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Abstract

Mental representations remain the central posits of psychology after many decades of scrutiny.
However, there is no consensus about the representational format(s) of biological cognition.
This paper provides a survey of evidence from computational cognitive psychology, perceptual
psychology, developmental psychology, comparative psychology, and social psychology, and
concludes that one type of format that routinely crops up is the language-of-thought
(LoT). We outline six core properties of LoTs: (i) discrete constituents; (ii) role-filler indepen-
dence; (iii) predicate–argument structure; (iv) logical operators; (v) inferential promiscuity;
and (vi) abstract content. These properties cluster together throughout cognitive science.
Bayesian computational modeling, compositional features of object perception, complex
infant and animal reasoning, and automatic, intuitive cognition in adults all implicate LoT-
like structures. Instead of regarding LoT as a relic of the previous century, researchers in cog-
nitive science and philosophy-of-mind must take seriously the explanatory breadth of LoT-
based architectures. We grant that the mind may harbor many formats and architectures,
including iconic and associative structures as well as deep-neural-network-like architectures.
However, as computational/representational approaches to the mind continue to advance,
classical compositional symbolic structures – that is, LoTs – only prove more flexible and
well-supported over time.

1. Introduction

Mental representations remain the central posits of psychology after many decades of scrutiny.
But what are mental representations and what forms do they take in nature? In other words,
what is the format of thought? This paper revisits an old answer to this question: The
language-of-thought hypothesis (LoTH).

LoTH is liable to evoke memories of the previous century: Foundational discussions about
the structure of thought in the 1970s, the rise of connectionism in the 1980s, and debates
about systematicity and productivity in the 1990s. Now, well into the twenty-first century, it
might seem that LoTH is a relic, like Freud’s tripartite cognitive architecture or Skinnerian
behaviorism – a topic of historical interest, but no longer at the center of scientific or philo-
sophical inquiry into the mind.

We will argue for the opposite view: In the half century since Fodor’s (1975) foundational
discussion, the case for the LoTH has only grown stronger over time. The chief aim of this
paper is to showcase LoTH’s explanatory breadth and power in light of recent developments
in cognitive science. Computational cognitive science, comparative and developmental
psychology, social psychology, and perceptual psychology have all advanced independently,
yet evidence from these disparate fields points to the same overall picture: Contemporary
cognitive science presupposes the language-of-thought (LoT).

The theoretical literature on LoTH is massive and extremely important for understanding
the hypothesis and its historical roots. Given space constraints, we will have to ignore huge
portions of this literature. We aim simply to provide the strongest article-sized empirical
case for LoTH. As a result, we’re forced to ignore a great deal of empirical evidence in
favor of LoTH. Work in syntax, semantics, psycholinguistics, and philosophy-of-mind has
often been taken to bolster LoTH (Fodor, 1975, 1987). Although the relevance of linguistics
(broadly construed) to LoTH remains strong, we situate largely independent forms of evidence
at the center of our case. We focus primarily on areas (e.g., perception, system-1 reasoning,
animal cognition) that seem less language-like. If even these apparent problem areas offer
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evidence for LoTH, then we should be optimistic about finding
evidence for LoTH throughout much of the mind.

In section 2, we specify which systems of representation count
as LoTs. Some of the conclusions of this section will be a bit
surprising, as the natural inferences one should draw from the
standard characterization of LoTH have largely been ignored
since the view’s inception. Then, in sections 3–6, we marshal
evidence for LoTH from across the cognitive sciences. Section 3
reviews recent LoT-based developments in computational cogni-
tive science, section 4 surveys a mass of data from the study of
human perception, section 5 considers evidence from develop-
mental and comparative psychology, and section 6 examines
evidence from social psychology.

We think that LoTH is indispensable to a computational
account of the mind. But the empirical case for the view does
not stem from the idea that LoTH is the “only game in town,”
which it is not (and never really was). Instead, we contend,
LoTH is the best game in town. For a wide variety of phenomena,
it does the best job of explaining why biological minds work in the
peculiar ways they do.

Our defense of LoTH doesn’t presuppose a single, large-scale
opponent. Broadly speaking, our opponents are reductionists of
various stripes, for example, traditional neural reductionists
(Bickle, 2003; Churchland, 1981), theorists who reduce LoT-like
cognition to natural language (Berwick & Chomsky, 2016;
Hinzen & Sheehan, 2013), critics of representationalism (Hutto
& Myin, 2013; Schwitzgebel, 2013), associationists (Dickinson,
2012; Papineau, 2003; Rydell & McConnell, 2006), and most
prominently in recent years, reductionist deep-learning
approaches (LeCun, Bengio, & Hinton, 2015).1 However, with
the exception of deep neural networks (DNNs), we will mostly
avoid direct engagement with these views – not because they
are not of interest, but because the best counter to reductionism
is simply to demonstrate the explanatory successes of LoT-like

representational structures. In the context of system-1 cognition,
for example, our primary opponents will be associationists; in
the context of perception science, where associationism is less
prominent, our foil will be rival iconic/imagistic formats. This
focus on multiple corners of cognitive science will demonstrate
two rare virtues of LoTH: Its unificatory power across disciplines
and its generalizability across content domains.

2. What is a language-of-thought?

Classic defenses of LoTH often equated it with the view that men-
tal representations are structured (Fodor, 1987; Fodor & Pylyshyn,
1988). The route from this identification to the “Only Game in
Town” argument is simple – mental representations must have
some sort of structure for computational explanations to succeed,
and if LoTH follows from that simple fact, it’s hard to envision
viable alternatives. Arguably, this emphasis on structure per se
was influenced by the idea that the primary alternatives to
LoTH were connectionist models that lacked structured represen-
tations altogether (Rumelhart & McClelland, 1986; cf. Smolensky,
1990).

However, we don’t assume this dialectic here. The main reason
is that we think there are structured (i.e., nonatomic) representa-
tions couched in non-LoT-like formats. Iconic representations are
perhaps the clearest example. Operations like mental rotation
(Shepard & Metzler, 1971) and scanning (Kosslyn, Ball, &
Reiser, 1978) are inexplicable without appeal to structured repre-
sentations, but at least some of those representations seem to have
an iconic, rather than LoT-like, representational format (Carey,
2009; Fodor, 2007; Kosslyn, 1980; Quilty-Dunn, 2020b; Toribio,
2011; cf. Pylyshyn, 2002). Other potential formats include analog
magnitudes (Carey, 2009; Clarke, 2022; Clarke & Beck, 2021;
Mandelbaum, 2013; Meck & Church, 1983), vectors in multidi-
mensional similarity spaces (Gauker, 2011), mental maps
(Camp, 2007; Rescorla, 2009; Shea, 2018; Tolman, 1948), mental
models (Johnson-Laird, 2006), graphical models (Danks, 2014),
semantic pointers (Eliasmith, 2013), pattern-separated represen-
tations (Yassa & Stark, 2011; cf. Quiroga, 2020), neural represen-
tations at various scales (Barack & Krakauer, 2021), and much
more. We’re happy to let a thousand representational formats
bloom.

We take LoTH to describe a representational format with six
distinctive properties beyond merely having structure. Many,
perhaps all, of these properties are not necessary for a representa-
tional scheme to count as an LoT, and some may be shared
with other formats. We regard these properties as (somewhat)
independent axes on which a format can be assessed for how
LoT-like it is. If LoT is a natural kind, then these properties
should cluster together homeostatically – that is, if some proper-
ties are instantiated, it raises the probability that others are as well
(Boyd, 1999). These six features each expand the expressive power
of abstract, domain-general cognition, making it advantageous for
them to evolve as a cluster. We also suspect there might be dis-
tinct LoTs with only partially overlapping properties, perhaps
arising in different species or different systems within the same
mind. The properties adumbrated here don’t necessarily exhaust
the characterization of LoTH. The crux of the paper includes sev-
eral sections devoted to empirical evidence, and a fuller picture of
LoTH will emerge throughout.

Before moving to the list of core LoT properties, some caveats
about how our approach differs from classic defenses of LoTH.
First, although LoTH is sometimes understood as the hypothesis
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that mental representations have the same structure as natural
language, this is not our strategy. Although some theorists have
posited LoT to explain natural-language processing and even
play a constitutive role in the compositional semantics of natural
language (Fodor, 1987; Pinker, 1994), our plan is to search for
LoTs outside natural-language-guided contexts. We will examine
LoT-like structures that are less connected to natural language
and thus represent stringent test cases for LoTH: Mid-level vision,
nonverbal minds, and system-1 cognition. LoTH as we’ll defend
it is committed to representational formats that are language-like
in some broad respects, but independent characterizations are
provided by both the logical character of LoT (i.e., the way it
resembles formal languages that may be radically unlike natural
language) and the previous theoretical literature on LoTH,
which commits to certain distinctive features. As long as one
agrees that an important class of mental representations has
many or all of these features, there is no need to quibble about
the analogy to natural language.

Second, we will avoid direct discussion of two features of
thought that have dominated earlier discussions, namely, system-
aticity and productivity (Fodor & Pylyshyn, 1988). We agree with
the widespread view that any format worth calling an LoT must
not only have structure, but it must be compositional: It must
include complex representations that are a function of simple ele-
ments plus their mode of combination (cf. Szabo, 2011). But as
Camp (2007) and others argue, this feature is arguably present
in various representational forms, including maps, and thus is
not sufficient for ensuring an LoT. Compositionality that is
fully systematic and productive is very good evidence for
LoT-like architectures, but we want to leave open whether some
of the LoT-like structures we’ll explore are fully systematic and
productive. As a historical note, this caveat is in keeping with
earlier discussions, in which systematicity and productivity were
each considered “a contingent feature of thought” (Fodor, 1987,
p. 152) that evidences LoTH rather than a constitutive require-
ment. This caveat also dovetails with the previous one about
relaxing the analogy with natural language – while, for example,
recursive productivity might be a key feature of natural language
(Chomsky, 2017), we allow that some LoT-based systems may
fail to be recursive. Finally, although we believe systematicity
and productivity were good arguments for LoTH, the nature of
these cognitive features and their presence in biological minds,
including nonverbal ones, is well-trodden ground (Camp, 2009;
Carruthers, 2009). Because our goal is to point in new directions
for LoTH, we will invoke systematicity and productivity
sparingly, mostly keeping instead to the six core properties
listed below. These properties are intended to capture the spirit
of earlier presentations of LoTH – a combinatorial, symbolic
representational format that facilitates logical, structure-sensitive
operations (Fodor & Pylyshyn, 1988) – while framing an updated
discussion more closely tied to contemporary experimental
research.

Property 1: Discrete constituents. Typical iconic representations
holistically encode features and individuals (Fodor, 2007;
Hummel, 2013; Kosslyn, Thompson, & Ganis, 2006), while LoT
representations comprise distinct constituents corresponding to
individuals and their separable features. In a sentence like “That
is a pink square object,” the predicate “square” can be deleted
without any other constituents being deleted. In an iconic repre-
sentation of a pink square, the relationship between the individ-
ual, its color, and its shape is more intertwined. “Pink square”
can be the output of a merge operation (Chomsky, 1995) while

the part of the icon that represents pink and the part that repre-
sents square are one and the same.

Property 2: Role-filler independence. LoT architectures have a
distinctive syntax: They combine constituents in a way that main-
tains independence between syntactic roles and the constituents
that fill them (Frankland & Greene, 2020; Hummel, 2011;
Martin & Doumas, 2020). The role agent is present in “John
loves Mary” and “Mary loves John.” The identity of the role is
independent of what fills it (“Mary,” “John”). Likewise, each con-
stituent maintains its identity independent of its current role
(“John” can be agent or patient). Role-filler independence cap-
tures the rule-based syntactic characteristics of LoT-like composi-
tionality: The syntactic structure is typed independently of its
particular constituents, and the constituents are typed indepen-
dently of how they happen to compose on a particular occasion.
In map-like representations, for example, changing the spatial
position of a marker changes not only the putative “predicate”
(e.g., tree) but also the spatial content of the marker (e.g., its posi-
tion relative to other map elements); thus maps fail to exhibit full
role-filler independence (Kulvicki, 2015). Similarly, connectionist
models that bind contents through tensor products (Eliasmith,
2013; Palangi, Smolensky, He, & Deng, 2018; Smolensky, 1990)
can simulate compositionality, but fail to preserve identity of
the original representational elements; thus they sacrifice role-
filler independence, and with it classical compositionality
(Eliasmith, 2013, p. 125ff; Hummel, 2011).

Role-filler independence might seem similar to the property of
having discrete constituents, but they’re not equivalent. One could
posit discrete constituents in an unordered set, for example, with-
out positing a role that maintains its identity across multiple
fillers. There’s also nothing in the positing of discrete constituents
per se that precludes the type-identity of those constituents from
shifting in various contexts (e.g., GREEN APPLE and GREEN
PEN might be complexes of discrete constituents, but the copre-
sence of APPLE vs. PEN might change the identity of GREEN;
Travis, 2001).

Property 3: Predicate–argument structure. One distinctively
LoT-like mode of combination is predication, in which a predi-
cate is applied to an argument to yield a truth-evaluable structure.
Simple sentences like “John smokes” and “Mary is tall” are para-
digmatic examples. Other representational formats, such as
images and maps, are assessable for accuracy, but often (perhaps
always) fail to exhibit truth-evaluable predicate–argument struc-
ture (Camp, 2018; Kulvicki, 2015; Rescorla, 2009). We’ll usually
interpret predicate–argument structure as requiring both discrete
constituents and role-filler independence, that is, as requiring
constituents that function as predicates and arguments but main-
tain type-identity, and as having predicative syntactic structures
that can be operated on independently of the content of nonlog-
ical constituents. Thus this condition is not merely that the
system must be capable of expressing propositions like <John
smokes> (a condition that can be met by even the simplest neural
nets, where <John smokes> can be represented by an unstruc-
tured node), but rather that this predicate–argument structure
is instantiated in the representational vehicle itself (see, e.g.,
Fodor, 1987).

Property 4: Logical operators. One hallmark of LoT architec-
tures is the use of logical symbols like NOT, AND, OR, and IF.
These operators are discrete constituents that compose into larger
structures, a hallmark of LoT-like symbols more generally. Logical
operators don’t obviously presuppose subsentential LoT-like
structure, because one could imagine appending such operators
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to otherwise unstructured formats, or to maps (Rescorla, 2009).
But they are one piece of an overall LoT-friendly picture, positing
discrete constituents that allow for formal-syntactic operations.
For example, consider an operation that runs from A-OR-B and
NOT-A to B; even if A and B are atomic symbols or maps,
their un-LoT-like properties are irrelevant because the operation
is sensitive to the logical structure alone. Finding evidence for
explicit, discrete logical operators should therefore increase our
credence in LoTH, all else equal. We’ll construe logical operators
as requiring role-filler independence, in that, for example, nega-
tion operators are the same no matter what proposition they
negate.

Property 5: Inferential promiscuity. LoT architectures have
been useful in characterizing inferential transitions, especially
logical inferences (Braine & O’Brien, 1998; Fodor & Pylyshyn,
1988; Quilty-Dunn & Mandelbaum, 2018a; Rips, 1994; cf.
Johnson-Laird, 2006). LoT-like representations should not only
encode information, but they should be usable for inference in
a way that is automatic and independent of natural language.2

The automaticity point is important: The theories of logical infer-
ence just cited share an appeal to computational processes that
transform representations with one logical form into representa-
tions with another logical form in accordance with rules that
are built into the architecture (i.e., merely procedural, not explic-
itly represented, and thus not amenable to intervention from
representational states; Quilty-Dunn & Mandelbaum, 2018b).
If these theories are even roughly on the right track, then we
should find evidence for logical-form-sensitive computation out-
side conscious, controlled, natural-language-guided contexts.

Property 6: Abstract conceptual content. LoTH has historically
been opposed to concept empiricism, the view that concepts are
sensory-based (Barsalou, 1999; Prinz, 2002). It is logically compat-
ible with other core LoT properties that some LoTs might be
modality-specific (e.g., different LoT symbol types and/or syntactic
rules for each modality). But there is no a priori reason to expect
that primitive LoT symbols – unlike, for example, iconic or analog
formats – will be limited to a certain range of properties (e.g.,
sensory properties, the referents of simple concepts for classical
empiricists). Thus we should expect (ceteris paribus) LoT symbols
to represent abstract categories without representing specific details
(e.g., a symbol that encodes bottle and no particular shape or color).
There is therefore a nondemonstrative but bidirectional relation-
ship between LoTs and abstract contents: Many LoTs should be
expected to encode abstract content, and abstract content is natu-
rally represented by means of discrete LoT-like symbols.

The hypothesis that these features cluster together generates
nontrivial predictions. Once we’ve isolated a particular represen-
tation type, evidence for any two features (e.g., discrete constitu-
ents and abstract conceptual content) may look completely
different. Nonetheless, LoTH predicts that these sorts of evidence
should tend to cooccur. This cooccurrence would be surprising
from a theory-neutral point of view, but not from the perspective
of LoTH. We will use just this sort of clustering-based approach to
mount an abductive, empirical argument for LoTH. We focus on
independently identified systems to observe whether these six
properties cluster in them: Perception, physical reasoning in
infants and animals, and system-1 cognition.

3. LoTs in computational cognitive science

Before we turn to the bulk of our evidence, we first consider the
status of LoTH in computational modeling – a topic of pressing

concern as the advance of artificial intelligence (AI) has made
LoT appear antiquated to some researchers. LoT-style models nat-
urally grew out of symbolic computation (Fodor, 1975; Schneider,
2011; cf. Field, 1978; Harman, 1973), including “GOFAI” (“Good
Old-Fashioned Artificial Intelligence”; Haugeland, 1985). As new
computational methods arose that did not presuppose symbolic
computation, such as connectionism with its subsymbolic
elements, LoT-style architectures grew detractors. With recent
successes of subsymbolic deep neural networks (DNNs) (e.g.,
Google AI’s Google Translate, Deep Mind’s success with
AlphaFold at modeling protein structure and with AlphaZero
and MuZero at dominating complex games; Schrittwieser et al.,
2020), LoT-like architectures may appear obsolete.

However, LoT has seen a resurgence in a computational frame-
work that has led to breakthroughs within cognitive science:
Bayesianism. Because Bayesian models of cognition are based
on probabilistic updating, they appear to present alternatives to
LoTH, which posits logical inference. However, Bayesian compu-
tational psychology naturally complements LoT architectures
(Erdogan, Yildirim, & Jacobs, 2015; Goodman & Lassiter, 2015;
Goodman, Tenenbaum, Feldman, & Griffiths, 2008b; Goodman,
Tenenbaum, & Gerstenberg, 2015; Kemp, 2012; Overlan, Jacobs,
& Piantadosi, 2017; Piantadosi & Jacobs, 2016; Piantadosi,
Tenenbaum, & Goodman, 2012, 2016; Ullman, Goodman, &
Tenenbaum, 2012; Yildirim & Jacobs, 2015). Wedding probabilis-
tic reasoning to symbolic system processing has led to the “prob-
abilistic language-of-thought” (PLoT) (Goodman et al., 2015).

PLoTs share a core set of properties: A set of primitives with
basic operations for their combination (such as the lambda calcu-
lus, e.g., Church from Goodman, Mansinghka, Roy, Bonawitz, &
Tenenbaum, 2008a). Primitives correspond to atomic concepts,
which are recursively combined to form concepts of arbitrary com-
plexity (Fodor, 1998; Quilty-Dunn, 2021). All one must do is define
a set of primitives, and a set of rules for combination and the sys-
tem is capable of constructing a potentially infinite string of well-
formed formulae (Chomsky, 1965).

Bayesianism adds probabilistic inference to the traditional LoT
machinery. One way of accomplishing this is by having a likeli-
hood function that is noisy (combining this with a preference
for simplicity, either because it’s explicitly specified as a prior
for the system, or because it falls out as a function of other con-
straints). PLoTs are classical symbolic systems that display all the
hallmarks of LoT architectures, such as discrete constituents,
role-filler independence, predicate–argument structure, produc-
tive and systematic compositionality, and inferential promiscuity.
They are also, however, flexible probabilistic computational pro-
grams, because all other aspects of symbol processing (e.g., how
they are combined, which processes use them, which information
gets updated for them, even their basic semantics) can be deter-
mined probabilistically.

Versions of the PLoT have made serious progress in a number
of specific areas, for example, learning taxonomical hierarchical
structures such as kinship (Katz, Goodman, Kersting, Kemp, &
Tenenbaum, 2008; Kemp, 2012; Mollica & Piantadosi, 2015),
causality (Goodman, Ullman, & Tenenbaum, 2011), number
(Piantadosi et al., 2012), analogical reasoning (Cheyette &
Piantadosi, 2017), theory acquisition (Ullman et al., 2012), pro-
grams (Liang, Jordan, & Klein, 2010), mapping sentences to log-
ical form (Zettlemoyer & Collins, 2005), general Boolean concept
learning (Goodman et al., 2008a, 2008b), and moral rule learning
(Nichols, 2021). The sheer breadth and depth of the Bayesian
computational revolution itself provides strong evidence in favor
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of the viability of the LoT. Instead of computational psychology
showing that the LoT is a stale theory of the past, it shows how
robust, flexible, powerful, and necessary the LoT is in order to
ground our computational cognitive science in a way that maps
onto human data.

The models that best approximate one type of human concept
learning (e.g., learning that a wudsy is the tallest object that is
either blue or green) are ones where a fuller set of classical logical
connectives are hard-coded as primitives. For instance, Piantadosi
et al. (2016) taught participants Boolean and quantificational con-
cepts, then built different LoT models in a lambda calculus and
compared them to the human data (Fig. 1a). They found that
the models that least resembled human performance tended to
have the least LoT-like structure. Models that lacked built-in con-
nectives and represented only primitive features or similarity to
exemplars performed poorly, as did models that merely learned
response biases and only represented TRUE and FALSE categori-
zation judgments. LoTs built with a single connective from which
all others are constructed (such as NAND or conjunctions of
Horn clauses, disjunctions with at most one nonnegated disjunct)
fared better, but not as well as LoTs with the full suite of Boolean
operators (conjunction, disjunction, negation, conditional, and
biconditional), which in turn were outperformed by models sup-
planted further with built-in (first-order) quantifiers.3 Although
wudsy is not an ordinary lexical concept, it is a learnable concept
for humans and its acquisition is best modeled by an LoT-like
architecture. Thus Piantadosi et al.’s findings provide an existence
proof for the utility of LoT-like architectures in the acquisition of
logically complex, nonlexical concepts.

Bayesian computational psychology provides evidence that we
can learn complex concepts by running probabilistic inductions
over a distinctive sort of representational system. This system
exploits a rich array of discrete constituents (including predicates
and logical operators) that compose into predicate–argument
structures of the form A wudsy is an F; these structures function
as inferentially promiscuous hypotheses and incorporate built-in
logical operators that obey role-filler independence: In other
words, this system is an LoT.4

Similar architectures have recently been used to capture repre-
sentations of geometrical structure (Amalric et al., 2017; Romano
et al., 2018; Roumi, Marti, Wang, Amalric, & Dehaene, 2021;
Sablé-Meyer, Ellis, Tenenbaum, & Dehaene, 2021a, 2021b). For
example, Amalric et al. (2017) gave participants a task: Observe
a sequence of dots and guess where the next dot will appear.
They developed a “language-of-geometry” (see also Romano
et al., 2018) and found that the complexity of descriptions in
this language predicted human error patterns. Sablé-Meyer et al.
(2021a) modified this language (including, e.g., accommodating
curve-tracing). Participants took as long as needed to encode
shapes, and then reidentified them after a brief delay (Fig. 1b).
Description complexity in Sablé-Meyer et al.’s PLoT (Fig. 1c)
predicted the duration of both encoding and reidentification.

Our primary aim in this section is to point out that not all
cutting-edge computational cognitive science is opposed to
LoTH.5 Indeed, some of the most impressive work in this area
relies on LoTs to model human cognition. Current DNNs may
be less well-equipped to capture these capacities. For example,
Sablé-Meyer et al. (2021b) examined performance of French
adults, Himba adults (who lacked formal education or lexical
items for geometric shapes and didn’t grow up in a “carpentered
world”), and French kindergartners on an “intruder” task where
they had to detect an unusual shape in a crowd of shapes. They

found that performance in humans was most similar to a
model where shapes are “mentally encoded as a symbolic list of
discrete geometric properties” (Sablé-Meyer et al., 2021b, p. 5).
This LoT-like model was contrasted with state-of-the-art deep
convolutional neural networks (DCNNs) as well as nonconvolu-
tional DNNs (specifically, variational autoencoders), and the
LoT model outperformed the alternatives. Furthermore, PLoTs
are capable of encoding domain-general models that underwrite
commonsensical reasoning, a well-known limitation of extant
DNNs (Peters & Kriegeskorte, 2021; Zhu et al., 2020). Given
the expressive flexibility of PLoTs and their ability to model con-
cept acquisition from just a single data point, they exhibit some
advantages over DNN architectures (Piantadosi et al., 2016,
p. 414; cf. Brown et al., 2020; but see Ye & Durrett, 2022).

To be clear on the dialectic, many theorists are inclined to
point to advances in AI as sufficient evidence against the
LoTH. PLoTs serve as an existence proof that LoT architectures
are useful in computational modeling. Our claim is not that
DNNs will never be able to model these data; indeed, because
DNNs are universal function approximators, perhaps such a
claim is ipso facto false. Other learning policies (e.g.,
meta-learning; Finn, Yu, Zhang, Abbeel, & Levine, 2017) or archi-
tectures (e.g., transformers; Vaswani et al., 2017) may turn out to
match symbolic models at mimicking acquisition of logically
complex concepts and geometrical encoding in humans. We
also grant that DNNs are useful for various engineering purposes
outside the context of modeling biological competences. Our
claim is simply that computational modeling has not left
LoT-like symbolic models behind; LoTH remains fruitful in
twenty-first-century computational cognitive science.

It is well-understood by contributors to this literature that “the
form that [LoT] takes has been modeled in many different ways
depending on the problem domain” (Romano et al., 2018, p. 2).
The PLoTs used to model geometrical cognition possess discrete
constituents that combine recursively to form more complex
shapes, exhibiting role-filler independence, and encode abstract
geometric “primitives” (Amalric et al., 2017) like symmetry and
rotation independently of low-level properties. Other PLoTs
used to model (complex) concept acquisition possess all these fea-
tures plus logical operators and predication. Of course, whether
any or all of these PLoTs turn out to be isomorphic to human
cognition is still – like most questions in cognitive science –
open. The two morals we stress are (a) that many of these models
are meant to test concrete representational formats at the algorith-
mic level, (b) that these models implement LoTs, and (c) that they
sometimes match human performance better than competitor
models.

4. Perception

LoTH is often framed as a thesis about thought – that is, post-
perceptual central cognition. The idea that perception itself
might be couched in an LoT is often ignored (cf. Fodor, 1975,
Ch. 1; Pylyshyn, 2003). Indeed, characterizations of many
anti-LoTH views, for example, concept empiricism, appeal to
the hypothesis that conceptual representations have the same
format as perceptual representations, implicitly ruling out the
possibility of LoT in perception (Machery, 2016; Prinz, 2002).

We propose instead to take it as an empirical question whether
LoT-like representations are deployed in perception, and we’ll
argue that the answer is likely “Yes.” If cognition is largely
LoT-like, and perception feeds information to cognition, then
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we should expect at least some elements of perception to be
LoT-like, because the two systems need to interface (Cavanagh,
2021; Mandelbaum, 2018; Quilty-Dunn, 2020a). Our case studies
include perceptual representations of objects (e.g., object files),
relations within objects (e.g., part-whole relations), and relations
between objects.

4.1 Object files

Object files are perceptual representations that select individuals,
track them across time and space, and store information about
them in visual working memory (VWM). This construct is
probed via independent, but converging methods, including:
Multiple-object tracking (Fig. 2a; Pylyshyn & Storm, 1988),
object-based VWM storage (Fig. 2b; Hollingworth &
Rasmussen, 2010), physical reasoning, especially in infants
(Fig. 2c; Xu & Carey, 1996), and object-specific preview benefits
(Fig. 2d; Kahneman, Treisman, & Gibbs, 1992). These methods
cluster around a common underlying representation, standardly
taken to be a unified representational kind (Carey, 2009; Green
& Quilty-Dunn, 2021; Scholl & Leslie, 1999; Smortchkova &
Murez, 2020). Object files are extremely well-studied, are gener-
ated by encapsulated perceptual processes (Mitroff, Scholl, &
Wynn, 2005; Scholl, 2007) that operate prior to and indepen-
dently of natural-language-guided cognition (Carey, 2009), and
are widely believed to have some sort of compositional structure

(minimally, object–property bindings), making them an excellent
test case for LoTH.

According to Carey’s (2009) seminal theory of core cognition,
object files are amodal but iconic in format (cf. Xu, 2019).
Nonetheless, we believe an LoT-based model is better suited to
the data than an iconic model (Green & Quilty-Dunn, 2021;
Quilty-Dunn, 2020a, 2020c). As far as we know, the possibility
of logical operators in object files hasn’t been studied.
However, converging evidence suggests that object files have dis-
crete constituents, role-filler independence, predicate–argument
structure, and abstract conceptual content. In section 5, we’ll
explore the inferential promiscuity of object files in physical
reasoning.

4.1.1 First, object files exhibit a decomposition into discrete con-
stituents. Unlike rival models (e.g., iconic models), an LoT-based
model of object perception predicts that featural representations
should easily break apart from (i) representations of individuals
and (ii) other featural representations.

Representations of color and shape frequently come apart from
representations of objects without disrupting multiple-object
tracking (Fig. 2a) (Bahrami, 2003; Zhou, Luo, Zhou, Zhuo, &
Chen, 2010; cf. Pylyshyn, 2007). In VWM, object files dynami-
cally lose featural information like color and orientation indepen-
dently of one another (Bays, Wu, & Husain, 2011; Fougnie &
Alvarez, 2011) and VWM resources are depleted independently

Figure 1. (a) Participants draw inferences about the referent of novel terms like wudsy based on examples; reprinted from Piantadosi et al. (2016), Figure 1, with
permission from American Psychological Association. (b) Participants encode shapes and reidentify them using minimal description length in a PLoT; reprinted
from Sablé-Meyer et al. (2021a), with permission from Mathias Sablé-Meyer. (c) Primitive operations in a geometrical PLoT; reprinted from Sablé-Meyer et al.
(2021a), with permission from Mathias Sablé-Meyer.
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for color and orientation (Markov, Tiurina, & Utochkin, 2019;
Wang, Cao, Theeuwes, Olivers, & Wang, 2017). Similar results
hold for real-world stimuli. The state of a book (open or closed)
is remembered or forgotten independently of its color or token
identity (Brady, Konkle, Alvarez, & Oliva, 2013), and the identity
and state of multiple real-world objects are independently
swapped in VWM (Markov, Utochkin, & Brady, 2021). These
effects are independent of natural-language encoding: They per-
sist when subjects engage in articulatory suppression (Fougnie
& Alvarez, 2011; Tikhonenko, Brady, & Utochkin, 2021), and pre-
verbal infants can lose featural information in VWM but maintain
a “featureless” pointer-like component of an object file (Kibbe &
Leslie, 2011).

In summary, object files in online tracking and VWM appear
to break apart freely into discrete constituents, including repre-
sentations of individuals and separable feature dimensions. This
LoT-like format is independent of natural-language capacities.

4.1.2 Second, object files satisfy demanding constraints on pred-
icate–argument structure. One can grant that object files decom-
pose into discrete constituents but deny that these constituents are
ordered into a genuinely sentence-like representation. Here we
highlight two constraints on genuinely sentence-like predicate–
argument representations: Role-filler independence (one of our

six LoT properties) and a grammatical attribution/predication
distinction.

Recall that role-filler independence requires that discrete con-
stituents compose into larger structures, but the syntactic struc-
ture is typed independently of its particular constituents, and
the constituents are typed independently of how they happen to
compose on a particular occasion. In a predicate–argument struc-
ture in particular, both predicate and argument must maintain
type-identity independently of their current bindings – for exam-
ple, it must be the same JOHN and TALL in TALL(JOHN), TALL
(MARY), and SHORT(JOHN).

The clear candidates for predicate-like and argument-like repre-
sentations in object files are representations of properties and
representations of individuals, respectively (cf. Cavanagh, 2021).
Representations of individuals must maintain their identity inde-
pendently of the properties they bind, because tracking perfor-
mance is successful while properties change (Flombaum, Kundey,
Santons, & Scholl, 2004; Flombaum & Scholl, 2006; Zhou et al.,
2010) and even while properties are forgotten entirely (Bahrami,
2003; Scholl, Pylyshyn, & Franconeri, unpublished). The computa-
tional processes involved in tracking are known as object corre-
spondence processes. Some properties are used to compute object
correspondence (e.g., spatiotemporal features and some surface
features – see below). However, the fact that the argument-like

Figure 2. (a) Multiple-object tracking: A subset of visible items (“targets”) is tracked while others (“distractors”) are ignored; reprinted from Pylyshyn (2004),
Figure 1, with permission from Taylor & Francis. (b) Object-based VWM storage: A change detection task demonstrates that color is recalled for each object despite
location changes, providing just one example piece of evidence that object-based storage in VWM uses object-file representations; reprinted from Hollingworth and
Rasmussen (2010), Figure 2, with permission from American Psychological Association. (c) Object-based physical reasoning: Objects pop out from behind an
occluder, and preverbal infants rely on spatiotemporal information (and featural and categorical information – see section 5) to keep track of the number of
objects, as evidenced by their increased looking time when an unexpected number of items is displayed; reprinted from Xu and Carey (1996), Figure 1, with per-
mission from Elsevier. (d) Object-specific preview benefit: A feature is previewed in each of two visible objects before disappearing, after which the objects move to
new locations, and a target feature appears. Subjects show a benefit in reaction time when discriminating the feature if reappears in the same object, illustrating
that object-file representations store object properties across spatiotemporal changes; reprinted from Mitroff et al. (2005), Figure 4, with permission from Elsevier.
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representation of the tracked individual can persist while many
attributed features are changed/lost entails that the representation
maintains independence from the properties to which it is bound.

Likewise, representations of properties maintain their identity
independently of the object representations to which they’re bound.
Some evidence for this is the already-cited fact that they regularly
come apart from their respective object representations. However,
more striking evidence comes from the way in which featural infor-
mation is “swapped” between objects. Participants often misremem-
ber a feature of one object as bound to another object (Bays, Catalao,
& Husain, 2009), including for real-world stimuli (Markov et al.,
2021; Utochkin & Brady, 2020). Even during multiple-object tracking,
a stored feature of one object (e.g., a previewed numeral) may be
swapped with another object if they come too close to each other
during tracking (Pylyshyn, 2004). Thus property representations,
like individual representations, maintain type-identity across distinct
bindings, demonstrating role-filler independence.

The second constraint on predicate–argument structure is a
grammatical attribution/predication distinction. In a genuinely
sentence-like representation, we can distinguish grammatical
positions of predicates. For example:

(1) That spherical object is red.
(2) That red object is spherical.

Both attribute spherical shape to the referent of “That,” but in
(1) the predicate falls within the scope of the noun phrase,
whereas in (2) it is in main-predicate position.

One way of capturing this distinction is by appeal to the role of
the predicate in grounding the reference of the noun phrase. For
example, Perner and Leahy characterize thought in terms of file-
like representations (cf. Recanati, 2012), which “capture the predi-
cative structure of language, i.e., the distinction between what one
is talking about (the subject, topic, i.e., what the file tracks) and
what one says about it (the information about the topic, i.e., the
information the file has on it)” (2016, p. 494). Files have “labels”
that are captured by (inter alia) determiner phrases like THE
RABBIT as well as file contents that include predicates like
+FURRY. The attribution of RABBIT in THE RABBIT plays
some reference-grounding role, whereas +FURRY is parasitic on
the referent of THE RABBIT and merely predicates a property of
that referent (see Burge, 2010). In particular, the label-like attribu-
tive helps to sustain, and constrain, reference of the file over time.

We can exploit the attribution/predication distinction to see
whether the discrete constituents of object files are organized in
a genuinely predication-like way, or whether they are merely
label-like representations, as in THE RABBIT. The latter format
is compatible with an LoT-based model, but part of the virtue
of LoTH is that it predicts nontrivial clustering of LoT-like prop-
erties. We ought to predict full-blown propositional structures are
present in perception as well.

Object files attribute a wide range of properties to their refer-
ents, and some of these are used to guide reference to objects.
For example, an object file will continue to refer to an object
that disappears behind an occluder, but only if it reemerges at a
spatiotemporally appropriate location (Scholl & Pylyshyn, 1999).
However, although object files attribute other features like color,
reference to the object is maintained even if it reemerges a totally
different color. Generalizations like this have led some researchers
to describe spatiotemporal features as aspects of the object-file
“label” while surface features are “stored inside the folder”
(Flombaum, Scholl, & Santos, 2009, p. 153). Recent evidence

casts doubt on strict limitations on which properties are part of
the “label.” although earlier theories took spatiotemporal indices
to be uniquely privileged (e.g., Leslie, Xu, Tremoulet, & Scholl,
1998), surface features like color can play an indexing, reference-
guiding role in object files, even in ordinary contexts (Hein,
Stepper, Hollingworth, & Moore, 2021; Hollingworth &
Franconeri, 2009; Moore, Stephens, & Hein, 2010). However,
object files routinely store some featural information (e.g., color
or orientation) while completely failing to use it to guide reference
to objects (e.g., Gordon & Vollmer, 2010; Gordon, Vollmer, &
Frankl, 2008; Jiang, 2020; Richard, Luck, & Hollingworth, 2008;
see Quilty-Dunn & Green, 2023, for a review).

Object files not only contain discrete constituents, but also the
way those constituents are organized satisfies demanding criteria
for predicate–argument structure.

4.1.3 Third, object files encode abstract conceptual content. Part
of the utility of LoT-like formats is abstracting away from
modality-specific information. An LoT allows color and categor-
ical information to be captured in the same representation, as
in THAT OBJECT IS A BROWN RABBIT. If object files are
LoT-like representations, they not only ought to encode concep-
tual categories, they ought to do so in a way that abstracts away
from sensory details.

The evidence suggests that object files do encode abstract
conceptual content. For example, the object-specific preview ben-
efit – a reaction-time benefit in discriminating previously viewed
properties of tracked objects (Fig. 2d) – is observed even when the
previewed feature is an image of a basic-level category (e.g.,
APPLE) and the test feature is the corresponding word (e.g.,
“apple”) (Gordon & Irwin, 2000). Similar effects are found for
semantic identity of words across fonts (Gordon & Irwin, 1996)
or basic-level categories across different exemplars (Pollatsek,
Rayner, & Collins, 1984) and across visual and auditory informa-
tion (Jordan, Clark, & Mitroff, 2010; cf. O’Callaghan, forthcoming).
Importantly, these effects do not transfer across associatively related
stimuli (e.g., bread–butter), ruling out a reductive associative expla-
nation (Gordon & Irwin, 1996).

Similar effects were recently found in preverbal infants. Kibbe
and Leslie (2019) discovered that while infants will not notice
whether the first of two serially hidden objects changes its surface
features when it reemerges from behind an occluder, they do
notice when it changes its category between FACE and BALL.
Pomiechowska and Gliga (2021) tested preverbal infants in an
EEG change-detection task for familiar categories (e.g., BOTTLE)
or unfamiliar categories (e.g., STAPLER). Infants showed an equal
response in the negative-central event-related potential (an EEG sig-
nature of sustained attention) for across-category and within-
category changes for unfamiliar categories, suggesting, unsurpris-
ingly, failure to categorize. But for familiar categories, they showed
an increased amplitude only for across-category changes, suggesting
that their object files in VWM maintained the conceptual category
of the object while visual features decayed.

In adults, VWM seems often to discard specific sensory infor-
mation in favor of conceptual-category-guided representations
(Xu, 2017; 2020; cf. Gayet, Paffen, & Van der Stigchel, 2018;
Harrison & Tong, 2009). Participants recall blurry images as
less blurry than they really were, suggesting categorical encoding
that “goes beyond simply ‘re-experiencing’ images from the past”
(Rivera-Aparicio, Yu, & Firestone, 2021, p. 935). Bae, Olkkonen,
Allred, and Flombaum (2015) found that object files in online
perception and VWM are biased toward the center of color
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categories, suggesting that object files store a basic-level color cat-
egory like RED plus a noisy point estimate within the range of
possible red shades. This evidence implicates a category-driven
format for object-based VWM representations that abstracts
away from low-level visual detail.

Object files encode abstract conceptual content in a way that is
not reducible to low-level modality-specific information, just as
an LoT-based model predicts.

4.2. Structured relations

We’ve just argued that perceptual representations of individual
objects contain discrete constituents that are organized in a pred-
icate–argument structure and predicate abstract conceptual
contents – in other words, they’re sentences in the LoT. We’ll now
describe some LoT-like properties of representations used in the per-
ception of structured relations, both within and between objects.

4.2.1 First, our perceptual systems represent hierarchical part-whole
structure. Our perceptual systems don’t simply select objects and
attribute properties to them. They also break objects down into
component parts and represent their part-whole structure. When
we perceive a pine tree, we see a branch as part of the tree and a
needle as part of the branch, with a sense of the borders between
these various parts. Thus the visual system makes use of hierarchical
structural descriptions (Fig. 3a; Green, 2019; Hummel, 2013).

The motivation for classic structural-description accounts of
object perception was computational: Positing representations
of object parts that compose to generate descriptions of part–
whole structure allows for successful computational modeling of
object perception (Biederman, 1987; Marr & Nishihara, 1978).
These models operate just as a classical LoT picture demands,
exhibiting systematic and productive compositionality of
viewpoint-invariant descriptions of parts (Fig. 3b; Cavanagh,
2021). Structural descriptions “are compositional – forming com-
plex structures by combining simple elements – and thus mean-
ingfully symbolic” (Saiki & Hummel, 1998b, p. 1146).6

One of the key assumptions of such models is that object-part
boundaries are psychologically real, that is, two points will be
treated differently by the visual system when they lie on the
same part as opposed to two different parts of the same object.
This assumption turns out to be true (Green, 2019). For example,
a well-known example of object-based attention is that two stimuli
are better discriminated when they lie on the same object than
different objects, controlling for distance (Duncan, 1984; Egly,
Driver, & Rafal, 1994). The same is true within parts of objects:
Participants are quicker to discriminate targets if they lie on the
same part than if they cross a part-boundary (Barenholtz &
Feldman, 2003). Furthermore, unfamiliar object pairs that share
structural descriptions are seen as more similar than object
pairs that have a higher degree of overall geometrical similarity
but different structural descriptions (Barenholtz & Tarr, 2008).

Role-filler independence emerges directly from structural
description models, often explicitly so (Hummel, 2000). Some
independent evidence comes from Saiki and Hummel (1998a),
who found that shapes of parts and their spatial relations are
not represented holistically – in other words, the type-identity
of each part is represented independently of its particular role
in the structural description and vice versa. Similarity judgments
are also guided independently by part shapes and their interrela-
tions, suggesting role-filler independence (Goldstone, Medin, &
Gentner, 1991).

We don’t deny that the visual system also employs holistic
view-based template-like representations (Edelman, 1999;
Ullman, 1996) and other formats. Our claims are merely (i) struc-
tural descriptions are among the many representations used in
visual processing, and (ii) they have an LoT-like format compris-
ing discrete constituents ordered in hierarchical ways that preserve
role-filler independence (Fig. 3b).

4.2.2 Second, we perceive structured relations between objects.
We don’t perceive objects as isolated atoms, as if through a tele-
scope. Instead, we see the glass on the table, the pencils in the cup,
and so on.

In a recent review, Hafri and Firestone (2021) survey striking
evidence that such relations are recovered rapidly and in abstract
form in visual processing (Fig. 3d). For example, the visual system
distinguishes containment events (one object disappears inside
another) from occlusion events (one disappears behind another)
(Strickland & Scholl, 2015). A hallmark of categorical perception
is greater discrimination across- than within-category boundaries;
participants are better at identifying changes in the position of
two circles if the change places the circles in a distinct relation
(e.g., CONTAIN(X,Y), TOUCH(X,Y), etc.), suggesting categori-
cally perceived interobject relations (Lovett & Franconeri, 2017).
When participants are searching for a particular relation like
cup-contains-phone, they are more likely to have a “false-alarm”
for target images that instantiate the same relation, like pan-
contains-egg, but not book-on-table (Hafri, Bonner, Landau, &
Firestone, 2021).

Like structural descriptions, perceptual representations of
abstract relations exhibit role-filler independence. Abstract rela-
tions apply independently of the relata, and representations of
relata persist once the relation is broken – for example, it’s the
same ON in ON(CAT,COUNTER) and ON(KETTLE,STOVE),
and it’s the same CAT once the cat leaps off the counter. Hafri
et al.’s (2021) finding is especially relevant: The relation
CONTAIN(X,Y) governs similarity judgments independently of
the relata, about as clear a demonstration of role-filler indepen-
dence as one could expect to find.

It would be efficient for the visual system to store frequently
represented relations. A fascinating recent literature on “scene
grammar” (Fig. 3c; Kaiser, Quek, Cichy, & Peelen, 2019; Võ,
2021) details effects of representations of structured relations
in visual long-term memory on visual search (Draschkow &
Võ, 2017), categorization (Bar, 2004), consciousness (Stein,
Kaiser, & Peelen, 2015), and gaze duration (Võ & Henderson,
2009). Relational representations in visual long-term memory
(e.g., ON(POT,STOVE) = yes, IN(SPATULA,MICROWAVE) =
no) aren’t based on associations or statistical summaries over
low-level properties. They persist despite changes in position
and context (Castelhano & Heaven, 2011), thus abstracting
away from overlearned associations. Characteristic scene-
grammar effects disappear, however, for upside-down stimuli
(Stein et al., 2015), implicating a categorical rather than low-
level format. The effects also appear not to rely on
summary-statistical information represented outside focal atten-
tion (Võ & Henderson, 2009). Despite developing independently
of natural language (Öhlschläger & Võ, 2020), structured rela-
tions in scene grammar display curious hallmarks of language-
like formats. For instance, the P600 ERP increases for syntactic
violations in language, and also increases for stimuli that violate
visual scene “syntax” (e.g., mouse-on-computer instead of
mouse-beside-computer; Võ & Wolfe, 2013). It’s standard to
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talk of scene grammar as associative, but its relational compo-
nents satisfy a handful of our LoT hallmarks (e.g., discrete con-
stituents with role-filler independence that encode abstract
contents, including categories and relations, and function as
arguments in multiplace predicates as in ABOVE(MIRROR,
SINK)). Scene grammar is used directly in controlled behavior
(e.g., how to arrange a virtual reality scene; Draschkow & Võ,
2017); how broadly it can function in logical inference remains
to be explored experimentally.

4.3 Vision and DNNs

In sum, our perceptual capacities to identify and track objects,
grasp their characteristic structures, and perceive and store

their relations with one another, appear to rely on LoT-like
representations.

A major source of contemporary skepticism about LoTH is the
rise of DNNs. Apart from large language models like GPT-3,
nowhere are DNNs more visible as models of human cognitive
capacities than in visual perception. Given their successes at
image classification and apparent similarities to biological vision,
one might wonder whether the subsymbolic network structure of
DNNs obviates the need to posit LoT-like structures.

The DNNs that have been most touted as models of biological
vision are deep convolutional neural networks (DCNNs) trained
to classify images (Kriegeskorte, 2015; Yamins & DiCarlo,
2016). After training on large data sets like ImageNet, DCNNs
exhibit remarkable levels of performance on image classification.

Figure 3. (a) Hierarchical part-whole structural description: Ps = monadic featural properties, horizontal Rs = spatial relations, vertical Rs = mereological relations;
reprinted from Green (2019), Figure 9, with permission from Wiley. (b) Structural analogy between tree-like structures in natural-language syntax and tree-like per-
ceptual representations of interobject relations; reprinted from Cavanagh (2021), Figure 3, with permission from Sage under CC BY 4.0, cropped and rearranged. (c)
Hierarchical structure in scene grammar: Objects are organized relative to “anchors” (relatively large, immobile elements of environments like showers and trees) in
phrase-like structural descriptions of normal relative positions; reprinted from Võ, Bettcher, and Draschkow (2019), Figure 2, with permission from Elsevier. (d)
Examples of perceived interobject relations; reprinted from Hafri and Firestone (2021), Figure 2, with permission from Elsevier.
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It is important to evaluate comparisons to human vision not sim-
ply in terms of performance, but primarily in terms of underlying
competence (Chomsky, 1965). Just as differences in performance
need not entail differences in competence (Firestone, 2020),
human-like performance on a limited range of tasks need not
entail human-like underlying competence. In other words,
DCNNs may accomplish image classification while lacking
key structural features of human vision, including those relevant
to LoTH.

DCNNs have been argued to resemble primate vision in com-
petence as well as performance by appeal to metrics of similarity
such as “Representational Similarity Analysis” (Khaligh-Razavi &
Kriegeskorte, 2014) and “Brain-Score” (Schrimpf et al., 2018).
However, there are shortcomings both to earlier findings of
high similarity using these metrics and to the metrics themselves.
For example, Xu and Vaziri-Pashkam (2021b) used higher quality
fMRI data for their representational similarity analysis and found
that, contra Khaligh-Razavi and Kriegeskorte’s earlier findings,
high-performing DCNNs (both feedforward and recurrent)
show large-scale dissimilarities to human vision. Brain-Score
has been criticized for insufficient sensitivity to architectural dis-
tinctions (e.g., feedforward vs. recurrent models): “either the
Brain-Score metric or the methodology with which a model is
evaluated on it fails to distinguish among what we would think
of as fundamentally different types of model architectures”
(Lonnqvist, Bornet, Doerig, & Herzog, 2021, p. 3). Furthermore,
although Schrimpf et al. (2018) found that Brain-Score positively
correlates with image classification performance, it fails to capture
the crucially hierarchical structure of human vision. Nonaka,
Majima, Aoki, and Kamitani (2021) thus developed a “Brain
Hierarchy Score” that measures similarities between hierarchical
structures, applied it to 29 DNNs, and found a negative correla-
tion between image classification performance and similarity to
human vision. This finding provides a striking illustration of
how DNNs can excel in performance while veering apart from
human competence (see also Fel, Felipe, Linsley, & Serre, 2022).

Our case for LoT in vision is limited to certain domains:
Objects, relations between parts and wholes, and relations between
objects. It is not a coincidence, in our view, that DNNs that succeed
at image classification exhibit little to no competence in these
domains. As Peters and Kriegeskorte write about feedforward
DCNNs, “the representations in these models remain tethered to
the input and lack any concept of an object. They represent things
as stuff” (2021, p. 1128).7 It is also not clear that DCNNs are capa-
ble of representing global shape, let alone the relation between
global shape and object parts (Baker & Elder, 2022). Baker, Lu,
Erlikhman, and Kellman (2020) trained AlexNet, VGG-19, and
ResNet-50 to classify circles and squares, but found that these
DCNNs relied only on local contour information; circles made of
jagged local edges were classified as squares, and squares made
of round local curves were classified as circles. The same models
(and several others) also could not distinguish possible from
impossible shapes, which requires relating local contour informa-
tion to global shape (Heinke, Wachman, van Zoest, & Leek,
2021). Failures at processing relations hold not only for DNNs
that map images to labels, but also those that map labels to images:
Conwell and Ullman (2022) fed the text-guided image-generation
model DALL-E 2 a set of interobject relations (including those
used by Hafri et al., 2021) and found that it failed reliably to dis-
tinguish, for example, “a spoon in a cup” from “a cup on a spoon.”

To be clear, we make no claims about in-principle limitations
of DNNs. The machine-learning literature is extremely fast-

moving, and we do not pretend to know what it will look like
in even 1 year’s time. Moreover, different DNN architectures
might better capture the visual processes discussed here.
Although convolutional architectures might privilege local
image features, perhaps nonconvolutional architectures like vision
transformers (Vaswani et al., 2017) are better suited to avoid these
limitations and will supersede DCNNs as models of human vision
(Tuli, Dasgupta, Grant, & Griffiths, 2021). Because DCNNs have
accumulated enormous publicity despite apparently lacking basic
elements of biological vision like global shape and objecthood,
future DNN–human comparisons should be approached with
caution. Finally, as was noted long ago, neural-network architec-
tures might be able to implement an LoT architecture (Fodor &
Pylyshyn, 1988). Indeed, some recent work on DNNs explores
implementations of variable binding (Webb, Sinha, & Cohen,
2021; though see Gröndahl & Asokan, 2022; Miller, Naderi,
Mullinax, & Phillips, 2022), a classic example of LoT-like sym-
bolic computation (Gallistel & King, 2011; Green &
Quilty-Dunn, 2021; Marcus, 2001; Quilty-Dunn, 2021). Our six
core LoT properties help specify a cluster of features that such
an implementation should aim for.

DNNs are marvels of contemporary engineering. It does not
follow that they recapitulate architectural aspects of human vision.
We agree with Bowers et al.’s (2022) recent complaint that
research on DNNs as models of biological vision is overly focused
on performance benchmarks and insufficiently guided by experi-
mental perceptual psychology. Given that DNNs are universal
function approximators, and given the vast resources being
poured into their development, they will only get closer to
human performance over time. But this performance will not
reflect core competences of the human visual system unless the
relevant models incorporate LoT-like representations of objects
and relations.

5. LoTs in nonhuman animals and children

Traditionally, theorists in animal and infant cognition have been
reluctant to posit complex cognitive processes, let alone computa-
tions over LoT-style representations (e.g., Morgan, 1894; Penn,
Holyoak, & Povinelli, 2008; Premack, 2007; cf. Fitch, 2019).
However, the state-of-the-art in comparative and developmental
psychology is surprisingly congenial to LoTH.

5.1 Abstract content and physical reasoning

Considerable evidence suggests infants use object files to reason
about the identity, location, and numerosity of hidden objects
(Carey, 2009; Spelke, 1990). However, in a foundational
study, Xu and Carey (1996) found that, although 12-month
olds who see a duck and then a ball pop out from behind an
occluder expect two objects to be present, 10-month olds
don’t. This failure might seem to suggest that abstract concep-
tual content is not usable for physical reasoning in young
infants, potentially undermining LoT-based models of infant
reasoning (Xu, 2019).

However, 10-month olds do succeed for socially significant
categories (Bonatti, Frot, Zangl, & Mehler, 2002; Surian &
Caldi, 2010) and objects that are made communicatively salient
(Futo, Teglas, Csibra, & Gergely, 2010; Xu, 2019, p. 843). There
is also evidence that priming can allow infants to use information
in physical reasoning many months earlier than they would oth-
erwise appear to. Lin et al. (2021) made features (e.g., color)
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salient by first showing an array of objects that differed along the
relevant dimension (e.g., all different colors). This nonverbal
priming allowed infants to use information in object files to rea-
son about the individuation of hidden objects 6 months earlier
than other methods had detected (e.g., while infants had not
shown surprise at a lop-sided object balancing on a ledge until
13 months, Lin et al.’s nonverbal priming of lop-sidedness caused
7-month olds to show the effect).

Infants should therefore be able to use conceptual categories for
Xu and Carey’s individuation task long before 12 months if the
right information is primed first: For example, the relevance of
the category’s function, a key aspect of artifact concepts (Kelemen
& Carey, 2007; cf. Bloom, 1996). Stavans and Baillargeon (2018)
demonstrated objects’ characteristic functions before hiding
(Fig. 4a) and found 4-month olds succeeded at Xu and Carey’s indi-
viduation task, looking longer when only one object was revealed.
These results show two key LoT-like features – abstract content
and inferential promiscuity – in extremely young preverbal infants.
Thus the earlier failures seem to be explained by performance con-
straints (Stavans, Lin, Wu, & Baillargeon, 2019).

The use of abstract content in physical reasoning is arguably
present throughout the animal kingdom, and is well-studied in
primates (e.g., Flombaum et al., 2004) and even some arthropods.
Loukola, Perry, Coscos, and Chittka (2017) trained bumblebees
through social learning (using a dummy bee) to roll a ball – an
unusual behavior for bumblebees in the wild – into the center
of a platform for a sucrose reward. When the platform was later
rearranged with several balls at various locations that the bees
could push into that central area, the bees opted to push balls
closest to the center of the platform, even if they differed in
color or location from the one they had seen pushed initially.
This suggests bumblebees are sensitive to shape in a way that is
dissociable from color and location, in contrast to many
model-free learning accounts but just as one would expect if
shape type is encoded in an LoT. In a similar vein, Solvi,
Al-Khudhairy, and Chittka (2020) found that bumblebees could
recognize objects under full light that they had previously encoun-
tered only in darkness, suggesting they can transfer shape repre-
sentations stored through touch to a visual task. Bumblebees

therefore appear to represent shape in a way that is dissociable
from modality-specific low-level features. These representations
figure in practical inferences (thereby displaying inferential pro-
miscuity), and that guides recognition across modalities (thereby
displaying abstract content). Furthermore, honeybees trained on
a fewer-than relation (e.g., 2 < 5) were able to generalize to cases
involving zero items (e.g., 0 < 6) without any zero-item training,
implicating an abstract symbolic representation of zero that
guides inferential generalization and logico-mathematical rea-
soning (Howard, Avargues-Weber, Garcia, Greentree, & Dyer,
2018; cf. Vasas & Chittka, 2019; see Weise, Ortiz, & Tibbetts,
2022, for abstract contents of same and different). Similarly,
bees’ navigational inferences have been used as an argument
for a bee LoT because of their computational complexity
(Gallistel, 2011).

Much of our discussion in sections 4 and 5.1 has concerned
abstract (e.g., amodal or view-invariant) object representations,
and one might wonder whether these effects are really because
of associations between low-level features acquired gradually dur-
ing development. One might therefore wonder whether DNNs
could therefore provide a better explanation for these effects.
However, Wood and Wood (2020) found that newborn chicks
showed one-shot learning of abstract object representations
(Fig. 4b). Shortly after birth, having been reared in an environ-
ment with no movable-object-like stimuli, chicks were shown a
virtual three-dimensional (3D)-object rotating either fully 360
degrees, or just 11.25 degrees; later, the chicks successfully recog-
nized the objects from arbitrary viewpoints (equally well under
both conditions) and moved toward them. Given the paucity of
relevant input, this experiment points away from DNN-based
explanations of abstract object representations.

Similarly, Ayzenberg and Lourenco (2021) showed preverbal
infants a single view of 60 degrees of an unfamiliar object; using a
looking-time measure, they found that the infants formed an
abstract, categorical representation, recognizing the object even
when viewpoint and salient surface features had drastically changed.
The infants’ one-shot category learning outperformed DCNNs
trained on millions of labeled images. This divergence between
DCNN and human performance echoes independent evidence

Figure 4. (a) Function demonstrations aid object individuation: In a modification of Xu and Carey’s (1996) paradigm, infants first see the characteristic function of
an object demonstrated (e.g., a marker drawing, a knife cutting), and this demonstration primes them to use categorical and featural information about the objects
to expect two objects in the test trials (i.e., increased looking time when only one object appears); reprinted from Stavans and Baillargeon (2018), Figures 4 and 5,
with permission from Wiley. (b) View-invariant information extracted by newborn chicks: Chicks are shown a highly limited set of viewpoints on an object and form
an abstract, view-invariant representation; reprinted from Wood and Wood (2020), Figure 1, with permission from Elsevier.
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that DCNNs fail to encode human-like transformation-invariant
object representations (Xu & Vaziri-Pashkam, 2021a).

5.2 Logical inference

Proponents of LoTH have long held up its ability to explain log-
ical inference in preverbal children and nonhuman animals as a
virtue (Cheney & Seyfarth, 2008; Fodor, 1983; Fodor &
Pylyshyn, 1988; Gallistel, 2011; cf. Bermudez, 2003; Camp,
2007, 2009; Gauker, 2011). Recent evidence suggests infants and
animals may use logical operators in logical inferences.

Consider the growing body of work on disjunctive syllogistic
(DS) reasoning. A standard means of testing for this capacity is
Call’s (2004) two-cup task. The task involves placing a reward
in one of the two cups behind an occluder. Once the cups are
brought back into plain view, the participant is shown that one
is empty, and can then choose which of the two cups to select
from. Typically, researchers are interested in whether the partici-
pant selects the unrevealed cup more often than the revealed one,
and whether they choose it without inspecting it first. Such behav-
ior is often taken as evidence that the participant can reason
through DS, because there’s definitely a reward, and one of the
two cups is empty, guaranteeing the location of the reward by
DS. A surprising number of animals succeed at this task, as
well as children as young as two (Call, 2006).

Mody and Carey (2016) argue that there is a confound in such
tasks. Participants could rely on a nonlogical strategy involving
modal operators: They could form two unrelated beliefs,
MAYBE THERE IS A REWARD IN CUP A and MAYBE
THERE IS A REWARD IN CUP B. On this strategy, once
shown that cup A is empty, participants simply ignore the possi-
bility that there may be a reward there; left only with the belief
that there may be a reward in cup B, they then select cup B. So
the authors modified this task, using two rewards and four cups
(Fig. 5a). Although children as young as 2.5 succeed at the two-
cup task, only 3- and 5-year olds succeed at this four-cup task,
with 5-year olds performing best.

Pepperberg, Gray, Cornero, Mody, and Carey (2019) found that
an African gray parrot, Griffin, succeeded at a modified version of
the four-cup task. Remarkably, Griffin selected the cup that con-
tained reward (a cashew) on nearly every trial (chance, in this
case, was 33%), besting human 5-year olds (whose success is sur-
prisingly variable; Gautam, Suddendorf, & Redshaw, 2021). More
moderate success at the four-cup task has also been achieved with
olive baboons (Fig. 5c; Ferrigno, Huang, & Cantlon, 2021).

A straightforward way of understanding these results is to
accept that at least some nonhuman animals are competent
with DS. To execute that inference, one needs two sentential con-
nectives, NOT and OR. These must be combined, syntactically,
with representations of states of affairs.

The failure of younger kids at Mody and Carey’s four-cup task
at first looks like bad news for LoTH. However, it might only
reflect a failure with using negation, rather than with logical infer-
ence more broadly (Feiman, Mody, & Carey, 2022). Moreover, as
with Xu’s (2019) arguments against LoT-like format in object
files, the possibility of performance demands masking an under-
lying LoT-based competence is plausible. The four-cup task
requires kids to track four cups divided into two pairs and two
occluded stickers, which is demanding on VWM; indeed, animals
that outperform children tend to have superior VWM capacity
(Pepperberg et al., 2019, p. 417; cf. Cheng & Kibbe, 2021). As
Pepperberg et al. point out, younger children also act more

impulsively than older ones, sometimes ignoring relevant knowl-
edge in demanding tasks. Thus we should look for less demand-
ing tasks before ruling out LoT-like logical inference in children.
For example, we could look for independent psychophysical sig-
natures of DS as performed by adults and see whether those sig-
natures are present in children in simpler tasks.

Cesana-Arlotti et al. (2018) showed 12-month olds and adults
two objects hidden behind occluders (e.g., a snake and ball); they
saw one placed in a cup without knowing which, and finally the
unmoved object (e.g., snake) popped out, allowing subjects to
infer the identity of the cup-hidden object (ball). When the
cup-hidden object was revealed, infants’ looking time showed they
expected it to be the yet-unseen object (ball). This finding is com-
patible with nonlogic-based explanations. However, Cesana-Arlotti
et al. found that adults performing DS showed an oculomotor sig-
nature: During inference, their pupils dilated and eyes darted to the
still-hidden object. This same signature was found in the infants,
implicating the same underlying computations.

Genuine DS should be domain-general. Cesana-Arlotti,
Kovács, and Téglás (2020) used a similar paradigm to test DS
in 12-month olds, this time relying on their knowledge of others’
preferences. Participants learned an agent’s preference among
objects (ball vs. car); the nonpreferred object then briefly popped
out from behind its occluder, after which the agent reached
behind one of the occluders. Twelve-month olds looked longer
when the nonpreferred object was reached for. Cesana-Arlotti
and Halberda (2022) also found that 2.5-year olds, who fail the
four-cup task, nonetheless reason by exclusion across word-
learning, social-learning, and explicit negation with a common
saccade pattern: They saccade to the to-be-excluded item, return
to the target item, and fail to show “redundant” saccades – evidence
of low confidence – after target selection. This pattern suggests
a domain-general inferential mechanism that delivers high-
confidence conclusions, a functional profile one should expect if
children perform DS.

Leahy and Carey (2020) provide an alternative, non-DS-based
explanation of successful reasoning by exclusion via sequentially
simulating alternative possibilities. However, chimpanzees, at
least, are able to represent distinct possible states of affairs simul-
taneously. Engelmann et al. (2021) used a modified two-cup task
in which the empty cup was not revealed. Chimps could pull
ropes for both cups, or pull just one rope for one cup, causing
the second cup to fall out of reach. Overwhelmingly they
expended extra energy to pull both ropes when the cups were
opaque, but pulled just one when the cups were transparent
(Fig. 5b).8 Pulling two ropes is hedging under uncertainty, sug-
gesting chimps simultaneously represent two locations as possibly
reward-laden.

Furthermore, 12-month olds seem to use the same computa-
tions adults do to reason by exclusion, as measured by oculomo-
tor signatures (Cesana-Arlotti et al., 2018). It’s possible that adults
do both DS and simulation-based or icon-based reasoning in
these tasks. But given independent reasons to think these tasks
run on LoT-like object representations in VWM and adults’
capacity for DS, and the relative lack of evidence for multiple
redundant reasoning processes underlying task performance,
our working hypothesis is that infant’s oculomotor behavior is
evidence for LoT-based DS.

Logical inference without language is a rapidly developing
research area, and central contributors to this research such as
Carey are skeptical of the “thicker” interpretations of the data
we defend. Although we anticipate further plot twists will emerge
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in study of infant and nonhuman inference, we take the current
state of the literature to favor an LoT-based account of DS in
infants and animals and to bear promise for many LoTH-based
lines of research in the development of logical operators.

6. LoTs in social psychology: The logic of system 1

One source of opposition to LoTH stems from treatments of atti-
tudes and system-1 processing in social psychology. In traditional
dual-process theory, system 1 (“S1”) is governed by shallow heu-
ristic, associative, nonrule-based processing (Evans & Stanovich,
2013; Sloman, 1996). Dual-process theories originate partly
from the heuristics-and-biases tradition, where fast responding
purportedly demonstrates irrationality (cf. Gigerenzer &
Gaissmaier, 2011; Mandelbaum, 2020).

One may doubt the irrationality of S1 processing. As case stud-
ies we’ll discuss two paradigms used to investigate characteristically
S1 thought: Unconscious reasoning in implicit attitudes in the
implicit association test and belief bias cases (though the same
morals hold for other paradigms such as base rate inferences and
cognitive reflection test; Bago & De Neys, 2017, 2019, 2020; De
Neys, Cromheeke, & Osman, 2011; De Neys & Franssens, 2009;
De Neys & Glumicic, 2008; De Neys, Rossi, & Houdé, 2013;
Gangemi, Bourgeois-Gironde, & Mancini, 2015; Johnson, Tubau,
& De Neys, 2016; Pennycook, Trippas, Handley, & Thompson,
2014; Stupple, Ball, Evans, & Kamal-Smith, 2011; Thompson &
Johnson, 2014; Thompson, Turner, & Pennycook, 2011).9

6.1 Logic, load, and LoT

Failures of syllogistic reasoning are commonplace and well-
publicized. In particular, belief biases – cases where people

mistakenly use the truth of a conclusion in judging an argument’s
validity, ignoring logical form – are legion (Markovits & Nantel,
1989). Even outside of the belief bias people are forever
affirming-the-consequent, denying the antecedent, and confusing
validity and truth.

Difficulties in reasoning are prima facie problematic for LoTH.
The more errors we make in reasoning, the less it seems like we
need an inferential apparatus to explain people’s thinking. LoT
is tailor-made to explain formal reasoning – that is, reasoning
based on the structure, rather than the content, of one’s premises
(Fodor & Pylyshyn, 1988; Quilty-Dunn & Mandelbaum, 2018a,
2018b). So, failures in reasoning – traditionally seen as because
of heuristic S1 processing – are seen as reasons for believing
that S1 is associative rather than LoT-like (see, e.g., Gawronski
& Bodenhausen, 2006; Rydell & McConnell, 2006; Sloman,
1996). However, a closer look at the data shows evidence for non-
associative, LoT-like, logic-sensitive reasoning in S1.

“Conflict problems” are cases where validity and believability
conflict, that is, valid syllogisms with unbelievable conclusions
or invalid syllogisms with believable conclusions. All other prob-
lems (valid/believable; invalid/unbelievable) are “nonconflict.”
Some examples:

(Conflict: Valid/Unbelievable)
P1: All birds fly
P2: Penguins are birds
C: Penguins fly

(Conflict: Invalid/Believable)
P1: All birds fly
P2: Penguins are birds
C: Penguins swim

Figure 5. (a) Four-cup task: A reward is placed behind an occluder and into one of the two cups, and again for another reward and pair of cups. Then one cup is
shown to be empty, and participants who perform disjunctive syllogism can infer that a reward is certain to be in the other cup in that pair; reprinted from Mody
and Carey (2016), Figure 1, with permission from Elsevier. (b) Alternatives in chimps: A reward is placed in one of the two boxes, and chimps pull a string to open
the box and reveal the reward. The chimps pull both boxes when they are opaque, suggesting simultaneous representation of two possibilities; reprinted from
Engelmann et al. (2021), Figure 1, with permission from Elsevier. (c) Success on four-cup task by baboons, reprinted from Ferrigno et al. (2021), Figure 1, Sage.

14 Quilty‐Dunn et al.: The best game in town

https://doi.org/10.1017/S0140525X22002849 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22002849


(No Conflict: Valid/Believable)
P1: All birds have feathers
P2: Penguins are birds
C: Penguins have feathers

(No Conflict: Invalid/Unbelievable)
P1: All birds have feathers
P2: Penguins are birds
C: Penguins fly

If S1 is not logic-sensitive, then conflict problems should not
hamper believability judgments, because belief bias is driven by
nonlogical factors. Yet logic-sensitive judgments occur even
when subjects are explicitly instructed to focus on believability,
and even under extreme cognitive load. Logical responses thus
seem to be generated automatically. People are less confident
and slower on conflict problems than nonconflict problems
regardless of whether they are judging belief or logic (Handley
& Trippas, 2015; Howarth, Handley, & Polito, 2021; Trippas,
Thompson, & Handley, 2017). That is, they’ll be slower to judge
that “Penguins fly” is false if it is a conclusion of a valid argument
than a conclusion of an invalid one. Moreover, those who cor-
rectly solve syllogism validity questions in conflict problems do
so even under intense time pressure and additional memory
load, ensuring the shutdown of system-2 processes (Bago & De
Neys, 2017). That is, correct responding happens right away;
giving participants additional time to think adds little accuracy.

Just as the believability of a conclusion can interfere with valid-
ity judgments, so too can the logical form of an argument affect
believability judgments. In fact, there is evidence that logical
responding is more automatic than belief-based responding;
derailing logical responding impedes belief-based responding
more than vice versa (Handley, Newstead, & Trippas, 2011;
Howarth, Handley, & Walsh, 2016; Trippas et al., 2017). For
example, in Trippas et al. (2017), conflict impeded believability
judgments more than validity judgments for modus ponens.
Sensitivity to logical form persists whether subjects are under load
or not (and whether asked to evaluate validity or not), showing
that the relevant differences are because of S1 processing (Trippas,
Handley, Verde, & Morsanyi, 2016). Even when asked to respond
randomly, participants still show implicit sensitivity to logical
form (Howarth et al., 2021). Automatic logical sensitivity also has
very little individual difference between subjects, suggesting it
reflects fundamental architectural features of cognition (Ghasemi,
Handley, & Howarth, 2021). Logical inferences are also made auto-
matically during reading (Dabkowski & Feiman, 2021; Lea, 1995;
Lea, Mulligan, & Walton, 2005). As one would expect if logic was
intuitive, subliminally presented premises trigger modus ponens
inferences (Reverberi, Pischedda, Burigo, & Cherubini, 2012).

Far from undermining LoTH, dual-process architectures vin-
dicate LoTH. They demonstrate abstract logic-based inferential
promiscuity outside controlled, conscious cognition using discrete
symbols that maintain role-filler independence (e.g., P must be
the same symbol in P→Q).

6.2 The logic of implicit attitudes

Implicit attitudes are typically assumed to be associative.
However, Mandelbaum (2016) and De Houwer (2019) docu-
mented the effects of “logical interventions” on implicit attitudes,
that is, cases where one can change implicit attitudes not by coun-
terconditioning or extinction, as would be expected if they had

associative structure, but instead by merely changing the logically
pertinent evidence. Logical (or “propositional”) interventions on
attitudes are only possible given that we have predicate–argument
structure, logical operators, and inferential promiscuity.

Take Kurdi and Dunham (2021). Their basic paradigm con-
sisted of a learning and testing phase. In a learning phase partic-
ipants saw sentences of the form: “If you see a green circle, you
can conclude that Ibbonif is trustworthy; if you see a purple pen-
tagon, you can conclude that Ibbonif is malicious.” This design
cleverly pits associative versus propositional (i.e., LoT) processes
against each other: If the implicit attitude processor is associative
then Ibbonif should come out as neutral as Ibbonif is being asso-
ciated with both positive (trustworthy) and negative (malicious)
adjectives. If the processor is sensitive to propositional values
however, then the implicit attitude acquired should be dependent
on which conditional’s antecedent was satisfied (i.e., which shape
appears). Participants then moved onto the testing phase which
consisted of explicit and implicit attitude testing (via the IAT).
Results showed that participant attitudes tracked the logical
form of the stimuli during the testing phase. So, using the sample
text above, if participants saw a purple pentagon they would con-
clude that Ibbonif (and the group that he was from, the Niffites,
denoted from the suffix on the name) was negatively valenced.

Kurdi and Dunham had ample variations in the paradigm
all showing similar LoT-based effects on implicit attitudes.
Importantly, LoT-based inferences can be seen even when the
response is normatively inappropriate, as in an affirming-the-
consequent syllogism (study 3). In the learning phase, partici-
pants saw sentences such as “If you see a green circle, you can
conclude that Ibbonif is malicious”; however, instead of seeing a
green circle, they would then see an, for example, orange square.
Thus the correct inference to make is that nothing can be inferred
from the setup. If implicit attitudes are updated only by an asso-
ciative processor, then the valence of the predicate in the conse-
quent should dictate the participants’ responses. If instead
attitudes are sensitive to the logical form of the inventions, then
one of the two things should happen: For those subjects who cor-
rectly realize that this is an affirming-the-consequent argument
they should form no opinion about the person or group in ques-
tion. However, the subset of people who incorrectly affirm the
consequent should make the wrong inference and infer that the
consequent accurately describes the person or group in question.
Participants were given a control question to see if they were apt to
explicitly affirm the consequent. Those who did also changed their
implicit attitudes in line with the affirming-the-consequent stimuli
they would later see in the experiment; the implicit attitudes of
those who rejected the affirming-the-consequent control question,
on the contrary, correctly tracked the logical implications of the
stimuli by failing to update at all (similar results hold for denying
the antecedent). Given a sufficiently creative setup, one can infer
logical processes at play even in the absence of inference, or during
misinference (Quilty-Dunn & Mandelbaum, 2018a).

Similar variations abound. If the associative account were cor-
rect then merely giving a major premise that is clearly valenced
should set the associative value of the target: Giving participants
sentences such as “If you see a purple pentagon, you can conclude
that Ibbonif is malicious” should make one associate IBBONIF
and negative valence via “malicious.” Except that isn’t what hap-
pens – if subjects are given the conditional premise with no
follow-up they withhold forming any valenced implicit attitudes,
unlike what associative theory would predict.10 The concept
IBBONIF needs to be linked with the attribute MALICIOUS
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in a way that is impervious to associative factors, but sensitive to
counterevidence. A predicate–argument structure with MALICIOUS
as predicate and IBBONIF as argument predicts just this functional
profile.

The Kurdi and Dunham is just one of a near-deluge of recent
studies showing the efficacy of logical interventions compared to
the impotence of associative interventions (Cone & Ferguson,
2015; De Houwer, 2006; Gast & De Houwer, 2013; Mann &
Ferguson, 2015, 2017; Mann, Cone, Heggeseth, & Ferguson,
2019; Van Dessel, De Houwer, Gast, Smith, & De Schryver,
2016; Van Dessel, Gawronski, Smith, & De Houwer, 2017a; Van
Dessel, Mertens, Smith, & De Houwer, 2017b; Van Dessel, Ye,
& De Houwer, 2019). Telling participants that they will see a pair-
ing of a group with pictures of pleasant (or unpleasant) things is
much more effective at fixing implicit attitudes than repeatedly
pairing the group and the pleasant/unpleasant things. One-shot
learning trumps 37 associative pairings. Even when associative
and one-shot propositional learning are combined, the associative
trials add no detectable valence to the implicit attitude formed
from the one-shot propositional trial (Kurdi & Banaji, 2017).
That is, direct exposure to associative pairings isn’t necessary or
sufficient for forming or changing implicit attitudes, and its effect
on attitudes doesn’t compare to a single exposure to a sentence.
Even when repeated exposure causes some mental representation
of the categories to be formed, just telling participants whether
the stimuli are diagnostic modulates learning (e.g., if told the
data aren’t diagnostic, learning is inhibited, and if told the data
are diagnostic, learning is increased). This suggests that the repre-
sentations acquired are being used as beliefs (Quilty-Dunn &
Mandelbaum, 2018b), and updated in a logical, inferentially pro-
miscuous way (Kurdi & Banaji, 2019). The primacy of diagnostic
information over repeated exposure is a consistent finding, show-
ing the inadequacies of associative models (e.g., Mann et al., 2019;
Mann & Ferguson, 2015, 2017).

In short, implicit attitudes – far from being a problem area for
LoT – instead demand evidence-sensitive, inferentially promiscu-
ous predicate–argument structures that incorporate abstract logi-
cal operators.

7. Conclusion

More than half a century after the cognitive revolution of the
1950s, mental representations remain the central theoretical posits
of psychology. Although our picture of the mind has gotten more
and more complex over time, computational operations over
structured symbols remain foundational to our explanations of
behavior. At least some of these symbols – those involved in cer-
tain aspects of probabilistic inference, concept acquisition, S1 cog-
nition, object-based and relational perceptual processing, infant
and animal reasoning, and likely elsewhere – are couched in an
LoT. That doesn’t mean that all perceptual and cognitive process-
ing is LoT-symbol manipulation. We believe in other vehicles of
thought, including associations (Quilty-Dunn & Mandelbaum,
2020), icons (Quilty-Dunn, 2020b), and much more. Our claim
is somewhat modest: Many representational formats across
many cognitive systems are LoTs.

We don’t deny the successes of DCNNs; perhaps they accurately
model some aspects of biological cognition (Buckner, 2019; Shea,
2023). It remains open that DNNs might mimic the performance
of biological perception and cognition across a wide variety of
domains and tasks by implementing core features of LoTs (cf.
Zhu et al., 2020). We agree with a recent review of DCNNs that

a “key question for current research is how structured representa-
tions and computations may be acquired through experience and
implemented in biologically plausible neural networks” (Peters &
Kriegeskorte, 2021, p. 1137). Given the evidence above, matching
the competences of biological minds will require implementing a
class of structured representations that uses discrete constituents
to encode abstract contents and organizes them into inferentially
promiscuous predicate–argument structures that can incorporate
logical operators and exhibit role-filler independence.

There is much more to say about evidence for LoT, including
abstract, compositional reasoning in aphasics (Varley, 2014), and
potential neural underpinnings for LoT (Frankland & Greene,
2020; Gershman, 2022; Roumi et al., 2021; Wang et al., 2019).
LoTs ought to provide “common codes” that interface across
diverse systems (Dennett, 1978; Pylyshyn, 1973). Central topics
here include LoTs at the interfaces of language (Dunbar &
Wellwood, 2016; Harris, 2022; Pietroski, 2018) and action
(Mylopoulos, 2021; Shepherd, 2021).

The big picture is that LoTH remains a thriving research pro-
gram. LoTH allows us to distinguish psychological kinds in a
remarkably fine-grained way, offering promising avenues for
future research. LoTs might differ across systems within a single
mind, or between species (Porot, 2019). Although it’s likely, for
example, that object tracking and S1 reasoning differ in the rep-
resentational primitives they employ, we don’t know whether or
how their compositional principles differ. Similarly, we don’t
know how representations that guide logical inference in baboons
differ from those that bees use in social learning, or that infants
use in physical reasoning. Differences in conceptual repertoire
or syntactic rules provide dimensions along which to type cogni-
tive systems. Future work can focus on decrypting the specific
symbols and transformation rules at work in each case, and
how these symbols interface with non-LoT mental media.

One might also find subclusters of LoT-like properties. It may
be that, for example, properties encoding logical operators and
making abstract logical contents available for inference form a
“logic” subcluster, and predicate–argument structure, role-filler
independence, and abstract contents form a “predication” subclus-
ter. In that case, LoT qua natural kind may be a genus of which
these subclusters are species (as an analogy, consider how mental
icons may be a genus-level kind with high species-level variation
between, e.g., visual images and abstract mental models).

Finally, little is known about the evolutionary emergence of LoT
in our ancestors or phylogenetically distant LoT-based minds. Our
ignorance leaves open the possibility that, given LoTs’ computa-
tional utility, very different biological minds converged on them
independently. An outstanding research goal is to construct a typol-
ogy of LoTs within and across species, allowing us to better under-
stand the varieties of expressive power in naturally occurring
representational systems (Mandelbaum et al., under review).
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Notes

1. We focus on reductionists because one can grant that, e.g., associative pro-
cessing and natural-language-guided cognition exist, while also positing an
LoT. Our opponents are not theorists who merely posit these mechanisms
(as we do), but rather theorists who think all prima facie LoT-like cognition
reduces to them. See, e.g., Lecun et al.’s argument that the success of DNNs
“raises serious doubts about whether understanding a sentence requires any-
thing like the internal symbolic expressions that are manipulated by using
inference rules” (2015, p. 441).
2. “Usability for inference” here is independent from structural access con-
straints, e.g., from modularity.
3. Adding second-order quantifiers did not increase performance, suggesting
increasing expressive power per se does not necessarily improve model fit.
4. Bayesian modeling is sometimes pitched as a Marrian “computational-
level” rational analysis (Anderson, 1990; Oaksford & Chater, 2009).
However, a model that better captures human behavior than competitors pro-
vides defeasible evidence that some approximation of the computational ele-
ments of the model is realized in human cognitive architecture. This
“algorithmic-level” approach to computational modeling fits with recent
Bayesian approaches (e.g., Lieder & Griffiths, 2020; Vul, Goodman, Griffiths,
& Tenenbaum, 2014). We grant that further evidence is needed to establish the
algorithmic-level reality of PLoTs (e.g., behavioral evidence of the sort can-
vassed in the rest of this paper), but we take their success primarily to push
back against the dominance of non-LoT-like architectures such as DNNs.
Moreover, the fine-grained behavioral measures used in the
“language-of-geometry” literature discussed in the next two paragraphs evince
an algorithmic-level interpretation.
5. For more critical discussion of DNNs see Lake, Ullman, Tenenbaum, and
Gershman (2017) and Marcus (2018).
6. It’s possible that “skeletal” shape representations (Feldman & Singh, 2006;
Firestone & Scholl, 2014) exhibit similar LoT-like structure (Green, unpublished).
7. Of course DNNs trained for multiple-object tracking do much better
(Burgess et al., 2019; Xu, Zhou, Chen, & Li, 2019), but their similarity to
human visual competence is underexplored.
8. Chimpanzees, orangutans, monkeys, and children under four fail to hedge in
this way when rewards are dropped in a transparent Y-shaped tube: They place
a hand under just one of the arms at the bottom (Lambert & Osvath, 2018;
Redshaw & Suddendorf, 2016; Suddendorf, Crimston, & Redshaw, 2017;
Suddendorf, Watson, Bogaart, & Redshaw, 2019). It is plausible that participants
rely on simulation (Leahy & Carey, 2020) here. Unlike the cups task, the
Y-shaped tube task requires anticipating the trajectory of an object that is both
plainly visible and already in motion, which might encourage simulation.
9. One reason S1 is so instructive is that its operations occur outside working
memory. Cognition that is most plausibly governed by internal rehearsal of
natural language or “inner speech” plausibly requires verbal-working-memory
resources (Baddeley, 1992; Carruthers, 2018; Marvel & Desmond, 2012).
Evidence of LoT-like structures in S1 therefore undermines attempts to reduce
LoT-like effects to inner speech.
10. We don’t deny that there are associations in S1, just that they suffice to
explain the data.
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Abstract

As Quilty-Dunn et al. observe, the language-of-thought hypoth-
esis (LoTH) has fallen out of favor in philosophy. I will support
the arguments made for its rehabilitation by Quilty-Dunn et al.
by reviewing old, but still potent arguments for LoTH, and
briefly criticizing recent proposed alternatives to LoT, such as
Frances Egan’s deflationism and Eric Schwitzgebel’s disposition-
alism, revealing inadequacies in such antirepresentational, anti-
syntactic theories.

As noted by Quilty-Dunn et al., the language-of-thought hypoth-
esis (LoTH) has fallen out of favor in philosophy. But why?
I deeply appreciate the authors’ careful and comprehensive
review of contemporary empirical and mathematical work that sup-
ports the LoTH. I especially welcome their clarification of its core
commitments, which enables us to see the LoTH at work in areas
where its presence may not be apparent. But I feel that they are too
concessive to LoT’s critics. All of the considerations originally
adduced in favor of the model still stand, particularly those that
appeal to facts about person-level thought.

Understanding the propositional attitudes – believing, want-
ing, supposing, and so on – is one of the central goals of the
philosophy-of-mind. What should constrain theorizing about
them? Here are two surpassingly important data:

(1) Propositional attitudes – particularly beliefs and desires – can
combine to produce actions in ways that conform to what
Aristotle called the “practical syllogism.”

(2) A perfectly rational thinker can hold incompatible thoughts
without realizing it.

As Jerry Fodor (1978) pointed out long ago, the hypothesis
that propositional attitudes are functional states involving physi-
cally realized, syntactically structured representations offers
smooth explanations of both these data. On the contrary, two
leading anti-LoT theories cannot.

(1) That the mental states of believing and desiring something
can cause movements in the body is explained simply by
their being realized physically – one doesn’t need the LoT
to do that. But not just any materialist theory can also explain
why mental states can rationalize the movements they cause.
If I want to snowshoe, and believe that I will be able to snow-
shoe if I go outside now, I will go outside now. That this
belief–desire complex makes rational a certain course of

action is explained by the salutary formal relation among
the structured representations that underlie the attitudes: If
I want to X, and believe that if I do Y then I can accomplish
X, then (ceteris paribus) I should do Y. The architecture of LoT,
which guarantees the authors’ properties 1, 2, 4, and 5, enables
causal relations to track rational relations. (That the substi-
tuends of X and Y in [e.g.] the practical syllogism represent
propositions is presupposed by the logic, although we’d need
examples of different kinds of inference to secure property 3.)

(2) Lois Lane believes that Superman can fly, and she believes
that Clark Kent cannot. But Superman is Clark Kent, so
Lois’s beliefs conflict. But Lois is no dope; why can’t she
see the problem? According to the LoTH, it’s because she
has two lexically distinct representations for the same individ-
ual. Because her mental processes are sensitive only to the
form of the (physically realized) representations, they have
no compunction about placing semantically incompatible
sentences into her belief box.

How can these data be explained without appeal to an LoT? I’ll
briefly discuss two views that are officially agnostic about the exis-
tence of language-like representations, but that hold that such
representations need play no role in accounts of human mentality
and behavior. They both fall short with respect to (1) and (2).

Dispositionalism, defended recently by Eric Schwitzgebel
(2002), holds that believing (and desiring, etc.) is primarily a
matter of being disposed to behave in certain characteristic
patterns. A well-known problem for this view is specifying the pat-
tern specific to a given belief. But there is a deeper problem. Beliefs
do not have proprietary behavioral consequences – because they are
inferentially promiscuous, they are willing to combine with any
desire whatsoever to generate action. A dispositionalist can accom-
modate this point by saying that a signature behavioral profile is
only determined holistically, by taking into account of all of an
agent’s beliefs and desires. But what does “taking into account”
mean? The dispositionalist cannot rely on the logic of the practical
syllogism to say what difference it would make to my behavior,
given (say) my belief that it’s snowing, whether I’m up for some
wintry recreation or want to stay someplace warm.

Neither can the dispositionalist explain why the same set of
motor movements is predictable when it’s described one way,
but not another. It’s rational for me to, as I think of it, go outside.
But going outside might, unbeknownst to me, involve stepping on
a slippery surface. (I thought the walkway had been sanded.) My
belief and desire rationalized my going outside, but they would
not have rationalized my stepping on a slippery surface. The
LoT explains why and how we do things “under a description,”
as philosophers like to say (Antony, 1987).

Another view of belief, championed recently by Frances Egan
(2014) is deflationism. Egan argues that the LoTH (a version of
what she calls “Hyper Representationalism”) founders on the failure
of efforts to give a naturalistic account of the representation relation.
Characterizations of mental processes in terms of the manipulation
of representations, she argues, should be viewed as merely useful
“glosses,” not as serious posits of a mature cognitive science.
Although I have to concede that we still don’t know how to reduce
intentionality to nonintentional conditions, I fault Egan for failing
to recognize the role that the syntactic properties of LoT representa-
tions play in psychological dynamics. Whatever “Superman” means,
its lexical distinctness from “Clark Kent” is sufficient to explain why
Lois behaves differently when she deploys the first representation
rather than the second.
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To conclude: Why is the LoTH so unpopular? I suspect that
it’s because of a residual allegiance to behaviorism, with its
commitment to empiricism (hence the enthusiasm for pattern-
extraction models of thought, like deep neural networks
[DNNs]), and its rejection of mentality as a genuine domain in
nature. The person-level data stand on their own, but many
thanks to the authors for demonstrating the utility, fecundity,
and ubiquity of the LoTH in so many areas of contemporary
psychology.
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Abstract

Memory structures range across the dimensions that distinguish
language-like thought. Recent work suggests agent- or situation-
specific information is embedded in these structures.
Understanding why this is, and pulling these structures apart,
requires observing what happens under major changes. The evi-
dence presented for the language-of-thought (LoT) does not
look broadly enough across time to capture the function of rep-
resentational structure.

The authors posit a single-format type, the language-of-thought
(LoT), across both cognitive contexts and kinds of processing.
Alongside asking whether this is true, we might also ask when
it is true. In this commentary, I’ll look at these two questions
through the lens of long-term memory.

O’Keefe and Nadel (1978) made the case for a map-like format
in the hippocampus, a structure distinct from the LoT. Although
maps have symbolic elements, such as the graphical nature of a
map of a subway route, they are also continuous and holistic in
a way that LoT structures are not. I am unsure of whether the
authors intended long-term memory to be a part of the swath
of cognition covered by their theory, and to rehearse the map
or language debate is not my aim here. I want instead to take

the hippocampal map hypothesis as a starting point to discuss
two newer developments.

In their original book, O’Keefe and Nadel described a cognitive
map that represents objective space abstracted from the creature’s
particular interactions with the environment. They note, for
instance: “unlike the extra-hippocampal systems the locale system
is relatively free from the effects of time and repetition” (p. 95).
This idea of a map indifferent to the agent’s path through it,
and not greatly changed by repetition, shares some key similarities
with the LoT format: Both can be updated quickly and categori-
cally with new information, such as when I reorder a logical infer-
ence because of the introduction of a new proposition or remap a
path based on the observation of a new obstacle.

In the case of memory, although the core idea of the hippo-
campus as a map is still popular, the notion of a fully objective
map has been brought under strain. Work in reinforcement learn-
ing has proposed some of the computational work done by the
hippocampus may employ a representation that is more path-
dependent than a fully objective map: The successor representa-
tion (Dayan, 1993; Gershman, 2018; Momennejad et al., 2017).
This representation stores expected (temporally discounted) con-
nections between a state and the next states that will be visited.
Using this representation in planning and learning is efficient.
Standard successor learners can quickly figure out how to change
course when they learn that rewards are redistributed (such as
finding out a bet has doubled) but not when they learn that tran-
sitions between states have changed (such as finding out that
pushing a button leads to a new floor). These learners make a
compromise, easier computations at the cost of giving up some
of the properties that LoT and map-like structures share.

Ormond and O’Keefe (2022) observe a different feature of hippo-
campal maps that seems to violate the idea that these maps are fully
objective. During goal-directed behavior, they find that some place
cells in rats represent their environment in a way that is distorted
by increased firing when the animal is facing the goal, and incremen-
tally decreased firing in directions farther from the goal. In a set of
cells that were thought to represent invariant features of the environ-
ment, these patterns reflect goal location and shift during goal change.

In these two cases, researchers have theorized that initially
indifferent and objective maps might encode some agent-centered
information: Visited states and transitions in the successor repre-
sentation, and goal location in the place cell subtypes. This leads
to two connections with the LoT hypothesis.

First, although the authors acknowledge that the LoT is not the
only format used in thought, they do not go far enough in think-
ing about how formats can be shifted and combined. In the case
of map-like formats in memory, we’ve seen that the hypothesis
that goal and path information seeps into the map does not
mean a switch between discrete ways of representing but instead
a sort of hybrid or intermediate representation. The successor
representation is functionally in between a map-like model and
a model-free algorithm, and Momennejad et al. go further to pro-
pose a hybrid successor/model-based learner. The goal-sensitive
place cells are still place cells and are presumably used in naviga-
tion alongside the previously observed map-like structure.

If the six features noted by the authors are characteristic of one
end of a spectrum of cognitive processing, noting that they obtain
in various cases is not enough for thought to have a linguistic for-
mat. This is because such a system – not just one that comes in
degrees of LoT-ishness, but one that instantiates these degrees
in interlocking representations that work together – must be
explained through the connections between formats, rather than
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solely computations within a format. This renders the language-
of-thought hypothesis somewhat toothless.

The second issue is about change in format over time. The
authors take the relationship between more and less abstract
representational systems to be one of realization, in the good
case. Thinking about goal information in memory suggests an
alternative: Even functional similarity may be a temporary and
shallow equivalence.

If we start by looking at the cognition of a creature that has
already learned a model of the world, and over a period where no
substantial learning occurs, we should expect a period of equivalence
between representational structures. But if this equivalence will not
characterize how the representations were learned nor how they
will shift and change, no more than we should expect a neural net-
work that produces human-like behaviors to have acquired its exper-
tise in a way even vaguely related to the way a human would. And
once developed, the change, decay, or warping under pressure in
these structures might again break the equivalence.

Memory structures, once hypothesized to be fully objective
and agent-indifferent, now seem to contain some elements of
goal or behavior dependence. The lesson of this for the LoT the-
ory is that representational structures are ultimately distinguished
in learning, decay, and other forms of change – not in stasis.
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Abstract

We argue that Quilty-Dunn et al.’s commitment to representa-
tional pluralism undermines their case for the language-of-
thought hypothesis as the evidence they present is consistent
with the operation of the other representational formats that
they are willing to accept.

Quilty-Dunn et al. have convincingly shown that a variety of cog-
nitive domains are characterized by some of the six properties
they delineate: (1) Discrete constituents, (2) role-filler indepen-
dence, (3) predicate–argument structure, (4) logical operators,
(5) inferential promiscuity, and (6) abstract conceptual content.
(We refer to these as the six “core properties.”) Foregrounding
these properties is a worthwhile contribution because it estab-
lishes a framework and terminology for discussing features of cog-
nition that hypotheses about representation must explain. We
hope that this taxonomy will be expanded and refined: As it
stands, some of the properties are defined so vaguely that they
are too readily discoverable in cognition. For instance, role-filler
independence requires that the same representational constituents
can be deployed in different syntactic roles, but both the criterion
for sameness of representational constituents and the relevant
notion of syntax are left intuitive so that even the swapping of
visual features of objects (e.g., misattributing the color of one
object to another) counts as a demonstration of role-filler inde-
pendence. On the other hand, the authors conveniently take suc-
cessful demonstrations of compositionality in connectionist
networks to fall short of role-filler independence because they
“fail to preserve identity of the original representational elements”
(target article, sect. 2, para. 7), even though no account of repre-
sentational identity is given.

However, the authors’ aim is not merely to characterize these
properties, but to show that they form the homeostatic cluster that
marks a language of thought. This ambitious project fails because
of the authors’ commitment to representational pluralism. The
authors concede that language-like representations and the
many other formats of representation that they are happy to
accept share some properties: “Many, perhaps all, of these prop-
erties are not necessary for a representational scheme to count
as a LoT, and some may be shared with other formats” (target
article, sect. 2, para. 3). To give examples from the connectionist
literature, even simple twentieth-century style connectionist net-
works form abstract representations (Clark, 1993) and modern
networks fare even better (Stoianov & Zorzi, 2012); older net-
works can also bind values and variables (Smolensky, 1990);
there has even been progress on the use of logical operators
(Irving et al., 2016; Bansal, Loos, Rabe, Szegedy, & Wilcox,
2019; Dai, Xu, Yu, & Zhou, 2019). And in any case, because neu-
ral networks are universal function approximators there is ground
for optimism about the prospects of architectures that do not
implement a language of thought.

The authors’ representational pluralism undermines the infer-
ence to language-like representations from the observation of
some of the core properties in some cognitive domain: These
properties could simply result from any of the many other repre-
sentational formats that the authors are willing to accept. The fal-
lacy is similar to the issue with reverse inference (Machery, 2014;
Poldrack, 2006): Although the likelihood of observing the core
properties if representations are language-like is high, it is falla-
cious to infer that representations are language-like if these prop-
erties are observed because core properties could be observed even
if representations are not language-like.

Quilty-Dunn et al. might reply that while some of the prop-
erties can be realized by nonlanguage-like representational for-
mats, we are entitled to infer language-like representational
structures where they cluster: As they say, such clustering
“would be surprising from a theory-neutral point of view, but
not from the perspective of LoTH” (target article, sect. 2,
para. 13). We see two issues with this reply. First, only some
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of the six core properties are observed in each of the few cog-
nitive domains discussed in the paper: Three properties are
demonstrated by implicit social cognition and four (the maxi-
mal number of cooccurring core properties) in the object-files
case. Shall we conclude that only a few cognitive domains
involve language-like representations? An interesting conclu-
sion surely, but one that is much less exciting than the one
touted by Quilty-Dunn et al.

Second, Quilty-Dunn et al. haven’t even shown that clustering
of the core properties is a unique prediction of the
language-of-thought hypothesis. Many of the core properties are
in fact coinstantiated in neural networks. For instance, the outputs
of a sequence-to-sequence language model like BERT evince (at
the very least) role-filler independence and predicate–argument
structure (in addition to the general capacity for abstraction dem-
onstrated by neural networks). Evidence suggests that these char-
acteristics are underlain by systematic syntactic and semantic
competences (Clark, Khandelwal, Levy, & Manning, 2019;
Tenney, Das, & Pavlick, 2019). Thus, other architectures are con-
sistent with the clustering of the core properties.

Perhaps the authors think that the burden-of-proof is on their
opponents to show that these other formats exist and can account
for the apparent clustering. But outside philosophy, such
burden-of-proof claims are as weak an argument as it gets.
Inferring a language-of-thought architecture on such shaky
grounds also runs the risk of slowing research in computational
neuroscience on new alternative cognitive architectures that are
both neuroscientifically plausible and that can account for the
core properties. Finally, and most important, alternatives to
language-of-thought cognitive architectures have been investigated
for decades, and the properties discussed by Quilty-Dunn et al. are
known to result from these (Eliasmith, 2013; Eliasmith &
Anderson, 2003; Smolensky, 1990, 1991). In none of these cases
do the architectures merely implement a language-of-thought.

Finally, Quilty-Dunn et al. rely on the epistemic virtues of
explanatory breadth and unification to support the language-of-
thought hypothesis: As they say, “The chief aim […] is to showcase
LoTH’s explanatory breadth and power in light of recent
developments in cognitive science” (target article, sect. 1, para. 3).
But an appeal to explanatory breadth runs against their pluralistic
commitment: If the authors are serious about representational plu-
ralism, it is hard to understand why they believe that explanatory
breadth is a virtue or why any unification should be expected.

Although their defense of the language-of-thought hypothesis
fails, Quilty-Dunn et al. are onto something important: We should
expect cognition to exploit the core properties to solve some types
of cognitive challenges, and we should thus predict their occurrence
in some cognitive domains. Which tasks are facilitated by these
properties and which life forms in the phylogenetic tree had to
solve such tasks (and why) are exciting empirical questions.
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Perception is iconic, perceptual
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Abstract

The evidence that the target article cites for language-of-thought
(LoT) structure in perceptual object representations concerns
perceptual working memory, not perception. Perception is
iconic, not structured like an LoT. Perceptual working memory
representations contain the remnants of iconic perceptual repre-
sentations, often recoded, in a discursive envelope.

In their wonderful and provocative target article, Quilty-Dunn
et al. say perceptual object representations have language-of-
thought (LoT) structure. However, there is plenty of evidence
that perceptual object representations are iconic in a sense that
excludes LoT representations; the evidence Quilty-Dunn et al.
cite pertains to discursive perceptual working memory (WM) rep-
resentations, not discursive perceptual representations. I will first
present some evidence that perceptual object representations are
iconic, then that WM representations are discursive. I will use
the term “discursive” for representations that exhibit almost all
of the six properties they cite rather than “LoT” because I
doubt that even perceptual working memory exhibits all of
them. (See Susan Carey’s response to the target article.) But if
there are no discursive representations in perception, there are
no LoT representations either.

Apparent motion suggests iconic perceptual object representa-
tions. When two nearby objects flicker with the right parameters,
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we see motion between them. Objects move while visible proper-
ties change gradually.

See the caption to Figure 1. What suggests iconicity in this case
of apparent motion is analog mirroring: Certain relations in the
world are mirrored by representations that instantiate analogs of
those relations in a way that is sensitive to degrees of difference.
What is interesting about this case is that when the figure is per-
ceived as an object, mirroring respects objecthood.

If the flickering objects are of different sizes, we see smooth
expansion and contraction. One might suppose that the further
apart the flickering objects are, the faster the rate of flicker would
have to be to see motion. However, mirroring dictates the opposite
because objects that are further apart take longer to traverse the dis-
tance. The further apart the flickering objects are, the longer the
time span between flickers has to be to see motion (Korte’s Third
Law). The visual system prefers short motion paths between flicker-
ing objects but that preference is overridden if the shortest path
involves biologically impossible motion (Shiffrar & Freyd, 1990)
or if a moving object turns into an object of a different kind. In
sum, perceptual representations are iconic in a sense that excludes
discursive representations (see Block, 2023a, 2023b).

I now switch to the topic of perceptual working memory.
Perceptual working memory often contains the remnants of per-
ception – typically not consciously experienced. It can include
iconic materials, but visual working memory often includes
them in recoded form. One illustration of the partially nonpercep-
tual nature of visual working memory is illustrated in Figure 2.
When the central disk and the donut surrounding it are presented
simultaneously, there is center-surround suppression on the right,
but not the left. However, when they are presented one at a time,
with the first stimulus maintained in working memory, the collin-
ear effect disappears (Bloem, Watanabe, Kibbe, & Ling, 2018).
Thus a fundamental computational aspect of perception is absent
in this working memory representation (see pp. 113–114 of Block,
2023a).

Quilty-Dunn et al.’s arguments for the iconic nature of percep-
tion involve the “object files” of perceptual working memory. But
working memory representations in visual areas are often recoded
outside of the classic visual system, for example, in the intrapar-
ietal sulcus, while they disappear from visual cortex because of
ongoing visual stimulation (Rademaker, Chunharas, & Serences,
2019). Perceptual information is often recoded in the service of
specific tasks. Kwak and Curtis (2022) showed subject clouds of
moving dots and also oriented gratings, asking them to remember
the directions. They found that brain decoding on either of these
working memory representation worked on the other suggesting
that working memory coded what was in common to the two
kinds of percepts, eliminating the moving dots and the gratings,
replacing them with representations of vectors, showing that
many iconic features can be altered or discarded in working
memory.

Of course perceptual working memory is constantly interact-
ing with perception. Quilty-Dunn (2023) argues convincingly
that this interaction is crucial to longer term perceptions, for
example, perceptions that span saccades. As Quilty-Dunn notes,
perception does not start anew after each saccade, so there must
be some perceptual – I would say iconic – information preserved
by the saccade. True, but there is plenty of evidence for at least
some loss of iconicity in transsaccadic memory (summarized in
Block, 2023a, pp. 261–262). For example, in the famous
Sperling effect, a multirow array of letters is presented briefly,
but a cue presented after the stimulus stops can focus attention
on any one of the rows, allowing reporting of all or almost all
the items. However, if the array is presented before the saccade
and the cue presented afterward, the Sperling effect disappears,
showing that transsaccadic memory can erase the iconic memory
that the Sperling effect depends on.

Quilty-Dunn describes a perceptual effect known as the
motion repulsion illusion. If dots moving in one direction are
superimposed on dots moving in a different direction, the per-
ceived angle between the two directions is exaggerated in percep-
tion. Kang et al. showed that the same effect occurs if one set of
moving dots is seen while the other is held in working memory
(Kang, Hong, Blake, & Woodman, 2011). This result suggests
that there are iconic elements in perceptual working memory
but does nothing to show that perception is not iconic.

As Quilty-Dunn notes, perception can distort working
memory and conversely. Teng and Kravitz (2019) showed that
colors and orientations in each of perception and working
memory affect the other, commenting that this is no doubt

Figure 1 (Block). Items at Y1 and Y2 flicker so as to create apparent motion between
them. The shapes are viewed in an apparatus in which a slightly different image is
projected to each eye. This allows one version in which the black bar is part of a
squarish shape and another version in which the bar protrudes, making the item
look like an object instead of a shape. In the latter case, the subject sees rotation
along with the movement but in the former case the subject sees just motion.
Thanks to Ken Nakayama for providing this figure.

Figure 2 (Block). Central disk is the same on the left and on the right but it looks
much higher in contrast on the left. The suppressive center/surround effect in the col-
linear case is because of a fundamental computation known as divisive normaliza-
tion. Thanks to Sam Ling for providing this figure.
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because of overlapping representations in visual processing areas.
However, as the authors note, these results are compatible with
the involvement of prefrontal cortex in working memory. The
overlap of sensory coding between visual working memory and
vision does not preclude partial reformatting in working memory
or the inclusion of iconic information in a discursive envelope.

In sum, perceptual working memory can preserve some
aspects of iconic perceptual representation even if it includes it
in a discursive envelope. Quilty-Dunn et al.’s results depend on
the discursive envelope, not the iconic perceptual representations.
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Abstract

Language-of-thought hypothesis (LoTH) is having a profound
impact on cognition studies. However, much remains unknown
about its basic primitives and generative operations. Infant stud-
ies are fundamental, but methodologically very challenging. By
distilling potential primitives from work in natural-language
semantics, an approach beyond the corset of standard formal
logic may be undertaken. Still, the road ahead is challenging
and long.

Fodor had the gift of conceiving extremely simple ideas with
extremely deep and rich consequences. Language-of-thought
hypothesis (LoTH) is perhaps the best, but not the unique,
example of this gift. Quilty-Dunn et al.’s article is a very forceful
testimony of how lively and far-reaching LoTH is. The very fact
that they use a cluster of properties that prescinds from most tra-
ditional arguments for LoT is in itself a proof of its richness. At
the same time, as it is clear in the target article, like other cases
(modularity witness it), Fodor’s LoTH was more a research pro-
gram than an hypothesis; in his words, it’s probably a genus, but,
we would add, one whose actual species are still barely known.
This dearth of knowledge is particularly acute for one of the fun-
damental issues in characterizing LoT(s): Identify the basic
primitives available endogenously in human thinking. In adults,
a recent work investigated modular LoTs defined over various
domains, proposing primitives and compositional routines (Al
Roumi, Marti, Wang, Amalric, & Dehaene, 2021; Dehaene, Al
Roumi, Lakretz, Planton, & Sablé-Meyer, 2022; Planton et al.,
2021; Sablé-Meyer et al., 2021; Sablé-Meyer, Ellis, Tenenbaum,
& Dehaene, 2022). However exciting and important to charac-
terize human singularity, these theories do not clarify the origins
of LoT or its role in general human cognition. They can check
out all the list of properties in Quilty-Dunn et al.’s cluster,
and yet remain confined to the specific domain they have
been tested, in adults. They are compatible with the fact that lan-
guage interactions, or instruction, contributes to their
appearance.

Although there is little doubt that when linguistic compe-
tence kicks in, human language competence is explained by ref-
erence to a system of structures encompassing many properties
of a general LoT, the crucial open questions are whether prop-
erties of general thinking are somehow imported from linguistic
structures, as many would hold (Carruthers, 2002; Spelke,
2003), or else are inherent properties of the mind, and if they
encompass the logical concepts that make LoT cross-domain
and compositional. Progress on these questions can be achieved
by investigating the existence and nature of the logical primi-
tives available to preverbal infants, who are likely not affected
by instructions or massive language experience. Unfortunately,
these investigations can be counted on the fingers of one
hand. They are also very difficult, as they require creating scenes
deprived of verbal cues that likely embed logical inferences,
something that at best can be supported by arguments to the
best explanation. We thank Quilty-Dunn et al., who agree
with us that a baby-LoTH has the upper hand relative to alter-
native theories, but they are more optimistic than us: Alternative
explanations, perhaps compatible, perhaps incompatible with
some declination of LoTH (Leahy & Carey, 2020), exist and
have to be addressed experimentally. Furthermore, an unified
explanation of the early putative indications of logical thinking
(Cesana-Arlotti et al., 2018; Cesana-Arlotti, Kovács, & Téglás,
2020; Cesana-Arlotti, Téglás, & Bonatti, 2012; Cesana-Arlotti,
Varga, & Téglás, 2022) and the later failures at making action
plans consistent with it (Feiman, Mody, & Carey, 2022; Leahy,
Huemer, Steele, Alderete, & Carey, 2022; Mody & Carey,
2016) is still missing. All these issues require painstaking
research.

As baby LoTH supporters, we believe that the most serious
question remains the identification of a plausible repertoire of
early LoT primitives. Short of the success in disjunctive reasoning
(Cesana-Arlotti et al., 2018), little exists about other logical com-
ponents of an LoT, while some arguably plausible candidates – for
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example, simple relations such as “Same/Different” – do not seem
to be supported (Hochmann, 2022; Hochmann et al., 2017;
Hochmann, Mody, & Carey, 2016). Where to look for plausible
candidates? The naive approach we, our collaborators, and others
have taken has been to follow the guidance of formal logic, hence
looking for connectives, quantifiers, or Boolean concepts. This is a
plausible approach, but deep down is based on the arbitrary
assumption that the forms of human thoughts comply with
descriptions largely developed for mathematical elegance rather
than for psychological reality. Whether thought fits the well-
defined but rigid corset of logical systems is far from granted.
Indeed, even with the baby LoT case discussed by Quilty-Dunn
et al., which we contributed to develop (Cesana-Arlotti et al.,
2018), it is still not clear whether infants’ mental representations
involve disjunctions (A or B), possible alternatives (maybe A,
maybe B), or quantified representations (“unknown x”).

Another possible approach is to invert the relation between
natural languages and thought. Rather than regarding them as
the origin of logical abilities in thought, one could look at
their semantics as crystalized repositories of thought primitives.
Under this perspective, LoT primitives may well differ from
those familiar from logic. For example, all studied languages
contain polarity items, but these have no place in logical sys-
tems. Yet, undoubtedly, their behavior is “logical”; perhaps
they signal the presence of primitive logical operations that
are at the source of their widespread presence in natural lan-
guages. Likewise, operations such as exhaustification, which
seems to be necessary to explain many patterns of implications
in language (Chierchia, 2013), do not exist in logic, but could
potentially be present in an LoT, as a primitive operation
defined over sets and set relations (another area which, with
few exceptions [Feigenson & Halberda, 2004, 2008; Zosh,
Halberda, & Feigenson, 2011], is still poorly known). Tense
and modal structure can also offer case studies for the identifi-
cation of potential logical primitives.

We feel that the interaction between natural-language
semantics and psychology can be a fruitful way to unlock
basic potential primitives of thought. From there on, painful
and long case studies have to be developed to trace back their
nonverbal origins in infant LoT(s). It took about 50 years to
transform LoTH into a fruitful research program; we bet that
it won’t take much less to go from the acceptance of the
genus LoT to the discovery of its species and their common ori-
gins in preverbal infants. Nonetheless, we feel, the potential for
new insights and discoveries makes this endeavor worthwhile
undertaking.
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Abstract

Some nonlinguistic systems of representation display some of the
six features of a language-of-thought (LoT) delineated by Quilty-
Dunn et al. But they conjecture something stronger: That all six
features cooccur homeostatically in nonlinguistic thought. Here I
argue that there is no good evidence for nonlinguistic deductive
reasoning involving the disjunctive syllogism. Animals and pre-
linguistic children probably do not make logical inferences.
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In the landmark target article, Quilty-Dunn et al. establish that
object perception and visual working memory both display
some of their six features of a language-of-thought (LoT).
Nonetheless, I believe evidence to date fails to make a convincing
case for predicate–argument structure and logical connectives in
nonlinguistic thought. Here, I examine Quilty-Dunn et al.’s evi-
dence for nonverbal disjunctive syllogism inferences.

Who counts as prelinguistic? Children master the basic argu-
ment structure of English sentences between 12 and 15 months
of age (Fisher, Jin, & Scott, 2019). For French and Hungarian,
children have mastered the logical meanings of words for “not”
and “no” at least by 17 or 18 months of age (e.g., de Carvalho,
Crimon, Barrault, Trueswell, & Cristophe, 2021). So only children
under 17 months of age can be safely considered prelinguistic
with respect to propositional representations and negation.

What counts as a mental symbol for disjunction or nega-
tion? The numerical content in visual working memory mod-
els of small sets of explicitly represented individuals, which
support 1–1 correspondence operations is implicit. Concepts
can also be “proto” or “precursor” versions of later emerging
ones, expressing part of some target logical function, but not
the whole function (as analog number representations are
proto-integer concepts).

All animal thought is nonlinguistic. Regarding the disjunctive
syllogism, Quilty-Dunn et al. appeal first to Call’s two-cup task,
which is solved by some individuals of many species. However,
except for adult great apes, often half or more of individuals
tested fail even after hundreds of trials of training (e.g.,

Ferrigno, Huang, & Cantlon, 2021). Prelinguistic infants (i.e.,
15-month olds) all dramatically fail the two-cup task. When
asked to “find the toy,” they choose the empty container 50%
of the time, failing to eliminate an option upon learning it is
empty (a contrary of containing the reward) or upon learning
that it does not contain the hidden reward. Importantly, control
experiments showed that the 15-month olds were not confused
by the actions that revealed one container empty, had not for-
gotten the reward, and wanted it. Further, the literature on
10- to 12-month olds’ working memory argues against other
plausible hypotheses about task demands that might be masking
competence. In contrast, 17-month olds succeeded, needing no

Figure 1 (Carey). During habituation in the approach condition, an agent repeatedly
reaches for A (a ball in this example) over B, C, D,…. In the avoidance condition the
agent repeatedly reaches for whatever is not A (here, a duck, a brush, a stick, a pre-
sent, a carrot, etc.). The test trials establish that the child extends this pattern to a
new pair A X, for example, a ball and a car, generalizing habituation when the agent’s
action matches the pattern seen up to then (i.e., reaching to the ball in the approach
condition and reaching to the car in the avoidance condition) and recovering interest
if the agent’s action violates the pattern (from Feiman, Carey, & Cushman, 2015).

Figure 2 (Carey). Cesana-Arlotti et al.’s (2018) object disambiguation paradigm.
Focus on inference condition (A): During the setup, the child sees a ball and a
snake on the stage, these are occluded, and a cup swoops in and picks up one of
them (unknown which one). In the potential deduction phase, one of the objects
comes out from behind the screen and returns (here the snake). During the test
phase, the child recovers interest either if the ball emerges from behind the occluder
(shown here, inconsistent event) or if the snake is revealed in the cup (not shown
here, but the inconsistent event for another group of infants). (B): in the No
Inference condition, not discussed here, the child knows where the snake and the
ball are from the beginning of the experiment.
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training, at which age they show a domain-general capacity to
eliminate options in indirect screening off trials in causal rea-
soning as well (Feiman, Mody, & Carey, 2022). But 17-month
olds are not prelinguistic creatures.

There is convergent evidence for the absence of negation in
prelinguistic human thought (Fig. 1). Fourteen-month-old infants
learn that the agent likes or wants A in the approach condition,
but fail to learn the agent does not like A, or wants anything
that is not A in the avoidance condition.

Quilty-Dunn et al. draw on Cesana-Arlotti et al. (2018; Fig. 2)
as evidence for reasoning involving the disjunctive syllogism by
prelinguistic (12-month olds) infants. The flip side of worrying
about task demands explaining failures is worrying about spuri-
ous successes. In this case, the well-characterized object file visual
working memory system fully explains all the data. When small
numbers of attended objects are occluded, working memory mod-
els with one object file for each attended object, with property and
kind information bound to each, are formed and maintained as
the event unfolds. Those representations support reidentifying
an object when it comes back into view.

Infants make mental models of objects that are occluded (a
snake and a ball; Fig. 2). This model is held in working memory
as the child watches the unfolding scene. The child only updates
that working model with respect to further information when that
information becomes available, and only reacts with surprise if

they see something inconsistent with that model. When the cup
swoops up one of the objects, this is still consistent with the
snake and the ball being occluded in the scene. When the child
sees the snake comes out from behind the occluder, the location
of the snake is added to the model; a 1–1 mapping computation
between the objects in the scene and those in working memory
completes the model. Importantly in this process the child need
not wonder whether the object in the object in the cup is the
ball or the snake, nor ever draws a conclusion from the fact that
the snake is not the ball. There need be no implicit or proto con-
cepts of negation or disjunction in this process. This 1–1 mapping
computation predicts the same pupil dilation and looking pat-
terns during the potential deduction phase as does the disjunctive
syllogism hypothesis and could underlie all of the successes
attested in children under 17 months of age to date.

With respect to nonhuman animals, Quilty-Dunn et al. mainly
draw on above chance performance in the three- and four-cup
tasks (Fig. 3), first introduced by Mody and Carey (2016). The
developmental facts are now clear from many replications
(Leahy, Huemer, Steele, Alderette, & Carey, 2022). At 2.5 years
of age children choose the certain cup exactly half of the time,
on both the three- and four-cup tasks, and by age 3, 80% still
choose it half of the time, whereas the remaining children always
choose the certain cup. Even 50% is better than chance (33% on
both tasks, because even 17-month olds can eliminate an option).

Figure 3 (Carey). (A) Three-cup procedure; child has one choice to obtain a sticker. The green cup is certain to have a prize; a prize can be in either the blue or
yellow cup. (B) Four-cup procedure; the child again has one choice to obtain a sticker, and again a prize can be in either the blue or yellow cup, whereas the green
cup is certain to contain a prize if the child can eliminate the possibility of red’s containing a sticker upon seeing the red cup is empty. The pattern of response that
maximizes reward is to always choose the green cup in both three- and four-cup trials.
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Leahy et al. (2022) establishes that this 50% performance is
because of a proto-concept of possibility – children simulate
one possible location on the doubleton side and take that simula-
tion as equivalent to the simulated location on the singleton side.
They do not draw on a representation OR, or on a representation
POSSIBLE, and thus are not reasoning through the disjunctive
syllogism. Engelmann et al. (2022), in a later paper than that dis-
cussed by Quilty-Dunn et al. (Engelmann et al., 2021), find that
chimpanzees pattern exactly with 2.5-year olds, choosing the sin-
gleton cup exactly half of the time in both the three- and four-cup
tasks, and conclude they are probably not reasoning deductively.

Although I agree with Quilty-Dunn et al. that possibility of
logical connectives in nonlinguistic reasoning is still open, the evi-
dence for the disjunctive syllogism that they cite does not show
logical connectives in nonlinguistic thought.
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Abstract

Quilty-Dunn et al. defended the reemergence of language-of-
thought hypothesis (LoTH). My commentary builds up implica-
tions for the study of the development of our logical capacities.
Empirical support for logically augmented LoT systems calls for
the investigation of their logical primitives and developmental
origin. Furthermore, Quilty-Dunn et al.’s characterization of
LoT helps the quest for the foundation of logic by dissociating
logical cognition from natural language.

The connections between language-of-thought (LoT), learning,
and the development of logic were central in Fodor’s proposal
(Fodor, 1979). He pointed out that efficient learning by
hypothesis-confirmation requires combinatorial, structured repre-
sentations. Quilty-Dunn et al.’s article vindicates Fodor’s conjec-
ture: Contemporary cognitive science confirms that human-like
flexibility and systematicity in learning (Goodman, Tenenbaum,
Feldman, & Griffiths, 2008; Goodman, Tenenbaum,
& Gerstenberg 2015; Piantadosi, Tenenbaum, & Goodman,
2016), and the ability to master a natural language (Chierchia,
2013; Pietroski, 2018), are best explained by LoT-like cognitive
systems augmented with a repertoire of logical operators.

Fodor also argued that the compositional logical primitives of
LoT (the logical building blocks that are not decomposed in
more basic operators) must be developmental primitives – repre-
sentations that are not learned – because concept learning
requires decomposition. To be sure, we can “decompose” logical
notions. But to do so, we need an equivalent or more powerful
(expressive) logic. For instance, the operators of propositional
logic can be interdefined (e.g., “p OR q” = “IF NOT p THEN
q”) or can be defined by more expressive logical systems (e.g.,
lambda calculus or combinatory logic; Piantadosi, 2021). So,
although children and adults could learn specific logical notions,
this would require a LoT with equivalent, or more powerful, log-
ical primitives.

As a result, the reemergence of LoTH carries important conse-
quences for the study of the development of logic in the mind. If
human cognition traffics in logically rich LoT systems, then cog-
nitive development must start with a firm foundation of primitive
logical capacities. But if not learning, what is the origin of our log-
ical primitives? And what natural logical resources are in place
when learning begins?

My next point expands on the hypothesis that natural language
may not be the unique source of our logical capacities. I fully
agree with Quilty-Dunn et al. that serious consideration should
be given to the alternative picture: Logical primitives might be
in place in LoTs distinct from the natural language. First, prever-
bal logical representations can explain our capacity to acquire
many logical concepts through language and acculturation.
Second, preverbal logic might play a role in accounting for infants’
surprising learning potentials (Cesana-Arlotti, Kovács, & Téglás,
2020). After all, logically augmented LoTs are powerful
hypothesis-testing devices.

With my collaborators, we have begun to investigate preverbal
infants’ logical abilities, targeting disjunction, the logical relation
between two or more representations entailing that at least one of
them is true (expressed by “OR” in formal logic). We tested
whether 12-month-olds represented the identity of a half-hidden
object compatible with two possibilities and inferred one identity
based on evidence incompatible with the other (Figure 1A).
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Infants’ looking times and oculomotor responses provided evi-
dence of disjunctive representation at the preverbal stage
(Cesana-Arlotti et al., 2018).

Evidence of preverbal logical abilities calls for a challenge:
Extending the notion of logical representation beyond language
and its formalizations (Bermúdez, 2007; Burge, 2010). To formu-
late and test hypotheses about the presence and nature of prever-
bal logical representations, we need a framework that could
dissociate logic from language. Quilty-Dunn et al.’s homeostatic
characterization of LoT offers a tool to this end: Unlike natural
language, preverbal infants’ logical primitives might not have all
the properties of the LoT format. To conclude my commentary,
I ask whether we have reasons to think infants’ disjunctive infer-
ences have key properties of an LoT.

First, infants’ disjunctive inference displays evidence of infer-
ential promiscuity. We found that infants quickly learn the prefer-
ence of an agent reaching for a hidden goal, which has to be
identified by exclusion (Cesana-Arlotti et al., 2020). The infants
who had to learn the preference based on the inference (experi-
ment 4) performed at the same level as those who could directly
see the agent’s goal (experiment 3, Figure 1B). This is striking
given the few demonstrations needed by infants and the previous
finding that observing few inconsistent reaches is sufficient to dis-
rupt their learning (Luo, Hennefield, Mou, vanMarle, & Markson,
2017). New experiments should systematically investigate whether
the disjunctive representations deployed by infants and adults in

processing visual scenes trigger automatic inferences (Braine &
O’Brien, 1998; Quilty-Dunn & Mandelbaum, 2018).

Second, it is currently unclear whether infants’ disjunctive rep-
resentations have discrete constituency. Operators of formal logic
are discrete symbols (e.g., “p OR q,” “NOT p”) that encode binary
or monadic logical relations (e.g., truth-functions). Discrete con-
stituency is crucial for formal logic because it supports composi-
tionality: New logical relations can be expressed by embedding
logical operators (e.g., “NOT (p OR q)”). Unlike formal logic, pre-
verbal disjunctive inferences might use a format with no discrete
logical operators, like the mental model theory (Johnson-Laird,
Khemlani, & Goodwin, 2015). In the mental model framework,
the disjunction of p and q is represented with multiple models,
or simulations, of alternative possibilities: “p,” “q” (assuming p
and q are mutually exclusive). The disjunctive inference is carried
out with an algorithm that erases the alternatives incompatible
with new data. Although such an algorithm carries out
deductively-valid inferences, it involves no discrete logical opera-
tors (e.g., a collection of models is not a representation that can be
recursively combined with “NOT p”).

Crucially, without logical operators, disjunction requires to
store and update multiple mental models in parallel. This is costly
for adults and plausibly very challenging for infants with imma-
ture cognitive resources (Gauffroy & Barrouillet, 2011). Thus,
we may expect that if infants have no logical operators, they
will simulate and store just one disjunct at the time (for a related

Figure 1 (Cesana-Arlotti). Tests of infants’ disjunctive representation. (A) Infants are presented with movies where a half-hidden object is compatible with just two
possible identities (ambiguous event; the half-hidden object is the snake OR the ball). Next, infants see which object is outside the cup, evidence that rules out one
of the alternatives (disambiguation; the snake is outside the cup; so, the hidden object is the ball). We found that infants reacted to the disambiguating evidence
with a reorientation of attention toward the half-hidden object, and then were surprised (i.e., look longer) by a later violation of the logical expectation that the
other object is inside the cup (inconsistent outcome; the ball is outside the cup). Importantly, higher attentional reorientation at the time of the exclusion was
predictive of later surprise. At the same time, this relationship was absent in a noninferential control condition (adapted from Cesana-Arlotti et al., 2018). (B)
Infants were familiarized with a choice of an object which was either directly visible (fully visible familiarization) or had to be inferred via disjunctive inference
(inferential familiarization). Infants familiarized via inference performed just as well as those who could directly see the choice (adapted from Cesana-Arlotti
et al., 2020). (C) Infants watched visually identical events where a half-hidden object was compatible with a varying number of identities (one or two). Infants’
pupil dilation (an index of processing load) was higher when there were two alternatives compatible with the object, suggesting that infants were not simulating
just a single identity regardless of the alternative possibilities (adapted from Cesana-Arlotti et al., 2022).
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prediction, see Leahy & Carey, 2020). A new study provides evi-
dence that infants do NOT respond to objects with multiple pos-
sible identities by simulating just a single identity at the time
(Cesana-Arlotti, Varga, & Téglás, 2022), as their pupil diameter
– indexing processing load – increases with the number of possi-
ble identities. Although infants might have simulated multiple
models, the proposal of a single complex logical representation
(e.g., “the elephant OR the ball”) may best account for this result,
considering their limited cognitive resources. Future research will
further test the constituency structure of preverbal disjunctive
representations.

In conclusion, the reemergence of LoTH is a boon for develop-
mental psychologists, logicians, and philosophers alike: It points to
the need to chart the foundation of our logical capacities and opens
exciting questions about the logical primitives of the mind.
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Abstract

There are two versions of the language-of-thought hypothesis
(LOT): Representational LOT (roughly, structured representa-
tion), introduced by Ockham, and computational LOT (roughly,
symbolic computation) introduced by Fodor. Like many others, I
oppose the latter but not the former. Quilty-Dunn et al. defend
representational LOT, but they do not defend the strong compu-
tational LOT thesis central to the classical-connectionist debate.

There are two versions of the language-of-thought hypothesis.
The representational language-of-thought hypothesis (r-LOT),
introduced by William of Ockham and defended by Quilty-
Dunn et al., concerns the structure of mental representation.
The computational language-of-thought hypothesis (c-LOT),
introduced by Jerry Fodor, concerns computation over mental
representations. r-LOT is much weaker than c-LOT and is more
widely accepted. I accept the former but reject the latter. As a
result, I agree with many of Quilty-Dunn et al.’s conclusions
while finding that they have not really defended the most contro-
versial form of LOT.

In more detail: r-LOT (I use “LOT” for both the language and
the hypothesis) says roughly that thought involves sententially
structured mental representations. At minimum, there are nomi-
nal representations (e.g., Biden) and predicative representations
(e.g., president) that combine into structured representations
(e.g., Biden is president) with propositional content. Structured
representations may also involve connectives (e.g., and), quantifi-
ers (e.g., all), operators (e.g., always), and other types familiar
from the linguistic case.

r-LOT is not trivially true, but it is plausible and hard to deny.
It follows naturally from the claims that (1) people make judg-
ments such as Biden is president, (2) these judgments involve
combining nominal and predicative representations (or concepts,
in the sense where concepts are mental representations) such as
Biden and president, and (3) these representations can be recom-
bined in judgments such as Biden is from Delaware. My sense is
that most contemporary cognitive scientists and philosophers of
mind accept these fairly weak claims. Importantly, these claims
do not have immediate consequences regarding computation or
cognitive architecture.

The c-LOT adds to r-LOT the key claim that thought involves
computation over these sententially structured representations.
The classical version of this hypothesis says that r-LOT represen-
tations are the medium through which all cognitive computation
takes place. That is, the basic vehicles of representation in the
r-LOT system (atomic words in the representational language-
of-thought) also serve as the basic vehicles of computation
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(atomic computational states to which cognitive algorithms
apply).

The c-LOT hypothesis was canonically formulated by Jerry
Fodor’s book The Language of Thought (1975). Computation
plays a central role throughout the book, from the main argument
for LOT at the start of chapter 1 (“Computation presupposes a
medium of computation: a representational system,” p. 27) to
the conclusion (“More exactly: Mental states are relations between
organisms and internal representations, and causally interrelated
mental states succeed one another according to computational
principles which apply formally to the representations,” p. 198).
There are other works (e.g., “Propositional Attitudes”) in which
Fodor focuses mainly on r-LOT, but computation is central in
the canonical statement.

(Related distinctions: Fodor himself [1980] distinguishes the
“representational theory of mind” and the “computational theory
of mind” [though neither requires a language-of-thought].
Rescorla [2017] distinguishes a core version of LOT that involves
“representational theory of thought” plus “compositionality of
thought” and perhaps “logical structure” [in my terms, a version
of r-LOT] from a stronger version that adds “the classical computa-
tional theory of mind” [yielding a version of c-LOT, though I under-
stand the computational constraint differently from Rescorla].)

Most work in symbolic artificial intelligence (AI) uses a ver-
sion of c-LOT. Both involve computation over atomic symbols:
Entities that are both representationally atomic and computation-
ally atomic. Atomic symbols have no computationally relevant
internal structure (if they did, they would not be computationally
atomic). Instead, their internal form is arbitrary.

The most significant opposition to LOT, in the classical-
connectionist debate, has been opposition to c-LOT. In most neu-
ral network models there are no computationally atomic symbols.
Representations are distributed over multiple quasi-neural units.
As a result, in these models computation is subsymbolic computa-
tion: Computation takes place among units below the level of rep-
resentation. Because computational primitives (units) are not
representational primitives in these models, representation is
not the medium of computation. Subsymbolic computation is
incompatible with c-LOT.

At the same time, subsymbolic computation is quite compatible
with r-LOT. This is clearest in the work of structured connectionists
(e.g., Chalmers, 1990; Smolensky, 1988), where distributed repre-
sentations (e.g., of Biden and president) can combine with each
other systematically to yield new distributed representations such
as Biden is president. This is naturally seen as a structured represen-
tational system involving subsymbolic computational: r-LOT with-
out c-LOT. The structured connectionist research program is
still a work in progress, but it is arguable that contemporary
large language models also combine structured representation
(of facts such as Biden is president) with subsymbolic computa-
tion. A second and third way of combining r-LOT with subsym-
bolic computation are provided by the framework of vector
symbolic architectures (Kleyko et al., 2022), where representations
are vectors, and Piantadosi’s combinator framework (2021), where
the computational primitives S and K fall below the level of
representation.

(Terminology: All three of these are computational versions of
r-LOT in a broad sense. In an alternative phraseology, one might
call the Fodorian version the classical computational LOT
(cc-LOT), while calling subsymbolic versions nonclassical compu-
tational LOT (nc-LOT). But I will reserve “c-LOT” for the classical
Fodorian version.)

Proponents of LOT often argue that structured connectionism
is merely an implementation of LOT. We can now see that this
claim is false or at best misleading. Implementation is standardly
a computational relation between algorithms, requiring the imple-
menting algorithm to be a more fine-grained version of the imple-
mented algorithm with the same input/output behavior. The most
interesting subsymbolic algorithms (e.g., in artificial neural net-
works) are never implementations of symbolic algorithms in
this sense. The success of the deep-learning paradigm has pro-
vided strong evidence that the behavior of these systems (espe-
cially their success in learning and generalizing, but also their
post-learning success) is not the result of implementing a more
coarse-grained symbolic algorithm and cannot be duplicated by
such algorithms. These systems may realize an r-LOT, but they
do not implement a c-LOT. The quasi-symbolic operations of
composition, decomposition, and quasi-logical inference may be
available, but they are a tiny subset of the operations one can per-
form on the relevant distributed representations. As I argued in
Chalmers (1990), one can also perform all sorts of holistic oper-
ations on distributed representations that do not proceed via these
symbolic operations. It is plausibly subsymbolic operations like
this that are largely responsible for the remarkable capacities of
neural network systems.

Quilty-Dunn et al. don’t make the distinction between r-LOT
and c-LOT in their article, but their LOT appears to be a version
of r-LOT. Their six core claims defining LOT do not mention
computation (except in one case, incidentally). Four of the key
claims (role-filler independence, predicate–argument structure,
logical operators, abstract conceptual content) clearly pertain
to representation but not computation. A fifth (inferential pro-
miscuity) mentions computational theories of logical inference
as versions of LOT, but computation does not play a defining
role, and inferential promiscuity can equally be present in
r-LOT without c-LOT (e.g., Ockham-style or subsymbolic
systems).

The requirement of “discrete constituents” may suggest
c-LOT, though it doesn’t mention computation explicitly.
Distributed representations in a structured connectionist systems
arguably aren’t discrete in the authors sense, in that representa-
tion of Biden and of president (say) can be intertwined nondis-
cretely in a representation of Biden is president. On the contrary,
many subsymbolic computational systems involve discrete con-
stituents without c-LOT. Piantadosi’s system is one. Another is
provided by the word embedding format for representing
words that is ubiquitous in current language models. Here
words are represented by multidimensional vectors where indi-
vidual units often lack any clear semantic significance. “Biden is
president” may be represented as a sequence of vectors for the
individual words, so the constituents are discrete, but represen-
tations remain distributed and processing remains subsymbolic.
So the discrete representational constituents do not require
c-LOT.

Now, perhaps the absence of a computational constraint is an
easily correctable omission. Quilty-Dunn et al. discuss computa-
tional approaches at some length in other sections of their article.
They could easily enough add a seventh constraint connecting
computation to representation, holding that the representational
primitives are computationally primitive and serve as the medium
of computation. The trouble is that strong evidence for this sev-
enth claim is much harder to find.

The target article does argue that many Bayesian theorists pro-
vide computational accounts involving a “probabilistic LOT”
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associated with sententially structured representations. This suggests
r-LOT, but it does not obviously lead to c-LOT, as Bayesian accounts
are usually not cast at the algorithmic level (rather, at Marr’s higher
“computational” level). These accounts have many algorithmic
implementations, including subsymbolic implementations in deep-
learning systems. So there is no obvious strong evidence for
c-LOT here, and any evidence would need to be stacked against
the counterevidence provided by deep-learning models.

Overall: If Quilty-Dunn et al. are defending c-LOT, then more
work is needed to make the defense explicit. If they are defending
only r-LOT, then their conclusion is plausible, and my only objec-
tion is one of relative unambition.
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Abstract

The target article argues that language-of-thought hypothesis
(LoTH) is applicable to various domains, including perception.
However, it focusses exclusively on the visual case, which is lim-
ited in this regard. I argue for two ideas in this commentary:
first, their case can be extended to other modalities such as
touch; and second, the status of those six criteria needs to be fur-
ther clarified.

In the target article, Quilty-Dunn et al. not only revive the
language-of-thought hypothesis (LoTH) in the original domain,
but also extend it to new domains such as perception, where
the hypothesis did not cover in the past (Fodor, 1975, 2008;
Schneider, 2011), for obvious reason: Even if LoTH can be
made plausible enough for propositional thoughts, it is unlikely
to make it work for imagistic contents, such as those in

perceptions (e.g., Block, 2007; Campbell, 1997; Fodor, 2007).
The authors, however, argue that “[i]f cognition is largely
LoT-like, and perception feeds information to cognition, then
we should expect at least some elements of perception to be
LoT-like” (target article, sect. 4, para. 2). More specifically, they
invoke six criteria to make the case that some elements in percep-
tion such as object files and structured relations are LoT-like.
Although their case here is indeed strong, their examples are
exclusively visual, and therefore limited in this regard. In what fol-
lows I will extend their proposal by providing examples from
touch that also exemplify some LoT-like properties, though
with the proviso that there are some grey areas to be concerned
about.

The relevant examples are the so-called “tactile field” cases in
the recent empirical and philosophical literatures (Green, 2022;
Skrzypulec, 2021, 2022). In those cases, multiple tactile stimuli
constitute spatial patterns that facilitate varieties of tactile judge-
ments (Cheng, 2019, 2020, 2022; Fardo, Beck, Cheng, &
Haggard, 2018; Haggard & Giovagnoli, 2011). Although in
those cases researchers often emphasise the holistic characters of
tactile pattern perceptions, the tactile fields also have some
LoT-like structures identified by the authors, and this might
strengthen their case that LoTH can extend to perceptions,
including nonvisual ones. Let’s look into some relevant details.

The tactile field cases typically involve multiple tactile stimuli,
each of them exists independent of one another. This exemplifies
discrete constituents (property 1). Those tactile stimuli can exhibit
different properties at different times; for example, some of them
can vibrate while the other ones remain still. This exemplifies
predicate–argument structure (property 3). Moreover, the multi-
ple tactile stimuli can jointly vibrate to generate geometrical rep-
resentations such as lines, triangles, and squares; as long as the
stimuli in question generate neutral touch (as opposed to ther-
mally salient or nociceptive feels), those shapes can be equally
represented. This exemplifies abstract conceptual content (prop-
erty 6). Thus, tactile fields at least exemplify three core properties
of LoTs.

One might argue that there are six core properties identified by
Quilty-Dunn et al., but tactile fields might exemplify only three of
them. Is this enough? Well, in their discussion of object files in
section 4.1, they also primarily point out that properties 1, 3,
and 6 are exemplified by them. Moreover, later they write that
“perceptual representations of individual objects contain discrete
constituents that are organized in a predicate-argument structure
and predicate abstract conceptual contents” (target article, sect.
4.2, para. 1), and these are again properties 1, 3, and 6. It seems
that amongst the six core properties, somehow these three are
more important, or even almost definitive.

Now, the good news is that the tactile field cases are at least as
good as the object file cases, so if the latter fits LoTH, so does the
former. However, this generates a potential worry about the status
of the six core properties. It should be quite clear that
Quilty-Dunn et al. are not engaging the traditional project of
offering necessary and sufficient conditions for LoT: They write
that “[m]any, perhaps all, of these properties are not necessary
for a representational scheme to count as an LoT…. We regard
these properties as (somewhat) independent axes on which a for-
mat can be assessed for how LoT-like it is” (target article, sect. 2,
para. 3). But isn’t this too weak? If none of them is necessary, and
presumably none of them is by itself sufficient, how do we assess
whether a given format fits LoTH? Relatedly, to say “LoT-like”
might make the situation worse, as similarities are too vague to
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be useful without further explications. The positive story offered
by Quilty-Dunn et al. invokes the notion of “cluster,” and they
write that “LoTH predicts that these sorts of evidence should tend
to cooccur” (target article, sect. 2, para. 13). For them, such
“clustering-based approach” provides “an abductive, empirical argu-
ment for LoTH” (target article, sect. 2, para. 13). There is nothing
wrong with this approach as such, but one is justified in asking
for more concrete criteria: Do these six core properties constitute
a weighting system? Are properties 1, 3, and 6 indeed more impor-
tant than the others? It is even more worrying that Quilty-Dunn
et al. use the term “core” to name these six properties, as that sig-
nifies that even if they are not necessary, they might be near enough.

As mentioned above, Quilty-Dunn et al. write that “[i]f cogni-
tion is largely LoT-like, and perception feeds information to cog-
nition, then we should expect at least some elements of
perception to be LoT-like, because the two systems need to inter-
face.” This general point is well taken, but again, it might be too
vague to be truly useful. Consider a similar thought in the con-
ceptualism debate: If cognition is largely conceptual, and percep-
tion feeds information to cognition, then we should expect at least
some elements of perception to be conceptual, because the two
systems need to interface. Here we face two worries: First,
“largely” is unclear, and second, if only some elements are con-
ceptual, what about those nonconceptual elements? How do
they feed information to cognition (McDowell, 1996)? If these
are legitimate challenges to partial conceptualism (Peacocke,
1992), then the same doubt can be cast on the general point
made by Quilty-Dunn et al.

Let’s head back to the good news. In the target article,
Quilty-Dunn et al. provide many rationales for the thesis that
LoTH is the best game in town. They might well be right about
that. The tactile field cases, and potential cases from other sensory
modalities, should strengthen their hypothesis. That said, it will
be very helpful if the status of the six core properties can be fur-
ther clarified.
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Abstract

Where does a probabilistic language-of-thought (PLoT) come
from? How can we learn new concepts based on probabilistic
inferences operating on a PLoT? Here, I explore these questions,
sketching a traditional circularity objection to LoT and canvas-
sing various approaches to addressing it. I conclude that
PLoT-based cognitive architectures can support genuine concept
learning; but, currently, it is unclear that they enjoy more
explanatory breadth in relation to concept learning than alterna-
tive architectures that do not posit any LoT.

Quilty-Dunn et al. survey empirical evidence consistent with
Bayesian models of cognition to advertise the explanatory breadth
of language-of-thought (LoT)-based cognitive architectures. They
show that Bayesian models that treat concepts as stochastic pro-
grammes and thinking as approximate Bayesian inference can
fit various sets of experimental data. But they do not say much
about the origin of the representational system constituting a
probabilistic LoT (PLoT), the nature of learning supported by
LoT-based architectures implementing probabilistic inference,
and how the explanatory breadth of such architectures is more
convincing compared to architectures that do not posit any LoT.

(In)famously, Jerry Fodor developed a circularity objection to
LoT. If concept learning is a process of inductive inference
aimed at testing hypotheses concerning the identity conditions
for a given concept, then this process must recruit the very con-
cept it seeks to learn. But if that is the case, then no new concept
can be learned through inductive inference aimed at hypothesis
testing (2008, p. 139). Furthermore, if the very representational
system constituting an LoT cannot be learned through inductive
inference – because that would also generate a vicious circularity
– then all representations constituting an LoT must be innate
(1975, p. 65).

Similar objections apply to PLoT-based architectures too,
where the problem of concept learning can be understood as
the problem of performing Bayesian inference to compute the
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posterior probability of hypotheses consisting in stochastic pro-
grammes formulated in a PLoT, given, say, a set of observed
example objects and observed labels for those objects
(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Goodman,
Tenenbaum, & Gerstenberg, 2015). Because the hypothesis
space of stochastic programmes in PLoT-based architectures is
prespecified, these architectures do not seem to support genuine
learning of any new concept. The probabilistic inferences that
they implement are aimed at updating and comparing the poste-
rior probabilities of hypotheses that they possess from the outset,
which implies an implausibly strong nativist picture of cognitive
development (see, e.g., Elman et al., 1996; Putnam, 1988, Ch. 1).

To address this circularity objection, one approach is to distin-
guish between learning and acquiring a concept, and point out
that thinkers acquire concepts without learning them – where
learning consists in a rationally evaluable process, whereas acquir-
ing a concept is a nonrational, purely causal process, driven, for
example, by associative processes implemented in a connectionist
architecture (Fodor, 1975, 2008). But if nonrational, noncognitive,
associative processes provide us with the best explanation of con-
cept acquisition in many domains, then PLoT-based architectures
would enjoy significantly less explanatory breadth than what
Quilty-Dunn et al. suggest.

A different approach is to insist that thinkers learn concepts in
a way that is rationally evaluable and is based on probabilistic
inferences in PLoT-based architectures, and to also emphasize
that this learning process does not need to generate any vicious
circularity, or be committed to an implausible nativism.

Carey (2009), for example, argues that children learn concepts
based on Quinian-bootstrapping processes operating on innate,
core systems of knowledge. Although the notions of “bootstrap-
ping” and “core knowledge” have been helpful for developing
empirically adequate PLoT-based models (e.g., Piantadosi,
Tenenbaum, & Goodman, 2012), one objection is that bootstrap-
ping in a PLoT-based architecture cannot really explain concept
learning, because its built-in knowledge would already include
the very concepts that it purports to explain (cf. Beck, 2017, for
a critical assessment of this objection). In this conceptualization,
learning would amount to combining and recombining built-in
representations based on built-in rules of composition. But
then, one may wonder how combining and recombining a stock
of built-in representations constituting one’s core knowledge
qualifies as genuine learning, and, more substantially why build-
ing domain-specific, core knowledge into a PLoT-based architec-
ture is not a mere exercise in ad hoc modelling.

To resolve these issues, we should notice that, first, any con-
ception of learning without any built-in hypothesis space is inco-
herent; second, a learner’s hypothesis space is hierarchically
organized, and includes stacks of latent and explicit hypothesis
spaces (Perfors, 2012); third, in PLoT-based architectures, there
is ample latitude for the choice of built-in hypotheses/representa-
tions and learning rules (Colombo, 2019). But this choice –
though it is often left unconstrained by evolutionary, neurobiolog-
ical, and psychological evidence – is typically transparent and
empirically evaluable, which facilitates clearer understanding of
the nativist (or empiricist) character of any given PLoT-based
architecture compared to connectionist ones (Colombo, 2018).

Considering these three points, it is easier to appreciate why
we should reject the worries that PLoT-based architectures must
presuppose an unacceptable amount of innate structure and can-
not support genuine learning. If a learner’s latent hypothesis
space defines the learner’s representational capacity – that is,

the range and kinds of possible thoughts that the learner can
entertain over a lifetime – then some latent hypothesis space
defined by abstract primitives (sort of Kantian categories) is
built into any PLoT-based architecture. Manipulating these
abstract primitives can generate a learner’s explicit hypothesis
space, which defines the learner’s actual thoughts at a given
time. Such thoughts can play various causal roles in perception,
action, and other cognitive functions, but are not built into the
learner: They are generated from the latent hypothesis space. As
Perfors (2012, pp. 131–132) helpfully puts it, a latent hypothesis
space is like a typewriter with an infinite amount of paper,
which can generate certain kinds of documents like Paradise
Lost, but not others like La Madonna della Pietà; the set of actual
documents that have been typed out and can enter various causal
relationships (e.g., Paradise Lost can be read or burnt) is like an
explicit hypothesis space. Given this distinction, concept learning
consists in an extended, hierarchically organized process of
hypothesis generation and hypothesis testing tapping abstract
primitives defining the learner’s overall representational power.

But although this distinction helps us to successfully address a
traditional theoretical objection to LoT, showing that PLoT-based
architectures can support genuine concept learning without nec-
essarily positing an implausible amount of innate structure, it
remains an open empirical question whether PLoT-based archi-
tectures enjoy more explanatory breadth in relation to concept
learning compared to architectures that do not posit any LoT.
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Abstract

Propositional representations are units of information with a
relational content. Their relational nature allows for the six dis-
tinctive properties of language-of-thought representations.
Putting relating at the core of language-of-thought also fits
well with the idea that thinking and reasoning are instances of
relational behavior. These propositional and behavioral perspec-
tives can be combined within a functional-cognitive framework.

I agree with Quilty-Dunn et al. that, from a cognitive point of
view, thinking in human and nonhuman organisms relies on
language-like structured representations. In my own work, I
have referred to these representations as propositional representa-
tions. For many years now (e.g., Boddez, De Houwer, & Beckers,
2017; De Houwer, 2009, 2014), my colleagues and I have argued
that seemingly simple phenomena such as conditioning, implicit
evaluation, and habitual responding are mediated by this type of
representations (see De Houwer, 2019, for a review). In line with
Quilty-Dunn et al., we pointed out that propositional representa-
tions do not necessarily have the same structure as natural lan-
guage and therefore can be present also in nonverbal organisms
(De Houwer, Hughes, & Barnes-Holmes, 2016). Rather than
focusing on the many communalities between our views, in this
commentary, I highlight a few differences so as to further stimu-
late the scientific debate on the nature of thought.

Whereas Quilty-Dunn et al. put forward six distinctive proper-
ties of “language-of-thought” representations, I have characterized
propositional representations in terms of one core property: Their
relational nature (e.g., De Houwer, 2018; also see Lagnado,
Waldmann, Hagmayer, & Sloman, 2007). More specifically, a prop-
ositional representation can be defined as a unit of information with
a relational content. In principle, this information can be imple-
mented in many physical vehicles (e.g., a brain, an artificial associ-
ative network) but it needs to specify the way in which elements in
the world are related (e.g., element A “is a,” “has a,” “belongs to,”
“causes,” “predicts,” … element B). In my opinion, the properties
put forward by Quilty-Dunn et al. are implied by this one core
property: Relating requires discrete constituents (e.g., elements A
and B), requires role-filler independence (e.g., whether A is the
cause or the effect of B), is truth-evaluable (e.g., to evaluate whether
A is a cause of B), allows for logical operators (e.g., A AND B causes
C), allows for inferential promiscuity (e.g., to infer that B will follow
A), and allows for abstract conceptual content (e.g., the concept of
causality). It would be interesting to know whether Quilty-Dunn
et al. see any reason for not putting relating at the core of
language-of-thought representations.

A second way in which my work deviates from that of
Quilty-Dunn et al. is that I adopt a functional-cognitive frame-
work in which psychological phenomena are conceived of in
behavioral terms (De Houwer, 2011; Hughes, De Houwer, &
Barnes-Holmes, 2016a). From this perspective, psychological phe-
nomena can be mediated by propositional representations but can
also be studied without referring to any type of representation.
Although Quilty-Dunn et al. refer to Skinner’s behaviorism as a
relic, my colleagues and I see much merit in the work of
Skinner and those inspired by Skinner. In particular, we have
linked our propositional theories to relational frame theory
(RFT), which builds on the work of Skinner but goes beyond
this work by postulating the concept of arbitrarily applicable rela-
tional responding (AARR; Hayes, Barnes-Holmes, & Roche,

2001). Relational responding is responding to one stimulus in
terms of another stimulus. It can be grounded in nonarbitrary fea-
tures (e.g., physical features or direct training with those features)
as is the case when a rat presses a lever for food as a function of
the relative length of lines (e.g., if a blue line is longer than a red
line). Humans, however, can also respond relationally in arbi-
trarily applicable ways (i.e., not grounded in physical features or
direct training with those features). For instance, they can select
a dime as being more than a nickel in terms of monetary value
even though a dime is less than a nickel in terms of size.

The ideas of behavioral researchers like Skinner (1953) and
Hayes et al. (2001) played a vital role in our research on condi-
tioning, implicit evaluation, and habitual responding. When my
colleagues and I started this research, these phenomena were
often defined in terms of associative representations (e.g., condi-
tioning as the formation of associations in memory). By adhering
to behavioral definitions of those phenomena (e.g., conditioning
as the impact of stimulus pairings on behavior), we could at
least raise the possibility that these phenomena are mediated by
propositional representations (see De Houwer, 2019; De
Houwer, Van Dessel, & Moran, 2021). Moreover, it allowed us
to link those phenomena with the literature on AARR (e.g., De
Houwer, Finn, Raemaekers, Cummins, & Boddez, in press;
Hughes, De Houwer, & Perugini, 2016b).

In line with the ideas of Skinner (1953) and Hayes et al.
(2001), I believe that there is merit in adopting a behavioral per-
spective on thinking and reasoning in general. It would imply that
thinking and reasoning, like other behaviors, are a function of
their antecedents and consequences (see De Houwer, 2022, for
a discussion). From the perspective of RFT, thinking and reason-
ing are covert forms of one specific type of behavior: AARR.
Because of its emphasis on relational responding, a behavioral
RFT perspective on thinking and reasoning is highly compatible
with the cognitive idea that thinking and reasoning rely on prop-
ositional (i.e., relational) representations (also see McLoughlin,
Tyndall, & Pereira, 2020). The added value of adopting this
behavioral perspective on thinking and reasoning is that it (a)
offers a new way of talking about thinking and reasoning that is
abstract, precise, and separated from folk psychology terms, (b)
sheds new light on the difference in thinking and reasoning in
verbal and nonverbal organisms (De Houwer et al., 2016), (c)
allows researchers to relate knowledge about the moderators of
AARR to knowledge about thinking and reasoning, which (d)
includes ideas about how thinking and reasoning is shaped during
the learning history of organisms (and therefore how develop-
mental deficits in thinking and reasoning can be remedied; De
Houwer et al., in press). I therefore hope that cognitive scientists
will explore and exploit what a behavioral perspective on thinking
and reasoning has to offer.
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Abstract

We agree with the target article that assuming language-of-
thought (LoT) is useful for the development of cognitive and
developmental theories. We note that the target article is weak
in its assumptions about development of LoT and possible exis-
tence of multiple LoTs. In response to these weaknesses, we out-
line several developmental principles for LoT development,
showing how a developmental theory of LoT springs from prob-
abilistic LoT. We suggest a system 1.5 of reasoning allowing
interchange between Bayesian and logical rules as it fits purposes
or domain.

1. Introduction

This commentary focuses on section 5 of the target article, deal-
ing with language-of-thought (LoT) in children. We agree with
the target article that assuming LoT is useful for further develop-
ment of cognitive and developmental theories. Specifying con-
structs in LoT offers a system for exploring relations between
representations and their development. The six properties of
LoT proposed in the target article are useful, enabling to specify

mental units carrying information, rules for binding and trans-
forming units, and model the development of mind. Examples
of the developmental implementation of properties are given
below. However, the target article is weak in two themes:
Development and multiplicity of LoT.

2. Development of LoT

The target theory is minimally developmental. Being limited in
infancy, it avoids to account for changes in LoT or specifies
how rules, principles, and constraints of LoT change in concern
to LoT properties. We outline some general principles of a devel-
opmental theory of LoT (DLoT) as complementary to the target
theory. DLoT claims that a probabilistic language-of-thought
(PLoT), defended in the target article, provides early foundations
of LoT, but it does not accommodate later development. DLoT
argues that rules emerge from PLoT with development, upgrading
pragmatic reasoning in early childhood into deductive and ana-
logical reasoning later. Mental awareness is a critical factor in
this development (Demetriou, Makris, Kazi, Spanoudis, &
Shayer, 2018). In psychometric terms, DLoT is a systematic
expansion of a core relational integration capacity into represen-
tations and rules prescribing optimal inference-based integration
to handle novel encounters capitalizing on experience
(Demetriou, Golino, Spanoudis, Maris, & Greiff, 2021).

This is obvious in mastering the four basic schemes of syllogis-
tic reasoning: Modus ponens (MP), modus tollens (MT), and the
fallacies, affirming the consequent (AC) and denying the anteced-
ent (DA). MP, a logical primitive, emerges as a Bayesian product
from pragmatic contexts, at 5–6 years of age (Oaksford & Chater,
2020). Pragmatic MP is an induction binding two representations
(“A occurs” and “B occurs”) into an inductive rule (i.e., “When A
occurs, B also occurs”). Transition to rule-based thinking at 6–7
years lifts the alignments of representations of preschool age
into a rule-based representational imperative (A and B, A, there-
fore B), involving a sense of logical necessity. MT is grasped at 8–
9 years, when inferential rules emerge as explicit constraints on
how representations may be combined in syllogistic chains. By
the end of childhood, representational imperatives are fluent
enough to be read both ways (A and B, not B, therefore not A)
(Christoforides, Spanoudis, & Demetriou, 2016).

The integration of MP and MT into a fluent inferential ensem-
ble transforms inductive imperatives into deductive necessities
constrained by rules explicitly metarepresented in principles spec-
ifying how inferential spaces are interrelated. Rules specify that
different representational spaces may have different inferential
constraints (e.g., birds fly, mammals walk, fish swim, etc.) yielding
different inductive implications about individual elements in each
space (e.g., blackbirds fly, elephants walk, sharks swim, etc.).
Moving across representational spaces is possible when relations
are abstracted unifying observable differences, such that flying,
walking, and swimming is movement in space. Thus, initial pre-
mises define the constraints of the mental space in which infer-
ence occurs (e.g., birds fly) and premises following specify an
application subdomain of this space where property transfer is
necessary (e.g., accepting that dogs are birds necessarily implies
that dogs fly). Therefore, actual properties (e.g., dogs are not
birds) are overwritten by logical constraints connecting mental
spaces. Checking consistency of representations in reference to
these constraints enables understanding logical fallacies:
Accepting “If A then B” does not allow drawing any conclusion
about A if only knowing that B occurred (AC) or about B if
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only knowing that A did not occur (DA), because B may be
caused by causes other than A. That is, the space of the argument
is embedded in a context of possibilities, defined by principles
integrating inferential rules.

Developing awareness is critical in the formalization of infer-
ential and truth-evaluation rules crystallizing into DLoT.
Transition from Bayesian reasoning to rule-based inference at
6–7 years depends on awareness of representations interlinked
into predicate–argument structures transforming Bayesian possi-
bilities into emerging logical necessities. Awareness of inferential
processes at 8–9 years allows us to represent rules underlying
inference and differentiate between them, according to logical
operators, engendering biconditionality. Awareness of the rela-
tions between rules at 11–13 years allows inducing principles
defining relations between rules, involving an awareness of infer-
ential promiscuity enabling conception of an infinite number of
alternative premises (Kazi, Kazali, Makris, Spanoudis, &
Demetriou, 2019). Hence, PLoT develops in parallel with syllogis-
tic reasoning, with the second formalizing Bayesian principles
into logical schemes. Children learn complex concepts by running
probabilistic inductions over representations of the world. These
inductions and their associated inferential processes are repre-
sented with increasing accuracy with development. These repre-
sentations crystallize inferential imperatives into schemes of
syllogistic reasoning. Awareness is a fundamental mechanism in
this crystallization raising system 1 into system 2 reasoning. In
actual life they often interchange in use akin to a system 1.5
where both Bayesian and logical rules are used as it currently fits.

3. Multiple LoTs

The target article alludes (sect. 6) that there may be more than
one LoT. Multiple LoTs are preferable over one LoT. They are
established with development, such as a mathematical, a causal,
a spatial, and a social LoT, reflecting ability to use multiple sym-
bolic systems obeying different syntaxes. Objects and relations in
different domains, such as causal, quantitative, spatial, and social
relations, generate different types of symbols and different rules
for their transformation. These rules reflect specificities in search,
encoding, and evaluation of relations in each domain akin to the
differentiation of a common LoT into largely autonomous LoTs.
These express the rules and constraints for representing and pro-
cessing relations specific to each domain (Demetriou et al., 2023).
Dehaene, Roumi, Lakretz, Planton, and Sablé-Meyer (2022) con-
cur, proposing multiple LoTs, “akin to computer languages,
which encode and compress structures in various domains (math-
ematics, music, shape…)” (p. 1). In development, these languages
diverge in the fashion that Indo-European languages emerged
from a common protolanguage, often becoming mutually unintel-
ligible, such as an LoT of mathematics, music, chemistry, and so
on. Translating them into each other is possible drawing on a com-
mon protoLoT, but it requires special learning. Assuming different
LoTs accounts for intra- and interindividual differences in cognitive
development and learning difficulties, such as dyslexia or dyscalcu-
lia. Therefore, specifying a developing general LoT and local LoTs
helps integrate different disciplines, such as cognitive, developmen-
tal, and brain science and enables mapping human development on
artificial intelligence (Demetriou et al., 2021).
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Abstract

Quilty-Dunn et al. adopt a methodology for psychology con-
necting behavioral capacities to the format of the mental systems
underlying them. This methodology opens up avenues connect-
ing linguistic theory to comparative psychology. On the assump-
tion that language structures thought, identifying the formal
structure of human language can generate hypotheses connect-
ing distinctively human cognitive traits to the distinctive struc-
tures of human language.

Quilty-Dunn et al. identify a cluster of traits (discrete constituents,
predicate–argument structure, role-filler independence, logical
operators, inferential promiscuity, and abstract conceptual con-
tent) characteristic of “language-like” psychological states and
processes, and marshal a wide range of empirical evidence that
seems best explained by the positing of psychological systems
with these properties. As they note, however, there are many dif-
ferent ways that mental systems could exemplify these properties
(see also Mandelbaum et al., 2022). Specifically, even within the
genus of “language-like” systems, there are a wide variety of pos-
sible specific formal structures, or formats. The methodology they
endorse for identifying and classifying mental systems involves
identifying an organism’s behavioral and cognitive capacities,
and seeing which sort of mental format would best account for
these. Although they are rightly keen to stress the difference
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between claims that some organism thinks in a
language-of-thought and that this organism thinks in natural
(i.e., human) language, and of course to avoid quibbling about
whether some “language-like” system is really a language, this
opens up the possibility of explaining a range of specifically
human cognitive capacities by appeal to the apparently unique
formats made available by natural language. In this brief com-
ment I will point in some suggestive directions along these lines.

The cluster of traits identified by Quilty-Dunn et al. seems
most apt to characterize systems with roughly the structure of
predicate logic. They specify an n-place predicate, and n argu-
ments, generating the traditional philosopher’s notion of a prop-
osition, which can then serve as an input for further combination
and manipulation, such as logical inference. From the perspective
of linguistic theory, such structures are more closely analogous to
a verb phrase (VP), the domain of lexical content, rather than a
complete sentential clause. A fairly widespread, although contro-
versial, view in generative linguistics (see, e.g., Wiltschko, 2014) is
that in addition to the lexical domains which specify, roughly,
events and their participants, human linguistic structures contain
a “functional spine,” the locus of a range of linguistic features
including inflection, mood, force, and more. If these aspects of lin-
guistic structure are indeed distinctive of human language, this
raises the possibility that we might be able to appeal to them in
explaining aspects of human cognition not found elsewhere in the
animal kingdom, along the explanatory lines described by
Quilty-Dunn et al. Where we find distinctive formal structure, we
can seek distinctive cognitive capacities to be explained.

Of course, linguists posit such structures precisely to appeal to
distinctive human cognitive and behavioral capacities involving
our use of language. But, if certain hypotheses connecting
human language to human thought more generally are along
the right lines (e.g., Carruthers, 2002; Chomsky, Gallego, & Ott,
2019; Dupre, 2020), our explanatory reach may be greater, and
we may be able to explain distinctively human, but intuitively
nonlinguistic, capacities by appeal to the mental structures
made available by our linguistic faculty.

Consider, for example, the inflectional phrase (IP), one of the
most prominent constituents of the functional spine. On one
standard view, the primary function of IP is to “anchor” the
event description provided by the VP to features of the discourse
(see, e.g., Enç, 1987; Ritter & Wiltschko, 2014). Most commonly,
this involves tense-marking, locating the described events in time,
relative to the time of conversation, but other options appear to be
available, anchoring described events spatially or relative to con-
versational participants (Ritter & Wiltschko, 2009). Such anchor-
ing appears to be required by the structures and operations made
available by the language faculty, even in superficially tenseless
languages (see, e.g., Matthewson, 2006; Sybesma, 2007).

If, and these are big “ifs,” human thought is structured by
human language, and if human language requires anchoring,
this is suggestive of a unification of language and one of the
other allegedly unique capacities of the human mind, namely
“mental time travel.” No other animal has uncontroversially dem-
onstrated the ability to associate specific event-type representa-
tions with times and individuals the way humans do in episodic
memory (see, e.g., Roberts & Feeney, 2009; Hoerl &
McCormack, 2017, for reviews). If the structures of nonhuman
cognition are well-characterized by the propositional structures
described by Quilty-Dunn et al., although human thoughts are
structured by the functional hierarchy posited by generative gram-
marians, this could go some way to turning two unique features of

human cognition into one: Our ability to anchor our memories to
specific temporal windows may be, or be causally/developmen-
tally related to, our ability to form linguistic structures with an
IP serving precisely this function.

Of course, much more work would need to be done to turn
this suggestive similarity into a substantiated empirical hypothe-
sis. And all of the work I have appealed to here is highly contro-
versial. But I believe that the framework for psychological
explanation provided by Quilty-Dunn et al. provides a highly pro-
ductive way to bring to bear the results of contemporary linguistic
theory onto questions in comparative psychology, in this case and
a wide range of others.
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Abstract

The success of models of human behavior based on Bayesian
inference over logical formulas or programs is taken as evidence
that people employ a “language-of-thought” that has similarly
discrete and compositional structure. We argue that this conclu-
sion problematically crosses levels of analysis, identifying repre-
sentations at the algorithmic level based on inductive biases at
the computational level.

Over the last few decades probabilistic models of cognition, which
explain human behavior in terms of Bayesian inference over a set
of hypotheses, have been applied to a wide range of phenomena
(Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). But
what does the success of a particular probabilistic model in cap-
turing human behavior imply? Probabilistic models of cognition
are typically defined at Marr’s (1982) “computational” level, char-
acterizing the abstract problems human minds have to solve and
their ideal solutions. More precisely, they characterize the ideal
solutions to inductive problems, where an agent has to draw con-
clusions that go beyond the available data. The content of a prob-
abilistic model of cognition, expressed via the set of hypotheses
and their prior probabilities, is a claim about the inductive biases
that guide such inferences – those factors other than the data that
influence the hypothesis the agent selects (Mitchell, 1997). Here,
we argue that drawing conclusions that go beyond these inductive
biases – and in particular, inferring support for specific cognitive
processes and representations – can be problematic.

Inductive biases are at a different level of analysis from cogni-
tive processes and representations, which Marr (1982) located at
the “representation and algorithm” level. Representations and
algorithms are notoriously underdetermined by observable data
(Anderson, 1978). This underdetermination motivated
Anderson (1990) to develop rational analysis, the approach
adopted in almost all applications of probabilistic models of cog-
nition. This approach explicitly focuses on abstract problems and
their ideal solutions rather than the processes and representations
that implement them (inspiring critiques, e.g., Jones & Love,
2011). Probabilistic models need some way of representing
hypotheses, but such representations do not necessarily guide
human behavior. Rather, they are theoretical constructs that
help scientists describe inductive biases.

Finding that a particular inductive bias seems to characterize
human behavior places constraints on the representations and
algorithms that might be involved, but those constraints rarely
pick out a unique solution. To give a simple example, consider
the problem of learning a linear relationship between two vari-
ables. A probabilistic model identifies a set of hypotheses (e.g.,
all linear functions), defines a prior distribution over those
hypotheses, and then performs Bayesian inference. This kind of
solution could be implemented by an agent that explicitly repre-
sents a set of linear functions and uses an algorithm to update
its beliefs about the posterior probability of each hypothesis as
new data are observed (see, e.g., Sanborn, Griffiths, & Navarro,
2010). The behavior of this agent will match that of the ideal
Bayesian model. However, an agent that seems quite different –
a neural network with one hidden layer and a linear output func-
tion that updates its weights by a few iterations of gradient descent
– will also produce an answer that matches that Bayesian model
(assuming a Gaussian prior; see Santos, 1996). Two very different
representations and algorithms are consistent with the same

computational-level account (for a real modeling example, see
Feldman, Griffiths, & Morgan, 2009).

Quilty-Dunn et al. argue from the success of probabilistic
models of cognition based on Bayesian inference over logical for-
mulas and programs to the conclusion that people employ a sim-
ilarly discrete and compositional “language-of-thought.” This
argument crosses levels of analysis in the same problematic way.
What we are licensed to conclude from the success of these mod-
els is that logical formulas and programs are useful in character-
izing human inductive biases for certain problems, not that humans
use these representations when solving those problems. Any stron-
ger conclusion seems particularly problematic in light of the recent
successes of deep neural networks that Quilty-Dunn et al. mention,
because these systems may not require discrete or compositional
representations. Metalearning – training a system to perform a set
of related tasks – provides a way to create neural networks with spe-
cific inductive biases, and has formal connections to learning a prior
for Bayesian inference (Grant, Finn, Levine, Darrell, & Griffiths,
2018). Metalearning has been used to train neural networks to per-
form tasks characterized at the computational level by Bayesian
models based on symbolic representations, such as theory-of-mind
(Rabinowitz et al., 2018) and causal learning (Dasgupta et al., 2019).
Analysis of the internal representations of related systems shows that
they contain information that can be used to reconstruct appropri-
ate posterior distributions (Mikulik et al., 2020). It thus seems plau-
sible that such systems might produce behavior that is just as
consistent with Bayesian inference over logical formulas and pro-
grams as that of humans.

The possible existence of deep neural networks that can be
analyzed at the computational level in terms of Bayesian inference
blocks strong conclusions about the language-of-thought, as the
representations learned by these networks could emulate the asso-
ciated behavior without requiring discreteness. Our investigations
of networks trained by metalearning show that they can emulate
human performance on abstract tasks without explicit representa-
tions of the relevant abstractions (Kumar et al., 2022). In some
cases, deep neural networks succeed on abstract tasks by learning
compositionally structured representations (McCoy, Linzen,
Dunbar, & Smolensky, 2019), but these representations remain
continuous, making them importantly different from the inher-
ently discrete ones postulated in the language-of-thought hypoth-
esis (Smolensky, 1988). Such results align with theoretical work
showing that compositional behavior does not require discrete
representations (Smolensky, McCoy, Fernandez, Goldrick, &
Gao, 2022). Indeed, the best current models of language itself –
which is the prototypical example of a compositional domain
(Pinker & Prince, 1988), as suggested by its use in the name
language-of-thought – are deep networks that have continuous
internal representations (e.g., Chowdhery et al., 2022).

Algorithms and representations may not be identifiable, but
we can at least narrow down the equivalence class of possibilities
through careful experimentation – behavioral work focused on
response times and errors, neuroscientific studies of what the
brain might be encoding, and computational simulations –
designed to provide strong tests of alternative hypotheses. Until
we can definitively do so, the fact that a discrete, compositional
language-of-thought is useful as an abstract way of characterizing
human inductive biases still allows the possibility that the actual
representations and algorithms underlying human cognition
may have a very different character.
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Abstract

I elaborate on Quilty-Dunn et al.’s integration of the language-
of-thought hypothesis in social reasoning by outlining two dis-
crepancies between the experimental paradigms referred to by
the authors and the social world: Self-referential projection
and deliberate thinking in experiments. Robust tests of the
hypothesis in social reasoning should include observational, nat-
ural, and cross-cultural approaches.

I aim to elaborate on Quilty-Dunn et al.’s illustrative argumenta-
tion in support of the language-of-thought (LoT) hypothesis
through the social psychological lens presented in the last section
of their article. Although the authors’ address of conflict problems
(target article, sect. 6.1) and implicit attitude research (target arti-
cle, sect. 6.2) is compelling in its experimental context, it is not
far-reaching enough, that is, it is only weakly informative about
the actual socially embedded reasoning of individuals. What is
missing is a conceptual test of the LoT hypothesis in real-life
social situations of logical reasoning – for example, such situa-
tions prevalent in research on competitive or collaborative
games and strategic thinking (e.g., Colman, 2003; Grüning &
Krueger, 2021, 2022; Hedden & Zhang, 2002). Realistic social situ-
ations of reasoning are different to the cases addressed by Quilty-
Dunn et al. in several aspects. In this commentary, I outline two
aspects in more detail: (1) social and self-referential projection,
and (2) deliberate thinking through experimental artificiality.

First, social situations of logical reasoning are highly compli-
cated by experiential social learning and self-referential projec-
tion. For illustration let us turn to an example: Quilty-Dunn
et al. iterate an experiment by Kurdi and Dunham (2021) in
which participants were presented with, among other state-
ments, the following simple logical statement: “If you see a
green circle, you can conclude that Ibbonif is malicious” (target
article, sect. 6.2, para. 3). Adapting this straightforward state-
ment to a context of social inference – for instance: “If you
see a smirk on the face, you can conclude that Peter is mali-
cious,” – can quickly ascend individuals into a rabbit hole of
applying their (1) own social learning and (2) induction from
introspection about their self. Both confounds substantially
with learning and testing phases as presented in the original
study. For one, the absence of a smile is not as unambiguously
informative as the absence of the green circle in Kurdi and
Dunham’s (2021) experiment. Social cues, like facial expressions,
are predominantly multicausal and, hence, ambiguous in their
information about the real state of the world, more so the less
contextual information is provided (e.g., “Peter is smiling after
something has happened.” vs. “[…] after something terrible
has happened.”). An individual can never “conclude” with full
certainty what a social signal informs one about. Second,
when evaluating real social situations, individuals cannot step
away from using themselves as referential source of information
to evaluate the situation. In the asocial situation of coloured cir-
cles and Ibbonifs, self-referential inference is not applicable,
unless in the unlikely event that an individual draws connections
between these concepts and their self and personal experiences.
However, in social situations, that is, situations including other
people in interaction, self-referentiality is a very prominent strat-
egy for social reasoning (e.g., Krueger, 2008, 2013; Krueger &
Grüning, 2021; Krueger, Grüning, & Heck, 2023). Both of the
here outlined complications occur when we move from quasi-
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social to in-fact social statements. They are intended to illustrate
that simple cases where associative (i.e., social learning) and
propositional logic are easily distinguishable, and self-referential
projection is no confound are difficult to find in actual social
reasoning.

Second, the high artificiality of the experimental context and
task in both of the authors’ research examples should be taken
into account when interpreting their results as evidence for a spe-
cific reasoning hypothesis. The experimental context itself is
expected to increase participants’ cognitive alertness and motiva-
tion for accuracy (e.g., Orne, 1962; Zizzo, 2010). The artificiality
of most experimental reasoning tests, including the authors’
examples, is further likely to encourage participants’ deliberate
instead of intuitive thinking regarding reasoning statements (see,
as process explanation; Evans, 2008; Kahneman, 2011; recently,
De Neys, 2022) as stimulus materials. In this respect, a strong inter-
pretation of the discussed experiments might commit the same fal-
lacy as early interpretations of human bias (e.g., Kahneman, Slovic,
Slovic, & Tversky, 1982) that were later challenged to contain
experimental artefacts (e.g., Gigerenzer, 1996; Hertwig, Leuker,
Pachur, Spiliopoulos, & Pleskac, 2022; but also see, Vranas,
2000). I hasten to note that this is largely an inherent problem of
the experimental context created by conversational norms and
the idiosyncrasy of the experimental design (e.g., Schwarz, 1994,
1999), not a shortcoming by the authors. Experimental exploration
is, by all means, meaningful. However, at the same time, it is just a
first step to investigate a psychological phenomenon, even more so
when considering social cognition phenomena like social reason-
ing. The experimental artificiality can be fled by also using obser-
vational and field study designs, exchanging some internal for
ecological and external validity. Before the experiments, that
Quilty-Dunn et al. call upon to argue for LoT in the social psycho-
logical space, have been extended to more ecologically valid con-
texts, generalizable claims of any sort, including the LoT
hypothesis, should be modest.

Concluding, I welcome Quilty-Dunn et al.’s attempt for an
exhaustive integration of the LoT hypothesis in psychological the-
ory and empirics. Relevantly, with my commentary I do not
attempt to rebut or support the LoT hypothesis. I seek to make
the authors and readers aware of the fact that for a robust, that
is, a persuasive, test of the LoT hypothesis in the social context,
researchers cannot exclusively revert to simple experimental imi-
tations of social reasoning. Instead, existing findings from realistic
social inference-making scenarios have to be considered by the
authors and observational and field experimental approaches
need to be focused on in the future. Cross-cultural exploration,
as an advanced extension of social psychology, would provide
an additional opportunity to test the generalizability of the LoT
hypothesis.
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Abstract

Quilty-Dunn et al.’s wide-ranging defense of the Language of
Thought Hypothesis (LoTH) argues that vision traffics in
abstract, structured representational formats. We agree: Vision,
like language, is compositional – just as words compose into
phrases, many visual representations contain discrete constitu-
ents that combine in systematic ways. Here, we amass evidence
extending this proposal, and explore its implications for how
vision interfaces with the rest of the mind.

The world we see is populated by colors, textures, edges, and
countless other visual features. Yet we see more than a
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collection of features: We also see whole objects, and relations
within and between those objects. How are these entities repre-
sented? Here, we advance the case for LoT-like representation in
perception. We argue that at least two types of visual represen-
tations are compositional, and we explore their connections
with the rest of the mind.

Consider the hands in Figure 1A. Although they differ in
various superficial features, they appear to share something:
their structure – specifically, their skeletal structure. The same
parts are connected in the same ways, just in different poses.
Similarly, the middle shape in Figure 1B shares its structure
with the left shape but not the right shape, even though the
middle and right shapes share other features. Skeletal represen-
tations describe shapes via their parts’ intrinsic axes and con-
nections, often in a hierarchical tree format, wherein certain
parts “descend” or “offshoot” from others (Feldman & Singh,
2006). Copious evidence suggests that skeletal representations are
psychologically real, implicated in detection (Kovács & Julesz,
1994; Wilder, Feldman, & Singh, 2016), discrimination (Lowet,
Firestone, & Scholl, 2018), categorization (Wilder, Feldman, &
Singh, 2011), aesthetics (Van Tonder, Lyons, & Ejima, 2002), and
more (Firestone & Scholl, 2014; Psotka, 1978).

We contend that skeletal representations exhibit several of
Quilty-Dunn et al.’s LoT properties: Discrete constituents, role-
filler independence, and abstract content. First, skeletal representa-
tions contain discrete constituents that represent axis structure
independently of surrounding boundaries, composing with boun-
dary representations to describe overall shape. This may explain
why infants (Ayzenberg & Lourenco, 2022) and adults (Wilder
et al., 2011) categorize novel shapes by skeletal structure despite
differences in surface properties. Second, representations of indi-
vidual parts exhibit role-filler independence, retaining identity
over changes in position within the overall skeletal representation.
Such transportability (Fodor, 1987) explains why we can easily
determine when distinct shapes share the same parts, and why

such shapes prime one another (Cacciamani, Ayars, & Peterson,
2014). Third, skeletal representations are abstract, expressing
aspects of shape that appear stable despite part articulations
(Fig. 1A), changes in surface properties (Fig. 1B; Green, 2019),
and sense modality (Green, 2022). Moreover, visual brain areas
encode skeletal structure across surface changes (Ayzenberg,
Kamps, Dilks, & Lourenco, 2022; Hung, Carlson, & Connor,
2012; Lescroart & Biederman, 2013). Skeletal representations
may also encode nonmetric, categorical properties – for example,
straight/curved and symmetric/asymmetric (Amir, Biederman, &
Hayworth, 2012; Green, 2017; Hafri, Gleitman, Landau, &
Trueswell, 2023).

We suggest that these LoT properties make skeletal representa-
tions compositional: Discrete constituents encoding different geo-
metrical elements and properties combine to form representations
of global shape.

Compositionality in vision extends to relations between
objects. Consider the object pairs in Figure 1C. They appear to
share something: the relation containment. Visual processing
respects this commonality – it represents relations between
objects, beyond the objects themselves (Hafri & Firestone,
2021). Such representations also exhibit several LoT properties.
First, visual processing represents relations abstractly and categor-
ically: Observers are more sensitive to metric changes across rela-
tional category boundaries (e.g., from containing to merely
touching) than within (e.g., from one instance of containment
to another; Lovett & Franconeri, 2017), and even “confuse”
instances of the same relation for one another (Hafri, Bonner,
Landau, & Firestone, 2020). Furthermore, visual brain areas
encode eventive relations abstractly, generalizing across event par-
ticipants (Hafri, Trueswell, & Epstein, 2017; Wurm & Lingnau,
2015).

Second, such representations contain discrete constituents and
exhibit role-filler independence, in ways that augment
Quilty-Dunn et al.’s discussion. Consider Figure 1D. Both images

Figure 1 (Hafri et al.). Demonstrations of compositionality in visual perception. (A) The three hands shown here differ in global shape, the locations of their bound-
aries, and other surface features; however, they appear to share something: Their structure – specifically, their skeletal structure (indicated by the inset colored
lines). The same parts have taken on different poses. Skeletal shape representations describe objects in terms of the axes of their parts, including how those
parts are arranged with respect to one another, in ways that instantiate several core LoT properties. (Adapted from Lowet et al., 2018.) (B) Skeletal shape repre-
sentations explain why infants and adults can see that the middle shape shares something with the leftmost shape that it does not share with the rightmost shape,
even though the middle and rightmost shapes share other features. (Adapted from Ayzenberg & Lourenco, 2019.) (C) The three object pairs shown here differ in a
variety of visual features, and even involve different objects – but each seems to instantiate the same relation: containment. Recent evidence suggests that the mind
rapidly and automatically encodes such relations, representing the relation itself separately from the objects participating in it. (Adapted from Hafri et al., 2020.) (D)
These two images depict the same objects (cat and mat) and the same relation (support), but differ in their structure – a cat on a mat is a very different scene from a
mat on a cat. Put differently, “argument order” matters: R(x,y) may be quite different than R( y,x), and there is evidence that visual processing is sensitive to this
difference in compositional structure. (Adapted from Hafri & Firestone, 2021.)
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involve the same objects (cat and mat) and relation (support), but
cat-on-mat differs from mat-on-cat in compositional structure.
Thus, “argument order” matters – the “fillers” map to different
roles. Recent work shows that vision is sensitive to this difference.
When observers repeatedly reported the location of a target indi-
vidual (e.g., blue-shirted man) in a stream of action photographs
(e.g., blue-kicking-red, red-pushing-blue), a “switching cost”
emerged: Slower responses when the target individual’s role
(Agent/Patient) switched (e.g., pusher on trial n− 1 but kickee
on trial n), suggesting that observers encoded relational structure
automatically (Hafri, Trueswell, & Strickland, 2018).

These properties make representations of categorical
between-object relations compositional: Discrete constituents
encoding entities and relations combine to form representations
of structured situations.

The prospect of LoT-like, compositional visual representations
impacts broader debates about perception’s format. Many claim
that perceptual representations are constitutively iconic, analog, or
“picture-like” (Burge, 2022; Carey, 2009; Dretske, 1981; Kosslyn,
Thompson, & Ganis, 2006). However, although LoT-like formats
clearly suffice to encode categorical, nondegreed relations (e.g., con-
tainment), many iconic formats may not – particularly accounts
requiring perceptual icons to mirror graded degrees of difference
in perceptible properties (e.g., orientation or brightness; Block, 2023).

This perspective also raises exciting questions and research
directions. For example, it may partially explain how informa-
tion from perception is “readily consumed” by cognitive and lin-
guistic systems (because of the similar formats of some
perceptual and higher-level representations; Cavanagh, 2021;
Quilty-Dunn, 2020). Recent work explores these connections
explicitly: Skeletal shape representations impact aesthetic prefer-
ences and linguistic descriptions of shapes (Sun & Firestone,
2022a, 2022b), and representations of symmetry and roles may
be shared across perception and language (Hafri et al., 2018,
2023; Rissman & Majid, 2019; Strickland, 2017). One could
also investigate the “psychophysics” of compositional processes
– the timing and ordering of how relational representations
are built from their parts.

Nevertheless, LoT-like perceptual representations may not be
fully language-like. Although perception plausibly predicates
properties of individuals (Quilty-Dunn & Green, 2023), it may
lack the full expressive freedom of first-order logic (Camp,
2018), especially logical connectives needed for truth-functional
completeness (Mandelbaum et al., 2022). Perception may be able
to represent that an object is red but not that it is not red.
Moreover, certain perceptual formats may impose constraints
on which properties are attributable to which individuals –
constraints absent from higher-level cognition. Perhaps percep-
tion cannot explicitly represent relations between nonadjacent
object parts, or eventive relations of long durations (e.g., a jack
slowly lifting a car).

Because perception and thought confront multifarious tasks with
different computational demands, we contend that they comprise a
multiplicity of formats (Marr, 1982; Yousif, 2022), each optimized
for different computations, and some more LoT-like than others.
Thus, any theory positing a single-privileged format for perception
or thought should bemet with suspicion. Instead, researchers should
heed Quilty-Dunn et al.’s advice to “let a thousand representational
formats bloom” (target article, sect. 2, para. 2).
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Abstract

The view that infants possess a full-fledged propositional lan-
guage-of-thought (LoT) is appealing, providing a unifying
account for infants’ precocious reasoning skills in many
domains. However, careful appraisal of empirical evidence sug-
gests that there is still no convincing evidence that infants pos-
sess discrete representations of abstract relations, suggesting that
infants’ LoT remains incomplete. Parallel arguments hold for
perception.

The view that infants possess a propositional language-of-thought
(LoT) appeals as a unifying account for precocious physical
(Stahl & Feigenson, 2015), logical (Cesana-Arlotti et al., 2018),
probabilistic (Denison & Xu, 2010; Téglás, Girotto, Gonzalez, &
Bonatti, 2007), and social reasoning (Baillargeon, Scott, & He,
2010; Hamlin, Wynn, & Bloom, 2007; Powell & Spelke, 2013). It
suggests continuity along development in the format of human
thought. But arguing for such continuity also raises questions.
Most, if not all, of the cognitive skills of young infants are also doc-
umented in nonhuman species (Engelmann et al., 2022; Krupenye,
Kano, Hirata, Call, & Tomasello, 2016), suggesting continuity along
evolution. We should thus attribute the same type of thoughts to
nonhuman animals and human infants, to animals and human
adults. How, then, do we account for animals’ failure to acquire
human natural languages and develop unique human cognitive
skills? Careful appraisal of the available data and careful experimen-
tal designs may instead highlight important discontinuities in the
format of thought along both developmental and evolutionary
scales, suggesting that a full-fledged LoT, involving all six properties
identified by Quilty-Dunn et al. is not yet available to young infants
(nor to animals).

I applaud the project of Quilty-Dunn et al. to list specific prop-
erties of a propositional LoT and evaluate the presence of these

properties in various subdomains of cognitive science. The
strength of the evidence for each property in all domains is how-
ever unequal. In particular, before concluding that infants possess
a full-fledged LoT, we need to provide evidence for each property,
individually, and also investigate the limits of each property. I will
focus on the first property, “discrete constituents.” It is the most
important, as it is presupposed by most other properties: Roles
are attributed to discrete constituents; predication combines dis-
crete constituents; logical operators are conceived as discrete con-
stituents. Contrary to Quilty-Dunn et al., I will argue that,
although both perception and infant cognition certainly possess
discrete representations of objects and possibly of features, there
is no evidence for discrete representations of relations in percep-
tion nor in prelexical infants.

Although experimental evidence suggests that perceptual rep-
resentations of relational events and scenes are generalizable to
a certain extent (e.g., Goupil, Papeo, & Hochmann, 2022;
Papeo, 2020; see Kominsky & Scholl, 2020, for the limits of
those generalizations), there is no evidence that those representa-
tions are discrete, dissociated from the object representations.
Rather, relations may well be represented by perceptual schema
composed of discrete object representations. The generalizability
can be obtained through the underspecification of object repre-
sentations, a process we previously called “abstraction by impov-
erishment” (Hochmann & Papeo, 2021). For instance, in
perception, a schematic social interaction would consist in two
schematic bodies facing each other (Papeo, 2020), a schematic
relation of support would consist in an empty object file on top
of another empty object file, and so on. Similar representations,
with object files possibly enriched with thematic roles, may
account for the representation of many relational events in
infancy (Leslie & Keeble, 1987; Rochat, Striano, & Morgan,
2004; Tatone, Geraci, & Csibra, 2015).

We recently provided direct evidence supporting the proposal
that prelexical infants lack discrete representations for abstract rela-
tions (Hochmann, 2022). We showed that infants can represent
the relation same in a format that is abstract, as it can generalize
to novel instances of the relation. However those representations
are limited to four same individuals, suggesting that the format of
infants’ representations is not something like S(A,B), where A and
B would be object representations and S the representation of the
relation between those objects, but rather (X X), where X is a variable
for an object (see Hochmann, 2022, for the full argumentation). The
repetition of the variable carries the relational content same, but only
symbols for objects are explicitly represented. This view is reinforced
by the systematic failure of young children and other animal species
in the relational match-to-sample task, where they need to match
pairs of the same or different images (e.g., matching square–square
to circle–circle and square-star to moon-triangle). If infants and
young children possessed discrete symbols S and D for the relations
same and different, they should activate S for both square–square
and circle–circle, and D for both square-star and moon-triangle,
and easily match S to S or D to D. Instead children fail until the
age of 4, and only succeed when actively using the words “same”
and “different” (Hochmann et al., 2017). Likewise, chimpanzees
(and other animal species) fail the relational match-to-sample task,
unless they previously acquired external unitary symbols that refer
to the relations same and different (Premack, 1983; Thompson,
Oden, & Boysen, 1997). These observations highlight a discontinuity
along human development. They put forward the hypothesis that
relations are initially represented in mental models, and that discrete
representations of relations are related to the acquisition of words for

Commentary/Quilty‐Dunn et al.: The best game in town 47

https://doi.org/10.1017/S0140525X22002849 Published online by Cambridge University Press

https://orcid.org/0000-0002-4613-1378
mailto:hochmann@isc.cnrs.fr
https://sites.google.com/site/jrhochmann/
https://sites.google.com/site/jrhochmann/
https://doi.org/10.1017/S0140525X22002849


those relations. The discrete symbols for abstract relations are possi-
bly no other than the words that refer to those relations.

Finally, even granting infants the capacity to solve the disjunc-
tive syllogism (Cesana-Arlotti et al., 2018) or to compute negation
(Hochmann & Toro, 2021), more experimental work is necessary
to describe the format of the representations that permit those
performances. Although discrete logical operators could account
for these data, other hypotheses are still on the table, including
among others, probabilistic representations and inhibitory
mechanisms.

In conclusion, the LoT hypothesis is a hypothesis about the
format of mental representations. Despite the appeal of a unifying
account of cognition and perception, from infancy to adulthood,
from bees to humans, discontinuities in the format of thoughts
deserve to be studied and highlighted. Quilty-Dunn et al. provide
a framework to think about these issues in infants – as well as in
nonhuman animals – and develop experimental approaches to
decide whether each LoT property is present or absent in infancy,
whether infants indeed possess a propositional LoT, or whether
they still need to acquire some of the pieces before they can
fully play the game.
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Abstract

Quilty-Dunn et al. claim that all complex infant and animal rea-
soning implicate language-of-thought hypothesis (LOTH)-like
structures. We agree with the authors that the mental life of ani-
mals can be explained in representationalist terms, but we dis-
agree with their idea that the complexity of mental
representations is best explained by appealing to abstract con-
cepts, and instead, we explain that it doesn’t need to.

Quilty-Dunn et al. claim that “complex infant and animal reason-
ing […] all implicate LOT-like structures” (target article, long
abstract). The authors explain that recent evidence in comparative
psychology shows that “The use of abstract content in physical
reasoning is arguably present throughout the animal kingdom”
(target article, sect. 5.1, para. 4), and, they say, these findings
are compatible with their proposal that language-of-thought
hypothesis (LOTH)-based accounts have the potential to explain
all animal cognition. We will comment on the authors’ claim,
given the authors’ interpretation of the findings they choose to
exemplify in comparative psychology and given their account of
animal reasoning and the nature of mental representations they
take it to involve.

We agree with the authors that the mental life of animals can
be explained by referring to various formats and architectures; we
even agree that representational approaches are well suited to
standout as flexible and useful explanatory tools. However, we
suggest that from accepting that representationalist accounts of
the mind are suitable to explain animal minds, to claiming that
mental representations are sentence-like in nonhuman animals,
is yet a big step. We want to comment on the authors’ proposal
that LOTH accounts must hold to six core properties, and in par-
ticular, we question the sixth property: Abstract conceptual con-
tent. We do not deny that complex cognitive processes take
place in much animal mental life, on the contrary. But we disagree
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that such complexity is best explained by appealing to abstract
concepts.

According to LOTH, the language-of-thought hypothesis,
mental representations are formatted like sentences (Fodor,
1975, 1987). A LOTHA, language-of-thought hypothesis for ani-
mals, has since been discussed (see Beck, 2017), also on the
ground that LOTH can be split up into strong-LOT, that under-
stand the compositionality of representations as involving the
mechanisms proper of natural languages, and weak-LOT, that
maintains the compositionality of representations (Camp, 2007,
2009). To date, there is no direct evidence for LOTHA, but
there is evidence that some animal mental representations are
not sentence-like (see work on analogue magnitudes in Beck,
2015, 2017).

We agree with Fitch’s (2020) mentalistic, yet physicalist, per-
spective that a concept is simply “a nonlinguistic psychological
representation of a class of entities in the world.” Abstract con-
cepts, in particular, refer to abstract entities, that is, those entities
that are at least not directly perceptually available. We argue that
animals may not need abstract concepts to engage in complex rea-
soning. Their mental life is based on representational mechanisms
that need not involve abstract concepts. We argue that animals
can realize complex activities relying on “minimal beliefs” without
involving abstract concepts. Those consist of informational states
that are sufficiently decoupled from motivational states, which
allows for informational and motivational states to be combinable
and organizable. In addition, these representations need to inter-
act with epistemic dispositions to allow for the acquisition of
novel information, for their (perception-based) categorization,
and for constant updates (Newen & Starzak, 2020). We will put
these minimal beliefs at work through an example from primate
ethology: Orangutans’ long calls (Askew & Morrogh-Bernard,
2016; Lameira & Call, 2018; Spillman et al., 2015; van Schaik,
Damerius, & Isler, 2013). These long calls not only lack any
involvement of abstract concepts but, as we will elaborate, there
are also neither concrete constituents nor a predicate–argument
structure involved in them.

An observational study by van Schaik et al. (2013) examined
the extent to which the direction of long calls emitted by flanged
male Sumatran orangutans (Pongo abelii) and Bornean orangu-
tans (Pongo pygmaeus wurmbii) indicated the direction of their
future travel. These animals live in a very dense tropical forest
and are semi-solitary, thus often out of sight from other members
of their population. For this reason, their communicative reper-
toire is distinctively (though not exclusively) more vocal than
that of other apes. Flanged male orangutans use long calls to indi-
cate to female members their future travel direction. These male
individuals perform these calls when stationary. And these vocal-
izations can anticipate the direction of their travel 1 day ahead. In
response, females show receptive behaviour by travelling in the
direction indicated by the long calls. The study of this communi-
cative strategy focused on three questions: First, testing to what
extent the direction in which flanged male Sumatran orangutans
give spontaneous long calls predicts their travel direction accu-
rately. Second, if the initial calls are followed by additional spon-
taneous long calls that indicate the subsequent travel direction
with more precision than the old one would if no new call had
been given. Third, the extent to which long calls that are given
in the evening from the night nest or in its proximity still indicate
travel direction during the next day, thus indicating future plan-
ning independent of the current motivational state.

The capacity displayed by flanged male orangutans to commu-
nicate their future travel directions, and the corresponding ability
displayed by the females to be receptive to such communicative
intentions, is readily explained through the framework of minimal
beliefs.

The long calls communicate spatial and temporal information
about future travels. This information is first processed, then
stored, and eventually reactivated and integrated at the time of
the day they will need to be used to guide the travelling. We sug-
gest that picking up different categories of information (direction
= inferred by the orientation of the male performing the call; dis-
tance = inferred by the loudness of the call; time = inferred by the
intervals between one call and the following ones) about the same
event ( = travel), then processing, storing, and retrieving them can
be managed by combinable and organizable informational states
like minimal beliefs and that is important evidence of the repre-
sentational capacities of orangutans. But this does not imply
any LOTH-like structure of the mental representation involved
in the long calls. More precisely, we do not need to presuppose
any language-like syntactic structure, and, specifically, no sub-
ject–predicate structure for the long calls.

Even if the authors suggest understanding all communication
and reasoning through language-like structures in a wide sense, to
justify compositionality, this use of the LOTH would result infla-
tionary and the hypothesis itself would lose its explanatory power.
Thus, the LOTH still is not the key explanatory framework to
understanding complex cognition in nonhuman animals.
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Abstract

A science of prelinguistic infant cognition must take seriously
the language-of-thought (LoT) hypothesis. I show how the
LoT framework enables us to identify the representational and
computational capacities of infant minds and the developmental
factors that act on these capacities, and explain how Quilty-
Dunn et al.’s take on LoT has important upshots for develop-
mental theory-building.

The language-of-thought (LoT) framework enables us to formu-
late testable hypotheses about the representational formats, com-
putational structures, and expressive power of infants’ thoughts
before they can effectively communicate via signed or spoken lan-
guage. Quilty-Dunn et al.’s take on the LoT hypothesis provides a
highly generative framework for operationalizing the relevant
units in this hypothesis space. Here, I explain why cognitive devel-
opmentalists should embrace such an LoT approach.

LoT-framed hypotheses can already be found throughout
foundational studies in infant cognitive science, although they
are not necessarily explicitly formulated as such. They can be
found in our attempts to understand the early formats of repre-
sentations of objects, number, space, and agents (e.g.,
Baillargeon, 2004; Feigenson, Dehaene, & Spelke, 2004; Kibbe,
2015; Leslie, 1994; Spelke & Kinzler, 2007; Vasilyeva &
Lourenco, 2012), learning and reasoning (e.g., Denison & Xu,
2019; Rabagliati, Ferguson, & Lew‐Williams, 2019), and social
cognition (e.g., Kushnir, 2022; Leslie, 1987), to name just a few
examples. There is also a growing literature on infants’ capacity
for combinatorial thought (e.g., Cesana-Arlotti et al., 2018;
Piantadosi, Palmeri, & Aslin, 2018). Although there is insufficient
space here to engage with all of the nuances of these domains, I
aim to draw a throughline: Across these domains infant research-
ers ask, what are the basic representational units of infants’mental
lives? How do infants manipulate these representations in the
absence of continued perceptual input? How might infants
make new connections between representations, learn new con-
cepts, or think new thoughts? To what extent might these early
capacities form the basis of more complex thought or the acqui-
sition of new knowledge domains (like physics or algebra)?
Answering these questions requires formulating hypotheses
around LoTs.

As a case study, consider the research on infants’ capacity for
“arithmetic.” In a now classic paper, Wynn (1992) found that
infants who were shown objects hidden one at a time behind an
occluder were able to represent the total quantity of objects hid-
den. Wynn (1992) suggested that infants’ success was evidence

that they grasp the numerical relationship between the inputs
and outputs of an addition computation. This is a provocative
suggestion – that infants have an LoT-like capacity for combina-
torial thought over numerical representations – and the LoT
framework allows us to set up testable conditions under which
such capacities might be evidenced. Infants could be doing some-
thing that resembles the expressive power of arithmetic: Their rep-
resentations of the objects could be formatted in a way that allows
those representations to be used as operands in a mental function
specifying arithmetic relations (i.e., f([object a], [object b]) = a + b
= c) – consistent with an LoT. Or, infants could be doing some-
thing that is decidedly not LoT-like at all: For example, they
could track the two sequentially hidden individual objects via sep-
arately deployed attentional indexes resulting in a representation
of [index, index], and the total quantity is represented only
implicitly by the number of indexes deployed. In fact, we do
not yet know which of these potential explanations (if either)
underlies infants’ behavior in Wynn (1992) (see Cheng &
Kibbe, 2023, for related discussion). Identifying to what extent
infants’ early capacities have a computational structure or combi-
natorial capacity similar to formal arithmetic is particularly
important because we care not only about what’s going on in
the infant mind, but also about whether formal numerical knowl-
edge can emerge from infants’ early capacities (see, e.g., Carey,
2009). This is just one example, but there are many such LoT
hypotheses out there just waiting to be tested.

For developmentalists who may be hesitant to explicitly for-
mulate LoT hypotheses about infant cognition, Quilty-Dunn
et al.’s approach to LoT has major advantages. It does not commit
infant researchers to a single format for an LoT, into which dispa-
rate evidence must be proverbially crammed. Their approach also
does not commit us to LoTs with full, recursive, natural-language-
like expressive grammar, which would be difficult to square with
infants’ apparent capacities in a variety of domains. And their
approach does not commit developmentalists to Fodor’s radical
nativism, which in the past has (somewhat unfairly, I would
argue) marked the LoT hypothesis as incommensurate with
development.

In fact, an LoT approach is developmental. Taking an LoT
approach to infant cognition is compatible with efforts to under-
stand how motor development, neurobiological development,
and/or individual differences related to cognitive, emotional, edu-
cational, economic, or sociocultural factors may shape cognition
in infancy and beyond. Indeed, it allows us to formulate hypoth-
eses to identify potential computational structures over which
these factors may operate across early development. It allows for
the possibility of differential developmental trajectories for LoTs
across domains and across infancy.

Taking an LoT approach also does not require that infants’
early computational capacities must be quarantined from experi-
ence or learning (e.g., I think positing that LoT structures may be
identifiable in infancy is compatible with a rational constructivist
approach; see Xu, 2019). Nor does it require us to find evidence
for LoT(s) in every aspect of early cognition. There are plenty
of instances in which iconic, noncombinatorial representations
provide the best explanation for infants’ (and, indeed, adults’)
behavior in some domain. Instead, it requires infant researchers
to take seriously the possibility that infants can think before
they articulate language, and to identify cases of such expressive
capacities, and their functional utility for the developing mind.

Importantly, taking an LoT approach also does not entail that
there is some developmental hierarchy in the expressive power of
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LoTs, with infants on the bottom and adults at the top. Infant
researchers can and should formulate hypotheses around both
continuity and change in the computational capacities of minds
across domains and across development.

Quilty-Dunn et al. lay out the case for LoT-like structures in
the mind, and a roadmap for how to go about looking for
them. If human cognition includes LoTs in its fully developed
state, then we need to formulate our hypotheses about the
origins and development of human cognition within an LoT
framework. Cognitive developmentalists should embrace this
approach.
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Abstract

There are towns in which language-of-thought (LoT) is the best
game. But do we live in one? I go through three properties that
characterize the LoT hypothesis: Discrete constituents, role-filler
independence, and logical operators, and argue that in each case
predictions from the LoT hypothesis are a poor fit to actual
human cognition. As a hypothesis of what human cognition
ought to be like, LoT departs from empirical reality.

The effort by Quilty-Dunn et al. to evaluate the language-of-
thought hypothesis (LoTH) in light of what has been learned
since Fodor’s original formulation is commendable. But although
it is possible to interpret some behaviors as being compatible with
LoT, LoT remains a poor way to understand human cognition. If
the target article is the “strongest article-sized empirical case for
LoTH” (target article, sect. 1, para. 4), the case of LoT is rather weak.

Let us examine three properties of LoTH. For each, I will consider
what we might expect if the property actually holds of human cog-
nition and what we instead tend to find. The reasoning applies to the
remaining three properties, but space prohibits further explication.

Discrete constituents: It is true that the English sentence “That
is a pink square object” can be decomposed into constituents like
“pink” and “square” that can be plugged into other sentences to
convey something of the same meaning. Two problems. First,
the authors are making a case for discrete constituents of thought,
but support their core argument with examples from language. It
is one thing to show that language has certain properties. It is
quite another to show that these properties characterize thoughts
(Lupyan, 2016; Mahowald et al., 2023; Malt & Majid, 2013; Malt
et al., 2015). Supporting the latter would require showing that
underlying our language use are discrete concepts (if one holds
onto Fodor’s extreme nativism, these concepts are also innate –
an even higher bar). Evidence against such a view is too lengthy
to review here (Levinson, 1997; Lupyan & Zettersten, 2021;
Malt & Majid, 2013), but consider the fuzziness and context-
dependence of even the easiest-to-define concepts like ODD,
EVEN, and TRIANGLE (Lupyan, 2013, 2015). Second, even lan-
guage may not be as discrete as is often assumed. To us, literate
English-speaking scholars with a habit of reflecting on language
as an external artifact, the idea that it is composed of discrete
parts may seem self-evident. But this may speak more to what
it can be than what it typically is. For example, literate, but not
illiterate children can count words in a spoken sentence
(Matute et al., 2012; Olson, 2002) – a surprising result if natural
language simply maps onto discrete constituents of thought.

Role-filler independence: John is the agent of “John loves Mary”
in the same way that Mary is the agent of “Mary loves John.” Does
this mean that role-filler independence is a characteristic property
of our thoughts? Even if it were, this does not mean that role-filler
independence is a core property of (nonlinguistic) cognition. But
never mind that. Agent together with patient does indeed turn out
to be perhaps the strongest example of role-filler independence
(Rissman & Majid, 2019). However, Rissman and Majid go on
to argue that evidence for the abstract nature of other seemingly
basic roles like instrument and goal is rather mixed. Even for
agent, role-filler independence is more subtle than it seems. In
a nonlinguistic task requiring participants to categorize based
on agent/patient relationships, a sizable minority (∼40%) failed
to induce it in the allotted time (Rissman & Lupyan, 2022).
Those who did, generalized agency according to how similar the
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test items were to the items they saw at training as well as to the
test item’s similarity to agent prototypes (Dowty, 1991). It seems
that not all agents are equally good agents, a surprising result if
there is true role-filler independence.

The authors correctly point out that connectionist models
“simulate compositionality, but fail to preserve identity of the
original representational elements” (target article, sect. 2, para.
7). The authors do not consider the possibility that human com-
positionality may be simulated as well (Dekker, Otto, &
Summerfield, 2022; Lahav, 1989).

Lastly, logical operators such as AND, IF, and OR are
a “hallmark of LoT architectures” (target article, sect. 2, para.
10). Yet children under the age of about five have a notoriously
difficult time learning categories based on even the simplest log-
ical rules (Rabi, Miles, & Minda, 2015; Rabi & Minda, 2014).
Adults are better (and certainly better than other animals!), but
arguably rule-based reasoning is far more difficult than it should
be if such logical operators actually underlie much of our percep-
tion and reasoning (Goldwater, Don, Krusche, & Livesey, 2018;
Lupyan, 2013; Mercier & Sperber, 2017).

It is true that at least for stimuli composed of easy-to-verbalize
and recombine features such as circles and triangles of various col-
ors used by Piantadosi, Tenenbaum, and Goodman (2016) adults
can do well, showing patterns of behavior well-explained by the
use of logical operators. However, such behavior is fragile in ways
unexpected if these operators underlie our everyday cognition.
Formally simple operations like XOR are notoriously difficult for
people (Shepard, Hovland, & Jenkins, 1961). Even on simple rules
like IF A, performance strongly depends on factors like verbal
nameability of the constituents (Zettersten & Lupyan, 2020).

Ironically, Piantadosi, cited in support of hard-coded logical con-
nectives (Piantadosi et al., 2016) was explicit that their data concern
adults (“our results are not about children,” p. 22) making the claim
that logical operators underlie our core cognitive processes suspect.
He later went on to argue that “primitives” like AND and OR need
not in fact be primitives and can be learned (Piantadosi, 2021). I
would add that such learning may be supported in part by natural
language (Lupyan & Bergen, 2016).

To be fair, not all the evidence the authors use in support of the
LoTH is linguistic. A considerable weight is placed on the construct
of object files that are somehow meant to explain perception in
terms of LoTH. Although object files may be a useful construct
for understanding certain perceptual generalizations, there is
good reason why research in perception treats visual representa-
tions as analog/iconic representations (Block, forthcoming).

In a town inhabited by highly educated people with a Western
philosophical bent, LoTH is a sensible starting point in thinking
about how cognition works. In towns inhabited by the rest of us,
it is a curious game that some learn to play. The most fun games
are often those that transport us to imagined worlds. The world of
the LoT hypothesis is likely one of these.
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Abstract

The target article signal boosts important ongoing work across
the cognitive sciences. However, its theoretical claims, generative
value, and purported contributions are – where not simply
restatements of arguments extensively explored elsewhere –
imprecise, noncommittal, and underdeveloped to a degree that
makes them difficult to evaluate. The article’s apparent force
results from engaging with straw rather than steel opponents.

Batman: Then why do you want to kill me?
Joker: Kill you? I don’t want to kill you. What would I do without you? Go
back to ripping off mob dealers? No, no, no. No, you… you complete me.
(Nolan, 2008)

For many a hammer, everything is a nail. For many a philosopher
of mind, everything is a chance to rehearse Kant’s criticism of
Hume, Chomsky’s criticism of Skinner, and Fodor’s criticism of
every empiricist, holist, or, in the pages of BBS (1985), relativist
who rubbed him the wrong way. Thus the target article repeats,
again and again across different domains, a well-worn argumen-
tative maneuver in psychology and philosophy: “this mental
phenomenon you’re trying to explain in terms of a simpler
process – be it associations, model-free learning, neural nets, or
icons – must instead be explained by a more complex process,
which performs language-like computations.”

The theoretical payoff of this selective tour through case stud-
ies is remarkably modest. For Quilty-Dunn et al. do not deny that
the simpler, nonlinguistic processes exist and have real effects.
They deny that the nonlinguistic processes explain everything.
Repurposing the old joke, we’ve established what kind of theorist
you are – a pluralist – and now we’re just haggling over the details.
The haggling, in this case, recalls trench warfare. On some fronts
(like artificial intelligence), neural nets make stunning advances,
even as the language-of-thought hypothesis (LoTH) plants its
flag on other patches of cognitive terrain hitherto claimed by non-
linguistic theories. The broader import of this unsystematic
assemblage of localized skirmishes is unclear. Is LoTH “the best
game in town,” or one game among others, which the mind per-
haps plays somewhat more often than some think?

The authors deny that so-called “system 1” (target article, sect. 6,
note 11) is purely associative. It’s true that associative interpretations
of implicit bias continue to hold sway in pop-psych discourse, but
hardly anyone paying attention to what the authors rightly call a
“near-deluge” (target article, sect. 6.2, para. 5) of research on prop-
ositional effects in implicit social cognition continues to defend the
extreme associationist views targeted by the authors. Many of us
never did (Brownstein & Madva, 2012; Del Pinal, Madva, &
Reuter, 2017; Gawronski & Bodenhausen, 2006, pp. 706–707;
Madva, 2016, p. 2681, 2019; see also Brownstein, 2018, Chs. 2–3).
This is not to say all our predictions panned out, but to question
the ease with which other pluralist approaches are pigeonholed
into the dreaded empiricist/associationist/behaviorist position in
these recurring debates (e.g., Kurdi, Morris, & Cushman, 2022b,
p. 3). Indeed, according to Mandelbaum (2022, sect. 8), we represent
“a revival of associationist theories in philosophy,” citing a paper
that is explicitly orthogonal to the association–proposition debate
(Madva & Brownstein, 2018, sect. 6.1; see also Kurdi, Mann,
Charlesworth, & Banaji, 2019; Phills, Hahn, & Gawronski, 2020).
With apologies to Voltaire, one senses that if modern-day associa-
tionists did not exist, modern-day Fodorians would have to reinvent
them. With apologies to Taylor Swift, I would very much like to be
excluded from this narrative.

In any case, the downfall of pure-associative models has not
occasioned the uncontested reign of propositional alternatives.
Leading propositional theorists continue to uncover effects more
naturally explained by nonpropositional processes, or at least uneas-
ily assimilated into prevailing propositional theories (e.g., Van
Dessel, De Houwer, Gast, Roets, & Smith, 2020; see also Byrd,
2021). As a recent meta-analysis by Kurdi, Morehouse, and
Dunham (2023, p. 1) explains, no current theory is well-poised to
predict and explain the disorienting array of findings, and the
time for “existence proof demonstrations” of propositional effects
has passed. Yet in lieu of synthesizing the disarray, the target article
consists in just such a grab bag of existence proofs, trumpeting all
and only recent successes for propositional approaches – while
ignoring evidence of their shortcomings and boundary conditions,
and deferring long-standing concerns about how LoTs are imple-
mented in the brain and integrated with other processes.

The authors nevertheless advertise LoTH’s “unificatory power”
(target article, sect. 1, para. 7), specifically its provision of a lingua
franca mediating between psychological domains (perception,
higher-order thinking, so-called “system 1,” etc.). But if each of
these domains involves proprietary LoTs and who knows how
many other representational formats, the question still remains
how these diverse representational formats interact with each
other (within each psychological domain, rather than between
domains). If non-LoTs interface with LoTs after all, what explan-
atory traction is gained by noting how LoTs pop up in lots of dis-
tinct psychological locales? And if a thousand other
representational formats are abloom across the mind (target arti-
cle, sect. 2, para. 2), why couldn’t some of them mediate between
domains, too? What we have here is not unification but prolifer-
ation, not explanation but more to explain.

No doubt the authors would cite their six core LoT properties
as significant theoretical contributions. But the conceptual and
causal interrelations of these properties (which are invoked in
seemingly random combinations from one case study to the
next) are muddled at best. Do they represent a homeostatic prop-
erty cluster, as the authors claim, or are they tied more tightly
together? The authors stress that representations involving discrete
constituents need not be structured like sentences, but they “usu-
ally interpret” sentence-like representations “as requiring” discrete
constituents (target article, sect. 2, para. 8). They then grant that
successive properties on their list necessitate others, for example,
predicate–argument structures and logical operators “requiring
role-filler independence” (target article, sect. 2, para. 9). To the
extent that property B requires property A, it is completely trivial
to predict that A will show up wherever B does, and only slightly
less trivial to predict that B will appear alongside A above chance.
The mere prediction that properties “should tend to cooccur” (tar-
get article, sect. 2, para. 12) is weak, vague, and unconstrained,
allowing theorists to underscore cooccurrences and ignore (or
explain away) noncooccurrences. We “usually require” fewer
degrees of freedom from our theoretical frameworks. We are
also compelled to ask whether the six properties offer anything
substantively novel or illuminating, or simply stick new labels on
the analytic entailments contained in the original LoT view.

The target article at times positions itself as a lone voice of
logic in an associationist wilderness, fighting the good fight for
a nearly forgotten rationalist cause while flanked on all sides by
zombie empiricisms that refuse to stay dead. Yet the article’s prin-
cipal value consists in signal-boosting others’ important ongoing
work. The question, then, is what it would mean to take up the
authors’ proposals over and above what the exemplary researchers
being cited are already doing.
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Abstract

We propose that episodic thought (i.e., episodic memory and
imagination) is a domain where the language-of-thought
hypothesis (LoTH) could be fruitfully applied. On the one
hand, LoTH could explain the structure of what is encoded
into and retrieved from long-term memory. On the other,
LoTH can help make sense of how episodic contents come to
play such a large variety of different cognitive roles after they
have been retrieved.

Quilty-Dunn et al. convincingly show that language-of-thought
hypothesis (LoTH) is alive and kicking in contemporary cognitive
science. One domain they do not discuss, however, is episodic
memory and imagination (i.e., episodic thought). This is not sur-
prising: Traditionally, episodic thought has been widely viewed in
terms of iconic forms of representation. Nonetheless, we believe
that episodic thought is rife for being theorized in terms of
LoTH. Most importantly, LoTH generates novel perspectives on
how humans achieve such remarkable productivity and flexibility
when thinking about other places and times.

Recent research on episodic memory and imagination suggests
that different kinds of episodic thoughts (past memories, future
imaginations, counterfactual imaginations, etc.) are cognitively
not individuated through their contents (Addis, 2020, 2018;
Mahr, 2020; Schacter et al., 2012); that is, episodic contents are
“taxonomically neutral” with respect to their cognitive role as
imaginations or memories. For example, Mahr, Greene, and
Schacter (2021; see also De Brigard, Gessell, Yang, Stewart, &
Marsh, 2020) found that participants’ ability to recall the contents
of a previously imagined event only weakly predicts their ability to
recall whether this event was about the future or the past. This
finding suggests that whether a given episode is taken to represent
the past or the future (say) is not determined by what is retrieved
from memory (i.e., episodic content) but by processes that occur
before or after such retrieval (Mahr, 2020).

With this in mind, we propose that there are two main ways in
which LoTH can be cashed out in episodic thought. On the one
hand, LoTH can help to conceptualize the structure of episodic
contents: What is encoded into long-term memory and how
these contents are later retrieved in the service of the construction
of both episodic memories and imaginations. According to the
“constructive episodic simulation” hypothesis (Schacter & Addis,
2007), episodic retrieval consists in the flexible recombination of
the elements of previously encoded experiences. Although there
is good evidence to support this idea (see, e.g., Schacter & Addis,
2020, for a review), it remains unclear what mechanisms allow
such flexible recombination of episodic elements in the service of
episodic simulation. These processes are most commonly thought
of in terms of associative inference (Addis, 2020; Carpenter &
Schacter, 2017; Horner & Burgess, 2013) even though – as
Quilty-Dunn et al. point out – LoT-style representations like scene-
grammars (Võ, 2021), object files (Zimmer & Ecker, 2010), and
event files (Hommel, 2004) play a role in structuring the informa-
tion encoded into long-term memory. Similarly, these representa-
tions might play a role in structuring what content is retrieved and
how it is composed. The fact that episodic contents could thus
exhibit LoT properties – contributing to the flexibility and produc-
tivity of episodic simulation – has so far been underexplored. For
example, evidence for the influence of “schemas” in episodic
encoding and retrieval (Irish & Piguet, 2013; Renoult, Irish,
Moscovitch, & Rugg, 2019), which also play a role in episodic sim-
ulation of future scenarios (Wynn, van Genugten, Sheldon, &
Schacter, 2022), might be understood in this light (e.g.,
Draschkow, Wolfe, & Vo, 2014; Võ & Wolfe, 2013).

On the other hand, LoTH can help to understand how epi-
sodic contents come to play their respective cognitive roles. In
the minds of adult humans, episodic contents can fill a variety
of different roles – for example, as imaginations of past counter-
factuals (De Brigard, Addis, Ford, Schacter, & Giovanello, 2013)
or representations of event types (Addis, Pan, Vu, Laiser, &
Schacter, 2009). A complete theory of episodic simulation
requires an account of how “taxonomically neutral” episodic
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contents come to fill these roles. Mahr (2020, 2022; see also Mahr
& Csibra, 2018) argued that (in addition to their contents) epi-
sodic thoughts have (at least) five discrete constituents:
Temporal orientation (is this event occurring in the past, present,
or future?; Mahr & Schacter, 2022; Mahr et al., 2021), specificity
(is this a unique occurrence or a type of occurrence?; Addis et al.,
2009), subjectivity (who is the subject of this experience?;
Pillemer, Steiner, Kuwabara, Thomsen, & Svob, 2015), factuality
(did this/will this really happen?; Johnson & Raye, 1981; Simons,
Garrison, & Johnson, 2017), and mnemicity (do I know about
this through my own experience?; Mahr, in press; Mahr et al.,
2023). As a result, episodic thoughts fulfill many of the diagnostic
features of LoT-style representations proposed by Quilty-Dunn et al.

First, episodic thoughts exhibit predicate–argument structure.
Complete episodic thoughts are the result of the predication of
episodic contents by compounds of these constituents according
to syntactic rules. For example, an episodic memory can be ana-
lyzed as remember[ past, specific, factual, self (EPISODE)], where
“EPISODE” refers to episodic content. Evidence about the inde-
pendence of episodic contents and assignments of temporality
(Mahr & Schacter, 2022; Mahr et al., 2021) support this idea.
Further, one can remember imagining suggesting that some of
these predicates can be recursively embedded.

Second, these predicates are discrete: Episodic thoughts are the
result of the composition of distinct conceptual constituents into
an LoT-like “sentence.” Although there is not complete indepen-
dence between these predicates, the space of possible episodic
thoughts includes a large number of such sentences (see Mahr,
2020; Michaelian, 2016). For example, the above might be easily
amended to imagine[ past, specific, factual, self (EPISODE)].

Third, several phenomena attest to the fact that this architecture
exhibits a large degree of roll-filler independence – the same episodic
content might fill different cognitive roles. For example, people are
able to “recast” memories of past events into the future (e.g., one
might imagine a basketball game in the past but also imagine the
same game as occurring in the future; Thakral, Yang, Addis, &
Schacter, 2021), can be convinced to “disbelieve” their memories
(Otgaar, Scoboria, & Mazzoni, 2014), and regularly change their
assessment of whether they are remembering or imagining an epi-
sode (Loftus & Pickrell, 1995).

Finally, the predicates of episodic thought are abstract:
Although (say) the pastness or futurity of an episode might com-
monly go along with different contents, temporal orientation itself
cannot be depicted (Mahr, 2020; Matthen, 2010).

The hypothesis that episodic thoughts indeed exhibit these fea-
tures crucially generates a package of unique predictions (for a
first pass at testing role-filler independence, see Mahr et al.,
2021; and for discreteness, see Mahr & Schacter, 2022). Even
though research on the role of LoT in episodic thought is still
in its inception, there are potentially large theoretical payoffs
for taking LoTH seriously in this domain.
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Abstract

There are two ways to understand any proposed properties of
language-of-thoughts (LoTs): As diagnostic or constitutive. We
argue that this choice is critical. If candidate properties are diag-
nostic, their homeostatic clustering requires explanation via an
underlying homeostatic mechanism. If constitutive, there is no
clustering, only the properties themselves. Whether deep neural
networks (DNNs) are alternatives to LoTs or potential imple-
mentations turn on this choice.

Quilty-Dunn et al. offer six properties of language-of-thoughts
(LoTs). Setting aside whether those are the right ones, all propo-
nents of the language-of-thought hypothesis (LoTH) must specify
the status of candidate properties: Are they diagnostic or constitu-
tive? On the diagnostic view, these properties are indicators. Their
presence is evidence for an underlying LoT-like representational
format, but the format itself would be a distinct natural kind,
causally prior to the properties. On the constitutive view, what
it is to be an LoT is to exhibit some (or all) of these properties;
a system just is “LoT-like” to the extent that it implements
them. Both views require methods for determining whether the
behavior of a given system reflects properties of LoTs. On the
diagnostic view, a further question remains regarding whether
observed properties really reflect an underlying LoT.

The authors do not make this distinction and different parts of
their argument suggest different interpretations. Here we show
that one can’t have both, because the consequences of these inter-
pretations are incompatible. For one thing, the choice determines
whether neural networks are competitors to the LoTH or candi-
date implementations.

The authors’ central argument seems to place them in the
diagnostic camp. They suggest that their six core properties com-
prise a homeostatic property cluster (Boyd, 1991, 1999). As
opposed to prototype concepts, in which features need not be
related, a crucial question for homeostatic property clusters is:
What maintains the clustering? In the standard case, it is main-
tained by an underlying homeostatic mechanism (or set of

mechanisms), which causes the properties to co-occur to an unex-
pected degree (Boyd, 1990). For example, the characteristic prop-
erties of a biological species – the paradigm case of a homeostatic
property cluster – are diagnostic of that species, and tend to co-
occur because of the shared genotype of species members,
which is maintained by evolutionary forces. Proposing that the
LoT is a homeostatic property cluster evokes an analogy: Some
underlying homeostatic mechanism causes the properties of
LoTs to cooccur. This mechanism is the extra constitutive compo-
nent; even if two systems exhibit identical indicators, the presence
or absence of the mechanism determines which ones really are
LoTs. This accords with the authors’ treatment of
“non-LoT-like architectures such as DNNs” (target article, sect.
3, fn. 5) as a priori incompatible alternatives to LoTs through
much of the paper. Although the core properties may emerge in
these systems, a difference in (or lack of) the underlying
LoT-like mechanism would mean that deep neural networks
(DNNs) could never count as LoTs.

If the properties are just diagnostic, what more is needed for an
LoT? The authors do not provide a specific proposal for an
underlying homeostatic mechanism, but without one it is
unclear what rates of co-occurrence of properties the LoTH
predicts. In lieu of a specific prediction, the authors suggest that
properties should at least co-occur more frequently than one
would expect “from a theory-neutral point of view” (target article,
sect. 2, para. 13). But what would one expect? The baseline
cannot be a “chance” rate of co-occurrence, because the properties
that the authors specify are not, in principle, independent.
Predicate–argument structure seems to presuppose both role-filler
independence and discrete constituents, while having logical
operators should enable inferential promiscuity. Co-occurrence
of properties can only be evidence for the LoTH if it is co-
occurrence over and above the rate implied by their mutual
dependence. Without an estimate of this baseline, it is unclear
whether the evidence the authors review actually provides a
compelling “abductive, empirical argument for LoTH” (target
article, sect. 2, para. 13). On a diagnostic view, both what the diag-
nostic properties are and their expected rate of co-occurrence
should ultimately be causally determined by the underlying
homeostatic mechanism. The challenge, then, is to characterize
that mechanism.

The constitutive view sidesteps this explanatory challenge. On
this view, all there is to being LoT-like is exhibiting the relevant
properties. There is no further prediction about above-baseline
cooccurrence and no need to posit any underlying mechanisms
that maintain homeostatic unity. Nor are the LoTH and DNNs
incompatible explanatory paradigms competing to account for
the same experimental data. Rather, the LoTH highlights impor-
tant, multiply realizable properties that stand as targets for any
representational format to instantiate, and which might emerge
in neural networks that are not explicitly augmented with other,
more LoT-like mechanisms. This amounts to a form of compati-
bilism about DNNs and the LoTH. At one point, the authors
explicitly endorse this position. They write, “neural-network
architectures might be able to implement an LoT architecture…
Our six core LoT properties help specify a cluster of features
that such an implementation should aim for” (target article,
sect. 4.3, para. 6), and they are unwilling to suggest any
“in-principle limitations of DNNs” (target article, sect. 4.3, para.
6). However, this clashes with their central argument. On a con-
stitutive view, there is no unifying homeostatic mechanism, so the
homeostatic cluster collapses into a prototype concept. Moreover,*Equal contribution.
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the pieces of evidence presented by the authors that particular
current DNNs fail to manifest LoT properties or explain some
phenomenon (e.g., abstract object representations) cannot weigh
in favor of the LoTH and against DNNs as cognitive models in
principle. They just suggest that those DNNs do not implement
LoTs. This is a critical choice point for proponents of the
LoTH: You can embrace compatibilism and the constitutive
view or endorse the more robust commitments of the diagnostic
property cluster account. You cannot have both.

An unresolved question may influence the choice between
these two options. Will neural networks need to be augmented
with rule-like operations to account for human competences, as
the authors suggest? If so, this would favor the diagnostic view,
with LoTs as underlying mechanisms that play a strong explana-
tory role in cognitive architecture. If, on the contrary, DNNs turn
out to be able to explain human cognitive capacities without being
augmented with other kinds of architectures (as in neuro-
symbolic hybrids), that would support the constitutive view and
a weaker, guiding role for the LoTH. Far from abandoning it,
this result would allow the LoTH to provide its traditional explan-
atory benefits without requiring implementation in a rule-based
system.
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Abstract

Cognitive science has evolved since early disputes between rad-
ical empiricism and radical nativism. The authors are reacting to
the revival of radical empiricism spurred by recent successes in
deep neural network (NN) models. We agree that language-like
mental representations (language-of-thoughts [LoTs]) are part
of the best game in town, but they cannot be understood inde-
pendent of the other players.

Quilty-Dunn et al. have done a service in summarizing major lines
of empirical data supporting a role for symbolic, language-like rep-
resentations (a language-of-thought [LoT], construed broadly) in
theories of cognition. This overview is particularly pressing for
audiences of the overly hyped popular press on deep neural net-
works (NNs). However, Quilty-Dunn et al. have done a disservice
to LoT by setting unfavorable terms for the debate. In particular,
they (1) overlook the fact that an LoT is necessarily part of a larger
system and thus its effects should rarely be cleanly observed, and
(2) do not address well-known concerns about LoTs.

Quilty-Dunn et al. note that statements in an LoT are formed of
discrete constituents and denote functions from possible worlds to
truth values. Consider a situation in which Alice beats Bart at
tug-of-war. This might be represented in an LoT as BEAT
(ALICE, BART, TUG-OF-WAR). Fodor (1975) argued that constit-
uents (BEAT, ALICE, BART, TUG-OF-WAR) are “atomic”
(unstructured) pointers to metaphysically real entities: Events (beat-
ing), properties (Aliceness, Bartness), kinds (tug-of-war), and so on.

Unfortunately, such entities do not appear to exist; nature is
not so easily carved at its joints. An alternative – implicit in
many Bayesian models – is to treat the symbols as reifications
of some distribution in the world: There are some features that
are reliably (if probabilistically) encountered in combination,
and we use, for example, “Alice” to refer to one such combination
(or a posited essence that explains the combination; see Oved,
2015). This straightforwardly allows for recognition, for example
through an NN classifier (Pustejovsky & Krishnaswamy, 2022;
Wu, Yildirim, Lim, Freeman, & Tenenbaum, 2015). Thus, the
LoT sentence BEAT(ALICE, BART, TUG-OF-WAR) means that
in observing the referred-to scene, we would recognize (our NN
classifier would identify) an Alice, a Bart, a beating, and tug-of-war,
and that these entities would be arranged in the appropriate way
(see also Pollock & Oved, 2005). (For readers familiar with possible
worlds semantics, the proposition picks out the set of possible
worlds where all those recognitions would happen.)

This approach explains, for instance, why we tie ourselves in
knots trying to decide whether a cat with the brain of a skunk
is a cat or a skunk, or whether the first chicken egg preceded or
followed the first chicken. In the LoT, SKUNK, CAT, and
CHICKEN are reified abstractions tied to recognition procedures.
The world is messier, and the recognition procedures sometimes
gum up. Note further that different methods for identifying
skunks and cats, and so on (NNs, prototypes, inverse graphics,
etc.) have characteristic imprecisions if not outright hallucina-
tions. The predictions of any LoT theory cannot be separated
from the manner in which the symbols map onto the world.

Reasoning presents additional complications. Most people
infer from Alice beat Bart at tug-of-war that Alice is stronger,
that both are humans not platypodes, are not quadriplegic, and
played tug-of-war in a gym or field not while flying. Although
none of these inferences necessarily hold, keeping a completely
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open mind about them requires willful obtuseness. Critically, such
graded, probabilistic inferences have been the bane of symbolic
reasoning theories, including LoTs. A promising avenue is to
treat LoT statements as conditions on probable worlds generated
from a generative model of the world (Goodman, Tenenbaum, &
Gerstenberg, 2014; Hartshorne, Jennings, Gerstenberg, &
Tenenbaum, 2019). That is, one considers all possible worlds in
which Alice beat Bart at tug-of-war. Because the prior probability
of aerial quadriplegic tadpoles playing tug-of-war is low, we dis-
count those possibilities (barring additional evidence).

Because we cannot do a census of possible worlds, this process
requires an internal model of the world. Thus, the exact inferences
one gets depend on not just the LoT but on what one believes
about the world. They also depend on the nature of the model.
In some domains, symbolic generative models seem to capture
human intuitions, whereas in others we seem to use analog sim-
ulations (Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016;
Ullman, Spelke, Battaglia, & Tenenbaum, 2017). For example,
when imagining Alice beating Bart at tug-of war, we might use
abstract causal beliefs about tug-of-war (Hartshorne et al.,
2019), or we might simulate Alice pulling the rope and Bart drag-
ging along the ground in her direction; the latter is more sensitive
to physical properties of the players and the field. Moreover, as a
practical matter, one must marginalize out (“average over”) irrel-
evant parts of one’s world model (e.g., who Bart’s parents are and
what he plans to eat after the match). Determining what is relevant
is tricky and substantially affects inferences. Indeed, Bass, Smith,
Bonawitz, and Ullman (2021) show that some “cognitive illusions”
may be explained by biases in how relevance is determined.

Note that if the above approach is right, the categorical behav-
ior often taken as emblematic of LoTs is likely to be masked by
the probabilistic, graded natures of the grounding procedure
and the model of the world.

So far, we’ve followed the Fodorian atomic treatment of con-
stituents, but this is controversial. Linguists note that words
tend to have many distinct meanings: One can throw a book
(the physical object) or like a book (usually the content conveyed
by the book, not the physical object). One can beat Bart or the
bell, but in fundamentally different ways. There are many reasons
not to treat these different meanings as homophones (a single
word that refers to many unrelated concepts), one of the most
obvious being that you end up needing an enormous (potentially
unbounded) conceptual library. Perhaps we do, but linguists
have noted that there are systematic correspondences between
the various meanings, and that this can only be explained if
the symbols Fodor takes to be atomic in fact have structure that
contributes to meaning and governs their resulting conceptual
combination and composition (Jackendoff, 1990; Pustejovsky,
1995). These solutions can be debated, but the problems have
to be solved somehow.

Quilty-Dunn et al. provide a useful description of LoTs. Testing
LoT theories, however, requires looking beyond the LoT to how it is
used within a larger cognitive system. This, in almost all cases, will
involve complex trade-offs and interactions with graded, distribu-
ted, and analog systems of representation and processing.
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Abstract

In this commentary, I contend that a representative sample of
the arguments in the target article miss the mark. In particular,
the interface problem provides no warrant for positing similari-
ties between representational formats, and the evidence from
neurocognitive, animal, and behavioral studies is inconclusive
at best. Finally, I raise doubts about whether the authors’ central
hypothesis is falsifiable.

In this commentary, my aim is to develop four separate objections
to arguments in the target article. These concern (i) interfaces
between representational formats, (ii) how to interpret the P600
ERP signature, (iii) the relation between deep neural network
(DNN) models and innateness, and (iv) the significance of perfor-
mance measures in evaluating DNNs.

Let’s begin with what the authors call the “interface problem.”
They argue that “if cognition is largely LoT-like, and perception
feeds information to cognition, then we should expect at least
some elements of perception to be LoT-like, because the two sys-
tems need to interface” (target article, sect. 4, para. 2). This claim,
though common, is puzzling. If DNN models have demonstrated
anything, it’s that virtually any representational format can be
transformed into any other, given suitable training. Names can
be mapped to faces, spatial arrays to numerical quantities, letters
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into phonemes, intentions into motoric instructions, and so on.
Moreover, DNNs routinely do this in ways that appear not to
be sensitive to any syntactic properties of the interfacing represen-
tations (Arbib, 2003). This strongly suggests that two interfacing
systems need not have much, if anything, in common with one
another, regardless of whether either of them is language-of-
thought (LoT)-like.

If that’s correct, then it raises the larger question of what the
interface problem was ever supposed to be. The issue has been
heavily studied in the theory of action, but, tellingly, the promi-
nent solutions in this area often multiply the number of represen-
tational formats, introducing a new kind of demonstrative concept
(Butterfill & Sinigaglia, 2014) or a “motor schema” that mediates
between intentions and low-level motoric instructions
(Mylopoulos & Pacherie, 2017). As Christensen (2021) in effect
points out, the question of how such representations are mapped
into one another is not going to be answered by reference to their
representational format(s). The substantive questions are how
such mappings arise and what happens on the occasions when
they fail. Plausible answers to these questions will likely appeal
to learning, innate endowment, and low-level neurocognitive
mechanisms, but not to format.

Turn now to some of the neurocognitive evidence that the
authors marshal. They argue that “structured relations in
scene grammar display curious hallmarks of language-like
formats. For instance, the P600 ERP increases for syntactic viola-
tions in language, and also increases for stimuli that violate visual
scene ‘syntax’” (target article, sect. 4.2.2, para. 4). However, the
P600 has a variety of interpretations, and not all these fit neatly
with the authors’ reasoning. For instance, the P600 may be a
trigger for conscious reevaluation of a stimulus that has caused
processing issues, regardless of whether the underlying rep-
resentational system is LoT-like (Batterink & Neville, 2013; van
Gaal et al., 2014). More importantly, the P600 has been shown
to reflect incongruence or discordance in tonal music
(Featherstone, Morrison, Waterman, & MacGregor, 2013), dem-
onstrating that a representational format – in this case, that of
musical cognition – need not involve predication, logical opera-
tions, or automatic inferential promiscuity in order to induce a
P600 response.

The authors might reply that musical cognition is demonstra-
tively sensitive to recursive structure and that it exhibits filler-role
relations (Lerdahl & Jackendoff, 1983). The representational for-
mat involved is, thus, arguably LoT-like. But this response raises
the deeper question of what it would take to falsify their main
proposal. If musical cognition meets only half of the criteria
that they take to be indicative of an LoT-like format, does this
constitute a refutation of their hypothesis that such criteria natu-
rally cluster together? If not, then what would?

Let’s now consider issues in animal cognition. The authors
argue that the paucity of relevant input to a newborn chick’s visual
system prior to an experiment “points away from DNN-based
explanations of abstract object representations” (target article,
sect. 5.1, para. 5). The idea seems to be that, if a representational
capacity is innate, rather than acquired through some type of
learning, then DNN models of this capacity are superfluous.
But this argument runs together two separate issues – LoT ver-
sus DNN, on the one hand, and learning versus innateness, on
the other. Although proponents of a DNN modeling do tend
to lean empiricist, this sociological fact can be misleading. In
actuality, fans of DNN-style representational formats need to
have no commitment whatsoever on the issue of innateness. It

could well be that a chick, or any other critter, inherits a “frozen”
pretrained DNN-style representational system as a part of its
genetic endowment. Presumably, in the real world, such a system
would have been “trained” into its innate structure over the
course of the creature’s evolutionary past – a process akin to
selecting a particularly successful DNN out of several and then
using it as a “seed” for training a new cohort of variants.

Before closing, let me draw attention to the authors’ use of per-
formance data in evaluating deep convolutional neural network
(DCNN) models. On the one hand, they argue that “divergence
between DCNN and human performance echoes independent
evidence that DCNNs fail to encode human-like transformation-
invariant object representations” (target article, sect. 5.1, para.
6). On the other, they are steadfastly committed to a compe-
tence/performance distinction, which renders the evidence that
they cite questionable. As Firestone (2020) points out, perfor-
mance measures are often unreliable guides in assessing the psy-
chological plausibility of a DCNN, whether in vision or in any
other domain. In psycholinguistics, performance has long ceased
to be a reliable sign of human competence (Pereplyotchik, 2017),
and computational linguists disagree about what performance
measures to use (e.g., Sellam et al., 2022), even in DCNNs that
make no claim to psychological plausibility. Thus, in order to
make their case for the inadequacy of DCNN models – again,
in vision or any other domain – the authors would need to cite
evidence that evaluates the competence of such models. How to
do this is, at present, far from a settled matter, so the performance
measures they rely on are almost certain to be equivocal.

In summary, a representative sample of the arguments in the
target article simply fail. The interface problem provides no war-
rant for positing similarities between representational formats,
and the evidence from neurocognitive, animal, and behavioral
studies is inconclusive at best. It is, moreover, unclear whether
the authors’ central hypothesis is falsifiable.
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Abstract

This commentary seeks to supplement the case Quilty-Dunn
et al. make for the psychological reality of languages-of-thought
(LoTs) in two ways. First, it focuses on the reduced physical
demands which LoT architectures often make compared to alter-
native architectures. Second, it embeds LoT research within a
broader framework that can be leveraged to understand the evo-
lution of LoTs.

Quilty-Dunn et al. adduce evidence for the psychological reality of
languages-of-thought (LoTs) from a wide range of empirical
domains. Their case inherits support from each domain, while
depending on none. This is a powerful way to make such a
case. Their article is, moreover, timely. It is a most welcome anti-
dote to the steady rise in antirepresentationalist sentiment in
many philosophy of cognitive science circles in recent years.
Overarching theories of cognition that eschew any role for compu-
tational procedures applied to structured symbols are not serious
contenders unless and until they adequately account for detailed
empirical information of the sort discussed by Quilty-Dunn et al.

So, my impression of their article is strongly positive. Here, my
aim is to supplement their case in two ways. First, by drawing
attention to a distinct empirical rationale for LoTs. And second,
by situating LoT research within a broader framework that prom-
ises to shed light on the evolution of LoTs.

LoT-based architectures often make much reduced physical
demands compared to alternative architectures. Symbols are con-
structed in a combinatorial fashion, and their sequence properties
play a role in individuating symbols. This allows for efficient rep-
resentation. Additionally, the meaning of a (complex) symbol is a
function of that symbol’s parts, together with their mode of com-
position. Symbols, to some extent, analytically deconstruct their
referents. Such symbols allow for the use of compact computa-
tional procedures (as opposed to, say, lookup tables). Together,
these principles can reduce the demand on physical resources
(e.g., neurons) by orders of magnitude.

These points have been most forcefully argued by Gallistel and
colleagues (Gallistel, 1990, 2008; Gallistel & King, 2011), often
with examples drawn from animal cognition. A good case is the
caching behavior of western scrub jays. These birds are estimated
to encode the location of thousands of caches (Clayton & Krebs,
1995). Moreover, for each location, they encode what was cached,
when it was cached, and whether they were watched while caching
it (their caches are often pilfered) (Clayton, Yu, & Dickinson,
2001). Additionally, they make flexible use of this information
(e.g., to retrieve cached items in an efficient way) (Clayton

et al., 2001). Arguably, scrub jays could not physically realize
the requisite symbols and computations except by instantiating
an LoT. And even if they could, an LoT architecture might still
have been selectively favored for its increased economy. Brain tis-
sue is expensive, after all.

But how might such symbol systems evolve in the first place?
Progress on this question can be made by using the “sender–
receiver framework.” This framework is inspired by the signaling
games first presented by David Lewis (1969). At their simplest, a
signaling game features a sender who can observe the variable
state of the world and send a signal (but cannot act), and a
receiver who can observe the signal (but not the world), and
act. Acts have consequences for both sender and receiver, and
both have preferences regarding which act should be done
when. Lewis showed that, given certain conditions (e.g., rational-
ity, common interest, common knowledge), informative signaling
can arise and stabilize. Decades later, these games were revisited
by Skyrms who showed how Lewis’s constraints could be signifi-
cantly relaxed (Skyrms, 1995, 2004, 2010). Indeed, Skyrms
showed how even completely mindless agents can evolve informa-
tive signaling under many conditions.

Skyrms’s generalization of the Lewis model allows us to apply
that model within organisms, not just between them (Godfrey-
Smith, 2014; Planer, 2019; Planer & Godfrey-Smith, 2021). Two
cognitive mechanisms (or one and the same cognitive mechanism
at different times) can serve as sender and receiver in a Lewis–
Skyrms-style setup. And this allows us to see (with the aid of
the theory and results that have grown up around signaling
games in recent decades) how signaling systems, including rather
complex ones, can arise and stabilize in brains over phylogenetic
and ontogenetic timeframes. This includes systems that are plau-
sibly conceived of as LoTs (Planer, 2019).

Using the sender–receiver framework, Planer and Godfrey-
Smith (2021) present a taxonomy of signs displaying different
forms of structure (Table 1). Unfortunately, there is not scope
here to go through the details of this taxonomy. Suffice it to say
that the taxonomy is structured by two tripartite distinctions
among signs, namely, atomic-composite-combinatorial, and
nominal-organized-encoding, which are envisaged as plausible,
incremental evolutionary pathways. On this taxonomy, an LoT
is a sign system (used in cognition) that is simultaneously combi-
natorial and encoding. As a combinatorial sign system, it contains
signs that are constructed out of other signs belonging to the sys-
tem (and hence, there is sharing of parts across signs), and more-
over, the order of the parts of a sign matters to how the sign
functions in communication and/or computation. And as an
encoding sign system, there is a systematic principle (or set of
such principles) that assigns meaning to complex signs based
not only on the identity of their parts, but also on where those
parts occur in the sign (and so, particular locations within a com-
plex sign have meaning). It is combinatoriality that allows for
maximally efficient representation and encoding principles that
allow for the use of compact, efficient algorithms. These proper-
ties are very close to those Quilty-Dunn et al. call “discrete con-
stituency” and “role-filler independence” (while “predicate–
argument structure” [target article, sect. 2, para. 9] can be under-
stood as a special case of encoding).

A final methodological point. The sender–receiver framework
is closely associated with a family of formal signaling models. And
although the orientation to sign use that the framework fosters is
not inherently formal (Planer & Godfrey-Smith, 2021), these
models are very useful. For they make testing ideas about the

60 Commentary/Quilty‐Dunn et al.: The best game in town

https://doi.org/10.1017/S0140525X22002849 Published online by Cambridge University Press

https://orcid.org/0000-0003-2947-6574
mailto:rplaner@uow.edu.au
https://scholars.uow.edu.au/display/ronald_planer
https://scholars.uow.edu.au/display/ronald_planer
https://doi.org/10.1017/S0140525X22002849


emergence of various forms of structure tractable. Research on the
evolution of LoTs can no doubt benefit from these formal tools.
Most obviously, signaling models might be used to investigate
whether and under what conditions Quilty-Dunn et al.’s six
core properties indeed cluster (or form subclusters).
Additionally, such models might be used to test the idea that
LoTs evolve at interfaces between other systems, as interface sys-
tems can be naturally modeled as intermediaries in so-called sig-
naling chains.
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Abstract

Quilty-Dunn et al. maintain that language-of-thought hypothe-
sis (LoTH) is the best game in town. We counter that LoTH is
merely one source of models – always wrong, sometimes useful.
Their reasons for liking LoTH are compatible with the view that
LoTH provides a sometimes pragmatically useful level of
abstraction over processes and mechanisms that fail to fully
live up to LoT requirements.

Quilty-Dunn et al. ask the question “What is the format of
thought?” (target article, sect. 1, para. 1). Their answer is that it
is language-like. Despite the title of their paper, and their conten-
tion in the introduction that “LoTH is the best game in town”
(italics in original; target article, sect. 1, para. 6), Quilty-Dunn
et al. don’t explicitly argue for this superlative conclusion except
with respect to one study of human concept learning, discussed
in section 3. Rather, they show how to interpret various studies
of human and animal cognition as involving representational for-
mats that have (most of) the sixfold homeostatic property cluster
they use to characterize language-of-thought (LoT). We concede
that models using LoT-formatted representations may be very
useful, not just for human concept learning but also for the capac-
ities of nonhuman animals and some artificial systems. But the
claim that language-of-thought hypothesis (LoTH) is the best
game in town requires a more substantial defense than
Quilty-Dunn et al. provide, including more specificity about the
hypothesis itself and an answer to the question “Best for what?”

We should all grant that some human cognitive processes
operate over and with natural language representations. After
all, we internalize the culturally acquired structures of language,
logic, and mathematics, and regiment our thinking accordingly.
We can explicitly think thoughts in linguistic form, so some pro-
cesses must represent and operate on language-like structures,
including discrete constituents, logical operations, predicate–
argument structure, and so on. Certainly, models that involve

language-like representations can reproduce psychological data;
this is especially so when the tasks are posed in language and
engage rules of inference that exploit predicate–argument structure,
and so on, in execution. Because LoTH is itself modeled on charac-
teristics of natural language, these processes will a fortiori be well
modeled by LoTH. However, Quilty-Dunn et al. make a more
sweeping claim: They argue that the utility of LoT is pervasive
and the best way to model thought even in nonlinguistic creatures.
Here, too, we note that if you describe your tasks and results in
language-like ways, you may find models that incorporate language-
like elements natural to turn to. We contend that the utility of LoTH
for abstractly characterized cognitive processes does not entail that
LoTH is the best way to model these processes in more detail, or
even at the same level of abstraction, unless what counts as an
LoT is so attenuated as to be nearly universally applicable.

To the extent that their examples suggest that LoTH is the best
game in town, it is because their homeostatic property cluster view
of LoT allows them to embrace most representational formats,
including many never before conceived of as examples of the
LoT. For instance, they argue that object files possess at least five
of the six features of LoT representations, and they use this to sup-
port their claim that the LoT format is a better fit to object files
than Carey’s iconic account. But if this is so, then the same
seems to hold for the feature maps in Triesman’s (1998) attentional
model, and LoTH seems to have been weakened almost to the point
of vacuity. In Triesman’s model, a spotlight of attention potentiates
processing in cognate spatial regions of disparate feature maps. This
model is not particularly language-like: It is not generative, not
serial, not recursive, and does not have discrete word-like tokens.
However, the feature binding can be seen as implementing predi-
cate–argument structure (“these features collocated in this spatial
location”), the maps represent discrete features with abstract con-
tent like color and shape that can be reused in different bindings,
providing a kind of role-filler independence that allows the system
to bind the same features to different objects and different features
to the same object. However, if map-like models are also LoT mod-
els, then the hypothesis fails to differentiate between cognitively
very different kinds of solutions – it is too general to do much
work. And if map-like models are not instances of the LoT, then
Quilty-Dunn et al. have failed to argue that their LoT-based account
of object files is superior to one based on icons or maps.

The above discussion highlights the need for clearer statements
about if and when the six properties characteristic of LoT are
instantiated. As the example of object files shows, their approach
is to give an LoT-inspired interpretive dance after the theory is
already on offer. However, terms such as “discrete” and “inferen-
tially promiscuous” (target article, sect. 3, para. 6) are too vague to
guide cognitive scientists in constructing theories that make test-
able predictions about behavior and neural mechanisms in
humans and other animals. This does not entail that they are use-
less for picking out a class of models, but class membership then
is largely in the eye of the beholder. Moreover, Quilty-Dunn et al.
miss two important points from the philosophy-of-science of
modeling. One is that the formal expression of a model has fea-
tures that should not be attributed to the target system
(Andrews, 2021; Beer, in prep.). The other is that models serve
particular scientists’ purposes more or less well. We think it salu-
tary to recall Box’s maxim that “all models are wrong, but some
are useful” (Box, 1976). All models are approximations to the
phenomena they model, and different models highlight different
aspects of those phenomena. For example, Bayesian models
involve computations over probabilities assigned to propositions
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or sets of propositions, in terms of priors on hypotheses and state-
ments of evidence. Those models explicitly calculate posteriors
using discrete elements and logical operators. Quilty-Dunn et al.
cite these as another instance of the successes of LoTH.
However, few, if any, think that our brains explicitly represent
Bayes theorem or calculate the posteriors by crunching numbers
(except when forced to in math classes, etc.). Rather, Bayes theo-
rem is thought to be an analytical optimal representation that is
only approximated by brain mechanisms that work according to
different principles. If one is interested in how the brain computes
Bayes-like posteriors, LoT may not be helpful at all. Thus
although LoT may be a useful model for some phenomena for
some applications, it will not be for others. It is certainly not
the only game in town, nor is it always the best.
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Abstract

The target article focuses on evidence from nonlinguistic facul-
ties to defend the claim that cognition generally traffics in lan-
guage-of-thought (LoT)-type representations. This focus
creates needed space to discuss the mounting accumulation of
nonclassical evidence for LoT, but it also misses relevant work
in linguistics that directly offers a perspective on specific hypoth-
eses about candidate LoT representations.

Quilty-Dunn et al. defend the claim that, roughly, mentation gen-
erally traffics in language-of-thought (LoT)-type structures.
Classically, such evidence has been drawn from considerations
of human language understanding. If that were the best (or
indeed only) evidence for the claim, though, it would be relatively
easy for an LoT skeptic to dismiss it. Quilty-Dunn et al. therefore
focus on evidence from nonlinguistic domains, where signs of
language-like representations are all the more striking. Although
the ease of connecting the dots between natural language and
LoT-type structures makes the study of linguistic cognition a

poor choice for arguing that minds generally implement some
sort of LoT-type representations, we submit that it also makes
human language a particularly fruitful domain for formulating
and defending specific hypotheses about candidate LoT represen-
tations. And indeed, Quilty-Dunn et al. say little about this
beyond the useful identification of general properties of LoTs;
nor do they say specifically how “logicality” should be understood
in the context of potentially significantly modular minds. In this
note, we introduce into this discussion a recent strand of theoret-
ical and experimental work on (broadly) logical expressions in
linguistic semantics that directly bears on these matters.

First, let us suppose along with Quilty-Dunn et al. that believ-
ing something consists, at least in part, of entertaining a particular
LoT representation (Field, 1978). Then, a natural way to explain
the finding that, for example, “[t]elling participants… they will
see a pairing of a group with pictures of pleasant (or unpleasant)
things is much more effective at fixing implicit attitudes than
repeatedly pairing the group and the pleasant/unpleasant things”
(target article, sect. 6.2, para. 5), is to suppose that the outputs of
(specifically linguistic) language comprehension simply are LoT
expressions (e.g., Hunter & Wellwood, 2023; Wellwood, 2020).
On the contrary, the pathway from associationistic learning epi-
sodes to such representations is rather less direct. Indeed, this
view on adult linguistic understanding pairs well with views
about language acquisition that presuppose human beings come
equipped with a shared conceptual system; on such views, learn-
ing the meanings of words involves solving a mapping problem
rather than a concept acquisition problem (Gleitman, 1990).

Second, if beliefs in the relevant sense are syntactically structured
objects, then the relevant theories should say something about their
structure. We understand this to be a question in the spirit of the
distinction between the computational- versus algorithmic-level
(Marr, 1982). Quilty-Dunn et al. cite work implementing probabi-
listic languages-of-thought (PLoTs) which is taken to “provide[]
defeasible evidence that some approximation of the computational
elements of the model are realized in human cognitive architecture,”
but, as they note, “further evidence is needed to establish” its
“algorithmic-level reality” (target article, sect. 3, note 4).

Recent research in “psychosemantics” explicitly aims to approach
these lower levels of abstraction – at least down to “Level 1.5”
(Peacocke, 1986). It begins by noting the possibility of specifying
boundlessly many truth-conditionally equivalent, but intensionally
distinct (Church, 1941) characterizations of the meaning of sentences
like Most of the Cs are Bs and There are more As than Bs with the
putatively logical itemsmost ormore, and asks which best correspond
to how people represent them. Specifically, given a formal character-
ization w of the meaning of sentence S, we can probe whether people
are biased to make use of the information explicitly called for in w.
For example, the two expressions “|C & B| > |C \ B|” and “|C &
B| > |C|− |C & B|” equally well capture the truth-conditions of
Most of the Cs are Bs, but the former calls for the cardinality of C
\ B (i.e., the Cs which are not Bs) while the latter calls for the cardi-
nality of C. Carefully manipulating which perceptual-cognitive infor-
mation is readily available in a task where subjects must evaluate the
truth of S, one can check the resulting fit between what people draw
on when evaluating S and what w calls for.

The most striking findings of this research are that English
speakers are indeed remarkably uniform in the information
they recruit to evaluate a sentence like Most As are Bs, and they
are pretty stubborn in those preferences even when other strate-
gies are readily available (Hackl, 2009), more accurate (Pietroski,
Lidz, Hunter, & Halberda, 2009), or more extensible (Lidz,
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Pietroski, Halberda, & Hunter, 2011). Furthermore, these findings
replicate for speakers evaluating translational equivalents in
Polish (Tomaszewicz, 2011), and they are systematically different
from those recruited for sentences with more under extensionally
equivalent circumstances (e.g., Knowlton et al., 2021).

Finally, Quilty-Dunn et al. cite evidence for logical reasoning
as evidence for LoT, but we are not told what it means for a
mind to “use logical operators” (target article, sect. 5.2, para. 1)
which are “generalizab[le] across content domains” (target article,
sect. 1, para. 7). For the latter, it must be that LoT (sub-)expres-
sions can interface with distinct and potentially modular systems,
but this raises the question of what ties together the various
domain-specific interpretations of a single LoT expression. To
concretize the problem, suppose that the end result of under-
standing There are more apples than bananas is the LoT expres-
sion “A > B” and that of There is more sand than mud is “S >
M.” Specifically, what’s required is a specification of (i) how the
single symbol “>” (Wellwood, 2019) can be interpreted by cogni-
tive systems operating both over domains representing pluralities
of objects and those representing stuff (Odic, Pietroski, Hunter,
Lidz, & Halberda, 2012; see Rips & Hespos, 2015), and (ii) the
logical relationships that an LoT expression enters into by virtue
of being built around this symbol in a certain way (e.g., via proof-
theoretic inference rules). We have suggested (Hunter &
Wellwood, 2023) that for a nonlinguistic system to interpret a
symbol such as “>” in the appropriate way is exactly for this inter-
pretation to abide by some algebraic laws that are, in effect, spec-
ified by some inference rules governing expressions built out of
“>.” For example, a rule licensing a logical inference from “A >
B” and “B > C” to “A > C” essentially specifies that, in each con-
tent domain where “>” has an interpretation, that interpretation
must correspond to a transitive binary relation.
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Abstract

Quilty-Dunn et al. argue that deep convolutional neural net-
works (DCNNs) optimized for image classification exemplify
structural disanalogies to human vision. A different kind of arti-
ficial vision – found in reinforcement-learning agents navigating
artificial three-dimensional environments – can be expected to
be more human-like. Recent work suggests that language-like
representations substantially improves these agents’ perfor-
mance, lending some indirect support to the language-of-
thought hypothesis (LoTH).

Image classifiers implemented with deep convolutional neural
networks (DCNNs) have been taken by many to tell against
language-of-thought (LoT) architectures. Quilty-Dunn et al.
argue that this is a mistake. These image classifiers exhibit deep
structural disanalogies to human vision, so, whether or not they
implement LoT architectures tells us little about human vision.
This is perhaps unsurprising, because biological vision is plausibly
not optimized solely for image classification (Bowers et al., 2022,
p. 10). Would training artificial vision under more ecologically
realistic conditions produce a more realistic model of human
vision? To make progress on this question, I describe some
reinforcement-learning (RL) agents trained to navigate artificial
three-dimensional environments on the basis of how things appear
from their perspective, and explain why we might expect their
vision to be more human-like. Interestingly, language-like represen-
tations seem to be especially helpful to these agents. They explore
more effectively, more quickly learn novel tasks, and are even facil-
itated in downstream image classification. These models arguably
provide some indirect evidence for the language-of-thought
hypothesis (LoTH) about human vision, and may offer some
clues as to why LoT architectures arose evolutionarily.

What is biological vision optimized for, and what would arti-
ficial vision that was similarly optimized be like? One answer to
the first question is that biological vision is optimized for an
agent’s success in their environment. Success requires a number
of competences that vision must contribute to simultaneously.
Agents need to effectively explore, learn new behaviors, and act
to achieve their goals, all while the environment changes in
often surprising ways.

Recent work in RL arguably more closely approximates the
optimization problem facing biological agents. Artificial RL
agents can learn to do many complex tasks, across a variety of
environments – most interestingly, in this context, exploring
and pursuing goals in artificial three-dimensional environments
like Habitat (Savva et al., 2019), Matterport3D (Chang et al.,
2017), Gibson Env (Xia et al., 2018), Franka Kitchen (Gupta
et al., 2019), VizDoom (Kempka et al., 2016), Playroom (Tam

64 Commentary/Quilty‐Dunn et al.: The best game in town

https://doi.org/10.1017/S0140525X22002849 Published online by Cambridge University Press

https://orcid.org/0000-0002-7121-0895
mailto:w.mason@wustl.edu
http://www.masonwestfall.com
http://www.masonwestfall.com
https://doi.org/10.1017/S0140525X22002849


et al., 2022), and City (Tam et al., 2022). One way of accomplish-
ing this – especially in environments where environmental reward
is sparse – is by making novelty intrinsically rewarding. These
“curious agents” can learn, without supervision, representations
that enable them to perform navigation tasks, interact with
objects, and also perform better than baseline in image recogni-
tion tasks (Du, Gan, & Isola, 2021). As the authors put it, their
agents are “learning a task-agnostic representation for different
downstream interactive tasks” (Du et al., 2021, p. 10409).

One challenge these researchers face is how to characterize
novelty. Superficial differences in viewing angle or pixel distribu-
tion can easily be rated as highly novel, leading to low-level explo-
ration that does not serve learning conducive to achieving goals. A
recent innovation is to equip RL agents with “prior knowledge, in
the form of abstractions derived from large vision-language mod-
els” (Tam et al., 2022, p. 2). Doing so enables the state space over
which novelty is defined to be characterized by abstract, semantic
categories, such that novelty is defined in task-relevant ways (Mu
et al., 2022). This method has been shown to substantially
improve performance across a variety of tasks and environments,
compared to nonlinguistic ways of characterizing the state space
(Mu et al., 2022; Schwartz et al., 2019; Tam et al., 2022). The
improvements are especially pronounced for tasks involving rela-
tions between objects, for example, “Put an OBJECT on a {bed,
tray}” (Tam et al., 2022, p. 2), reminiscent of work on relations
reviewed in the target article (Hafri & Firestone, 2021). As the
authors note, their training on vision–language representations
that encode “objects and relationship” instead of on ImageNet –
optimized for classification – should be expected to be more suc-
cessful (Tam et al., 2022, p. 10).

Why would linguistic categories facilitate performance? One
possibility is that language compresses the state space in ways
that facilitate successful actions. The semantic categories enshrined
in natural language tend to abstract from action-irrelevant varia-
tion, and respect action-relevant variation. So, visual processing
optimized relative to natural language categories is de facto opti-
mized for action-relevant distinctions. The LoT architecture charac-
teristic of object files and visual working memory seems well-suited
to serving this function (though LoT plausibly is importantly dif-
ferent from natural languages; Green, 2020; Mandelbaum et al.,
2022). Predicating abstract properties of individual objects in a
LoT is poised to guide action, because abstract semantic categories
often determine the action affordances available for some individ-
ual object, independent of nuisance variation associated with, for
example, viewing angle (though viewing angle is plausibly relevant
for more fine-grained control tasks; Parisi et al., 2022, p. 6). Such
abstract, task-agnostic representations are also able to transfer to
new tasks or environments, in which familiar kinds take on novel
relevance for action.

These recent innovations in RL arguably offer indirect support
for the LoTH as applied to humans. Of course, similar perfor-
mance can be achieved by distinct underlying competence, and
we should not exaggerate how similar even artificial RL agents’
performance actually is to humans at present. Nevertheless,
language-like structures appear especially helpful for artificial
agents when faced with rather more biologically plausible optimi-
zation problems than the one that faces image classifiers. Perhaps
an LoT served our ancestors similarly in an evolutionary context.
Language-like structures enabled creatures to encode abstract
properties in a task-agnostic way, which nevertheless facilitated
downstream performance on a wide variety of tasks, as the envi-
ronment changed. It’s not hard to imagine why evolution might
see to it that such a system stuck around.
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Abstract

Object individuation provides a test case for the claim that
infants already have a prelinguistic language-of-thought (LOT).
By 12 months, infants represent several sortal-kinds: Object,
agent, animate, and perhaps artifact. Infants have also encoun-
tered many words for object kinds, animals, people, and arti-
facts, therefore it remains a viable hypothesis that language
learning may play a causal role in the acquisition of sortal-
kinds, contra Quilty-Dunn et al.
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Quilty-Dunn et al. put forth a strong thesis: That language-of-
thought hypothesis (LOTH) is the “best game” in town as far as
a computational theory-of-mind is concerned. They marshal evi-
dence from object perception, deductive reasoning, and other
domains to support this claim. I am sympathetic to the view
that LOT continues to provide a philosophical and conceptual
foundation for modern cognitive science. In this commentary,
however, I submit, as I did in Xu (2019), that core knowledge sys-
tems in human infants do not satisfy the criteria for being in the
format of LOT. Here I focus on the domain of object, in particular
object individuation in human infants.

Inspired by an analysis of the logic of common nouns
(Macnamara, 1986; Wiggins, 1980), we reported a series of exper-
iments demonstrating that 10-month-old infants failed to use
sortal-kind distinctions (e.g., between a duck and a ball) to estab-
lish a representation of two objects in an occlusion event; by 12
months, they can do so (the “is-it-one-or-two” task; Xu &
Carey, 1996; see Xu, 1997, 2007, for reviews). We argued that it
is not until the end of the first year that infants represent
basic-level sortal-kinds such as duck, ball, spoon, and cup, and
learning a natural language – specifically words for these sortal-
kinds – may play a causal role in acquiring these concepts. A
lot has happened since then.

For the rest of our discussion, it is important to keep in mind
that three pieces of evidence are needed to claim that infants
represent sortal-kind concepts in an LOT format: (1) success
in using between-kind distinctions in object individuation, (2)
failure in using within-kind distinctions in object individuation
at the same age, and (3) evidence showing that infants detect the
perceptual distinctions between sequentially presented objects
over occlusion. In support of the claim that infants younger
than 12 months do not represent basic-level sortal-kinds, Xu
and Carey (1996) and Xu, Carey, and Quint (2004) presented
evidence for (1)–(3). Since then, many published studies have
used similar methods (the “is-it-one-or-two” task) to further
investigate the ontogenetic origin of sortal-kind concepts, focus-
ing on three other superordinate-level concepts: Agent, animate,
and artifact (see Croteau, Cheries, & Xu, forthcoming, for a
review). For the concept of an agent, Bonatti, Frot, Zangl, and
Mehler (2002) found that 10-month-old infants successfully
individuated a doll head from an inanimate object (a between-
kind distinction, agent vs. object), and a doll head from a dog
head, but they failed to individuate a doll head from another
doll head (a within-kind distinction). Recent studies by Bródy,
Oláh, Király, and Biro (2022), Taborda-Osorio, Lyons, and
Cheries (2019), and Taborda-Osorio and Cheries (2018) found
that 10-, 11-, or 13-month-old infants used preferences, social-
moral dispositions, and internal properties to individuate agents.
For the concept of animacy, Surian and Caldi (2010) found that
10-month-old infants successfully individuated an animate and
an inanimate object (a dynamic caterpillar and a stationary
cup; a between-kind distinction) but failed to individuate two
animates (a rabbit and a bee; a within-kind distinction).
Decarli, Franchin, Piazza, and Surian (2020) provided converg-
ing evidence, further disentangling the use of sortal-kind versus
featural information. Lastly, Futó, Téglás, Csibra, and Gergely
(2010) found that 10-month-old infants successfully individu-
ated an object with a function and another object with a differ-
ent function, although they did not demonstrate a difference in
individuation contrasting between-kind versus within-kind dis-
tinctions. The studies on agent, animacy, and artifact did not
present direct evidence that infants encoded the various relevant

perceptual feature differences, but given what we know about
infant perception in general, most would agree that not encoding
perceptual differences between objects was an unlikely explana-
tion for the failures in individuation tasks (though see Kibbe &
Leslie, 2019). It is also important to note that Wilcox,
Baillargeon, Lin, Stavans, and their colleagues have conducted
many related experiments over the years, with a strong focus
on investigating when infants use featural information in object
individuation and the relationship between object files and phys-
ical reasoning. Their studies have not aimed to probe the devel-
opment of sortal-kind concepts (e.g., Lin et al., 2021; Stavans,
Lin, Wu, & Baillargeon, 2019; Wilcox & Baillargeon, 1998). A
review of their studies and the various methodological differ-
ences between their methods and the “is-it-one-or-two” task is
beyond the scope of this commentary; however, these details
are important for interpreting this body of research.

The studies reviewed above support the view that toward the
end of the first year of life, infants represent sortal-kind concepts:
Object, agent, animate, and perhaps artifact. During the first year
of life, infants also hear many, many words that refer to
basic-level object kinds, people, animals, and artifact kinds.
Given the evidence on how words facilitate object categorization,
individuation, and inductive inference of nonobvious properties
(see Perszyk & Waxman, 2018; Xu, 2002, 2007; and others for
reviews), it remains a viable hypothesis that it is language learning
that changes the format of early representations into an LOT.

The core knowledge view (Spelke, 2022) also argues for several
other systems of early knowledge besides object. In particular, the
number sense presents another strong case that these prelinguistic
representations are incompatible with an LOT format. A rich
body of research suggests that prelinguistic representations of
number share very little with the conceptual representations
needed for learning number words. It is an open question
whether the prelinguistic representations of agents, places, or
social beings are in the format of an LOT.

I applaud Quilty-Dunn et al. for drawing our attention, once
again, to the significance of the LOTH. If core knowledge systems
are indeed not in the format of an LOT, as I have argued here,
cognitive scientists face a major challenge in understanding learn-
ing and development in many domains: How does language
learning change the format of prelinguistic representations, or
alternatively, how does language learning create new conceptual
representations that are in the format of an LOT?
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Abstract

The target article attempted to draw connections between broad
swaths of evidence by noticing a common thread: Abstract, sym-
bolic, compositional codes, that is, language-of-thoughts (LoTs).
Commentators raised concerns about the evidence and offered
fascinating extensions to areas we overlooked. Here we respond
and highlight the many specific empirical questions to be
answered in the next decade and beyond.

We are extremely grateful for the commentaries we have received
which further language-of-thought hypothesis (LoTH) in ways we
couldn’t delve into in the target article. Some of our commenta-
tors criticize the specifics of our proposal; others criticize the wis-
dom of the endeavor altogether; still others extend the theory in
novel and creative ways. We are moved by the time, effort, and
thought our 30 commentators put into these commentaries. A
proper response to these challenges and extensions would require
a book-length format. Here we try to address some of the deep,
important, and thorny issues our interlocutors brought up.

The commentaries clustered around a few main topics:
Development, object representations in perception, natural lan-
guage, and the theoretical foundations of LoTH. We begin, fit-
tingly, with development.

R1. LoT and development

The topic of development arose frequently, raised by Canudas-
Grabolosa, Martín-Salguero, & Bonatti (Canudas-Grabolosa
et al.); Carey; Cesana-Arlotti; Colombo; Demetriou; Hochmann;
Kibbe; Planer; and Xu. Many theories ask difficult, important ques-
tions about the specifics of developmental trajectory. For example
Carey, Hochmann, and to some extent Canudas-Grabolosa et al.
all have varying levels of skepticism about whether certain logical
concepts (e.g., OR) or modal concepts (e.g., POSSIBLE) are available
for preverbal infants. Before addressing the specifics, we want to
stress how healthy this debate is. Regardless of where one
comes down on any specific proposal, these criticisms highlight
a serious difference between our LoT and Fodor’s. For Fodor,
there was no role for developmental psychology; LoT was fixed
innately, and the substantive empirical questions were largely
restricted to facts about the timescale of developmental triggering.
By contrast, we make no claims about radical nativism (or trigger-
ing vs. availability at birth, for that matter). Although we are
inclined to share the Harvard nativist view (e.g., the views of
Spelke, Carey, and Xu) of core cognition, we need not agree
with Fodor that all lexeme-sized LoT representations are
unlearned.

As Kibbe points out, our LoTH framework allows us to ask
fine-grained questions about the developing child’s shifting repre-
sentational repertoire. We needn’t just ask “does the steady state
of adult conceptual mastery exceed the infant’s expressive
power?” Instead we can also ask which concepts are available pre-
linguistically, and which ones are acquired through a process of
Carey-style bootstrapping; we can discuss stage developments
without taking on a Piagetian framework, but while allowing
that the innate conceptual endowment needn’t be fixed; we can
in principle accommodate a full rational constructivist framework
(Xu, 2019). Moreover, because some core LoT properties are grad-
able (both individually and as subclusters), some might emerge
before others, or more quickly, and with nonmonotonic shiftsAll authors contributed equally; authorship is in reverse alphabetical order.
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in expressive power. Our framework therefore allows for distinct
LoTs not only across species and systems, but also across different
stages of development. As Canudas-Grabolosa et al. write, LoT is
“probably a genus, but, we would add, one whose actual species
are still barely known.” We agree. The project of uncovering spe-
cific LoTs and their expressive powers at various stages of devel-
opment and evolution is a challenging one. Perhaps negation and
disjunction are available prelinguistically, or perhaps they must be
acquired through word learning.

This is an exciting time for the study of logical reasoning in
infants and animals, and the commentaries on this topic demon-
strate how rapidly the field has evolved – including in the time
since we submitted our target article. Although we agree with
Carey that the debate on baby and animal logic is still open, we
are optimistic about the explanatory prospects of LoTH. Carey
proposes baboons and children between 17 months and 3 years
old sequentially simulate possibilities in three- and four-cup
tasks (Leahy, Huemer, Steele, Alderete, & Carey, 2022). This
would predict their roughly 50–50 responding, where mental-
logic accounts appeal to imperfect performance. However, near-
ceiling performance on such tasks can be found in other species
(Pepperberg, Gray, Cornero, Mody, & Carey, 2019), as can the
holding of multiple alternatives in mind at once on a task similar
to the two-cup task (Engelmann et al., 2021). The latter result is a
hurdle for sequential simulation, and the former suggests that
genuine disjunction is indeed possible without language.

Carey also notes two-cup task failures for 14- and 15-month
olds (Feiman, Mody, & Carey, 2022) and suggests that success
starts at the same time as negation acquisition in some languages:
17 months. But if success has something to do with natural-
language acquisition, it is curious that we should find a 50–50 pat-
tern of results in three-cup tasks for children as old as three, well
after even English learners have started producing linguistic nega-
tion. Why not near-ceiling performance? There are limits to log-
ical reasoning even here (performance constraints or a preference
for suboptimal strategies), and they could be masking competence
in younger toddlers and infants. Relatedly, why might negation
acquisition induce simulation? The 50–50 responding and nega-
tion production both emerge at around 17 months, but if there
is an inference to be drawn here, it is that linguistic negation
should improve logical reasoning, not that it primes sequential
simulation. Why acquiring linguistic negation would improve
one’s powers of simulation is unclear.

One might wonder whether 50–50 responding is because of a
response bias to pick a container from either side half the time.
However, Leahy et al. (2022) report that 3-year olds who are
asked to “throw away” one of the containers in a three-cup task
picked from the pair 81% of the time. There might be other
response biases at play here, however. Humans like symmetry
and dislike lopsidedness, and a 3-year old might prefer not to
throw away the lone container, instead throwing away one of
the containers in the pair, thus leaving one container on each
side. One way to substantiate this explanation would be to do a
pure throw-away task: For example, with one candy on the left
and two candies on the right, does a 3-year old pick a candy to
throw away randomly, or is there a preference to throw away
one from the pair? If so, that would suggest a response bias can
explain the Leahy et al. results.

Recent evidence suggests that easing performance constraints
can eliminate 50–50 responding in 3-year olds in otherwise sim-
ilar tasks. Alderete and Xu (2023) developed a task involving
transparent gumball machines, one of which might produce the

desired gumball and the other of which must. This task places
much lighter demands on working memory, and does not require
the arguably demanding feat of quantifying over trajectories of
balls through Y-shaped tubes as in other recent studies.
Alderete and Xu found that 3-year olds select the correct gumball
machine roughly 90% of the time. We think these results tenta-
tively support optimism about performance-error-based explana-
tions of earlier findings regarding disjunction (specifically,
problems with working-memory-demanding tasks, including
tracking hidden locations and anticipating trajectories, and
response biases).

Other tasks (Cesana-Arlotti et al., 2018; Cesana-Arlotti,
Kovács, & Téglás, 2020) yield higher success rates, even in
12-month olds. As Cesana-Arlotti notes in his commentary,
these results, and in particular the pupil dilation results, are diffi-
cult to accommodate with simulation. Carey instead appeals to 1–
1 mapping of object files to percepts. Because adults show the
same pupillometric profile as 12-month olds in such studies,
her interpretation suggests adults, like infants, resolve this prob-
lem with 1–1 mapping. This is an area for future research that
can help us distinguish between 1–1 mapping and logical expla-
nations of these results. Because adults can perform disjunctive
syllogism (DS) in Cesana-Arlotti et al.’s task, the 1–1 mapping
explanation opens up the intriguing possibility that multiple
redundant reasoning processes are carried out by adults.
Independent evidence regarding the cognitive mechanism behind
the pupillary dilation and eye movements can help shed light on
whether 12-month olds are indeed performing DS.

Even in adults, as Lupyan points out, “rule-based reasoning is
far more difficult than it should be if such logical operators actu-
ally underlie much of our perception and reasoning.” This is an
important point that allows us to clarify our view. We agree, of
course, that people make systematic errors in reasoning. We
have seen ourselves how difficult it can be to teach symbolic
logic to undergraduates. But we think the cognitive architecture
of belief, rather than its format, explains many deviations from
norms of reasoning (Mandelbaum, 2019). Unsurprisingly, the
architecture we favor can operate over representations in an
LoT (Porot & Mandelbaum, 2020, 2022; Quilty-Dunn &
Mandelbaum, 2018). We do not assume that logical operators
of LoTs are just like those of formal or even natural languages;
in fact, we agree with Canudas-Grabolosa et al.,
Cesana-Arlotti, and Wellwood & Hunter, who argue they differ
(see also Mandelbaum et al., 2022; Porot, 2019).

Xu pushes back on our defense of LoT-like effects in the use of
object files for physical reasoning in infancy, including research
grounded in her landmark work on this topic (especially Xu &
Carey, 1996). Xu’s commentary makes valuable points about the
methodological issues, especially concerning differences in the
evidence for abstract representation of a special class of superor-
dinate kinds (e.g., object vs. agent; for related philosophical work,
see Murez & Smortchkova, 2014; Westfall, forthcoming) and
ordinary basic-level categories like knife and marker. We are
grateful for these points.

We grant that the evidence is not decisive about abstract rep-
resentation of basic-level categories before 12 months, and that
careful attention to experimental details is required to make pro-
gress on this issue. We add two points here. The first concerns the
relevance of the Stavans and Baillargeon (2018), Stavans, Lin, Wu,
and Baillargeon (2019), and Lin et al. (2021) results. Children’s
failures to use basic-level categories for object individuation before
12 months might be because of a performance error. Appeals to
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performance errors are unhelpful without specifying the relevant
performance constraints and the experimental paradigms that
might overcome them. We suggest that the aforementioned results
implicate “catastrophic individuation failures” (Lin et al., 2022),
wherein featural and categorical information encoded in the
object file system fail to be used in physical reasoning, resulting
in disagreement between the two systems about the number of
occluded objects and thus no coherent expectation on the infant’s
part. This account predicts that priming relevant information –
including surface features like color or the function of a basic-level
artifact category like knife or marker – helps the object file system
to make the relevant information accessible to physical reasoning.
There is considerable independent evidence from vision science
that the object file system makes some encoded properties avail-
able for use in object individuation and not others, and that draw-
ing attention to a feature increases the likelihood that it is made
available (see Quilty-Dunn & Green, 2023). We agree that further
work along the lines Xu describes is needed to show decisively
that appropriate priming can allow infants to use abstract
basic-level categories for object individuation.

Our second point concerns the Nc event-related potential
(ERP) used by Pomiechowska and Gliga (2021). In their experi-
ment 2, 12-month-old infants were unfamiliar with labels for a
group of basic-level categories (e.g., feather, guitar), as confirmed
by their parents and by their insensitivity to the category in exper-
iment 1. Infants in the experimental condition saw multiple
instances of two categories sorted by category without a linguistic
category label, and those in the control condition were shown the
category instances without category-relevant training. They found
that “[i]nfants who learned nonverbal categories prior to the EEG
task displayed sensitivity to across-category but not to within-
category object changes” (Pomiechowska & Gliga, 2021, p. 9).
This result offers hope that infants represent abstract basic-level
categorical information in object files. Questions for future
research include: How early can these ERP results be observed?
What, if any, role do the representations in this experiment play
in the Xu and Carey’s (1996) “is-it-one-or-two” task? Would sim-
ilar nonverbal category training enable success on that task before
12 months? These questions are experimentally tractable, and we
are excited to see the trajectory of developmental research on the
format of object representations in the years to come.

R2. Object representations

Many commentators focused on our discussion of object file rep-
resentations, which was just one component of our discussion of
LoT in perception. Some directly rejected our claims (Block;
Lupyan; Xu), some worried that the argument overextends
(Attah & Machery; Cheng; Roskies & Allen), and some saw
opportunity for testable claims about development (Carey;
Kibbe; Xu), which we discuss in section 1 of the target article.
We are thankful to have such a rich interdisciplinary discussion
on the representational format of this core posit of contemporary
cognitive science in these commentaries.

Block worries that the object file representations that can be
maintained in visual working memory (VWM) are distinct repre-
sentations with distinct formats from object representations used
in online vision. He cites evidence that perception relies on iconic
representations of objects, while VWM involves a distinct
LoT-like form of object representation. There is a background dis-
pute here regarding the border between perception and cognition,
which Block (2023) argues is because of format. Two of us

(Mandelbaum, 2018; Quilty-Dunn, 2020c) argue that format can-
not explain the perception–cognition border because there are
non-iconic, conceptual, LoT representations in vision. For our
purposes, we could concede the “border” issue and limit ourselves
to the claim that visual cognition involves LoT-like object files. In
fact, however, we think the evidence suggests that the same object
files that can be held in VWM are genuinely visual – they under-
write clearly visual phenomena like apparent motion (Odic, Roth,
& Flombaum, 2012), multiple-object tracking (Haladjian &
Pylyshyn, 2008), and much more (see Green, 2023, for an over-
view and reply to Block’s apparent motion case). It is possible
that some “object-like” phenomena in vision (e.g., some gestalt
phenomena, figure-ground segregation) might involve iconic rep-
resentations of regions of space and their interaction with atten-
tion guided by full-blown object files. We are grateful to Block
for years of discussion on the structure of perception and look
forward to continuing this conversation, hopefully with more
and more relevant experimental evidence.

Cheng argues that the case for LoT structures in tactile percep-
tion is “at least as good as the object file” case, but that this “gen-
erates a potential worry” that our notion of LoTH is too weak.
However, we don’t agree that Cheng’s commentary provides con-
vincing evidence for any of our six LoT properties in tactile per-
ception, nor that this evidence is as strong as the case we provide
for LoT structures in object perception. We appreciate the oppor-
tunity to demonstrate the rather demanding constraints on posit-
ing LoT structures that our six core properties entail.

His argument for discrete constituents in tactile representa-
tions is that touch involves “multiple tactile stimuli, each of
them exists independent of one another.” This is not evidence
for discrete constituents, however. To support the presence of dis-
crete constituents, there would need to be evidence (i) that repre-
sentations of these stimuli are composed into a complex structure
of which they are constituents, and (ii) that the representations
remain discrete while being composed (to rule out, e.g., holistic
feature composition, tensor products, and other nondiscrete
forms of composition). The mere presence of representations of
different stimuli that exist independently does not meet these con-
straints. Compare: One might have a mental map of Brooklyn and
a mental map of St. Louis, which exist independently of each
other, but that fact by itself does not entail the presence of discrete
constituents (cf. Camp, 2018). Similarly, the fact that tactile stim-
uli “exhibit different properties at different times” does not dem-
onstrate that they exhibit predicate–argument structure, with a
representation of a predicate and a distinct representation of an
argument that predicate applies to. And the fact that geometrical
properties like lines and triangles are represented in touch does
not show that their encoding abstracts away from low-level tactile
details, which would be needed to infer abstract conceptual con-
tent. We are optimistic that there might be evidence for these LoT
properties in tactile perception, but the mere presence of multiple
stimuli that can change properties and represent geometrical
shapes is insufficient for establishing that fact.

Similarly, Roskies & Allen argue that object files are among
the examples “never before conceived of as examples of the
LoT” and that our defense of LoT models of object files entails
that feature maps as understood in Treisman’s feature integration
theory are also LoT structures, and thus that “LoTH seems to have
been weakened almost to the point of vacuity.” As a historical
point, we note that the claim that researchers in the area have
never conceived of the idea that object files might be LoT repre-
sentations is inaccurate. Carey (2011, p. 116) and Xu (2019) have
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conceived of the idea enough to argue explicitly against it, and
Pylyshyn (2009) and Cavanagh (2021) have argued in favor of
it. Furthermore, feature maps in Treisman’s theory (which should
be distinguished from current-day theories of visual attention,
such as Guided Search 6.0; Wolfe, 2021) do not appear to satisfy
any of our six LoT properties. Roskies & Allen say that feature
maps represent “discrete features” but cite no evidence that the
features are represented discretely (rather than, say, via analog
magnitude representations; Clarke, 2022); indeed they mention
that a feature map “does not have discrete word-like tokens.” As
pointed out in response to Cheng above, the mere presence of
two separate representations (e.g., two feature maps) does not
provide evidence of discrete constituents. They also assert that
feature maps encode “abstract content” but their examples are
“color and shape.” As we understand the abstract conceptual con-
tent property of LoTs, modality-specific formats representing spe-
cific colors and shapes, as feature maps do, are paradigmatic cases
of representations that lack abstract conceptual content.

Roskies & Allen appear to conflate feature maps, which repre-
sent individual features and not their conjunctions, with the out-
puts of the feature integration operation. This distinction is
important, because for Treisman the outputs of feature integra-
tion are the very object file representations at issue (Kahneman,
Treisman, & Gibbs, 1992). For example, Roskies & Allen write
that “the feature binding can be seen as implementing predi-
cate–argument structure” (emphasis added) and that feature
maps provide “a kind of role-filler independence that allows the
system to bind the same features to different objects and different
features to the same object.” The mere presence of a feature bind-
ing operation does not require (i) that the output (i.e., the repre-
sentation of the feature conjunction) represents the features via
discrete constituents rather than holistically; (ii) that the features
are predicates applied to an explicitly represented argument rather
than in an icon that lacks a discrete constituent that stands for an
individual property-bearer; or (iii) that the features obey role-filler
independence rather than other forms of composition (e.g., the
sort instantiated by deep convolutional neural networks
[DCNNs] that encode feature conjunctions; Taylor & Xu, 2021).
All of these are nontrivial empirical claims. Indeed, some forms
of feature binding in the visual system seem to be iconic and pos-
sess none of these LoT-like properties (Quilty-Dunn,
forthcoming).

The distinction between the initial detection of separate fea-
tures (e.g., feature maps) and the way features are represented
in the output of a binding operation (e.g., object files) is also rel-
evant to the critique from Attah & Machery. They argue that our
six LoT properties are vaguely defined (to a certain extent, we
agree; see sect. R5) and that they are “too readily discoverable
in cognition.” Their example pertains to role-filler independence
and binding features to objects: “even the swapping of visual fea-
tures to objects (e.g., misattributing the color of one object to
another) counts as a demonstration of role-filler independence.”

This description is not quite right. One might have parallel sys-
tems for detecting individual features (as in Treisman & Gelade,
1980) and then a binding operation that constructs representa-
tions of objects and their features without role-filler independence
(e.g., because conjoined features are represented in a final holistic
map without discrete constituents for each feature). This system
could generate illusory conjunctions (Treisman & Schmidt,
1982), where a blue square and red circle are misperceived as a
blue circle and red square because of errors in the binding oper-
ation, without role-filler independence. The evidence we discuss

in our perception section, crucially, concerns how features are
represented after being encoded in object files; that is, after the
compositional operation of binding is completed. Without illu-
sory conjunctions in the initial encoding of feature conjunctions,
individual features (including not only color and shape but also
more abstract properties like the openness or closedness of a
book) are represented discretely enough that they can be swapped
from one item to another in VWM. Thus the object file represen-
tation must compose various features while allowing that these
representations can easily be separated from one another and
swapped to different objects. This kind of format is a nontrivial
instance of role-filler independence.

This evidence could have turned out differently. Object files
could have encoded feature conjunctions without preserving dis-
crete representations of features that incur their own individual
memory costs, as was originally thought to be the case in research
on object-based VWM storage (Luck & Vogel, 1997). It could
have turned out that feature representations, once encoded into
object files, tend to degrade together in VWM rather than
feature-by-feature, as an LoT model predicts – and so on for
the other properties of object file representations detailed in the
target article. If the evidence had differed in these ways, then
there would be no support for LoT models of object files.

Despite our disagreements, we thank Cheng, Roskies & Allen,
and Attah & Machery for raising these objections. The specific
examples of tactile perception, feature maps, and illusory con-
junctions allow us to illustrate in detail how our defense of LoT
structures in the object file system does not trivially apply to
these other cases.

R3. LoTH and natural language

Our target article focuses on sources of evidence for LoTH other
than natural language. But natural language is of course deeply
linked to the LoTH and the relation is not merely evidential.
Many of the commentaries discuss promising avenues of research
on LoT and natural language.

Canudas-Grabolosa et al. claim that “rather than regarding
[natural languages] as the origin of logical abilities in thought,
one could look at their semantics as crystalized repositories of
thought primitives.” We very much agree, and much could be
done to better understand both the process by which this “crystal-
lization” occurs and the precise lessons it offers for the structure
of individual LoTs. But as Cesana-Arlotti and Wellwood &
Hunter point out, natural language cannot be taken as a simple
blueprint for mental syntax. LoTs of particular cognitive systems
and (especially) those of nonhuman LoTs might differ syntacti-
cally from any known natural or formal languages. Similarly, per-
haps some syntactic features of natural language differ from those
of prelinguistic LoT(s), and as Dupre suggests, such structures
might scaffold human-specific cognitive abilities. Xu argues that
this scaffolding from natural language might extend to LoT struc-
tures in core cognition, including object file representations
(though see sect. R1 for our reply). Until we know more about
the syntactic features and representational primitives of actual
LoTs, we cannot know very much for sure how close or far
they are from natural language.

These are the very early beginnings of an expansive research
program that seems to open as many questions as it settles. For
example, a programmatic approach to understanding the syntactic
and representational primitives of thought would allow us to type
cognitive systems, stages of development, and even minds

70 Response/Quilty‐Dunn et al.: The best game in town

https://doi.org/10.1017/S0140525X22002849 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22002849


themselves (across species) with remarkable fineness of grain.
This in turn would raise new questions about the origins of
each of those LoTs. Fishes can have the same fin shape despite
sharing no ancestor that has it, because there are only a few
good ways to swim when one has a spine. Similarly, perhaps cer-
tain syntactic features, such as predicate–argument structure or
logical connectives, are the products of convergent evolution, hav-
ing reemerged repeatedly because of their usefulness to biological
organisms faced with similar constraints and problems to solve.
Relatedly, if there are very many possible LoTs, how many are
not worth considering when testing between alternatives? In
this regard, principles of natural and formal languages can be a
useful (if imperfect) starting point for understanding the funda-
mental properties of an LoT.

We agree with Oved, Krishnaswamy, Pustejovsky, &
Hartshorne (Oved et al.) that eventually LoT will need to be
understood as a single element among a broader system in
which it is embedded. In particular, questions that Fodor thought
of as exotica – for example, how LoTs interact with images, analog
magnitudes, motor intentions (Mylopoulos, Pacherie, &
Shepherd, MS; Shepherd, 2019), and various formats useful for
reasoning, categorization, and interacting with the world – will
have to be reckoned with. We think a major area for research
in the coming years will be how different formats interact and
coexist, such as dual codes in perception (Quilty-Dunn, 2020c).
However, we hesitate to endorse all of Oved et al.’s recommenda-
tions. Although we can agree that concepts like CAT are “tied to
recognition procedures,” we doubt that constituents of an LoT
sentence are “reified abstractions” over these recognition proce-
dures or distributions of worldly features.1 Instead, we suspect
LoT concepts are genuine atoms of thought, not composed of fea-
tures; we distinguish between concepts and the features that trig-
ger their deployment, as Fodor did (Fodor, 1998). This is an
in-house dispute, however; LoTH itself is compatible with the
more pragmatist approach adopted by Oved et al. as well as the
antipragmatist view we are drawn to.

Oved et al. also raise the problem of polysemy, that is, the flex-
ibility of reference observed in many ordinary words, such as
“bottle” in “Mary drank the bottle” and “Mary smashed the bot-
tle” (Pustejovsky, 1995, is a locus classicus; see also Vicente, 2018).
Fodor dismissed polysemy as either nonexistent or an uninterest-
ing instance of homonymy, as when “bank” can refer to a finan-
cial institution or land alongside a river (Fodor & Lepore, 1998).
Our defense of LoTH in the target article is officially neutral on
this issue, but in fact we take the issue seriously. Unlike homon-
ymy, polysemy allows for flexibility in anaphoric reference
(“Parched and belligerent, Mary drank the bottle and then
smashed it”) and copredication (“Lunch was delicious and infor-
mative”) (Murphy, 2021). Unlike homonymy, forms of so-called
“regular” (i.e., systematic and rule-governed) polysemy – like,
for example, using a word for a container or its contents as in
“bottle,” or for an animal and the meat from that animal as in
“chicken,” or for an aperture and the object that fills it as in “win-
dow” – show up robustly across languages (Srinivasan &
Rabagliati, 2015).

So what do we say about an LoT concept like BOTTLE? One
option, as Oved et al. note, is to insist that each referent has a dis-
tinct LoT concept, and therefore to allow one word in the think-
er’s lexicon to address many concepts (Carston, 2012; Pietroski,
2018). Another option is to drop Fodor’s referentialist require-
ment on LoT symbols, and allow one concept BOTTLE to func-
tion as a pointer to a memory location where diverse bodies of

information can be retrieved to resolve polysemy inherent in
the concept itself (Quilty-Dunn, 2021). Yet another option posits
large nonatomic concepts, pieces of which can be deployed on dif-
ferent occasions (Ortega-Andrés & Vicente, 2019) – though this
option perhaps plays least well with LoTH. We take the issue of
polysemy and LoT concepts to be largely open and amenable to
empirical investigation. As with many questions about the way
trains of thought unfold, the answer likely lies in the interaction
of many representational formats, organized in nontrivial ways
by LoTs.

Much discussion of natural language in the commentaries pre-
supposed that some LoTs might predate it, including in animals.
Kaufmann & Newen sum up our target article by saying that we
propose LoTH can “explain all animal cognition” and that we
“suggest understanding all communication and reasoning
through language-like structures in a wide sense, to justify compo-
sitionality.” They point to orangutan long calls, which can be
explained with non-LoT representations. As we say in the target
article, however, we did not intend to suggest that LoT is the
“only game in town,” nor did we make any claims about commu-
nication, in orangutans or any other creature (including humans);
indeed we explicitly denied that all cognition in human or nonhu-
man animals is explicable through LoT-like formats. Instead, we
pointed to evidence for LoTs in many corners of the animal king-
dom, focusing on specific experimental paradigms and cognitive
domains such as cup tasks and physical reasoning. Because
Kaufmann & Newen did not discuss these paradigms or domains,
we are left wondering which aspects of our application of LoTH to
nonhuman animals they find implausible. In any case, there is a
rich research program ahead exploring how LoTs and other for-
mats divide the mind’s labor, including in nonhuman animals.

Antony points to applications of LoT to person-level phenom-
ena involving beliefs and other propositional attitudes. We whole-
heartedly agree. Although our aim was to focus on explanatory
successes of LoTH in areas more remote from explicit thought,
we think some of the strongest evidence for LoTH remains its
utility in explaining the structure of belief. We also concur
that dispositionalism and antirepresentationalism about belief
struggle to explain familiar phenomena like opacity (why we
can believe that p under one description but not another) and
the enormous conceptual gap between belief and behavior (how
the belief that p can cause us to engage in incompatible behaviors
depending on the other attitudes we use in inference). In other
projects, all three of us have argued for a full-throated representa-
tionalism about belief (Mandelbaum, 2014, 2016; Porot &
Mandelbaum, 2020; Quilty-Dunn & Mandelbaum, 2018). We
are thankful to Antony for bringing these classic issues to the
fore, and we are optimistic that LoTH will continue to prove use-
ful in solving problems from the structure of bee cognition up to
Frege’s puzzle.

Antony’s comments on belief can be extended to implicit
cognition, which we did in section 6 of the target article. We
just here note that applying LoT and belief to the study of implicit
attitudes has been an enormously fruitful paradigm, as can be
seen by the groundbreaking work of Benedek Kurdi and De
Houwer. We note this as it’s easy to take for granted how quickly
the study of implicit attitudes has changed. Ten years ago, associ-
ationism for understanding attitudes still reigned. As Madva
implies, our view has now mostly become the accepted backdrop
in the experimental implicit bias literature. The recent history of
implicit attitude research thus exemplifies the serious power of
LoTH.
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R4. What is LoTH committed to?

De Houwer suggests that the six properties we describe may
reduce to a single feature, relations. Merely encoding relational
contents is largely format-neutral – just as a smoke detector can
encode propositions about the presence of smoke, an unstruc-
tured symbol like a lantern could, if embedded in the right sort
of system, encode a proposition with relational content like
<The British are approaching the shore of Massachusetts>. Of
course we don’t think this is what De Houwer has in mind by
“relational content.” De Houwer’s pathbreaking work provides
some of the strongest reasons for detecting LoT representations
in implicit attitudes and “associative” learning (Mitchell, De
Houwer, & Lovibond, 2009), and it’s this sort of explicit represen-
tation of relations that implicates LoT structure. But we suspect
that spelling out the notion of explicit relational content (beyond
the mere representation of a relation) will require appealing to
independently specified LoT properties – for example, predi-
cate–argument structure (explicitly represented relations require
multiple argument places) and role-filler independence (represent-
ing the same relations across distinct relata and vice versa). Thus we
are skeptical that relational content is a more fundamental feature
of LoT representations than those we specify or can play a role in
grounding these other LoT properties that seem to us more funda-
mental. The hypothesis that relational contents qua multiplace
predicates might constitute an important developmental and/or
evolutionary advance in LoTs is an intriguing one, however, and
we are grateful to De Houwer for raising the issue here.

Some commentators worried about the inference from
LoT-like models to LoT-like structures in the mind. Griffiths,
Kumar, & McCoy object that we “cross levels of analysis,” and
take LoT models at the Marrian computational level to support
LoT structures at the Marrian algorithmic level (see also
Roskies & Allen). They point out that deep neural networks
(DNNs) can capture the inductive biases of Bayesian models
without LoT structures. We agree that the successes of Bayesian
models do not entail that the underlying mental representations
share formal properties with the models. However, we draw no
such inference in the target article. We do discuss computational
models, but we do this (i) to point out that some computational
models exploit LoT programs, and this undermines claims that
the rise of DNN computational models has not made symbolic
LoT approaches obsolete, and (ii) to note that the evidence that
reaction time and error rates in encoding and searching for geo-
metrical shapes tracks minimal description length in the probabi-
listic language-of-thought (PLoT), suggesting that the underlying
algorithm implements this specific formal property (viz., descrip-
tion length; Sablé-Meyer, Ellis, Tenenbaum, & Dehaene, 2021a).
We don’t take the modeling evidence to be decisive – instead,
we use hundreds of experimental results to draw explanatory
inferences about algorithmic-level representational structure.
Therefore, although we grant the general point about the loose-
ness between model and reality, we believe the target article
takes pains to get at the underlying mental structures themselves.

McGrath, Russin, Pavlick, & Feiman (McGrath et al.) raise
an important concern about the relationship between our six
LoT properties and the LoT format itself. They are correct that
we were unclear in our target article about whether these core
properties are criterial or diagnostic of a deeper single cause.
Our unclarity on this issue was not accidental – we are indeed
unsure about the right answer. We have wondered whether LoT
properties cluster together merely because that is what it is to

be a language (in a general, cognitively relevant sense). In other
moods, we have been drawn to views where these properties clus-
ter because they all subserve efficiency in domain-general reason-
ing, and perhaps are even necessary for domain-general
computational systems2; we have also, in dark moods, been
drawn to the idea that recursion is the true core of LoTH.
However, in the end we just don’t know what we think. Our work-
ing hypothesis has been that these properties are diagnostic rather
than standard and there is a deeper reason why they cluster across
systems and species.

We borrow the notion of homeostatic property clusters from
philosophy-of-science, where it has been argued that instances
of genuine natural kinds often3 share a common mechanism
that explains the clustering of properties (Boyd, 1999; Craver,
2009). Perhaps, then, there is a mechanism underlying LoT
phenomena (e.g., the still basically unknown formal or “syntac-
tic” properties of LoTs), and these underlying mechanisms
explain why the properties mentioned in our target article
clump together. Nonetheless, facts like this are what you end
up with at the end of inquiry, not the beginning. Without
deciding between these views at the outset, we think the correct
methodology is to search for a deeper fact that yokes these
properties together. This is a big tent project and one that
needs theorists from across the cognitive science spectrum. If
it turns out that some of the properties we characterize are fea-
tures of underlying cognitive mechanisms (e.g., discrete con-
stituents) and others are emergent phenomena that these
mechanisms produce (e.g., inferential promiscuity) then the
target article will have missed out on key metaphysical facts
about LoTs and the phenomena they generate. Some such pos-
sibility seems extremely likely to us. If our target article has
outlined a strictly false but empirically useful characterization
of an important kind of cognitive mechanism (a common
way that science stumbles forward; Colaço, 2022), we would
still consider that a success.

We agree with McGrath et al. that this is one of the most
pressing questions at the core of the new iteration of LoTH that
we offer. However, as they point out, the fate of LoTH as a viable
hypothesis does not hang on the answer. It could be that the stan-
dard approach is best, and nonclassical architectures like DNNs
could implement LoTs without underlying computational mech-
anisms that look especially symbolic. It could also be true that
domain-general computation requires the cluster of LoT proper-
ties, such that any process that wanted to reach true formal com-
putational power would have to end up with these properties one
way or the other. If, on the contrary, there is some deeper mech-
anistic fact that causes LoT properties to cluster, a DNN could
potentially instantiate them while lacking the underlying compu-
tational mechanism and thus be LoT-like, but not an instance of
the same natural kind. Whether it is most fruitful to interpret
LoTH as characterizing the underlying mechanism or the cluster
of properties that can be produced by very distinct mechanisms is
an open empirical question, and not one we need to answer in
advance of using LoTH as a guiding hypothesis in cognitive
science.

Chalmers’s response marshals a similar distinction: Although
we have argued for LoT representations, he argues, we are non-
committal about the possibility of subsymbolic computation.
On our version of LoTH, it is possible that “computational prim-
itives (units) are not representational primitives.”

Whether or not there is subsymbolic computation in biological
cognition, there is also computation over LoT symbols. This
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would be true even if, as he claims, “the quasi-symbolic operations
of composition, decomposition, and quasi-logical inference may
be available, but they are a tiny subset of the operations one
can perform on the relevant distributed representations.” One
reason why this is true is simply because compositional
operations are ipso facto computations. At least four of the
six features we describe concern the way LoT representations
combine in thought to yield new representations. This is a form
of computation. In this sense evidence for these features just is
evidence for LoT-based computation, whether or not such com-
putations can be implemented at the subsymbolic level, and
whether or not subsymbolic computation also implements
non-LoT operations.

Furthermore, a good deal of the evidence we cite concerns not
merely compositional LoT sentences, but the use of those LoT
sentences in cognition in real time. For example, the evidence sur-
veyed in section 6 of the target article suggests that the logical
form of LoT sentences is computed over automatically in
system-1 reasoning; the evidence in section 4 of the target article
suggests that the predicate–argument structure of LoT sentences
is computed over when tracking objects; the evidence in section
5 of the target article suggests that physical reasoning computes
over abstract content represented symbolically in LoT sentences
and even logical representation of disjunction. All this evidence
suggests that LoT sentences are not simply represented in the
mind, but rather are used in computational processes that unfold
across time. That is, pace Aronowitz, our evidence does not solely
concern LoT representations “in stasis,” but rather illustrates that
LoT representations are held in memory stores like VWM and fig-
ure in dynamical cognitive processes. And as Antony points out,
LoTs are perfectly suited to make sense of reasoning at the per-
sonal level, bridging folk conceptions of mentality with a scientific
one. We thank these commentators for their commentaries which
allow us to foreground questions about the computational aspects
of thought, which we agree is one of the most pressing issues in
cognitive science.

It should not be surprising that the evidence for LoT structure
tends to be evidence for LoT-sensitive computations – what good
is an LoT if you can’t use it while thinking?

R5. Is LoTH generative?

R5.1. Vacuity

Several commentators have objected that our view is too slippery
or vacuous to make for a good model of cognition (e.g.,
Pereplyotchik). Attah & Machery, for example, object that our
pluralism about format undermines our defense of LoTH:
Other formats could be doing the work that we attribute to
LoTs, in particular in cases where we find evidence for only
part of the property cluster. Logical space is full of possible repre-
sentational formats, some of which are LoTs, others are not, and
some are borderline and hard to categorize one way or the other.
Some subset of these possible formats is instantiated in the minds
of living creatures. Whether other, non-LoT representational for-
mats explain the evidence we leverage from across different
branches of cognitive science is an interesting empirical question,
but one that could only be answered with careful attention to spe-
cific data. In particular, one would need to specify in detail the
relevant features of the alternative formats for each case – formats
that lack many of the six features we describe – and then provide
evidence that they are doing the explanatory work, and not an

LoT. For now, we have made our proposal for how to explain
this large amount of data, and we invite other researchers to
show how and why they think LoTs do not offer the best expla-
nation for specific cases.

Roskies & Allen raise a related objection: That our six proper-
ties are liberal to the point of vacuity – an “interpretative dance
after the theory is already on offer” – because they allow for
Treisman feature maps to be LoTs. We think feature maps are a
prime example of a format that is not an LoT (see sect. 2 of the
target article). But another reply to the criticism that our view
is vacuous is simply to point to the robust empirical research pro-
gram currently underway as detailed by the commentators who
are carrying it out, to which we return now.

R5.2. Extensions

Jerry Fodor took his 1975 book to be merely collecting and cod-
ifying platitudes he saw in the research of cognitive scientists
around him. And although we have distanced ourselves from cer-
tain features of his view, we very much share the idea that there
has been something in the air already that we are simply tuning
in to.

Yet as many of the commentaries have demonstrated, gather-
ing broad commonalities may be helpful to cognitive scientists.
One way they can be helpful is if the framework we sketch for
identifying LoTs is extendable to cognitive systems where it has
not yet been applied. For example, Mahr & Schacter fascinatingly
use the features we describe to argue that episodic memory and
imagination display LoT features, whereas Cheng explores the
possibility of an LoT for touch.

Another way the framework can be helpful is through the cre-
ation or refinement of research programs. Kibbe’s commentary,
for example, highlights the way our characterization of LoTH
can be amenable to development research, despite the common
assumption that they can’t, by helping developmentalists build
testable hypotheses. In the same vein, Demetriou explores the
possibility of a specific “Developmental LoT” and offers a hypoth-
esis about how system-specific LoTs might develop over time.
Grüning details methodological principles for studying LoT in
social cognition in naturalistic settings. Planer offers an alluring,
promising strategy for future work on the evolutionary origins of
various LoTs using the sender–receiver framework.4 In vision,
Hafri, Green, & Firestone (Hafri et al.) build on their seminal
work on compositionality in vision, laying out a research program
on a “‘psychophysics’ of compositional processes.” And Westfall
looks at ways that LoT representations are at the front lines of arti-
ficial models of vision, complementing the cases we make for
visual LoT and against DCNNs as models of biological vision.
All of these views represent exciting areas for research we had
not considered. We are deeply impressed by these commentators’
ingenuity.

Other areas for development include the theoretical founda-
tions of LoTH, and we think two especially productive examples
of this are the commentaries by De Houwer and Antony. De
Houwer offers an alternative picture of the fundamental structures
at play in LoTs (relations), whereas Antony complements our
abductive case for LoT with an appeal to the explanatory need
for LoTs to account for individual psychology.

These commentaries embody exactly what we had hoped
would come of our target article: Clearly defined LoT-based
research programs across the cognitive sciences, each developing
in their own directions with proprietary debates and in some
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cases, experimental details. We are extremely grateful for their
commentators’ contributions and excited to see how these pro-
grams develop in the coming years.

R6. Conclusion

A potted narrative of the history of cognitive science tells us that
behaviorism died because Chomsky’s review of Verbal Behavior
killed it. But Skinner kept on doing what he was doing long after-
ward. We think it wasn’t Chomsky’s review, nor Festinger’s work
on cognitive dissonance (even though Festinger & Carlsmith,
1959, derive the exact opposite prediction from reinforcement
theory), Milgram’s on obedience, Miller’s and Sperling’s on mem-
ory, or any other specific findings/arguments. Arguments against
views aren’t generally why theoretical approaches fade away; it’s
usually that the theories decay when they no longer generate
interesting questions. For example, Miller’s work on memory
caught the eye of a young woman who was wondering whether
to work in biology, having moved on from anthropology. It
wasn’t the inconsistent and implausible features of behaviorism,
but the fact that Miller’s framework allowed her to ask specific,
engaging, tractable questions about memory that drew her to
study the mind. In this way, a generational talent turned to cog-
nitivism, and because of that we get fast mapping, the theory–the-
ory of concepts, bootstrapping approaches to concept acquisition,
and the single most important force in the advance of develop-
mental psychology (Carey, 2022). The trajectory of Carey is, we
submit, not much different than that of the typical researcher –
people are drawn to interesting questions that allow for some
measure of progress, and shy away from recalcitrant theories
that continue to spin their wheels.

A central role for theorists in cognitive science is to look at
broad swaths of seemingly unrelated evidence and see if there is
a thread tying those disparate research areas together. The target
article attempted to do so by investigating areas where LoT would
seem least likely, and offered six characteristics for an LoT that
seemed to be mostly satisfied in all of these areas. A bigger picture
emerged, on which the mind isn’t an unstructured soup; rather it
traffics in a certain format of thought and computation allowing
for a common amodal code to subserve rational thought in
areas that seemed less complex. We see the LoT offered here as
an advance on the original theory, illustrating how our theories
often under-intellectualize everyday cognition: Behind even the
most seemingly reflexive, low-level areas of the mind lies a pow-
erful, mechanistically rational computational engine.

Some theories are provocative, some productive. It is the rare
theory that is both. What we aimed to do is show that LoTH is
not only not dead, in fact it’s currently one of the most fruitful
theoretical frameworks in cognitive science. Nothing illustrates
this point more than the inspiring commentaries we received –
De Houwer, Demetriou, Dupre, Hafri et al., Kibbe, Mahr &
Schacter, Planer, Wellwood & Hunter, and Westfall all show
innovative new avenues to further the LoTH. There is no better
evidence that LoT is the best game in town than looking at the
incredible work that is being done in its name. Even people
who disagree with us, such as Carey, Hochmann, McGrath
et al., and Xu, do so in a way that forwards the empirical useful-
ness of the framework. We are grateful for their insights too. We
may not be right in every detail; more importantly, by providing
detailed theorizing we allow both our proponents and opponents
places to do better research, and further insights into the working
of the mind.

Notes

1. Nor do we agree that propositional contents should be thought of as worlds
where these recognition procedures are successful. If the thought ALICE
BEATS BART AT TUG-OF-WAR has a propositional content, it should
turn out to be true in any world where Alice beats Bart at tug-of-war, even
if it happens to be very foggy. What matters is that there was a tug-of-war
game, Alice won, and Bart lost – because the recognition procedures can fail
in all sorts of ways (Bart looks weird that day; it’s dark out; etc.) while the
proposition remains true, the two must be sharply distinguished. We relegated
this point to an endnote because we’re not sure if Oved et al. actually meant to
suggest that “the proposition picks out the set of possible worlds where all
those recognitions would happen.”
2. Thanks to Nick Shea for suggesting this possibility.
3. We note that Boyd allows for some properties in the distinctive cluster to
“favor the presence of the others” (1999, p. 143) without explanation via
underlying mechanism. McGrath et al.’s complaint that some of our proper-
ties favor the presence of others (e.g., predicate–argument structure and dis-
crete constituents) may therefore fail to undermine the claim that the cluster
constitutes a natural kind.
4. In the vein of efficient symbolic coding, as Planer mentions Gallistel’s
work, we should also mention a stunning paper by Akhlaghpour (2022) dem-
onstrating the potential of RNA to function as the neurobiological basis of
such coding.
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