studies have examined vortices interacting with turbulence, including
experimental and theoretical studies of line vortices created by a lifting surface in a
turbulent flow (see van Jaarsveld et al. 2011), and a single line vortex interacting with
turbulence (Marshall & Beninati 2005). The latter example demonstrated the critical
change in the external turbulence structure caused by the differential rotation imparted
by the line vortex. The case of a propagating three-dimensional vortex is quite different
from monopolar and line vortices owing to the flow perturbation decaying more rapidly
with distance and the vorticity maximum (within the vortex) lying close to the bounding
streamline.

In this paper, we address a key missing element in the vortex dynamics: the interaction
between a spherical vortex and turbulence. The dramatic effect of turbulence on a vortex
is shown by contrasting figures 1(a,b) with figures 1(c,d). The turbulence significantly
decreases the vortex speed by enhancing the growth of the vortex size through enhanced
entrainment by the external turbulence and loss of vortical fluid in the vortex wake. Part
of the challenge of incorporating the effect of turbulence into the description of the vortex
is to understand the distinction between enhanced entrainment across the vortex edge and
its influence on the overall ‘force’ experienced by the vortex. An integral perspective gives
greater clarity about the different effects of entrainment and detrainment on the vortex
properties, helping to reconcile the dipolar nature of the vortex with the monopolar flow
created by the loss of impulse. Drawing on Maxworthy (1977), the additional effect of a
spatially and temporally varying turbulent field on the vortex is proposed and analysed.
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Penetration of a spherical vortex into turbulence

(c)(a)

(b) (d )

Figure 1. Visualisation of a ring vortex moving steadily into (a,b) a quiescent flow and (c,d) a turbulent field
generated by an oscillating grid, both at 4.6 and 17.0 s, respectively, after vortex generation. The Reynolds
number of the initial vortex, based on velocity and distance between the vortices, is 3200. Experimental
parameters correspond to experiment T in table 1. The image is 50 cm wide.
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Numerical simulations are performed on the idealised interaction of a Hill’s spherical
vortex moving into decaying homogeneous turbulence. An analysis of the dynamics
requires the development of both Lagrangian and Eulerian measures of impulse and
momentum, which are intrinsically linked to the integral perspective offered.

An experimental study is developed to examine the vortex penetration into a
turbulent flow (see figure 1) with the fundamental difference between the numerical
and experimental study being the turbulence distribution. In the experimental study, a
piston-driven vortex is generated that moves into a grid-generated turbulent flow field.
The strength of the turbulence is sufficiently high that a finite penetration distance of the
vortices is realised, in contrast to the experiments of Arnold, Klettner & Eames (2013),
where the level of turbulence is weak. The two strands of study are brought together
through a comparison with the integral vortex model.

The paper is structured as follows. In continuation of the introduction, to analyse the
gross features of the interaction, integral measures are introduced (in § 2), which provides
an opportunity to elaborate on Maxworthy’s model, in particular the role of entrainment in
the rate of change of impulse and extension to incorporate the effect of external turbulence
on the vortex dynamics. The computational and experimental methodologies are described
in §§ 3 and 4, respectively. The basic building block of a spherical vortex moving through a
quiescent region is analysed in § 5, focusing not just on the vortical dynamics but also how
fluid elements external to the vortex are displaced and distorted. In § 6, the numerical and
experimental results are analysed. The primary results concern the relationship between
penetration distance into turbulence and the turbulent structure, which is discussed using
the integral model. Finally, the results are put into a general context in § 7.

2. Integral measures of the flow processes

2.1. Integral measures
Integral measures of momentum, impulse, circulation and kinetic energy are useful for
analysing the gross dynamics of complex flows, even for processes involving changes
in flow topology (Benjamin & Ellis 1966; Eames 2008). A challenge of using these
measures is that they may need to be reconciled for the presence of flow boundaries
(Theodorsen 1941; Darwin 1953; Eames, Belcher & Hunt 1994). A key measure is the
impulse associated with a region of the flow. The specific impulse of a vortical element
within the region is proportional to the weighted integral of the moment of vorticity (ω)

I = 1
2 x × ω, (2.1)

where the vorticity is defined as ω = ∇ × u, where u is the velocity field and x is position.
For three-dimensional flows impulse changes at a rate

DI
Dt

= u × ω + 1
2
ω · ∇(x × u) + 1

2
x × ν∇2ω, (2.2)

which includes the diffusion of vorticity with ν the kinematic viscosity. Half of the
contribution to the vortex force (u × ω) comes from the advection of the vorticity while
the other half comes from stretching. The two remaining terms come from the production
of stretching of vorticity by angular momentum and the diffusion of vorticity. The specific

999 A17-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.673


Penetration of a spherical vortex into turbulence

impulse associated with free vorticity in a region V is

Iv =
∫

V

1
2 x × ω dV. (2.3)

The rate of change of total impulse in a control volume V , whose boundary S moves with
velocity ub, can be evaluated by using the result of Saffman (1995, ch. 3.2, (10) and (11))
and the Reynolds transport theorem

dIv

dt
=
∫

V
u × ω dV +

∫
S

1
2

(
(ω · n̂)x × u − (u · n̂)(x × ω)

)
dS

+
∫

S
(ub · n̂)

(
1
2

x × ω

)
dS +

∫
V

1
2

x × ν∇2ω dV, (2.4)

where n̂ is a unit vector pointing out of the control volume. For a large domain that encloses
a compact region of vorticity, the second and third integrals are zero and the change
in impulse is then expressed in terms of the total vortex force imposed on the flow.
As Saffman discusses, the consequence of the far-field flow being dipolar is that the
impulse and dipole moment – which are intrinsically linked – are conserved/constant.

Our attention is on the behaviour of a vortex propagating and disintegrating as it
penetrates a turbulent flow. To distinguish between the vortex and the external turbulence,
we make use of a passive scalar field C and Lagrangian fluid particles to tag the vortex.
The passive scalar is set to be C = 1 within the vortex (of volume V0) and zero outside.
The Lagrangian perspective is developed by tagging Np fluid particles initially within the
vortex. The integral measures of A, based on either a Lagrangian or Eulerian approach are
defined as

A(L) = 1
Np

Np∑
i=1

A(X i), A(E) = 1
V0

∫
V

CA(x, t) dV, (2.5a,b)

respectively, and distinguished by the superscript L or E (see Eames, Hunt & Belcher
2004). The Eulerian and Lagrangian measures of vortex impulse, I(E)

v and I(L)
v ,

respectively, are defined in terms of A = 1
2 x × ω.

2.2. Integral vortex model
In this section, the vortex dynamics are analysed from an integral perspective that requires
distinguishing between the vorticity that forms the main body of the vortex and that which
is deposited downstream. This distinction requires a separation of scales between the size
of the vortex and the distance over which the vortex has travelled. There are several
ways to identify the position of the vortex, including weighted measures of the initial
constituent material of the vortex and positions of local maxima of vorticity magnitude;
for consistency with the numerical calculations and experiments, the vortex centre X v

is defined by following the initial fluid within the vortex (with A = x in (2.5a,b)); the
superscript (L) is dropped. For the numerical simulation, the position is determined
by following (Lagrangian) fluid particles in time, while for the experiments, the dye is
followed in time. The vortex velocity, Uv , is defined as dX v/dt.

For unbounded flows, the dipole moment in the far field is unchanged in time, but this
needs to be reconciled with changes that occur in the vicinity of the vortex. Maxworthy
(1974) argued that the progressive loss of mass, evident through a visible wake loss, leads
to the vortex impulse decreasing in time. The integral analysis is applied over a volume
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Sink

Control

Source

strength

Volume, V

Volume, Vv

Dipolar field

Source

Su

Ss

Qw

Qw – Qe

Sd

ub

Uv

(b)

(a)

Figure 2. (a) Schematic of the control volume V and surface S, moving with speed Uv with the vortex that is
used in the analysis. (b) The flow perturbation associated with the vortex moving from rest is characterised by
a sink at the start and local source flow (due to the loss of impulse) which reconciles the far-field dipolar flow
with the near-field monopolar flow, and this is shown as a schematic.

V that has a size larger than the size of the vortex, e.g. O(V1/3
v ) (where Vv is the volume

of the vortex), and moving with velocity ub = Uvx̂ (figure 2a). Identifying Iv = Iv · x̂
as the local impulse associated with the vortex, Maxworthy (1974) argued that, at high
Reynolds numbers, the third term in (2.4) was dominant, with the rate of change of the
vortex impulse being

dIv
dt

≈ −1
2

∫
Sd

Uvσωφ dS, (2.6)

where σ is the radial distance from the centreline, ωφ is the azimuthal vorticity component
and the integration is taken over the downstream surface Sd (see figure 2a). Equation (2.6)
can be written as

dIv
dt

≈ −QwUv, Qw =
∫

Sd

1
2
σωφ dS, (2.7a,b)

where Qw is the volume flux (deficit) behind the vortex. The volume flux generates a
monopolar flow in the near field (figure 2b). The combination of the sink flow created
by the vortex starting, and the source flow created by drag, yields a far-field flow which
is dipolar in character. These types of source–sink flows are also created by rigid bodies
impulsively set into motion; Hinch provides an extremely clear physical interpretation of
the consequence of these impulsively driven flows on the forces experienced by moving
bodies in Appendix D of Lovalenti & Brady (1993).

The importance of the remaining terms in (2.4) was not discussed by Maxworthy and
needs more analysis to unpick their link to the flow physics. Entrainment is in general
mechanistically distinguished as having either an inviscid or a viscous component (da Silva
et al. 2014). The (inviscid) engulfment process leads to a net flow across an interface, while
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Penetration of a spherical vortex into turbulence

the viscous mechanism leads to boundary movement with a generally weaker boundary
velocity. Without defining the features of such processes, we ascribe the flow due to
entrainment as a volume flux, Qe, and the loss of vorticity in the wake being equivalent to
a volume flux Qw. Due to the combination of the wake flow and entrainment, the flow in
the region moving with the vortex (R0 � |x − X v| � |X v|) is, to leading order,

u ∼ −Uvx̂ + Qw − Qe

4π

x − X v

|x − X v|3 , (2.8)

where the vortex position X v may be defined in terms of the position of the original
constituent fluid. We can use (2.8) to evaluate (2.4) more precisely than (2.6). The
components of the control surfaces that bound the sides of the cylinder Ss, the upstream
surface Su and the surface for the downstream wake, Sd, can be distinguished (see
figure 2a). The vorticity is zero everywhere on Ss except on the surface Sd. Typically,
ω is perpendicular to the direction of motion so that (ω · n̂ = 0). Using

u × ω = −(u · ∇)u + ∇
(

1
2 q2

)
, (2.9)

where q = |u|, the rate of change of impulse can be written as

dIv

dt
=
∫

Ss+Su+Sd

−(u · n̂)u dS +
∫

Sd

(
1
2

q2n̂ − 1
2
(u · n̂)(x × ω)

)
dS. (2.10)

For an axisymmetric flow characterised by a large gradient in the cross-stream direction,
ωφ = −∂ux/∂σ , which means that the last integral is zero. Using (2.9), the first integral
over both control surfaces, Ss and Su, gives rise to a (Qw − Qe)Uv term. In total, the rate
of change of the vortex impulse is

dIv
dt

= (Qw − Qe)Uv − 2QwUv. (2.11)

The physical interpretation follows the discussion of Hunt & Eames (2002) and Eames
& Hunt (2004) – the source term gives rises to a Lamb thrust force (Qw − Qe)Uv , while
the momentum flux in the wake generates a drag −2QwUv . Thus, the change in the local
vortex impulse (2.11) becomes

dIv
dt

= −(Qw + Qe)Uv, (2.12)

with entrainment now accounted for in this new description. This explanation provides
the first clear and consistent link between the wake-drag model of Maxworthy and the
entrainment drag law discussed in the context of cross-flow jets (see Coelho & Hunt (1989)
for a discussion of the key physics for strong cross-flow jets). The consequence of the local
flow being dominated by a source (2.8) is still consistent with the global perspective of a
far-field dipole moment. Taking into account the loss of impulse and its change along
the vortex path is equivalent to a line distribution of sinks whose total sum is equal to
Qe − Qw, as shown in figure 2(b). The global impulse, created by the trailing wake and the
head of the vortex, is thus conserved.

The volume flux can be expressed in terms of an average wake flow Uw and equivalent
wake radius Rw

Qw = πR2
wUw. (2.13)

Maxworthy (1974) interpreted the volume flux as an equivalent drag force FD = ρUvQw
to which he ascribed an equivalent drag coefficient CQ = 2Qw/πR2

vUv . The wake width
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behind a vortex Rw is expected to be smaller than that behind a solid sphere because the
growth of the vortex wake width is due to significant negative strain at its rear rather than
due to boundary layer separation, so that Rw/R0 = β. With the velocity deficit Uw/Uv =
η, these estimates can be combined into

Qw = β2ηπR2Uv, (2.14)

so that CQ = 2β2η. The wake width is still much narrower than that of a rigid body with
estimated values β ∼ 1/3 and η ∼ 1/4. An a priori estimate of CQ ∼ 0.12 is close to the
value CQ = 0.1 that Maxworthy inferred from lines of fit to his experimental data. To
account for the growth of the vortex, Maxworthy (1974) introduced an additional integral
equation describing the increase in volume due to an effective entrainment rate α

dVv

dt
= Qw = 4παR2

vUv, (2.15)

based on generalising the entrainment concept of Morton, Taylor & Turner (1956). Here,
entrainment is ascribed over the whole surface of the vortex and CQ = 8α. Maxworthy
(1974) defined a lumped parameter CD = CQ/4α which was determined to have a value
that spanned from 1.9 to 2.7 in his tests. The growth of the vortex arises due to the
wake volume flux (Qw) and entrainment (Qe + Qw), that gives an effective entrainment
coefficient α = CQ/8. This closure gives a fixed value of CD = 2 which sits in the range
estimated by Maxworthy (1974). This also explains why the effective entrainment rate is
in the range α ∼ 0.010–0.0012 (see Maxworthy 1977, figure 24, and table 1), i.e. by an
order of magnitude smaller than the entrainment coefficient of a jet, which is typically
α ∼ 0.065–0.08 (see van Reeuwijk & Craske 2015).

2.3. Interaction with turbulence
The bulk model of vortex movement, described by Maxworthy (1974), is developed to
include the approximate effects of external turbulence on the vortex dynamics. This proves
a fruitful avenue to pursue because it enables the influence of a spatially and temporally
varying turbulent field on the gross dynamics of a vortex to be assessed. The external
turbulence is effective at dispersing material shed behind the vortex but this influence on
the vortex impulse is of secondary importance compared with the growth of the vortex
through entrainment. The effect of external turbulence on the vortex is parameterised in
terms of its entrainment through the vortex surface (Sv = 4πR2

v)

Qe = Svαeue. (2.16)

The growth of the vortex occurs through entrainment caused by the turbulence exterior to
the vortex surface and the wake volume flux, a process which is parameterised by

dVv

dt
= Qe + Qw. (2.17)

The impulse of the vortex is

Iv = (1 + Cm)UvVv, (2.18)
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Penetration of a spherical vortex into turbulence

and for an approximately spherical vortex, Cm = 1/2 (Saffman 1995). Combined with
(2.12), this means that the dynamics of the vortex is described by

dRv

dt
= αeue(x, t) + αUv, (2.19)

dUv

dt
= −2 + Cm

1 + Cm

Uv(Qw + Qe)

Vv

, (2.20)

dXv

dt
= Uv. (2.21)

The model (2.19)–(2.21) differs from Maxworthy (1974) with the inclusion of the effect of
entrainment caused by external turbulence that is included in (2.19) and (2.20). Combining
(2.20) and (2.17) gives

Uv

Uv0
=
(

Rv

R0

)−5

, (2.22)

regardless of how the turbulent intensity varies in time or space. The influence of external
turbulence is parameterised to have an external entrainment coefficient, αe ∼ 0.12, that
is more typical of turbulent jets (e.g. van Reeuwijk & Craske 2015), and the internal
entrainment coefficient taken to be α ∼ 0.012, which was inferred by Maxworthy (1977)
from the growth of the size of the turbulent vortex.

The dynamics of a dipolar vortex can be understood by integrating the coupled system
of (2.19)–(2.21). This system of equations admits a number of useful analytical results for
the case of ue = 0 (from Maxworthy) or ue constant. When ue = 0,

Uv

Uv0
=
(

1 + 6αUv0t
R0

)−5/6

, (2.23)

which on integration gives

Xv

R0
= 1

α

((
1 + 6αUv0t

R0

)1/6

− 1

)
. (2.24)

For a field of turbulence maintained at a constant turbulent intensity u0, the penetration
distance can be evaluated from

Xmax =
∫ 0

Uv

dUv

dUv

dt
dt

dXv

= R0

5α

(
α

αeIt

)1/5 ∫ α/αeIt

0

dŨ

Ũ1/5(1 + Ũ)
. (2.25)

When αeIt/α � 1,
Xmax

R0
∼ 1

4αeIt

(
1 − 4

9
α

αeIt

)
. (2.26)

The vortex model, based on the enhancement of boundary movement caused by
entrainment, predicts a maximum penetration distance that varies inversely with It.
Arnold et al. (2013) developed a ballistic model, based on large-scale vortices leading
to differential advection of the vortex, with the maximum penetration distance scaling as
Xmax/R0 ∼ 1/((L/R)It).
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3. Numerical approach

The three-dimensional numerical component of the study examines the movement of an
idealised vortex moving into a turbulent field. There are a number of choices for both
the idealised vortex form (including a thin-cored vortex ring, Hill’s spherical vortex)
and turbulent field (forced or decaying homogeneous turbulence). In this paper, a Hill’s
spherical vortex (with Re0 = 2000) moving into a decaying homogeneous turbulence is
chosen. Other studies have initialised the flow with a Hill’s spherical vortex (e.g. Camassa
et al. 2013), but at lower Reynolds numbers (30–300).

3.1. Problem definition
A Hill’s (1894) spherical vortex, with an initial radius R0 and speed Uv0, moves into
homogeneous turbulence, characterised by an initial root-mean-square (r.m.s.)-velocity
u0 and integral length scale L. The incompressible flow evolves according to the
Navier–Stokes equation and the differential form of the conservation of mass, or

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u, ∇ · u = 0. (3.1a,b)

The fluid has a density ρ and dynamic viscosity μ. It is pertinent to evaluate the properties
of a vortex evolving in time. Since the vortex moves through turbulence, the use of
vorticity to discriminate the vortex edge, commonly applied to discriminate interfaces
that separate turbulent from non-turbulent regions (see da Silva et al. 2014) is not viable.
Experimentally, interfaces are typically discriminated using a passive dye represented as a
scalar C(x, t) whose evolution in time is described by

∂C
∂t

+ ∇ · (uC) = D∇2C, (3.2)

where D is the diffusivity of the scalar. In experimental studies with water, the diffusivity
of dyes are 3 orders of magnitude smaller than the kinematic viscosity; the computational
challenge of dealing with high Schmidt numbers generally precludes using scalars as a
diagnostic to analyse vortex movement. An alternative approach is to use a Lagrangian
method where fluid particles are tracked in time. A fluid particle located at X 0 at t = 0
moves to X in time t, where

dX
dt

= u(X , t), X (0) = X 0, (3.3a,b)

and this has the advantage of enabling the fluid exchange between the vortex and external
flow to be assessed.

3.2. Flow initialisation
The initial flow u(x, 0) = uv + ut is created by the superposition of a spherical vortex
(uv) and a homogeneous turbulent field (ut) defined in a region starting a normal distance
Xf from the vortex centre. The flow generated by the Hill’s spherical vortex (Hill 1894),
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Penetration of a spherical vortex into turbulence

uv = (ur, uθ ) is set internally by

(uvr, uvθ ) = Uv0

((
5
2

− 3
2

r2

R2
0

)
cos θ,

(
−5

2
+ 3r2

R2
0

)
sin θ

)
, (3.4)

where r = |x|, θ = cos−1(x · x̂/r) and the internal azimuthal vorticity field is

ωvφ = 15Uv0

2R2
0

r sin θ. (3.5)

Outside the vortex, the flow is described by

(uvr, uvθ ) = Uv0

(
R3

0
r3 cos θ,

R3
0

2r3 sin θ

)
, (3.6)

and corresponds to the irrotational flow past a sphere. The Eulerian impulse and moment
of the vortex are

I(E)
v0 = (1 + Cm)Uv0V0, M(E)

v0 = Uv0V0, (3.7a,b)

respectively, where V0 = 4πR3
0/3 and Cm and the added-mass coefficient takes a value of

1/2.
An incompressible homogeneous random flow is constructed by a summation of Fourier

modes chosen to satisfy a specified energy spectrum E(k) (see Kraichnan 1959; Fung et al.
1992). The turbulent field is defined to start a distance Xf in front of the vortex centre so
that it does not interfere with the initial stability of the vortex. This standard technique is
based on an incompressible velocity field of the form

ut(x) =
Nm∑
n=1

an × k̂n cos(kn · x + φn)H(x − Xf ), (3.8)

where φn is a random phase, kn is a wavenumber vector, k̂n is a unit vector with
random direction and an is chosen so that the velocity field has the statistical properties
of a prescribed energy spectrum E(k). A range of wavenumbers is chosen to span the
spectrum. Here, we set Nm = 300 and wavenumbers k = kn range from 0.2k0 to 10k0

(where k0 = 2π/L). The wave vectors kn = knk̂n and an are chosen from a distribution
that satisfies

〈an〉 = 0, 〈|an|2〉 = 2
∫ kn+δk/2

kn−δk/2
E(k) dk. (3.9a,b)

We follow Fung et al. (1992) and prescribe an energy spectrum of the form

E(k) = γ g2(k/k0)
4(

g1 + (k/k0)2)
)17/6

u2
0

k0
, k0 = 2π

L
, (3.10a,b)

where

g1 = πΓ 2(5/6)

Γ 2(1/3)
, g2 = 55

9
g5/6

1
π

. (3.11a,b)
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Here, γ is a correction factor caused by limiting the wavenumber range and Γ is the
gamma function (Abramowitz & Stegun 1964). The vorticity field associated with (3.8) is

ωt(x) = ∇ × ut =
Nm∑
n=1

ankn sin(kn · x + φn). (3.12)

The initial r.m.s. speed, urms(0), was evaluated from the initialised velocity field with the
ratio urms(0)/u0 varying from 0.975 to 1.02.

3.3. Numerical solution
Equations (3.1a,b), (3.2) were solved using OpenFOAMv1706, which is a general
computational object orientated package to solve multiphysics problems with a
finite-volume formulation.

To study the vortex–turbulence interaction, the domain size was chosen to be 30R0 ×
8R0 × 8R0. The effect of flow boundedness is expected to have a 1/82 effect on the mean
vortex speed. The vortex is initialised at a distance of 3R0 from the inlet plane, with
Xf = 5R0. A uniform block mesh was used – a variety of sizes were tested and we settled
for 1000 × 260 × 260. Slip boundary conditions were applied to the walls of the domain
and the simulations ran until time t̃(= Uv0t/R0) = 50. Mesh convergence was tested by
analysing the vortex position as a function of time and this showed less than 2 % difference
in the vortex position between simulations running at 8.45 million cells compared with
67.6 million cells. The evolution of the r.m.s. speed of the homogeneous turbulence was
calculated as a function of time and fitted with a power law of the form

ue

u0
=
(

1 + 2.0u0t
L

)n

, (3.13)

with a decay index of n = −0.7, which is typical for decaying homogeneous turbulence
(Wilczek, Daitche & Friedrich 2011).

The vortex centre, Xv , was calculated from the Lagrangian position of Np fluid particles
that were initially located within the vortex

Xv = 1
Np

Np∑
i=1

Xi. (3.14)

Since the fluid particles are advected by the local fluid velocity (see (3.3a,b)), the vortex
velocity is

Uv = 1
Np

Np∑
i=1

dXi

dt
= M(L)

x

V0
. (3.15)

The vortex radius was defined in terms of the standard deviation from the vortex centre,
so that Rstd = (X i − X v)21/2

. The vortex was seeded with Np = 104 particles.

4. Experimental set-up and measurements

In the laboratory, the interaction of a vortex with turbulence is studied in a cubic Plexiglas
tank of 1.0 × 1.0 × 0.90 m3 filled with tap water to a height 89 cm, as shown in figure 3(a).
Approximately thirty minutes prior to the vortex generation near the fluid surface, the
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(0.2Z)-4 Hopfinger & Toly
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f = 0.60 s–1, S = 10.4 cm

Figure 3. (a) Schematic of the experimental set-up, showing the piston dimensions (diameter Dp, stroke length
Lp) and grid dimensions (stroke distance S and bar separation M). The grid mass was increased with metal
weights (not shown) to stabilise its motion. The box turbulence is characterised in terms of (b) the scaled
turbulent velocity, urms/fS, fitted with an exponential a + b exp(−cz), (see legend and (4.3)) and (c) turbulent
length scale, �, plotted against height z above the grid. The origin z = 0 corresponds to the maximum height of
the grid (see Hopfinger & Toly 1976), i.e. ≈5 cm above the bottom of the tank.

turbulence generation is started near the bottom of the tank by the vertical (and sinusoidal)
oscillation of a grid with a mesh size close to that used in Hopfinger & Toly (1976). To
visualise the flow, the fluid is seeded with spherical particles with a diameter of 60 μm
and density of approximately ρ = 1.03 g cm−3, while the vortex is coloured with a
fluorescent dye (Rhodamine 6G). A small amount of sodium hydrochlorate is added to
the water in order to slowly bleach the dye and to be able to repeat the experiment in the
same fluid. The flow is illuminated by a vertical laser sheet passing through the centre
of the tank, generated with a 2 W Spectra Physics Millenia Pro laser and cylindrical
lens. For the recording and flow measurements a Dalsa 1M60 Pantera camera is used
with a frame rate between 5 and 20 Hz (see figure 3) and a Sony Alpha III camera.
These recordings are processed with the particle image processing program UVmat (http://
servforge.legi.grenoble-inp.fr/projects/soft-uvmat), developed at LEGI, which allowed
for the measurements of the r.m.s. velocity of the turbulence as well as the vorticity
fields, whereas the dye visualisations are processed with ImageJ (https://imagej.net/). The
distance of the vortex centre from its start, Xv , and vortex radius, Rv , defined in terms of the
separation of the vortex cores, are determined from vorticity maxima and dye visualisation,
as functions of time. The vortex speed, Uv , is deduced from the displacement of the
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Exp.
Label f (Hz) S (cm) Dp (cm)

Uv0
(cm s−1) D0 (cm)

ū0,2D
(cm s−1) Xmax/R0 Uv0/ū0,2D

A 0.63 5.4 4 2.778 5.358 0.123 12.971 22.548
B 0.63 5.4 4 3.083 6.222 0.154 14.588 19.974
C 0.65 5.4 4 4.128 5.915 0.168 13.665 24.548
D 0.65 7.4 4 1.553 6.250 0.173 4.599 8.960
E 0.65 7.4 4 9.279 5.967 0.193 19.639 48.082
F 0.65 7.4 4 9.346 6.603 0.219 18.541 42.652
G 0.65 7.4 4 7.546 6.029 0.193 16.862 39.024
H 0.5 5.4 11 2.203 14.550 0.120 9.138 18.312
I 0.625 5.4 11 2.103 14.847 0.131 7.761 16.041
J 0.625 5.4 11 2.180 14.605 0.139 8.651 15.705
K 0.625 5.4 11 3.283 14.725 0.155 9.177 21.206
L 0.65 10.4 11 3.235 17.485 0.311 4.494 10.395
M 0.67 10.4 11 1.408 14.732 0.252 1.212 5.583
N 0.50 10.4 11 1.232 14.337 0.189 2.379 6.510
O 0.55 10.4 11 1.320 11.827 0.212 4.264 6.219
P 0.55 10.4 11 1.452 11.041 0.210 4.448 6.918
Q 0.60 10.4 11 0.528 14.094 0.226 1.117 2.335
R 0.60 10.4 11 0.264 13.525 0.226 0.484 1.170
S 0.60 10.4 11 1.056 11.833 0.226 1.544 4.674
T 0.65 7.4 11 2.219 14.537 0.198 6.034 11.206

Table 1. Data of the vortex in oscillating grid turbulence. The parameters f , S, Dp and D0 (which is ≈2R0) are
defined in figure 3(a); Uv0 and ū0,2D are the vortex and r.m.s. in-plane turbulent velocities at t = 0, respectively,
whereas Xmax/R0 is the scaled maximum travelled distance by the vortex. The vortex starts in turbulence so
that Xf = 0.

vortex centres. The turbulence of the grid is calibrated, such that the turbulent velocity,
ue, and length scale �, are known from the forcing parameters.

The vortices are injected a few centimetres below the tank free surface, at approximately
z = 84 cm, such that the vortex centres of the formed vortex are at approximately z =
73 cm above the virtual origin in figure 3(b,c). The translation velocity Uv of the vortex is
measured from the dye and, for some cases, verified with the displacement of the vorticity
maxima from particle image velocimetry (PIV) measurements. Below the details of the
vortex generation and turbulence generation are discussed.

4.1. Vortex generation
The vortex was generated by the movement of a piston, controlled by a stepper motor,
which drives flow through a pipe with internal diameter Dp = 11 cm or Dp = 4 cm.
The initial speed of this vortex, Uv0, is proportional to the piston velocity, whereas the
circulation is determined by the distance travelled by the piston, and the size of the vortex
is mainly determined by the diameter of the cylinder (see Gharib, Rambod & Shariff
1998, for details). The displacement distance of the piston to generate the vortex ring,
Lp, was kept constant and equal to 13.65 cm during each experiment, so that the vortex
formation number, Lp/Dp, was fixed at a value of 1.24, and 3.41 in the case of the small
vortex. Since this vortex formation number is below 4 in this study, only isolated vortex
rings were generated with no (or hardly any) trailing wake (e.g. Gharib et al. 1998). The
Reynolds number of the vortex, based on the initial velocity Uv0 and diameter D0 just after
generation, Re0 = D0Uv0/ν, was varied between 1490 and 5660 (see table 1).
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4.2. Turbulence generation and properties
A turbulent field is generated with a vertically oscillating grid, made of square bars of
thickness d = 1.5 cm, separation M = 6 cm covering an area 97 cm × 97 cm. The gap
between the grid and the sidewall of the tank is minimised with 5 mm thick matt black
Perspex plates. This also improves the quality of the recordings. The stroke of the grid, S,
was varied at the values 5.4, 7.4 and 10.4 cm.

The characteristics of the turbulence are set by the grid forcing frequency ( f ) and
amplitude of forcing (S), with the characteristic velocity and length scale set by the grid.
Turbulence statistics are obtained from long time statistics of planar PIV measurements in
a vertical plane. The in-plane r.m.s. velocity u0,2D and integral length scale L are expressed
in terms of the in-plane velocity fluctuation, u′, through

u0,2D = (u′2)
1/2

, (4.1)

and

L =
∫ RL

0
u′(r)u′(r + x) dr/(u′2), (4.2)

where RL is the upper bound for the correlation integral. The results for u0,2D and L
are shown in figure 3(b,c) as a function of distance z. At larger distances from the grid,
where the small structures between the plumes that are generated by the moving bars are
dissipated, the turbulence intensity and integral length scale tends to a constant. Similar
results of a constant u0,2D and length scale L were also obtained for faster grid motion
( f ∼ 1 Hz) and a smaller stroke S (personal communication with J. Sommeria). Close to
the moving grid, the turbulent intensity increases and the integral scale decreases as the
flow is dominated by the shedding of small intense vortices from the grid. In view of the
present interest of knowing the turbulence intensity at a particular level, an exponential fit
was employed

u0,2D

fS
= 0.036 + 0.4 exp

(
− z

(SM)1/2

)
, (4.3)

which is shown in figure 3(b). The saturation of the turbulence near a constant value of urms
and L has not been observed in Hopfinger & Toly (1976) and more recently Poulain-Zarcos,
Mercier & Halle (2022) since, in these experiments, the measurement region is limited to
a distance of 35 cm of the grid position. In Hopfinger & Toly (1976) the grid oscillated at
mid-depth in a 80 cm height tank with a ten times faster oscillation frequency, leaving an
effective 35 cm distance from the grid, as also in Poulain-Zarcos et al. (2022). Further, a
ten times lower frequency was used to keep the turbulence weak compared with the vortex.
Figures 3(b) and 3(c) show indeed that, at z > 30 cm, the length scale L stagnates around
a value of ≈7.5 ± 1.5 cm, corresponding to the mesh size, while u0,2D/fS3/2 ≈ 0.013,
implying a maximum Reynolds number of Ret = u0,2DL/ν roughly between 120 and 240.

In Hopfinger & Toly (1976), the grid oscillated at the tank mid-height, and the virtual
origin (where L = 0) corresponded to the position ztop − (S/2 + 0.01m), with ztop the
maximum position of the grid, thus slightly below centre position of the grid. This is
also taken as the reference position (z = 0) in figure 3(b,c). In the present experiments, the
grid oscillates near the bottom and the level with L = 0 corresponding to the bottom of
the tank, showing the effects of a nearby boundary on the turbulence.

The turbulent intensity in the vicinity of the vortex changes as the vortex descends. To
compare the experimental results with the numerical simulations, a consistent definition
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of the turbulent intensity is taken

It = (3/2)1/2ū0,2D

Uv0
, (4.4)

that is expressed in terms of ū0,2D and determined by averaging u0,2D over the path of the
vortex. The prefactor (3/2)1/2 is used to convert the in-plane r.m.s. velocity to the r.m.s.
of the three-dimensional velocity field.

5. Numerical results: vortex movement into a quiescent region

5.1. Vortex-induced transport
To distinguish between the effect of the vortex on transport outside the vortex from the
processes that occur within the vortex, two groups of fluid particles were followed in time –
see figure 4. Drift is associated with differential movement of fluid and was quantified
using a distribution of particles in the plane z = 0 in the form of a structured grid.
The lateral displacement of the grid lines parallel to the direction of vortex propagation
gives an indication of blocking and source strength, while the distortion of the grid
lines perpendicular to the vortex propagation indicates Darwin drift. To characterise the
transport by the vortex fluid particles are seeded randomly within the vortex and followed
in time. The two groups of fluid particles are distinguished by colour (see figure 4a), with
those initially inside the vortex being blue and those initially outside the vortex being red.

The drift profiles confirm the longitudinal displacement profiles reminiscent of those
identified by Darwin and Maxwell. Drift profiles have been used to analyse the kinematic
transport by dipolar vortices (Eames & Flor 1998). The stretching of fluid elements passing
close to the stagnation points is clear, leading to a tilting of fluid elements along the x-axis.
The lines of fluid particles parallel to the propagation direction are laterally displaced,
as a consequence of the volume flux deficit behind the vortex. The lateral divergence
is a consequence of the presence of the source flow due to the drag on the vortex. The
lateral displacement behind the vortex is approximately constant over the period of these
simulations. The volume flux behind the vortex changes when the manner in which the
vorticity is deposited in the wake is interrupted and this is observed to occur when the
vortex is undergoing an inviscid adjustment, corresponding to a time beyond t̃ = 40.
Consequently, the drag on the vortex is approximately constant up until this time. In the
external flow around the vortex, the accumulation and stretching of fluid particles near
the leading stagnation point highlights the front of the vortex. Their motion confirms
that the fluid enters the rear of the vortex and circulates in the vortex core. At a later
time (t̃ ∼ 40), the edge of the vortex is difficult to distinguish from the side view due to
three-dimensionality of the flow. The non-uniform radial particle distribution within the
vortex indicates the entrainment of ambient fluid which does not contain particles.

5.2. Velocity and vorticity field
Hill’s spherical vortex is based on a steady inviscid model where the initial strength
of ωφ varies linearly with distance from the centreline (see (3.5)). The most significant
process is the loss of vorticity due to the diffusive flux across the bounding streamline,
which leads to vorticity being deposited behind the vortex. It is this loss which leads
to a faster reduction of the maximum vorticity in the vortex than vorticity annihilation.
The width of the vortical wake behind the vortex is βR0 (where β ∼ 1/3) is smaller than
for a solid body because of the absence of flow separation that arises from the no-slip
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y

x z

y

(a) (b)

Figure 4. (a) Time sequence showing the displacement and transport of fluid particles by a Hill’s spherical
vortex moving with initial Reynolds number Re0 = 2000. The red particles were initially placed in a grid
arrangement with planes that lie perpendicular and parallel to the initial velocity of the vortex; the green
particles were placed randomly within the vortex. The panels are shown for t̃ = 5, 10, 20, 30 and 40 where
t̃ = Uv0t/R0. The vortex is represented as an iso-surface of the second invariant of the velocity gradient tensor,
II = 1

2 (||Ω||2 − ||S||2), where Ω = (∇u − (∇u)T)/2 and S = (∇u + (∇u)T)/2 (Hunt, Wray & Moin 1988).
The iso-surface II = 0.02 s−2 is plotted. (b) The projected view of vortex shown iso-contour of II = 0.02 s−2

and |ω| = 0.1 s−1.

condition; the vorticity strength on the surface of the solid body scales as U0/R0Re1/2.
The vortex wake is much larger than a clean spherical bubble (Moore 1963), even though
the vortical strength is comparable (U0/R0), because of the kinematic constraint imposed
by the bubble surface. The width of the downstream vortex wake is largely determined by
cross-stream diffusion in a negatively strained flow, which tends to greatly widen the wake
(Hunt & Eames 2002). Viscous diffusion of oppositely signed vorticity on the centreline
of the vortex leads to vorticity annihilation. This effect is far weaker than Maxworthy
identified because vortex compression leads to ωφ tending to zero on the centreline. At a
later time of t̃ = 40, the azimuthal instability has grown sufficiently large that the vortex
starts to become asymmetric. This instability is likely due to the mechanism explained by
Widnall (Widnall & Sullivan 1973) and appears for Re � 2000 (see Maxworthy 1977).
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Figure 5. (a) The distribution of vorticity ωz in the plane z = 0, is shown for t̃ = 5, 10, 20, 30 and 40. The
streamlines are plotted in the frame moving with the vortex, where the vortex speed is determined from the
average Lagrangian velocity. (b) The distribution of scalar, C, initially set as C = 1 within the vortex, is
indicated for times t̃ = 5, 10, 20, 30 and 40.

The planar streamline pattern, in the frame moving with the vortex, is shown in
figure 5(a), along with the distribution of the vorticity component that is normal to the
page. The vortex centre and velocity are determined from the fluid particles initially
released inside the vortex. The permanent cross-stream displacement of streamlines
originating upstream of the vortex, seen in figure 5(a), are indicative of a source flow,
or equivalently, a drag on the vortex.

As the vortex propagates, the vortex core changes shape and material is shed into its
wake. Cross-stream slices of the scalar distribution are shown in figure 5(b i–v). Material
is lost from the vortex through a diffusive flux at the side of the vortex (see figure 5a) with
a trail of vorticity and tracer in the wake. The diffusivity of the tracer is set the same as
that of vorticity. The overall growth of the three-dimensional effects is affected by both
mesh resolution and mesh shape.

5.3. Speed, shape and impulse
The vortex position was calculated from the mean and the maximum distance moved
by marked internal fluid particles and both gave substantially the same result, as shown
in figure 6(a). Figure 6(a) shows a comparison with the model and α = 0.012. This agrees
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Figure 6. (a) The vortex position, Xv , determined from Lagrangian particle information, is plotted as a
function of time (see legends for symbols). (b) Characterisation of the cross-sectional shape of the vortex
(determined from the maximum radial distance Rm(θ) mean and minimum of Rm of Lagrangian particles from
the centreline). (c) Volume flux Qw, determined from (2.8) as a function of distance behind the vortex, for
different times (see inset). (d) Scaled Lagrangian and Eulerian measures of momentum (Mx) and impulse (Ix)
as functions of time.

for short time during which the three-dimensional deformation of the vortex ring is still
small, since, from figure 6(c), CQ = Qw/πR2

0Uv0 ∼ 0.10, giving α ∼ 0.0125. At around
t̃ ∼ 40, the azimuthal instability mentioned above starts to grow and the simple drag model
is not applicable. The vortex decreases faster than anticipated, apparently due to the rapid
increase in its radius.

To explore the adjustment from an axisymmetric vortex ring to a ring with a series
of modes, the shape of the vortex was analysed using information from the Lagrangian
particles. Projecting the particles onto a normal plane enabled the outer edge of the
vortex Rm(θ) to be determined (see figure 6(b) inset), from which the average (R̄m),
maximum and minimum (max(Rm), min(Rm)) are determined. We would speculate, based
on Maxworthy’s (1977) observations, that the vortex will ultimately break down.

The volume flux Qw, downstream of the vortex, is evaluated from (2.8) as a function of
distance from the vortex centre, and shown in figure 6(c) for four times. During the initial
movement of the vortex, the diffusive flux of vorticity into the wake tends to occur at a
constant rate, giving rise to a constant volume flux, except beyond the starting point where
the flow is irrotational. The volume flux behind the vortex starts to decrease at around
t̃ = 20, as the inviscid adjustment causes the size to increase and the vortex entrainment
becomes pronounced. This is also evident in figure 5(b), where the tracer concentration in
the near wake is also diminished.
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6. Vortex moving into a region of turbulence

6.1. Numerical results
Figure 7(a) shows the movement of the initially spherical vortex, for different background
levels of turbulence (It = 0.1, 0.2 and 0.5). The vortex is visualised by placing fluid
particles within the vortex and following their evolution in time. The vortex is initially
compact in the non-turbulent region and then quickly loses mass through the wake as it
moves into the region of turbulence. With increasing strength of external turbulence, the
rate at which the vortex loses mass increases. Its head remains initially coherent and, while
the tagged fluid elements tend to be dispersed in the longitudinal direction, the size of the
head of the vortex increases more slowly. At a later stage, the growth of the vortex tends to
be dominated by passive dispersion. The presence of turbulence leads to the vortex tending
to slow down with an increased sensitivity to being deflected by the ambient turbulence.
The mutual distance between the vortices increases while they deform, and flatten the more
they enter in the turbulent region. With higher levels of turbulence, the vortex is blocked
over a shorter distance and deforms faster, so that the penetration distance decreases. These
effects become more pronounced with the intensity of the turbulence.

Figure 7(b) shows the vortex position as a function of time and indicates that, over the
period of the tests, the vortex slows down faster as it penetrates into the turbulent region
(figure 7c i). At the higher values of turbulent intensity, the vortex is largely arrested and
is observed to penetrate a finite distance into the turbulence. The impulse of the vortex
decreases due to the loss of vorticity but it has a very specific tendency to increase as it
interacts with the interface between the turbulent and non-turbulent region. This blocking
effect is similar to a vortex impacting a wall which causes the vortex to flatten, vorticity
to increase via stretching, leading to an increase in the vortex impulse (see Verzicco et al.
1995). This is evident in figure 7(c ii) for the highest external turbulence (It = 0.5). The
change of vortex impulse due to vorticity diffusion is negative except for short periods with
It = 0.5, when detrained fluid elements pick up vorticity from the ambient turbulence.

Figure 8 shows the turbulent field and vortex, as isocontours of Q, for different times and
turbulent intensities. The colour in the images shows the (normalised) concentration of the
scalar tracer and gives an indication of the material that was originally within the vortex.
The decaying turbulence leads to an increase in the integral length scale and decrease in the
r.m.s. velocity, which is seen by the increased space between vortical tubes. The interface
between the turbulent and non-turbulent region is deflected by the initial penetration into
the turbulence, and eventually disperses. The sequences show that the coherence of the
vortex is quickly lost as the strength of the external vorticity increases. The size of the
vortex, evident from the highest concentration of passive scalar, grows in time. For the
lowest level for turbulent intensity (It = 0.1), the shed material is concentrated along the
vortex path and the wake vorticity quickly dispersed by the external turbulence.

The penetration of the vortex into homogeneous turbulence is thus accompanied by a
reduction in the vortex speed associated with the loss of wake material and vortex growth
in size. The vortex speed Uv is determined from the Lagrangian measure of momentum
(ML

x /V0). For It = 0.1, the reduction of speed leads to an approximately linear decrease
of velocity with distance with a rate faster than in the absence of turbulence (figure 9a).
Both the ambient turbulence and the vortex speed decrease in time but at different rates;
initially the ambient turbulence decreases faster than the vortex speed, leading to Uv/u0
increasing, but since the loss of mass from the vortex is continuous, the vortex ultimately
slows down faster than the rate at which the turbulence decays.
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Figure 7. (a) Lagrangian transport of fluid particles by a vortex moving into a turbulent flow for contrasting
levels of ambient turbulence (i) It = 0.1, (ii) 0.2 and (iii) 0.5; in each case L/R0 = 4, at times t̃ =
5, 10, 20, 30, 40 and 50. A red line is plotted along the centre of the domain, starting from the initial vortex
position, to give perspective to the images. The position of the vortex is shown in (b i) and the normalised
velocity plotted against the vortex radius in (b ii). A horizontal line is plotted at Xf /R0 = 5.0. The decay of the
vortex velocity is shown in (c i) for contrasting levels of turbulent intensity. The Lagrangian measures of vortex
for (c i) momentum, (c ii) impulse, (c iii) vortex force and (c iv) diffusive flux of impulse are shown as functions
of time.
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(a)

(b)

(c)

Figure 8. A cross-section of the flow structure is shown for (a) It = 0.1, (b) 0.2 and (c) 0.5. The iso-volume
contours for the second invariant of the velocity gradient tensor Q are shown, with values QR2

0/U2
v0 shown

greater than 0.025, 0.0125 and 0.0005, respectively, for (a–c). The time instances correspond to those in
figure 7(a). The colour field corresponds to the scalar field C and varies from cyan to yellow (from C = 0 to
maximum C). The reference red line is the centreline of the simulations. The lateral span of the box indicates
the vortex start and the end of the computational domain, which is smaller than the computational domain.
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Figure 9. The vortex speed, Uv (3.15), determined from the numerical simulations, is shown as a function of
the distance the vortex has moved. In (a), the contrasting influence of turbulent intensity is shown. In (b), the
ratio of the Uv/ue is shown as a function of vortex position, where ue is determined from (3.13).

(a) (b) (c) (d) (e) ( f )

Figure 10. Typical vortex evolution in quiescent ambient fluid (top), and with ambient turbulence generated
by an oscillating grid near the base of the tank (bottom) at (a) t = 3.5, (b) 10.8 (c) 17.2 (d) 24.7 (e) 30.9
and ( f ) 35.3 s after the vortex generation. The internal diameter of the cylinder is 11 cm (see experiment Q
in table 1, and the same parameters for top images without turbulence). The frames are 50 cm wide, and the
position of the grid is represented in ( f ) by the black area near the bottom.

6.2. Experimental results
Typical visualisations of the evolution of the vortex moving in quiescent fluid (top row)
and in turbulence (bottom row) generated by the oscillating grid near the bottom of the
tank are shown in figures 10(a)–10( f ) for the vortex generated with the 11 cm (inner)
diameter tube. Below we discuss the figures in the bottom row. During an initial stage, the
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Figure 11. Results from the experimental study of (a) the vortex velocity Uv and (b) the normalised vortex
velocity Uv/ue, as a function of distance from vortex starting for contrasting values Ive.

vortex develops and grows as a result of entrainment (see figure 10a), showing relatively
little influence of the ambient turbulence for the large vortex. Small turbulent vortices in
the ambient are advected around the spherical vortex, and either strained in the wake of
the spherical vortex, or entrained into the spherical vortex, leading to its intensification
(see figure 10b,c). During this latter process, the spherical vortex moves outwards causing
the propagation velocity to decrease. As the vortex moves forward it confronts smaller
but more intense turbulent vortices are confronted, leading to the breakup of the sharp
vortex front into smaller vortices (see figure 10d–e). When the vortex approaches the top
position of the grid (at approximately z = 20 cm), the vortex is eventually destroyed by
the turbulent jets generated by the oscillating grid (see figure 10f ). Although the same
sequence was observed for the smaller vortices (generated with the 4 cm diameter tube),
the turbulent vortices are now comparable to the size of the grid, which deviates, intensifies
or weakens the initial vortex during its development stage, increasing the variance of the
speed and size.

The position of the vortex centres, Xv , are determined by manual segmentation of
images, such as figure 10, and also from the vorticity extremes obtained from PIV
measurements. Following the dye that is captured in the vortex centres, the vortex velocity
was then calculated by differentiating Xv with time. The turbulence intensity at the vortex
centre is obtained by interpolating the u0 relation shown in figure 3(b). The initial position
of the vortex, Xfe, is considered as the moment the vortex was formed. The vortex radius,
R0, is measured shortly after injection as half the distance between the two vortex centres
when it has reached its mature state, i.e. it has a circular shape and slightly increases in
speed. In case this is not possible because the vortex was perturbed by ambient vortices,
its maximum velocity shortly after injection has been taken.

Figure 11 shows the evolution of the vortex velocity with penetration distance. The
oscillations in Uv/Uv0 and Uv/ue are due to the small turbulent vortex structures that are
advected to the rear of the spherical vortex where they are entrained. Subsequently, these
small-scale vortices are swept internally to the front of the vortex. During this entrainment
process the spherical vortex slightly expands in size, and by conservation of impulse,
decreases in speed (figure 11a). Figure 11(b) shows the relative strength of the vortex to the
local turbulent intensity, which decreases rapidly with distance; by comparing figures 9(b)
and 11(b), the vortex appears to be arrested when Uv/ue ∼ 2–5.
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Figure 12. Predictions for the vortex dynamics based on the integral model (2.19)–(2.20) for (a) radius,
(b) velocity and (c) position with time, and (d) speed with vortex position, where the turbulence decays
according to (3.13) for n = −0.7.

6.3. Comparison of numerical, experimental and integral models
The numerical model is based on decaying, homogeneous turbulence and contrasts with
the box turbulence in the experimental study, which is statistically steady but spatially
varying. The integral model (2.19)–(2.21) provides a means of understanding these general
influences of the vortex dynamics.

Figure 12 shows the results of the integral model with the turbulent intensity (3.13)
being defined at a distance x > Xf (for Xf = 5R0), consistent with the numerical model
of a spherical vortex moving through a quiescent region prior to penetrating the decaying
turbulence. The predicted trend for the velocity and position (figure 12a,c), as a function
of time, show quite similar trends to the numerical model, in particular the abrupt change
in the vortex speed as it penetrates into the turbulent region. The reduction of the vortex
speed is a consequence of the loss of vortical fluid (reducing impulse) and entrainment
that causes the vortex size to grow. As is evident from figures 7(a) and 10, the increase
in the vortex radius is less than 50 % during the rapid decrease in vortex speed. The later
stage of the spherical vortex dynamics, where Uv/ue < λc, is characterised by the vortex
essentially stopping and spreading rapidly in a diffusive manner, a process that is not
captured by the integral model. The critical ratio λc can be approximately determined
from figure 9(b) to be λc ∼ 3, while the experimental results (figure 11) suggest λc ∼ 5.

Figure 13 shows the penetration distance of a vortex vs the inverse strength of the
turbulence, for the experiments, numerical simulations and the integral model. The legend
lists the specific configuration for the integral model, with the start of the turbulent
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Figure 13. The variation of the penetration distance into turbulence (Xmax − Xf ) is plotted against the inverse
of turbulent intensity, It, with the results determined by experiments, computations and the integral model. For
the experimental study, It is defined by (4.4). The results from the integral model are plotted as full curves
and the decay law and turbulent front as listed in the legend. The numerical results are for the case of a vortex
starting in turbulence (◦, red) or moving into turbulence (•). The experimental results are distinguished between
weak and strong vortices, � and �, respectively. The asymptotic expression (2.26) for strong turbulence is
compared against the integral model for sustained turbulence.

region and exponent for the turbulence growth listed. Three configurations are listed,
specifically decaying turbulence (n = −0.7), sustained turbulence (n = 0) and growing
turbulence (n = 2), with the later chosen to mimic the scenario of the vortex moving into
progressively stronger turbulence that occurs in the experiments.

The curves for decaying turbulence show the vortex penetration distance at t =
50R0/Uv0, while the remaining curves describe the ultimate penetration distance. The
numerical simulations were repeated with the vortex starting in turbulence (Xf /R0 < 0) to
contrast the case of a vortex moving into turbulence (Xf /R0 = 5). Starting in turbulence
meant that its influence on the vortex dynamics was rapid, reducing the penetration
distance, giving a consistent trend similar to the integral model, with the distance varying
approximately with I−1

t . The initial turbulence also affected the vortex stability
For turbulence whose intensity is sustained, the integral model recovers the asymptotic

result (2.26), where the penetration distance scales with I−1
t . This approximately linear

trend is also evident in the experimental results. There is scatter in measurements of the
penetration distance for intense turbulence (high It) which is expected when the spherical
vortex starts to interact with coherent structures shed from the oscillating bars. The
integral model is shown for n = 2, where the vortex moves into a region of turbulence
whose strength progressively increases in time. Although this does not match the spatial
dependence seen in figure 3, it does highlight the significant reduction of the penetration
distance (compared with decaying and forced turbulence) with a trend quite similar to the
experimental observations.

7. Conclusion

This paper provides a detailed theoretical and experimental study of the arrestment of a
spherical vortex penetrating a region of turbulence. The complexity of the new elements
required a combination of different techniques to unravel the key physics.
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An integral perspective of vortex dynamics in quiescent flow is able to reconcile the
far-field dipolar nature of the vortex flow with the near-field source flow generated by
entrainment and impulse loss. This result also holds for vortices moving in turbulence
because the turbulence is generally characterised by a negligible total impulse. The vortex
model of Maxworthy (1977) is extended to account for the effect of external turbulence
in terms of increased entrainment and reconciles the results from the numerical and
experimental studies. A modest level of background turbulence causes the vortex to slow
down more rapidly and grow faster, leading to a finite penetration distance that scales
with I−1

t . Ultimately, the vortex speed becomes comparable to the external turbulence,
after which the vortex stops and rapidly spreads as it is dispersed by the ambient
turbulence. The evolution the vortex has been assessed by tracking a large number of fluid
particles. This Lagrangian technique turns out to be a fruitful technique for understanding
vortex–turbulence interactions in the future. The consistent feature of the experimental
and theoretical model is the small growth rate of the vortex but a significant increase in
the loss of vortical fluid at the rear.

The paper has examined the impact of external turbulence on the vortex from an integral
perspective, specifically analysing the vortex’s movement and determining the penetration
distance. The distortion and modification of external turbulence are complex phenomena.
Disentangling these general flow processes will be the focus of our future research efforts.
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