
TPLP 24 (3): 533–559, 2024. © The Author(s), 2024. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S147106842400005X First published online 14 February 2024

533

Clingraph: A System for ASP-based Visualization∗

SUSANA HAHN
University of Potsdam, Potsdam, Germany Potassco Solutions, Potsdam, Germany

(e-mail: susana.hahn.martin.lunas@uni-potsdam.de)

ORKUNT SABUNCU
TED University, Ankara, Turkey Potassco Solutions, Potsdam, Germany

(e-mail: orkunt.sabuncu@tedu.edu.tr)

TORSTEN SCHAUB and TOBIAS STOLZMANN
University of Potsdam, Potsdam, Germany Potassco Solutions, Potsdam, Germany
(e-mails: torsten.schaub@uni-potsdam.de, tobias.stolzmann@uni-potsdam.de)

submitted 22 December 2022; revised 24 November 2023; accepted 08 January 2024

Abstract

We present the Answer Set Programming (ASP)-based visualization tool clingraph, which aims
at visualizing various concepts of ASP by means of ASP itself. This idea traces back to the
aspviz tool and clingraph redevelops and extends it in the context of modern ASP systems. More
precisely, clingraph takes graph specifications in terms of ASP facts and hands them over to the
graph visualization system graphviz. The use of ASP provides a great interface between logic
programs and/or answer sets and their visualization. Also, clingraph offers a Python application
programming interface (API) that extends this ease of interfacing to clingo’s API and in turn
to connect and monitor various aspects of the solving process.

KEYWORDS: logic programming methodology and applications, knowledge representation and
nonmonotonic reasoning

1 Introduction

With the advance of Answer Set Programming (ASP; Lifschitz 2019) into more and

more complex application domains, also the need for inspecting problems as well as their

solution increases significantly. The intrinsic difficulty lies in the fact that ASP constitutes

a general problem solving paradigm, whereas the wide spectrum of applications rather

calls for customized presentations.

We address this by taking up the basic idea of aspviz (Cliffe et al . 2008), to visualize

ASP by means of ASP itself, and extend it in the context of modern ASP systems.

The resulting system is called clingraph (v1.1.0).1,2 The common idea is to specify a

∗ This paper is an extended version of an article presented at LPNMR’22 ((Hahn et al . 2022)).
1 https://github.com/potassco/clingraph.
2 https://clingraph.readthedocs.io.
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1 node (1..6).

2 edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5).

3 edge(2,6). edge(3,4). edge(3,5). edge(5,6).

4 color(red; green; blue).

6 { assign(N, C) : color(C) } = 1 :- node(N).

7 :- edge(N, M), assign(N, C), assign(M, C).

9 #show node /1.

10 #show edge((N,M)) : edge(N, M).

11 #show attr(graph nodes, default, style, filled ).

12 #show attr(node, N, color, C) : assign(N, C).

Listing 1. Graph coloring instance, encoding, and display (color.lp).

visualization in terms of a logic program that defines special atoms capturing graphic

elements. This allows us to customize the presentation of an application domain by means

of ASP and thus to easily connect with the problem specification and its solutions.

The visualization in clingraph rests upon graph structures that are passed on to the

graph layout system graphviz.3 Graphviz layout programs process graph descriptions

written in a simple text language. We employ their python application programming

interface (API) to generate this description from an ASP representation. To this end,

clingraph takes – in its basic setting – a set of facts over predicates graph, node, edge,

and attr as input and produces an output visualizing the induced graph structure.

As a simple example, consider the graph coloring problem in Listing 1.4 The actual

problem instance and encoding are given in Lines 1–4 and 6–7, respectively. However,

of particular interest are Lines 9–12 that use #show directives to translate the resulting

graph colorings into clingraph’s input format. While Lines 9 and 10 account for the

underlying graph, the two remaining lines comprise instructions to graphviz. Line 11

fixes the layout of graph nodes. More interestingly, Line 12 translates the obtained graph

coloring to layout instructions for graphviz. Here, all entities are grouped under a default

graph labeled default (which can be changed via an option; similarly, graphs are taken

to be undirected unless changed by option --type).

Launching clingo so that only the resulting stable model is obtained as a set of facts

allows us to visualize the result via clingraph:

clingo --outf=0 -V0 --out -atomf =%s. color.lp | head -n1 | \

clingraph --out=render --format=png

The used options suppress clingo output and transform atoms into facts; the intermediate

UNIX command extracts the line comprising the stable model. Note that one can also

use a solver other than clingo to generate the stable model in the expected form. The

final call to clingraph produces a file in PNG format, shown in Figure 1.

Obviously, the above proceeding only reflects the very basic functionality of clingraph.

We elaborate upon its extended functionality in the next section and present a series of

illustrative cases studies in Section 3. They range from the visualization of stable models,

including animated dynamic solutions as well as interactive ones, over visualizing the

actual solving process, to the visual inspection of the structure of logic programs. Finally,

3 https://graphviz.org.
4 In this and other Listings, we include the name of the respective file in parentheses. This information
serves as a reference point when presenting command-line instructions.
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Fig. 1. Visualization of the (first) stable model of the logic program in Listing 1.

we present in Section 4 some support for generating strings by using a template engine.

We relate our approach to others’ and summarize it in Sections 5 and 6, respectively.

2 Clingraph

In its most basic setting, clingraph can be regarded as a front-end to graphviz that

relies on the fact format sketched above. In fact, the full-fledged version of the fact

format allows for specifying multiple graphs as well as subgraphs. The former is done

by supplying several instances of predicate graph/1 whose only argument provides an

identifier for regrouping all elements belonging to the graph at hand. To that effect, there

are also binary versions of predicates node and edge, whose second argument refers to

the encompassing graph. For example, the following facts describe n graphs, each with

one edge connecting two nodes.

1 id(1..n).

2 graph(g(X)) :- id(X).

3 node(n((a;b), X),g(X)) :- id(X).

4 edge((n(a,X),n(b,X)),g(X)) :- id(X).

Multiple graphs are of particular interest when visualizing dynamic domains, as in plan-

ning, where each graph may represent a state of the world. We illustrate this in Section 3

and show how the solution to a planning problem can be turned into an animation.

Subgraphs5 are specified by the binary version of predicate graph, whose second ar-

gument indicates the super-ordinate graph. For instance, replacing Line 2 above by the

following two rules makes g(X) a subgraph of g(X+1) for X=1..n-1.

graph(g(X)) :- id(X), not id(X+1).

graph(g(X),g(X+1)) :- id(X), id(X+1).

Clingraph allows for selecting designated graphs by supplying their identifier to option

--select-graph; several ones are selected by repeating the option with the respective

identifiers on the command line.

As exemplified in Listing 1, the quaternary predicate attr/4 describes properties of

graph elements; this includes all attributes of graphviz. The first argument fixes the type

5 Subgraphs correspond to clusters in graphviz.
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of the element, namely, graph, node, and edge, along with keywords graph_nodes and

graph_edges to refer to all nodes and edges of a graph, respectively. The second argument

gives the identifier of the element, and the last two provide the name and value of the

graphviz attribute. Some attributes, mainly labels, are often constructed by concatenating

multiple values. We simplify this burden by providing an integration with a template

engine to allow string formatting. In Section 4, we describe this extension in detail.

In order to avoid name clashes, clingraph offers the option --prefix to

change all graph-oriented predicates by prepending a common prefix. For instance,

--prefix=’viz-’ changes the dedicated predicate names to viz-graph, viz-node,

viz-edge, and viz-attr while maintaining their arities.

The more interesting use cases emerge by using visualization encodings. While in our

introductory example the latter was mimicked by #show statements, in general, a vi-

sualization encoding can be an arbitrary logic program producing atoms over the four

graph-oriented predicates. Obviously, when it comes to visualization, a given problem en-

coding can then be supplemented with a dedicated visualization encoding, whose output

is then visualized by clingraph as shown in the introductory section.

In practice, however, it turns out that this joint approach tends to slow down the

solving process significantly. Rather, it is often advantageous to resort to a sequential

approach, in which the stable models of the problem encoding are passed to a visualization

encoding. This use case is supported by clingraph with extra functionality when using

the ASP system clingo. More precisely, this functionality relies upon the clingo feature

to combine the output of a run, possibly comprising various stable models, in a single

json object.6 To this end, clingraph offers the option --select-model to select one or

multiple stable models from the json object. Multiple models are selected by repeating

the option with the respective number.

To illustrate this, let us replace Line 1 above by

{ id(1..n) } = 1.

to produce n stable models with one graph each, rather than a single model with n

graphs as above. The handover of all stable models of the resulting logic program in

multiple.lp to clingraph can then be done by the following command:

clingo --outf=2 -c n=10 0 multiple.lp | \

clingraph --out=tex --select -model =0 --select -model =9

The option --outf=2 instructs clingo to produce a single json object as output. We

request all 10 stable models via “-c n=10 0.” Then, clingraph produces a LATEX file

depicting the graphs described in the first and tenth stable model.

In the quite frequent case that the stable models are produced exclusively by

the problem encoding, an explicit visualization encoding can be supplied via option

--viz-encoding to make clingraph internally produce the graphic representation from

the given stable models employing the clingo API. To ease the development of visualiza-

tion encodings, clingraph also provides a set of external Python functions (see Section 3

for an example).

Just like clingraph’s input, also its output may consist of one or several graph repre-

sentations. The specific representation is controlled by option --out that can take the

following values:

6 https://www.json.org.
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• facts produces the facts obtained after preprocessing (default)

• dot produces graph representations in the language DOT

• render generates images with the rendering method of graphviz

• animate generates a GIF after rendering

• tex produces a LATEX file

The default option facts allows us to inspect the processed input to clingraph in fact

format. This involves the elimination of atoms irrelevant to clingraph as well as the

normalization of the graph representation (e.g., turning unary predicates node and edge

into binary ones, etc.). Options dot and tex result in text-based descriptions of graphs

in the languages DOT and LATEX. These formats allows for further postprocessing and

editing upon document integration. The LATEX file is produced with dot2tex.7 Arguments

to dot2tex can be passed through clingraph via --tex-param. At long last, the options

render and animate synthesize images for the graphs at hand. While the former aims

at generating one image per graph, the latter allows us to combine several graphs in

an animation. The format of a rendered graph is determined by option --format. The

option defaults to PDF and alternative formats include PNG and SVG (cf. Section 3.3).

Animation results in a GIF file. It is supported by options --fps to fix the number of

frames per second and --sort to fix the order of the graphs’ images in the resulting

animation. The latter provides a handful of alternatives to describe the order in terms

of the graph identifiers.

Also, it is worth mentioning that clingraph’s option --engine allows us to choose

among the eight layout engines of graphviz ;8 it defaults to dot which is optimized for

drawing directed graphs.

Last but not least, clingraph also offers an API for Python. Besides graphviz, it heavily

relies on clorm,9 a Python library providing an Object Relational Mapping (ORM) in-

terface to clingo. Accordingly, the major components of clingraph’s API are its Factbase

class, providing functionality for manipulating sets of facts via clorm, and the graphviz

package, gathering functionality for interfacing to graphviz. We refer the interested reader

to the API documentation for further details.10 In conjunction with clingo, the API can

be used for visualizing the solving process. Two natural interfaces for this are provided

by the on_model callback of clingo’s solve method as well clingo’s Propagator class. For

example, the former would allow for visualizing the intermediate stable models obtained

when converging to an optimal model during optimization. The latter provides an even

more fine-grained approach that allows for monitoring the search process by visualizing

partial assignments (cf. Section 3.4).

3 Case studies

In this section, we list several case studies as examples that showcase various features of

clingraph. Our first example, in Section 3.1, visualizes a solution of the well-known Queens

puzzle. The next one, in Section 3.2, aims at visualizing a dynamic problem of a robotic

7 https://dot2tex.readthedocs.io.
8 http://www.graphviz.org/docs/layouts.
9 https://github.com/potassco/clorm.

10 https://clingraph.readthedocs.io/en/latest/clingraph/api.html.
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1 1 { queen(I,1..n) } 1 :- I = 1..n.

2 1 { queen (1.. n,J) } 1 :- J = 1..n.

3 :- 2 { queen(D-J,J) }, D = 2..2*n.

4 :- 2 { queen(D+J,J) }, D = 1-n..n-1.

6 cell (1.. n,1..n).

Listing 2. Queens puzzle (queens.lp)

intra-logistics scenario where the resulting animation points out temporal aspects of the

problem. Then, in Section 3.3, we explore interactivity in visualizations via clingraph’s

SVG extension. Finally, the last two case studies concentrate on visualizing aspects other

than solutions of a problem. To that end, these approaches visualize the solving process

of the solver (Section 3.4) and the structure of the input program (Section 3.5).

Many of these case studies need complex attributes, mainly labels, which are composed

of various values. Thanks to the template engine integrated in clingraph, one can specify

such an attribute conveniently by a template string having variables. Then, separate

rules may set values of these variables in a modular way. Note that details on the usage

of templates can be found in Section 4.

The interested reader is referred for further details on these examples and many others

to clingraph’s distribution.11

3.1 Visualizing a solution of the Queens puzzle

As a first example, consider the encoding of the Queens puzzle in Listing 2.12 The idea

is to place n queens on an n × n chessboard so that no two queens attack one another.

A solution is captured by atoms over predicate queen/2. The one comprised in the first

stable model of queens.lp for n=5 is depicted in Figure 2. First of all, we note that the

actual graph is laid out as a 5×5 grid of white and gray squares. Each atom queen(x,y)

is then represented by putting the symbol Q on the square with coordinate (x, y). All

other squares are simply labeled with their actual coordinate.

The visualization encoding producing the chessboard in Figure 2 is given in Listing 3;

it is used to generate the PDF in Figure 2 in the following way.

clingo queens.lp -c n=5 --outf=2 | \

clingraph --viz -encoding=viz.lp --out=render --engine=neato

To better understand the visualization encoding, it is important to realize that we use

neato as layout engine, since it is better-suited for dealing with coordinates than the

default engine dot.

Let us now have a closer look at the encoding in Listing 3. Interestingly, our graph

consists of nodes only; no edges are provided. This is because nodes are explicitly posi-

tioned, and no edges are needed to connect them. More precisely, one node is introduced

in Line 1 for each cell of the chessboard.13 The remainder of the encoding is concerned

11 https://github.com/potassco/clingraph/tree/master/examples.
12 https://github.com/potassco/clingraph/tree/master/examples/queens.
13 Strictly speaking, the definition of predicate cell/2 belongs to the visualization encoding. Nonetheless,

we add it to the problem encoding since the dimension of the board, viz. n, is unavailable in the
visualization encoding. This is a drawback of the sequential approach: information must be shared via
the stable models.
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Fig. 2. Visualization of (first) stable model of the logic program in Listing 2.

1 node((X,Y)):- cell(X,Y).

3 attr(node,(X,Y),width,1 ):- cell(X,Y).

4 attr(node,(X,Y),shape,square ):- cell(X,Y).

5 attr(node,(X,Y),style,filled ):- cell(X,Y).

6 attr(node,(X,Y),fillcolor,gray ):- cell(X,Y),(X+Y)\2 = 0.

7 attr(node,(X,Y),fillcolor,white ):- cell(X,Y),(X+Y)\2 != 0.

8 attr(node,(X,Y),fontsize,"50"):- queen(X,Y).

9 attr(node,(X,Y),label,"Q") :- queen(X,Y).

10 attr(node,(X,Y),pos,@pos(X,Y)):- cell(X,Y).

Listing 3. Visualization encoding for Queens puzzle (viz.lp)

with the layout and positioning of each individual node, as reflected by the first and sec-

ond argument of all remaining atoms over attr/4. This is done in a straightforward way

in Lines 3–5 to fix the width, shape, and style of each node. Lines 6 and 7 care about

the alternating coloration of nodes, depending on whether the sum of their coordinates is

even or odd. The next two lines deal with cells occupied by queens. Unlike the previous

rules that only refer to the problem instance, here the derived attributes depend on the

obtained solution. That is, for each atom queen(x,y), Line 8 fixes the fontsize of the

label Q attributed to node (x,y) in Line 9. Whenever no label is given to a node, its

name is used instead, as witnessed by Figure 2. Finally, Line 10 handles the positioning of

nodes. In neato, positions are formatted by two comma-separated numbers and entered

in a node’s pos attribute. If an exclamation mark “!’’ is given as a suffix, the node is also

pinned down. The necessary transformation from pairs of terms is implemented by the

external Python function pos(x,y) provided by clingraph. This function turns a node

https://doi.org/10.1017/S147106842400005X Published online by Cambridge University Press
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identifier (x,y) into a string of form "x,y!". For each node, the result is then inserted

as the fourth argument of predicate attr/4 in Line 10.

3.2 Visualizing dynamic problems

As a second example, let us look at a dynamic problem whose solutions can be visualized

in terms of animations. To this end, we have chosen a robotic intra-logistics scenario

from the asprilo framework (Gebser et al . 2018). This scenario amounts to an extended

multi-agent pathfinding problem having robots transport shelves to picking stations and

back somewhere. The goal is to satisfy a batch of orders by transporting shelves covering

all requested products to the picking station. For brevity, we do not reproduce the actual

problem encoding14 here and rather restrict our attention to the input to the visualization

encoding. The input consists of action and fluent atoms accounting for a solution and

how it progresses the problem scenario over time, namely,

• move(robot(r),(dx,dy),t)
15 and

• position(o,(x,y),t) for o among robot(r), shelf(s), and station(p).

A move atom indicates that a robot r moves in the cardinal direction (dx,dy) at time

step t (for dx, dy ∈ {−1, 0, 1} such that |dx + dy| = 1). A position atom tells us that

object o is at position (x,y) at time step t. All atoms sharing a common time step

capture a state induced by the resulting plan.

The idea of the visualization encoding is now to depict a sequence of such states by

combining the visualizations of individual states in an animation. Each state is repre-

sented by a graph that lays out the grid structure of a warehouse. We use consecutive

time steps to identify and to order these graphs. This results in an atom graph(t) for

each time step t. Similarly, we identify nodes with their coordinate along with a times-

tamp. This is necessary because nodes require a unique identifier across all (sub)graphs.

As well, we use edges indexed by time steps to trace (the last) movements:

• node(((x,y),t),t)

• edge((((x′,y′),t),((x′ + dx,y
′ + dy),t)),t)

The first atom expresses that node ((x,y),t) belongs to graph t. Similarly, the second

one tells us that the edge from node ((x′,y′),t) to node ((x′ + dx,y
′ + dy),t) belongs

to graph t. It is induced by an action move(robot(r),(dx,dy),t) and its precondition

position(robot(r),(x′,y′),t− 1).

Having settled the representation of graphs along with their nodes and edges, the rest

of the visualization encoding mainly deals with setting their attributes.

To see this, consider Table 1, giving excerpts of the actual visualization encoding (using

line numbers in the full encoding; lines in between have been dropped for brevity).16

The definition of graphs, nodes, and edges is given in Lines 19, 27, and 30–31. Let us

discuss the remaining lines of interest of viz-asprilo.lp by inspecting some features of

a visualization, produced as follows.

14 https://github.com/potassco/asprilo-encodings.
15 We refrain from visualizing pickup and putdown actions, and rather represent them implicitly.
16 https://github.com/potassco/clingraph/tree/master/examples/asprilo.
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Table 1. Selected lines from the visualization encoding for an asprilo scenario (viz-asprilo.lp).

10 free(P,T) :- not position( ,P,T), position(P), step(T).

12 occo(P,T,robot(R)) :- position(robot(R),P,T),
13 not position(station( ),P,T),
14 not position(shelf( ),P,T).

19 graph(T) :- step(T).

27 node((P,T),T) :- position(P), step(T).

30 edge (((( X,Y),T),((X+DX,Y+DY),T)),T) :- move(robot(R),(DX,DY),T),
31 position(robot(R),(X,Y),T -1).

39 attr(node,(P,T),label,"R{{ robot }}") :- position(robot(R),P,T), not position(shelf( ),P,T).
40 attr(node,(P,T),label,"S{{ shelf }}") :- not position(robot( ),P,T), position(shelf(S),P,T).
41 attr(node,(P,T),label,"R{{ robot }}S{{ shelf }}") :- position(robot(R),P,T),
42 position(shelf(S),P,T).
43 attr(node,(P,T),(label,robot),R) :- position(robot(R),P,T).
44 attr(node,(P,T),(label,shelf),S) :- position(shelf(S),P,T).

47 attr(node,(P,T),shape,"point") :- free(P,T).

50 attr(node,(P,T),shape,"circle") :- occo(P,T,robot( )).

53 attr(node,(P,T),color,white) :- free(P,T).

59 attr(node,(P,T),colorscheme,"blues9") :- occo(P,T,robot( )).
60 attr(node,(P,T),fillcolor,R) :- occo(P,T,robot(R)).
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clingo asprilo.lp instance.lp -c horizon =19 --outf=2 | \

clingraph --viz -encoding=viz -asprilo.lp --engine=neato | \

--out=animate --sort=asc -int | \

--select -model =0 --type=digraph

The initial call to clingo takes the problem encoding and instance and yields a plan

of length 19, executed on a 7 × 7 grid with three robots, three shelves, and one pick-

ing station. The individual 20 images underlying the resulting animation are given in

Figure 3. In these images, robots are represented by solid blue circles, shelves by solid

orange squares, and the only picking station by a solid green circle. The initial frame

of the animation shows all three robots positioned in the lower left corner. Subsequent

images depict the robots’ movements, indicated by black arrows, as they approach their

respective shelves. In the fifth image, robot 3 reaches shelf 1, prompting an update of

the labels to signify their shared location. The act of picking up the shelf is visually rep-

resented in the sixth image by a thicker border added around the shelf. Succeeding steps

will show how both robot and shelf move together until they reach the picking station.

The movements of the remaining robots unfold in a similar fashion.

Let us explain how this works in the visualization encoding by focusing on unoccu-

pied nodes and robots; shelves and picking stations are treated analogously. An un-

occupied position p at a time step t is captured by free(p,t) in Line 10. Similarly,

occo(p,t,robot(r)) tells us that robot r is the only object on position p at a time step

t. This is thus neither derivable when a robot is under a shelf, carrying one, or at a

picking station. With this in mind, we see that Lines 47 and 53 depict a position as a

circle on a white node (plus omitted details) whenever the position is free. And, analo-

gously Lines 50, 59, and 60 represent solitary robots by solid blue circles. Here, robots

are differentiated using multiple shades of blue via the graphviz attribute colorscheme,

where each robot selects one color option using an integer in attribute fillcolor. Once

a robot shares a position with a shelf or picking station, the graphical representation

changes (and instead the robot adopts the one of the shelf or picking station).

Moreover, a robot’s label changes whenever it is under a shelf or carries one. This

is handled in Lines 39–44. A template (cf. Section 4) is selected depending on whether

there is a robot, a shelf, or both in the corresponding position (Lines 39, 40, and 41 to

42, respectively). The variables robot and shelf, used in the templates, are defined in

Lines 43 and 44, respectively.

3.3 Scalable Vector Graphics and interactivity

An image format of particular interest is the Scalable Vector Graphics (SVG)17 format as

it supports interactivity. More precisely, SVG is a text-based web standard for describing

images in XML format integrated with Cascading Style Sheets (CSS) and JavaScript.

In order to allow for interactive actions on graphic elements, we extend the SVG capa-

bilities supported by graphviz. Our extension is implemented in JavaScript; it listens to

events being performed on an element and reacts by changing a CSS style property on

another element. To this end, the class attribute assigned to an element defines how the

element changes on a given event: click, mouseenter, mouseleave, and contextmenu

17 https://www.w3.org/TR/SVG/Overview.html.
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Fig. 3. Individual graph representations making up an animated plan.

(right click). Notably, all interaction is single-shot. That is, the resulting SVG file is gen-

erated once by a single call to clingo and no further interplay with the solver is possible.

Therefore, all information for interactivity needs to be rendered in the same SVG file

and no information of what actions are taken can be returned to the solver.

For illustration, we visualize the mouse-driven expansion of simple trees, defined

by predicates node/1, parent/2, and root/1 (see Listing 5 for an example). The
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1 attr(node,X,style,"filled") :- node(X).
2 edge((X,Y)) :- parent(X,Y).

4 react(node,X,X) :- node(X).
5 react(node,Y,X) :- edge((X,Y)).
6 react(edge,(X,Y),X) :- edge((X,Y)).

8 attr(node,X,class,@svg init(" visibility ","hidden")) :- node(X), not root(X).
9 attr(edge,E,class,@svg init(" visibility ","hidden")) :- edge(E).

10 attr(T,E,class,@svg("click",X," visibility ","visible")) :- react(T,E,X).
11 attr(T,E,class,@svg(" mouseenter ",X,"opacity","1")) :- react(T,E,X).
12 attr(T,E,class,@svg(" mouseleave ",X,"opacity","0.2")) :- react(T,E,X).

Listing 4. Specification of interaction on trees based on clingraph’s SVG capabilities

(tree-viz.lp)

1 root(a).

2 node(a). node(b). node(c). node(d). node(e). node(f).

3 parent(a,b). parent(a,d). parent(b,c). parent(b,e). parent(d,f).

Listing 5. Facts representing a simple tree (mytree.lp)

corresponding visualization encoding is given in Listing 4. Line 1 adds a filled style

to the nodes and Line 2 generates an edge for each instance of predicate parent/2.

Lines 4–6 assign the reactions based on the underlying graph element using atoms of

form react(t,e1,e2) that are read as: “element e1 of type t reacts to actions on element

e2”. These atoms affect the visibility and opacity of nodes. For instance, Line 5 tells us

that if there is an edge from X to Y then node Y reacts to actions on X. Lines 8–12 define the

interactivity of the elements by assigning their class attribute to a formatted string. This

string is handled by our extension, while the formatting of the strings is done by func-

tions @svg_init(property,value) and @svg(event,element,property,value). For

instance, in Lines 8 and 9, function @svg_init is used to express that node X and edge E

have the initial value hidden for property visibility. Line 10 states that an element E

changes the value of the CSS property visibility to visible when X is clicked. The

function @svg generates the string clicked___X___visibility___visible which is as-

signed as a class of E in the SVG file. The string is then parsed by our extension and

mapped into the JavaScript method addEventListener to react when X is clicked. Simi-

larly, Lines 11 and 12 define that an element E changes the value of opacity to 1 or 0.2,

whenever the mouse enters or leaves element X, respectively.

As an example, consider the simple tree represented as facts in Listing 5. Together

with the visualization encoding in Listing 4, it can be turned into an interactive image

in SVG format by means of the following command:
clingraph mytree.lp --viz -encoding=tree -viz.lp --out=render --format=svg

A possible user interaction via mouse actions is indicated in Figure 4 via a series of

snapshots.

While the simple black pointer highlights positions of interest, the one with surrounded

by lines indicates a previous click. Each such click leads to the expansion of the tree by

the succeeding nodes. Note how the opacity of a node and its subnodes changes whenever

the pointer hovers over and away from it, respectively.

The transformation of graphviz into SVG uses the group element <g> to group all

elements related to a node or edge. Since only these group elements can be indexed

in JavaScript, the CSS style properties are set on the SVG group. This results in the
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Fig. 4. Example user interaction via mouse actions expanding the tree.

1 attr(node,(X,Y),fillcolor,@svg color ()) :- cell(X,Y).

3 attr(node,(X,Y),class,@svg init("color","gray")) :- cell(X,Y), (X+Y)\2 != 0.
4 attr(node,(X,Y),class,@svg init("color","white")) :- cell(X,Y), (X+Y)\2 == 0.
5 attr(node,C,class,@svg(" mouseenter ",Q,"color","red")) :- attack(Q,C).
6 attr(node,(X,Y),class,@svg(" mouseleave ",Q,"color","gray")) :- attack(Q,(X,Y)),
7 (X+Y)\2 != 0.
8 attr(node,(X,Y),class,@svg(" mouseleave ",Q,"color","white")) :- attack(Q,(X,Y)),
9 (X+Y)\2 == 0.

Listing 6. SVG interactive queens (svg-queens.lp)

limitation that CSS style properties are not overwritten on the elements contained in

the group. Thus, many property changes have no impact. In particular, this issue leads

to problems when changing the color of elements. To address this issue, we offer a

workaround for changing colors dynamically. That is, we provide the function @svg_color

to represent the CSS value currentcolor. This can be used with any graphviz color at-

tribute, such as color, fillcolor, and fontcolor, and serves as a placeholder for the

color set using the SVG class.

For illustrating this functionality, Listing 6 extends the queens example with interactive

elements for visualizing all cells attacked by a queen once it is hovered over by the mouse

pointer. To this end, we replace Lines 6 and 7 in the visualization encoding in Listing 2

by Line 1 in Listing 6 to use the color set by the interactions specified in the following

lines. Lines 3 and 4 set the initial color of the nodes to gray and white, respectively.

Line 5 adds functionality to a node C attacked by queen Q so that the color is set to red

when the mouse enters Q. When the mouse leaves Q, Lines 7 and 9 set the color back

to the original value. We illustrate this by means of three snapshots in Figure 5. In the

one on the left, the mouse pointer hovers over position (2,2). Accordingly, all cells on the

same row, column, and diagonals are colored in red. The same happens in the two other

scenarios, though initiated from position (5,1) and (1,4), respectively.

The approach has further limitations. For example, labels are independent of a CSS

style and thus cannot be changed interactively. A way around this is to create multiple

layers of nodes with the same position and change their visibility.18 However, we have no

control over which elements appear on top and which on the bottom. Rather this must

be handled manually by assuring that only a single element is visible in each position at

each time. Another issue is that the position of all elements is fixed; therefore, expanding

the size of the image on demand is impossible, only its visibility can be changed.

3.4 Visualizing the solving process of a Sudoku puzzle

Up to now, all case studies take answer sets as input for visualization. For the next

example, however, we visualize partial assignments appearing during the search process

18 A nice example for this is the minesweeper puzzle given at https://github.com/potassco/clingraph/
tree/master/examples/minesweeper.
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Fig. 5. Three snapshots of the user hovering the mouse pointer over specific cells on the board.

of clingo. Specifically, we discuss a visualization of the solving process of a Sudoku puzzle.

To this end, we rely on clingo’s capability of integrating user-defined propagators19 into

the solving process and use clingraph’s API for streamlining the declarative visualization

of partial assignments.

In Table 2, we provide a generic propagator that can be used directly to monitor solving

or as a template to create a domain-specific propagator. Basically, ClingraphPropagator

class implements the user-defined propagator interface expected by clingo’s Python API.

Its instance variables are initialized in Lines 10–12. The viz_encoding variable holds the

path of the visualization encoding specific to the problem domain. The propagator uses

this encoding to generate the facts defining the graph to visualize each partial assignment,

which are stored in the factbases list. Additionally, the instance variable l2s maps

each literal used internally by clingo to the corresponding list of atomic symbols from

the problem encoding. Specifically, this mapping is formed in Line 17, just before solving

process starts, when clingo calls the init function (Line 14) of ClingraphPropagator.

Note that in Line 18 the propagator requests the solver to be notified when the truth value

of these internal literals changes. Hence, with the help of l2s, the propagator functions

can find the corresponding atoms of a solver literal whose truth value has changed during

solving.

The main functionality of the propagator is to compile and prepare partial assign-

ments appearing during various stages of the search process as reified atoms, which are

passed to the visualization encoding. Such facts are of the form _true(a), _false(a)

and _undefined(a) for each atom a if it is assigned to true, false or neither in the

current partial assignment, respectively. The key stages account for times when clingo

reaches a fixpoint during unit propagation; decides on a literal; or faces a conflict and is

about to backtrack. In each situation, clingo calls the corresponding propagator function

propagate (Line 20), decide (Line 51) or undo (Line 35), respectively, and makes the

partial assignment accessible to them. Hence, these functions are suitable for preparing

the reified atoms of the partial assignment at the time of the call. In the propagate func-

tion, for instance, these facts are generated in Lines 23–27 and functions decide and undo

have the same corresponding statements. Note that for each solver literal, corresponding

atoms are found via the mapping l2s and truth values of such atoms are queried in

19 https://potassco.org/clingo/python-api/current/clingo/propagator.html.
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Table 2. The propagator class for visualizing solving

8 class ClingraphPropagator:
9 def init (self, viz encoding ):

10 self.viz encoding = viz encoding
11 self.factbases = []
12 self.l2s = {}

14 def init(self, init): ...
15 for atom in init.symbolic atoms:
16 lit = init.solver literal(atom.literal)
17 self.l2s.setdefault(lit, []). append(str(atom.symbol))
18 init.add watch(lit)

20 def propagate(self, ctl, changes ):
21 i = len(self.factbases)
22 propagation prg = [f" step type( propagate, {i}).", f" level ({ ctl. assignment .decision level })."]
23 for l,symbols in self.l2s.items ():
24 v = ctl.assignment.value(l)
25 t = ’ undefined ’ if v is None else ’ true ’ if v else ’ false ’
26 for s in symbols:
27 propagation prg.append(f"{t}({s}).")
28 for l in changes:
29 symbols = self.l2s[l]
30 for s in symbols:
31 propagation prg.append(f" change ({s}).")
32 self.add factbase(propagation prg)
33 return True

35 def undo(self, solver id, assign, undo):
36 i = len(self.factbases)
37 propagation prg = [f" step type(undo,{i}).", f" level ({ assign.decision level })."]

39 for l,symbols in self.l2s.items ():
40 v = assign.value(l)
41 t = ’ undefined ’ if v is None else ’ true ’ if v else ’ false ’
42 for s in symbols:
43 propagation prg.append(f"{t}({s}).")
44 for l in undo:
45 symbols = self.l2s[l]
46 for s in symbols:
47 propagation prg.append(f" change ({s}).")

49 self.add factbase(propagation prg)
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Table 2. Continued

51 def decide(self, thread id, assign, fallback ):
52 i = len(self.factbases)
53 propagation prg = [f" step type(decide,{i}).", f" level ({ assign.decision level })."]

55 for l,symbols in self.l2s.items ():
56 v = assign.value(l)
57 t = ’ undefined ’ if v is None else ’ true ’ if v else ’ false ’
58 for s in symbols:
59 propagation prg.append(f"{t}({s}).")
60 if abs(fallback) in self.l2s:
61 for s in self.l2s[abs(fallback )]:
62 pol = "pos" if fallback > 0 else "neg"
63 propagation prg.append(f" decide ({s},{pol }).")

65 self.add factbase(propagation prg)
66 return 0

68 def add factbase(self, prg list):
69 fb = Factbase ()
70 ctl = Control ([])
71 ctl.load(self.viz encoding)
72 ctl.add("base",[],"".join(prg list))
73 ctl.ground ([("base",[])] ,ClingraphContext ())
74 ctl.solve(on model=fb.add model)
75 self.factbases.append(fb)
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the current partial assignment in Line 24. Additionally, in each stage we generate the

fact _step_type(t,i) where t is either propagate, decide or undo, and i is a natural

number identifying the solving step (in Lines 22, 37, and 53). Such facts are required

not only to designate the type of the current stage but also to order the visualization of

each generated partial assignment. This ordering allows us to represent clingo’s solving

process by combining individual graphs as an animation. The functions propagate and

undo generate additional facts of the form _change(a), where the truth value assignment

to atom a has changed during the propagation (Lines 28–31) or will be undone during

backtracking (Lines 44–47), respectively. Similarly, the function decide generates a rei-

fied fact of the form _decide(a,p) in Lines 60–63 to represent clingo chooses atom a to

have a truth value of true or false depending on p being pos or neg, at a decision point,

respectively.

For each solving stage, we process the reified atoms of the active partial assignment

with the problem domain’s visualization encoding to generate the facts defining the graph.

This is achieved by calling the add_factbase function defined in Lines 68–75 at the end

of each solving stage. Each resulting graph facts gets stored in a Factbase object of

clingraph’s API in Line 75. Once clingo’s solving is done, we process all Factbase objects

accumulated in the propagator using clingraph to generate individual graphs for each

of the partial assignments. Finally, we combine these graphs to generate an animation

of clingo’s solving process. Unlike the previous examples, we rely on clingraph’s API

functions (eg., compute_graphs and save_gif) to carry out these tasks.

To illustrate the process described above, we use the Sudoku puzzle from clingraph’s

examples folder.20 In this encoding, we use predicate sudoku(x,y,v) to represent a cell

with coordinates (x,y) in a 9 × 9 grid with an assigned digit v from 1 to 9. A cell can

have an initial value defined in the instance by predicate initial(x,y,v) or it can be

empty if no such predicate appears. Then, the problem encoding and instance are handed

to clingo’s solving process which is observed by our propagator. Partial assignments

accumulated by the propagator are passed to the visualization encoding, which is shown

in Table 3. Additionally, Figure 6 depicts the resulting animation’s key frames visualizing

the partial assignments reached during solving.

Let us now examine how the frames from Figure 6 are constructed. Each cell with an

initial value is visualized by setting the corresponding digit as the label of its node (rule

in Line 39 from Table 3) and using a relatively larger font size (rule in Line 38). These

rules have the reified literal _true(initial(X,Y,V)) in the body to represent cells with

initial values. Notice that facts appearing in the problem input, such as initial(X,Y,V),

will always have their truth value set to true. For each node of an empty cell, we construct

an HTML-like label that allows us to use rich visual elements like tables with different

borders and background colors. In order to ease constructing long HTML-like labels, we

rely on template strings (see Section 4). Let us first cover empty cells that must be filled

with one specific digit. The HTML-like label for such a cell represents a table having

only one slot for the respective digit. The rule in Lines 43–48 generates such a label

as a template string by concatenating the constituent strings using the concat external

function provided by clingraph. Note that the rule body designates an initially empty cell

(captured by the body literal not _true(initial(X,Y,_))) that must be filled with a

20 https://github.com/potassco/clingraph/tree/master/examples/propagator/sudoku.
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Table 3. Selected lines from the encoding visualizing Sudoku solving (viz-sudoku-solving.lp)

38 attr(node, pos(X,Y), fontsize,40 ) :- true(initial(X,Y,V )).
39 attr(node, pos(X,Y), label, V ) :- true(initial(X,Y,V )).

42 attr(node, pos(X,Y), fontsize, 20) :- true(sudoku(X,Y,V)), not true(initial(X,Y, )).
43 attr(node, pos(X,Y), label, @concat("<<table BORDER=’0’>",
44 "<tr ><td BGCOLOR =’{{ color[",V,"]}}{{ opacity[",V,"]}}’",
45 " BORDER =’{{ border[",V,"]}}’>",
46 "{{ value[",V,"]}}",
47 " </td ></tr ></table >>")) :-
48 true(sudoku(X,Y,V)), not true(initial(X,Y, )).

52 attr(node, pos(X,Y), label, @concat("<<table BORDER=’0’>",
53 "<tr >",
54 "<td BGCOLOR =’{{ color [1]}}{{ opacity [1]}} ’ BORDER =’{{ border [1]}} ’ >{{ value [1]}} </td >",
55 "<td BGCOLOR =’{{ color [2]}}{{ opacity [2]}} ’ BORDER =’{{ border [2]}} ’ >{{ value [2]}} </td >",
56 "<td BGCOLOR =’{{ color [3]}}{{ opacity [3]}} ’ BORDER =’{{ border [3]}} ’ >{{ value [3]}} </td >",
57 " </tr >",
58 "<tr >",
59 "<td BGCOLOR =’{{ color [4]}}{{ opacity [4]}} ’ BORDER =’{{ border [4]}} ’ >{{ value [4]}} </td >",
60 "<td BGCOLOR =’{{ color [5]}}{{ opacity [5]}} ’ BORDER =’{{ border [5]}} ’ >{{ value [5]}} </td >",
61 "<td BGCOLOR =’{{ color [6]}}{{ opacity [6]}} ’ BORDER =’{{ border [6]}} ’ >{{ value [6]}} </td >",
62 " </tr >",
63 "<tr >",
64 "<td BGCOLOR =’{{ color [7]}}{{ opacity [7]}} ’ BORDER =’{{ border [7]}} ’ >{{ value [7]}} </td >",
65 "<td BGCOLOR =’{{ color [8]}}{{ opacity [8]}} ’ BORDER =’{{ border [8]}} ’ >{{ value [8]}} </td >",
66 "<td BGCOLOR =’{{ color [9]}}{{ opacity [9]}} ’ BORDER =’{{ border [9]}} ’ >{{ value [9]}} </td >",
67 " </tr >",
68 " </table >>")) :-
69 true(pos(X,Y)), not true(initial(X,Y, )), not true(sudoku(X,Y, )).

74 attr(node, pos(X,Y), (label,opacity,V), 25 ) :- not change(sudoku(X,Y,V)),
75 not decide(sudoku(X,Y,V), ), true(sudoku(X,Y,V )).
76 attr(node, pos(X,Y), (label,opacity,V), "00") :- not true(sudoku(X,Y,V)),
77 not decide(sudoku(X,Y,V),neg), true(pos(X,Y)), value(V).

80 attr(node, pos(X,Y), (label,border,V), 1) :- decide(sudoku(X,Y,V), ).
81 attr(node, pos(X,Y), (label,border,V), 0) :- not decide(sudoku(X,Y,V), ),
82 true(pos(X,Y)), value(V).

85 attr(node, pos(X,Y), (label,color,V), white) :- not true(sudoku(X,Y,V)),
86 not decide(sudoku(X,Y,V), ), true(pos(X,Y)), value(V).
87 attr(node, pos(X,Y), (label,color,V), green) :- true(sudoku(X,Y,V )).
88 attr(node, pos(X,Y), (label,color,V), red ) :- decide(sudoku(X,Y,V),neg).
89 attr(node, pos(X,Y), (label,color,V), green) :- decide(sudoku(X,Y,V),pos).
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Table 3. Continued

92 attr(node, pos(X,Y), (label,value,V), V ) :- true(sudoku(X,Y,V )).
93 attr(node, pos(X,Y), (label,value,V), V ) :- undefined(sudoku(X,Y,V )).
94 attr(node, pos(X,Y), (label,value,V), "") :- false(sudoku(X,Y,V )).
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Fig. 6. Visualizations of the stages while solving a Sudoku puzzle.

specific digit (_true(sudoku(X,Y,V))). We set the font size of these cells via the rule in

Line 42. An example of this can be found on the third cell in the topmost row of the top

leftmost graph in Figure 6, where this initially empty cell is now filled with digit 4 with

dark green background. For adding style to such cells, the label template uses variables

to represent the color, opacity, border, and value. The values for these variables are

obtained through different rules that generate atoms over attr/4. For this specific cell,

the RGB code of dark green as the value of variable color[V] is set via the rule in

Line 87. Furthermore, the rule in Lines 81–82 assigns value 0 to variable border[V] to

avoid setting borders and the rule in Line 92 assigns 4 to value[V]. We also add opacity

to the background color codes to highlight changes in the current partial assignment from

the ones propagated in previous assignments by reducing the opacity of older ones. In this

specific cell, since variable opacity[V] gets empty string as a default value due to absence

of any rule generating a specific value for the variable, the opacity of the background color

is not modified. The same cell but in the following graph, has a light green background
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color, which designates that clingo filled it in an earlier propagation step. In order to

generate the light green color, in that step variable opacity[V] gets its value 25 via the

rule in Lines 74–75. Note that its body literal not _change(sudoku(X,Y,V)) captures

the respective cell is not filled in the current partial assignment. These rules generating

variable values are also used for the Sudoku cells that have multiple options. We describe

such cells below.

The remaining type of cells are those initially empty cells in which more than one digit

may appear in a partial assignment. Their HTML-like label represents a 3× 3 table allow-

ing a slot for each digit from 1 to 9. Our aim is to visualize digits that can possibly appear

in such a cell in this tabular form. For instance, the top leftmost graph shows that either 2,

5 or 8 can be placed in the first cell. The rule in Lines 52–69 constructs the label as a tem-

plate string representing the 3 × 3 table. The body literal not _true(sudoku(X,Y,_))

captures these initially empty cells with multiple options. Consider clingo has reasoned

that digit d from 1 to 9 cannot appear in an empty cell (x, y) in a partial assignment,

which is represented by the reified fact _false(sudoku(x,y,d)) generated by the prop-

agator (e.g., _false(sudoku(1,9,1)) for the cell mentioned above). We do not show

d in its respective slot. To this end, template variable value[d] is assigned to empty

string via the rule in Line 94. Additionally, its transparent background color is controlled

via rules in Lines 85–86 and in Lines 76–77 by setting white to variable color[d] and

"00" to variable opacity[d], respectively. Also consider clingo may be undecided on

whether digit d is the value of the empty cell or not (e.g., digits 2, 5, and 8 for the cell

mentioned above). This is reflected by the fact _undefined(sudoku(x,y,d)) generated

by the propagator for a partial assignment. We show d in its respective slot by setting

variable value[d] to d this time via the rule in Line 93. Its transparent background is set

via the same rules in Lines 85–86 and Lines 76–77. We can also visualize whenever the

propagation during solving reaches a fixpoint, and clingo may decide on a truth value of

an undefined atom to continue search. For instance, the second graph in the first row of

Figure 6 shows such a decision point as digit 5 in red background with a border where

clingo selects the atom sudoku(4,2,5) to be false. Its background color and border are

set via rules in Lines 88 and 80, respectively. Whenever clingo selects an atom to be true

at a decision point, we visualize it as green (rule in Line 89).

Ultimately, our animation allows us to analyze different aspects of the solving process

of the Sudoku. For instance, the first graph illustrates that during the initial propagation

clingo already fills many cells with digits (those having digits with green background)

and constrains the remaining empty cells that only possible digits are shown. This can

be an indicator of how simple the Sudoku instance is. Finally, when we reach the last

graph (bottom rightmost) passing through various stages of solving in order, we get an

answer set representing a solution of the puzzle instance.

3.5 Visualizing the program structure

So far, we have visualized the solving process, input, and/or result of a program. However,

we may also visualize information about the program itself. In this section, we concentrate

on the abstract syntax tree (AST) of a program, as it is accessible via the clingo.ast

module of clingo’s Python API. Visualizing a program’s AST eases the understanding

of its internal structure. This is of particular interest when dealing with non-ground
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1 ast node (875 ,type,"AST").

2 ast node (875 ,variant,"Rule").

3 ast node (875 ,value,"#false :- edge(N,M), assign(N,C),

4 assign(M,C).").

5 ast edge ((875 ,885),key,"head").

6 ast edge ((875 ,898),key,"body").

Listing 7. Partial translation of the program in Listing 1 into our intermediate fact

format

programs. To this end, we follow a three-stage process. First, we translate the AST into

an intermediate fact format using a simple Python script called reify_ast.py. Then, we

employ a visualization encoding to convert these facts into clingraph’s format. Finally, we

run clingraph to render the graph. All examples can be found in clingraph’s repository.21

Our intermediate fact format uses two predicates: ast_node/3 and ast_edge/3 repre-

sent the nodes and edges in an AST. These predicates are meant to be semantic triples,

linking a subject, in our case a node or edge, via a key to a value. This is inspired by

the representation of graph data, as used in the Resource Description Framework22. To

illustrate how ASTs are stored in terms of triples, let us look at the translation of the

program in Listing 1. It is partially depicted in Listing 7 and may be obtained by running

reify_ast.py color.lp.

Nodes are represented by unique integers which are arbitrarily chosen by our script.

Edges are identified using the integers of the adjacent nodes. Line 1 tells us that a

node 875 exists and that it stands for an instance of the class clingo.ast.AST in the

Python API of clingo. The other possible types are ASTSequence, Location, Position,

Symbol, int, str and None. They cover the respective classes in clingo.ast and the

necessary basic types in Python. If the type of a node is AST, declaring a variant as

in Line 2 is mandatory. The variant reflects the clingo.ast.ASTType of each instance

of clingo.ast.AST. The possible variants include Rule, Variable, SymbolicAtom, and

many more. Line 4 assigns a value to node 875, in this case a string representing the rule

represented by node 875. Lines 5 and 6 reflect two outgoing edges of node 875, named

head and body. As the names suggest, these edges point to nodes capturing the head

and body of the rule.

In order to translate the output of our script into the input format of clingraph, we

employ a visualization encoding, assembling an HTML-like label including all the data

stored in the semantic triples. Its main component is the template (see Section 4) shown

in Listing 8 from Lines 10 to 23. Given that even small programs have large syntax

trees, our encoding provides functionalities (Lines 1–5) to show and hide subtrees. For

instance, using ast_show(node, 875). guarantees that only the subtree of node 875 is

shown, while the rule

ast_hide(edge , I) :- ast_edge(I, _, _), I = (_, I2),

ast_node(I2, type , "Location ").

allows us to hide any subtree that is rooted at a node of type Location. Calling

reify_ast.py color.lp | clingraph --viz -encoding=viz -ast.lp \

--type=digraph \

--out=render --format=pdf

21 https://github.com/potassco/clingraph/tree/master/examples/ast.
22 https://www.w3.org/TR/rdf11-concepts/.
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1 ast show(edge, I) :- ast edge(I, , ), I = (I1, ), ast show(node, I1).
2 ast show(node, I) :- ast show(edge, ( , I)).

4 ast hide(node, I) :- ast hide(edge, ( , I)).
5 ast hide(edge, I) :- ast edge(I, , ), I = (I1, ), ast hide(node, I1).

7 node(I) :- ast node(I, , ), ast show(node, I), not ast hide(node, I).
8 edge(I) :- ast edge(I, , ), ast show(edge, I), not ast hide(edge, I).

10 attr(node, I, label, @concat(
11 "<<table border =’0’ cellborder =’1’ cellspacing =’0’ cellpadding =’3’>",
12 "<tr >",
13 "<td >{{ id}}</td >",
14 "<td >{{ type }}</td >",
15 "{% if variant %}<td >{{ variant }}</td >{% endif %}",
16 " </tr >",
17 "{% if value %}",
18 "<tr ><td colspan =’{{ colspan }}’>",
19 "<font face=’monospace ’> {{ value }} </font >",
20 " </td ></tr >",
21 "{% endif %}",
22 " </table >>"
23 )) :- node(I).

25 attr(node, I, (label, id), I)
26 :- node(I).
27 attr(node, I, (label, type), T)
28 :- node(I), ast node(I, type, T).
29 attr(node, I, (label, variant), V)
30 :- node(I), ast node(I, variant, V).
31 attr(node, I, (label, colspan), 2)
32 :- node(I), ast node(I, value, ), not ast node(I, variant, ).
33 attr(node, I, (label, colspan), 3)
34 :- node(I), ast node(I, value, ), ast node(I, variant, ).
35 attr(node, I, (label, value), @html escape(V))
36 :- node(I), ast node(I, value, V).

38 attr(edge, I, label, L) :- edge(I), ast edge(I, key, L).

40 attr(graph nodes, default, fontsize, 10).
41 attr(graph nodes, default, shape, plain ).

43 attr(graph edges, default, fontsize, 10).

Listing 8. Selected lines from the encoding visualizing the AST (viz-ast.lp)

with the above line in the visualization encoding instructs clingraph to render the graph

shown in Figure 7.

Showing the AST is by far not the only option to visualize a program’s structure. In

principle, clingraph may render any structured knowledge about the program provided

that a reification format, a tool generating it, and a visualization encoding exists. To this

end, our case study may serve as a blueprint for future ideas.

4 Formatting attributes with templates

Generating complex string values for attributes can become quite cumbersome, especially

when dealing with HTML-like labels.23 This type of graphviz labels are formed by an

23 https://graphviz.org/doc/info/shapes.html#html.
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Fig. 7. A partial visualization of the AST of the program in Listing 1.

HTML string delimited by <...> which gives a lot of flexibility for formatting the text

and generating tables. We simplify the generation of such strings by using the template

engine Jinja.24 Attribute values can then be seen as Jinja templates, which are rendered

using the variables provided by atoms of the form attr(t,id,(n,v),x). In these atoms,

the third argument is a pair indicating that variable v has value x when rendering the

template of attribute n. Furthermore, we can encapsulate values in dictionary variables

by using triples instead, where (n, v, k) indicates that variable v is a dictionary with entry

{k : x}. When no template is provided, the values of all the variables are concatenated.

For illustration, we visualize the data of people, defined by predicates person/1,

name/1, middlename/1 and lastname/1 (see Listing 10 for an example). We visual-

ize the data using HTML-like labels to generate the tables in Listing 9. Line 1 generates

a node for each person and Line 2 removes the shape of the node (no shape is needed

since the label is a table). Lines 3–7 define the template for the label using the HTML

tags <table>, <tr>, <td> and <b> to construct a table, row, cell, and boldface text, re-

spectively. Variables are enclosed in double braces {{...}} and corresponding values are

substituted by Jinja for these variables. The rules in Lines 8–11, for instance, generate

atoms of attr/4 to populate values for the template variables. Lines 8 and 11 use a pair

to assign N to the variable id and the last name to lastname. Unlike, Lines 9 and 10 use

a triple, making the variable name a dictionary with the keys first and middle, which is

accessed in the template as name[′first ′] and name[′middle ′], respectively. The output of

24 https://jinja.palletsprojects.com/en/3.1.x/templates.
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1 node(N) :- person(N).
2 attr(node,N,shape,none) :- person(N).
3 attr(node,N,label, @concat(
4 "<<table >",
5 "<tr ><td ><b >{{ id}}</b></td ></tr >",
6 "<tr ><td >{{ lastname }} ({{ name[’first ’]}} {{ name[’middle ’]}}) </td ></tr >",
7 " </table >>")) :- person(N).
8 attr(node,N,(label,id),N) :- person(N).
9 attr(node,N,(label,name,first),Name) :- name(N,Name).

10 attr(node,N,(label,name,middle),Name) :- middlename(N,Name).
11 attr(node,N,(label,lastname),Lastname) :- lastname(N,Lastname ).

Listing 9. Visualization encoding to exemplify the generation of strings via templates

(template.lp).

1 person(anna).
2 name(anna,"Anna"). middlename(anna,"Julia"). lastname(anna,"Scott").
3 person(tom).
4 name(tom,"Thomas"). lastname(tom,"Blake").

Listing 10. Instance for the template example (people.lp).

Fig. 8. Example of HTML-like labels using attribute templates.

this encoding together with the instance defined in Listing 10 is shown in Figure 8. It is

produced by means of the following instruction:

clingraph people.lp --viz -encoding=template.lp --out=render

Jinja’s syntax of templates also includes statements like conditionals, loops, and several

operations. We refer the interested reader to our github repository for more complex

examples of clingraph using such features.25

5 Related work

Many aspects of clingraph are inspired by previous systems described in the litera-

ture. The basic goal – to visualize answer sets by mapping special atoms to graphic

elements – traces back to aspviz (Cliffe et al . 2008), a command-line application written

in Java using the Standard Widget Toolkit (SWT) for rendering. It is capable of render-

ing two-dimensional graphics with absolute coordinates but does neither allow relative

positioning nor graph structures. These features were introduced by kara (Kloimüllner

et al . 2011), a plugin written for the SeaLion IDE. The alternative of using graphviz as

a backend was first mentioned by the authors of aspviz and followed up with a rather

basic implementation in lonsdaleite.26 Another visualizer for answer sets is idpdraw,27

although it seems to be discontinued.

The idea of visualizing the solving process was first explored for the nomore sys-

tem (Bösel et al . 2004) which uses a graph-oriented computational model. For dlv, there

exists a graphical tool for developing and testing logic programs (Perri et al . 2007) as well

25 https://github.com/potassco/clingraph/tree/master/examples/office.
26 https://github.com/rndmcnlly/Lonsdaleite.
27 https://dtai.cs.kuleuven.be/krr/files/bib/manuals/IDPDraw-manual.pdf.
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as a visual tracer (Calimeri et al . 2009). In the realms of clingo, visualizing the solving

process has been explored using a tweaked version of clasp (König and Schaub 2013).

Our system not only integrates ideas from the literature and makes them available

for modern ASP systems, but also has some features that have – to the best of our

knowledge – never been implemented before. There is a powerful API which makes it

easy to include clingraph in custom projects, a multitude of different output formats

including LATEX and animated GIF, and the capacity of integrating a propagator for

visualizing the solving process of clingo.

6 Discussion

Clingraph provides essentially an ASP-based front-end to the graph visualization software

graphviz. In doing so, it takes up the early approach of aspviz (Cliffe et al . 2008) and

extends it in the context of modern ASP technology. The advantage of clingraph is that

one does not have to resort to foreign programming languages for visualization but rather

remains within the realm of ASP. This provides users with an easy interface among logic

programs and/or answer sets and their visualization. Moreover, clingraph offers a Python

API that extends this ease of interfacing to clingo’s API, and in turn to connect and

monitor various aspects of the solving process. The fact-based interface of clingraph makes

it readily applicable to any ASP system. For more advanced features, like json output

and API functionality, clingraph depends on clingo. Clingraph is open source software

and freely available at https://github.com/potassco/clingraph.

Clingraph is a single-shot system mapping logic programs to graphs – no return flow is

envisaged. A natural extension is thus to allow for returning user input into the system.

This idea is pursued in the system clinguin28 (Hahn 2023), which allows for interacting

through user interfaces, specified in terms of logic programs. Another avenue of future

research is to consider alternatives to graphs for visualization. Candidates of interest are

plots and tables but also game descriptions seem possible.
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