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We present a class of finite mixture multilevel multidimensional ordinal IRT models for large scale
cross-cultural research. Our model is proposed for confirmatory research settings. Our prior for item pa-
rameters is a mixture distribution to accommodate situations where different groups of countries have
different measurement operations, while countries within these groups are still allowed to be heteroge-
neous. A simulation study is conducted that shows that all parameters can be recovered. We also apply the
model to real data on the two components of affective subjective well-being: positive affect and negative
affect. The psychometric behavior of these two scales is studied in 28 countries across four continents.
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1. Introduction

During the past decades, cross-cultural research has become increasingly popular in the
social sciences. Social-science researchers increasingly feel the need to test the generalizabil-
ity and boundary conditions of their theories in other cultural contexts than where they were
originally developed (typically the US) (e.g., Diener, Diener, & Diener, 1995; McCrae & Ter-
racciano, 2005). Cross-cultural research allows development of contingency theories in which
institutional, cultural, and socioeconomic factors moderate key relationships in the theoretical
models (Steenkamp, 2005; Van de Vijver & Leung, 1997). The increasing availability of large
datasets also contributes to the popularity of this kind of research.

The received wisdom in cross-cultural research is that valid cross-national comparisons re-
quire that the relationship between observed scores and scores on the underlying latent construct
be invariant or equivalent across countries (Meredith, 1993). According to Millsap and Kwok
(2004, p. 93), an instrument fulfills measurement invariance across populations “when individu-
als who are identical on the construct being measured, but who are from different populations,
have the same probability of achieving any given score on the test.” If an instrument lacks cross-
cultural measurement invariance, score differences on the instrument can be due to either real dif-
ferences on the underlying construct, and/or differential test functioning. Thus, without evidence
on measurement invariance, the validity of cross-cultural comparisons is at best ambiguous, if
not outright erroneous (Millsap, 1995, 1997, 2008).

Consequently, methods to assess cross-cultural invariance of measurement instruments have
attracted considerable attention in psychology and other social sciences. Researchers have relied
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on both item response theory (IRT) and confirmatory factor analysis with continuous items (CFA)
to investigate measurement equivalence/differential item functioning (Meade & Lautenschlager,
2004; Raju, Laffitte, & Byrne, 2002; Reise, Widaman, & Pugh, 1993; Stark, Chernyshenko,
& Drasgow, 2006; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000; Zumbo &
Bruno, 2007). In recent years, multigroup IRT models have become increasingly popular. These
methods have several advantages over CFA techniques for continuous items; the most important
being that these models account for the noncontinuous and nonnormal nature of commonly-used
rating scales (De Jong, Steenkamp, & Fox, 2007; Lubke & Muthén, 2004; Millsap & Yun-Tein,
2003).

However, there are certain limitations that hamper the widespread use of IRT models in large
scale studies of measurement equivalence. First, the dominant approach to test for measurement
equivalence becomes infeasible with an increasing number of groups since it is required that at
least one item is invariant across countries (May, 2006; Raju et al., 2002). Second, most of the
studies on measurement equivalence have focused on unidimensional constructs (e.g., see Stark
et al., 2006, p. 1, 293), while psychologists are often interested in multidimensional constructs.
Finally, there might be (sub)groups of countries that have similar measurement operations which
cannot be easily addressed using existing specifications.

In this article, we present a class of finite mixture multilevel multidimensional IRT models
that address this problem. The models are useful if social scientists want to examine and compare
associations among constructs and have data for many countries.

In the remainder of the article, we first review the multigroup IRT model. Subsequently, the
new models are proposed, and a simulation shows that the model parameters can be recovered.
Then we turn to the empirical application and end with a discussion.

2. Multigroup IRT Models for Ordinal Data

2.1. Fixed-Effects IRT Models for Ordinal Data1

Unidimensional Models. The most frequently considered multigroup IRT model is based
on the graded response model, developed by Samejima (1969). The probit version of the multi-
group model for a unidimensional measurement instrument is given by the following formula:

P(Xijk = c) = Φ(akj θij − γkj,c−1) − Φ(akj θij − γkj,c) (1)

In this equation, Xijk is the observed response to item k (k = 1, . . . ,K) of respondent i in
group j (j = 1, . . . , J ), c denotes the category of the response scale (c = 1, . . . ,C), and akj and
γkj are the discrimination and threshold parameters, which are item and country-specific, and
θij is the unobserved latent score. Equation (1) is also known as the category response function,
since it gives the probability of responding a certain category as a function of the latent variable.
Absence of DIF is present when akj = akl for all items k and for all countries j, l (j, l = 1, . . . , J )

and when γkj,c = γkl,c for all response categories c, all items k and for all countries j, l (j, l =
1, . . . , J ). DIF is present when these conditions do not hold. The effect of DIF is that respondents
from different countries have a different probability of a particular observed response conditional
on their latent trait.

To identify the multigroup IRT model, at least one “anchor” item should not display DIF
across groups, but researchers obviously prefer a larger set of anchor items for stable inferences.
For unidimensional models, a rule of thumb is that at least 20% of the items should not display

1We use the term “fixed effects” loosely to describe models where group coefficients are treated as fixed instead of
random values, which is often done if the number of groups is relatively small.
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DIF, although it should be recognized that not much is known about the effect that the number
of anchor items has on inferences.

Several approaches have been suggested to test for measurement invariance within the IRT
framework, including Lord’s (1980) chi-square, measures by Raju (1990), Mantel–Haenszel tests
(Zwick & Thayer, 1996), and the likelihood-ratio framework (Thissen, Steinberg, & Wainer,
1988). The likelihood-ratio test appears to be the most widely used invariance test (Cohen, Kim,
& Wollack, 1996). Researchers would start with a baseline model where item parameters are
estimated freely in each group. More and more restrictions are successively imposed and the
likelihood ratio test is used to assess whether the restrictions do not deteriorate model fit signifi-
cantly. In testing, a Bonferroni correction should be used to control for Type I errors (Stark et al.,
2006).

Multidimensional Models. Analysis of measurement invariance has largely focused on uni-
dimensional scales. As noted by Stark et al. (2006, p. 1, 293): “Also, factor correlations or covari-
ances are rarely examined in the context of IRT measurement equivalence studies, in part because
they would require complex multidimensional IRT models, which are still in the early stages of
development.” Nevertheless, several multigroup multidimensional IRT models have been pro-
posed in the literature. Longford (1993) presents a model for multiple constructs, but imposes
invariance without testing for it. The model of Millsap and Yun-Tein (2003) handles multiple
latent constructs, and outlines the conditions necessary for measurement invariance. Their model
requires very large sample sizes, which may limit their application in cross-cultural settings
given the huge costs of international data collection. Similarly, Song and Lee (2004) recently in-
corporated multiple constructs in a Bayesian SEM framework, but do not provide measurement
invariance tests and the model is difficult to apply in large-scale research.

2.2. Random-Effects IRT Models for Ordinal Data

When the number of groups increases, the fixed-effects approach to test for measurement
equivalence becomes infeasible. Researchers have developed random-effects multilevel ordinal
IRT models (Fox, 2005; Goldstein, Bonnet, & Rocher, 2007; Rabe-Hesketh, Skrondal, & Pickles,
2004; Rijmen, Tuerlinckx, De Boeck & Kuppens, 2003). However, these models assume that
all items are invariant across groups. This assumption is increasingly tenuous as the number of
countries increases (De Jong, Steenkamp, & Fox, 2007), which results in the following quandary.
One needs a substantial number of groups to arrive at stable structural parameter estimates, but
the larger the number of groups, the less tenable the assumption of anchor-item invariance will
be.

Recently, De Jong et al. (2007) proposed that instead of investigating the presence of DIF be-
fore comparing countries on the latent scale, a better approach is to formally model DIF already
in the model development stage. Building on work that allows thresholds to vary across respon-
dents (Johnson, 2003; King, Salomon, & Tandon, 2003, Wolfe & Firth, 2002), their multilevel
IRT model addresses the quandary by stipulating random-effects structures for discrimination
parameters and thresholds. However, their model is not without limitations either. First, it can
only accommodate unidimensional scales, while social science researchers are often substan-
tively interested in correlations between latent constructs (Stark et al., 2006). Second, it does not
examine model fit. Third, their model imposes a restrictive prior, which might obscure the DIF
effect.2 De Jong and colleagues assume that all countries belong to the same metagroup. When
this assumption is not correct, the model may lead to biased results and priors should have the
flexibility to accommodate situations where different groups of countries have different measure-
ment operations, while countries within these groups are still allowed to be heterogeneous. In the
next section, we develop a model that meets these requirements.

2We gratefully acknowledge an anonymous reviewer for this insight.
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3. Models

3.1. Outline of the Models

There are M correlated constructs, each of which being measured by its own set of items.
Items measuring constructs m and M are stored in the (Km × 1) and (KM × 1) vectors Xm

and XM . The set of items for construct m is denoted by Ωm. We assume that the researcher
has a priori knowledge about the composition of Ωm, i.e., the researcher starts with theoretical
knowledge about which items measure which latent constructs. Thus, our model is confirmatory,
which is in line with the large majority of multigroup IRT and CFA models (Raju et al., 2002).
See Hoijtink, Rooks, and Wilmink (1999) for models developed for exploratory settings.

The measurement model which governs the relationship between the observed and latent
scores is assumed to be an ordinal IRT model. We allow for random variation in the item para-
meters and covariances among the latent constructs across countries. For the multidimensional
case with M latent variables, a probit version of a graded response model is

P
(
Xijk = c|θ ij ,akj , γkj

) = Φ

(
M∑

m=1

akjmθijm − γkj,c−1

)

− Φ

(
M∑

m=1

akjmθijm − γkj,c

)

(2)

where the M latent variable scores of person i in group j are stacked in the vector θ ij .
Since we are modeling the data in a confirmatory framework, an independent clusters struc-

ture is stipulated for the matrix Aj of discrimination parameters in group j , so that

Aj =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

a1j1 0 . . . 0
...

...
. . .

...

aK1j1 0 · · · 0
0 a(K1+1)j2 · · · 0
...

...
. . .

...

0 a(K1+K2)j2 · · · 0

0 0
. . . 0

...
... · · · a(K−KM+1)jM

...
...

. . .
...

0 0 · · · aKjM

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

(3)

The specification implies that each item only “loads” onto a single construct. Consistent with
our confirmatory focus, we assume configural invariance. Configural invariance requires that the
IRT models in the different countries all share the same number of latent variables, and the same
locations of free and constrained parameters (Jöreskog, 1969). In exploratory research contexts,
a full matrix (i.e., no zeros in (3)), subject to identification restrictions can be imposed (Béguin
& Glas, 2001; Mellenbergh, 1994).

We need to link the groups (countries) in model (2) in order to establish a common metric
for the scales of the latent constructs. For that purpose, previous authors have proposed the use
of anchor items (Raju et al., 2002). However, using anchor items to establish a common scale
metric has two serious limitations. First, it has been acknowledged that finding an appropriate
anchor item is difficult, if not (nearly) impossible (Stark et al., 2006). For a 5-point scale, we
already require the equivalence of 5 parameters (one discrimination parameter, and 4 threshold
parameters) across all the groups in the sample. Second, if it is not already difficult enough to
find a single anchor item, researchers usually require multiple items to display measurement
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equivalence in order to obtain stable inferences—20% being a rule of thumb in this context.
While invariance of one or more items might be attainable (although by no means assured) when
the number of groups is two or three, this becomes increasingly difficult to achieve when the
number of groups increases.

The use of anchor items can be avoided by linking the parameters across groups in a hierar-
chical way (see also De Boeck, 2008 who discusses anchoring strategies). This requires that the
separate matrix elements in the matrix Aj be drawn from a common distribution with parameters
that depend on the row of the matrix (i.e., the item) and the column (i.e., the construct). One way
to accommodate this is to impose a common prior similar to De Jong et al. (2007):

γkj,c ∼ N
(
γk,c, σ

2
γ,m(k)

)
, c = 1, . . . ,C, γkj,1 ≤ · · · ≤ γkj,C−1, ∀k, (4)

akjm ∼ N
(
akm,σ 2

a,m(k)

)
I (akmj > 0) if akjm is non-zero element of Aj , (5)

where m(k) is the construct that item k measures. The population distribution for Aj specifies
that each nonzero element (row k, column m) of the matrix is independently truncated normal
with mean akm and variance σ 2

a,m(k)
. Conceptually, items across groups are assumed to come

from a common family, but there is variation in the actual realized values of the item parameters.
The discrimination parameters (scale thresholds) are thus assumed to be drawn from a distri-
bution with a population mean discrimination (threshold) parameter. By definition, items are
allowed to be noninvariant across groups.

Although a common prior is relatively easy to use, it lacks flexibility to fully accommodate
challenges involved in cross-national research. For instance, a common prior may obscure DIF
effects when there is a set of countries in the data with fully invariant item parameters, and an-
other set of countries with DIF. It also lacks full flexibility in situations where there are different
sets of countries in the data with smaller or larger DIF. To check and control for such situations,
we allow for more flexible heterogeneity distributions. In particular, we build on ideas presented
by Lenk and DeSarbo (2000), who consider finite mixtures with random effects. Mixture IRT
models have been presented by, e.g., Bolt, Cohen, and Wollack (2001), Cohen and Bolt (2005),
and De Boeck (2008). Vermunt (2008) discusses mixture models for multilevel datasets.

Mixture models assume that each observation belongs to one of some number of different
subpopulations or latent classes. Each of the subpopulations is described by a component proba-
bility density function, and its mixture weight is the probability that an observation comes from
this component (see, e.g., McLachlan & Peel, 2000; Titterington, Smith, & Makon, 1985). As
documented by Lenk and DeSarbo (2000), one often needs to consider heterogeneity within each
subpopulation as well. Traditional finite mixture specifications assume common coefficients for
each subpopulation. However, this may not accurately summarize within-class variation. Hence,
they propose a random-effects model that assumes the subject-level coefficients to be a random
sample from a normal distribution.

Building on these ideas, we assume that the item parameters come from a mixture distrib-
ution with random effects. Define an indicator ej which can take on the values 1, 2, . . . ,L. If
ej = l, the distributions for the discrimination and threshold parameters are

γkj,c|ej = l ∼ N
(
γ

(l)
k,c, σ

2,(l)
γ,m(k)

)
, c = 1, . . . ,C, γkj,1 ≤ · · · ≤ γkj,C−1, ∀k, (6)

akjm|ej = l ∼ N
(
a

(l)
km,σ

2,(l)
a,m(k)

)
I (akmj > 0), (7)

where the mixtures are indicated by l = 1, . . . ,L.
In practice, this specification implies that each country belongs to one of the possible L latent

classes, and that the item parameters for that country are drawn from the heterogeneity distribu-
tion associated with that particular class. The mixture specification is very flexible. Whether such
flexibility is needed when calibrating an actual data set, is an empirical question.
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The prior for ej is a multinomial distribution with parameters ψ .

ej ∼ M(1,ψ) (8)

where ψ = (ψ1, . . . ,ψL) and
∑L

l=1 ψl = 1.
The heterogeneity in the latent variables is modeled with a multivariate hierarchical model,

which generalizes the familiar multilevel modeling framework. In multilevel models, there is a
univariate dependent variable. But in our case, there are multiple latent variables, which imply
that the dependent variable θ ij is an M-vector. Hence, a multivariate multilevel model is specified
(for multivariate multilevel models, see, e.g., Goldstein, 2003; Snijders & Bosker, 1999):

θ ij ∼ MVN(μj ,�j ), (9)

μj ∼ MVN(μ,�). (10)

In the model, it is assumed that respondents in country j are centered around the multivariate
latent mean vector μj , and that the variances and covariances are captured in the variance-
covariance matrix �j , which is country-specific. Similar to random-intercept models in mul-
tilevel modeling, the group means are then shrunk toward a common mean μ, so that group-
specific deviations arise from adding a multivariate normal error with variance-covariance matrix
� to the common mean μ.

3.2. Priors

Our finite mixture multilevel multidimensional IRT model is presented in a Bayesian frame-
work (Ansari, Jedidi, & Dube, 2002; Ansari & Jedidi, 2000; Fox, 2005; Fox & Glas, 2001, 2003;
Lee, 2007; Scheines, Hoijtink, & Boomsma, 1999), which has several theoretical and practical
advantages. First, Bayesian methods allow the calibration of individual and country-specific pa-
rameters while accounting for the uncertainty in such parameters. Second, there is no reliance
on asymptotic theory to derive standard errors. Third, complex multidimensional integrals need
not be evaluated, which would be necessary if maximum likelihood would be employed. Es-
pecially for hierarchical, order-constrained thresholds, maximum likelihood inference would be
extremely complex.

To complete the model specification, all priors need to be specified. The (univariate) variance
parameters were given slightly inverse gamma priors:

σ 2,(l)
a,m ∼ IG(0.001,0.001), ∀m,

σ 2,(l)
γ,m ∼ IG(0.001,0.001), ∀m.

(11)

The item parameters are assigned relatively flat priors:

a
(l)
k ∝ I

(
a

(l)
k > 0

)
, ∀k, (12)

γ
(l)
k,c ∼ uniform, c = 1, . . . ,C, γ

(l)
k,1 ≤ · · · ≤ γ

(l)
k,C−1, ∀k. (13)

The prior for μ is flat, while the priors for the inverse variance-covariance matrices at level 1 and
level 2 are Wishart with scale matrix 0.1I and degrees of freedom equal to M + 1:

μm ∝ constant, (14)

(�j )
−1 ∼ Wish(M + 1,0.1I ), (15)

(�)−1 ∼ Wish(M + 1,0.1I ). (16)
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An ordered Dirichlet distribution is chosen for the parameters in ψ , with hyperparameters ι

(where ι indicates a vector of ones):

ψ ∼ Ord − D(ι) (17)

The ordered distribution implies that ψ1 ≤ · · · ≤ ψL.

3.3. Identification

Similar to general covariance structure models, the model needs identification restrictions,
since it is currently over-parameterized. The nature of the rating scale implies that scale restric-
tions have to be imposed because the observed outcomes do not change for different combina-
tions of parameters. For instance, the locations of the latent variables are influenced by the mean
parameter μj , as well as by the threshold parameters γ kj . To fix the location indeterminacy, we
prevent a shift of the thresholds via the constraint

∑
k∈Ωm

γkj,c = 0,∀j,m (note that the choice
for c does not matter). Since this restriction is applied in each country, the mean of the metric of
the latent variable is identified via restrictions on the threshold parameters.

Analogously, the within-country variances and covariances among latent variables are de-
termined both by the matrix �j , as well as by the discrimination parameters. Hence, we need
to impose a restriction that a common rescaling of country-specific discrimination parameters is
not possible, which can be done by imposing that across items, the product of the discrimination
parameters equals one in each country j (

∏
k∈Ωm

akjm = 1,∀j,m). Hence, both the mean and
variance of the latent variable in each country is fixed. Note that in the prior, we have established
a link between the item parameters in different groups. There is also a link in the structural model,
which focuses on the latent means and (co)variances.

Using MCMC for latent class models implies that label switching should be addressed. Label
switching involves permutations of the class labels resulting in the same value of the likelihood
(Titterington et al., 1985). We identify our model by specifying an ordering in the latent class
probabilities, that is, ψ1 ≤ · · · ≤ ψL (see Lenk & DeSarbo, 2000).

3.4. Model Implications with Respect to Measurement Invariance

There are two different conceptions of DIF. One conception is that DIF represents variation
in item parameters within an invariant conceptual map of what is being measured. Following
previous work (Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000), we refer to this
type of invariance as “configural invariance.” Configural invariance implies that the measure-
ment model has the same form across countries—the same dimensions and the same pattern of
fixed, free, and constrained elements for the matrix specifying the relation between the observed
measurements and the latent constructs (Bollen, 1989, pp. 357–360). This first conception views
DIF as arising due to parameter variation whose source is unclear. Whatever the source, it is
not due to variation in what is being measured, or the meaning of what is being measured, and
hence cross-national comparisons on latent constructs are meaningful, provided we control for
this variation in response behavior across countries—as we do in our model. This conception
of DIF “that respondent groups were employing the same conceptual frame of reference, and
thus ultimately might be compared (e.g., tests of latent mean group differences) with reference
to measures that reflect equivalent underlying constructs” (Vandenberg & Lance, 2000, p. 37).

The second conception of bias or DIF is that the variation in item parameters is, in fact, due
to variation in what is being measured across countries. DIF does not merely refer to a slight
difference in difficulty, but to a severe difference that is due to the item measuring something
different for a country, as can only be ascertained by subject experts. In this case, we do not have
configural invariance. Consequently, tests of group differences (e.g., tests of latent mean group
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differences, group differences in structural parameters) are not justified because “it makes no
sense to conduct tests of group differences when the constructs that are being measured differ
across groups” (Vandenberg & Lance, 2000, p. 37).

Our model applies if the first conception of DIF holds but not when the second conception
of DIF is applicable. Even with the extra flexibility built into the prior for the item difficul-
ties, our model cannot yield valid cross-national comparisons if what is being measured differs
across countries. For well-established scales, the assumption of configural invariance is probably
reasonable as these scales have been applied and refined in multiple studies around the world. Re-
searchers can also examine whether configural invariance is supported in their specific research
setting by estimating a measurement model for each country separately, and assess whether it
has the same structure across countries.

It is important to note that our model does not allow the researcher to conduct cross-national
comparisons based on the observed scale. Many cross-cultural researchers work with observed
measures, and are interested in knowing whether they can go ahead and use their measure in
different countries and then compare people/countries on the observed scores on this measure.
Under either of the two conceptions described above, the presence of DIF clouds the interpre-
tation of any simple group comparisons on the observed scores. Our model allows for tests of
latent mean group differences and for group differences in latent structural parameters. We do
not advocate simplistic comparisons on the observed scales. Hence, the value of the method is
for researchers who want to perform structural modeling at the latent level.

3.5. Estimation

Inference requires that we summarize the joint posterior of all unknowns (Gelman et al.,
2004). It proves convenient to use simulation-based methods. In order to estimate the model, the
full probability model is required, given by

p
({θ ij }, {akj }, {ak}, {γ kj }, {γ k},

{
σ 2

γ

}
,
{
σ 2

a

}
, {μj }, {�j },μ,�

)

∝
∏

j

∏

i

∏

k

p
(
Xijk|θ ij ,akj ,γ kj

)
p
(
θ ij |μj ,�j

)
p
(
μj |μ,�

)

×
∏

j

∏

k

∑

l

ψlp
(
γ kj |γ (l)

k ,σ
2,(l)
γ,m(k)

)∏

m

∑

l

ψlp
(
akjm|a(l)

km,σ 2,(l)
a,m

)

×
∏

j

p(�j )
∏

k

∏

l

p
(
γ

(l)
k

)∏

m

p
(
a

(l)
km

)
p
(
σ 2,(l)

a,m

)
p
(
σ 2,(l)

γ,m

)
p(μ)p(�)p(ψ) (18)

where m(k) is the construct that item k measures. It is convenient to use data augmentation in
order to draw samples from the conditional distributions of the parameters (Tanner & Wong,
1987). We use two data augmentation steps: one for latent continuous response data Z, and one
for latent class membership {ej }. The first augmentation step establishes a linear relationship
between the person and item parameters and the augmented variable Z. Further, the augmented
variable Z is normally distributed which simplifies the sampling steps of the model parameters.

The full conditionals of most parameters can be specified in closed form, which allows for
a Gibbs sampler, although Metropolis–Hastings steps are required as well either due to the pres-
ence of normalization constants or unknown forms of the conditionals. Each iteration consists
of sequentially sampling from the full conditional distributions associated with the unknown
parameters. See the Appendix for details.

Even though our model is highly complex, the MCMC steps go relatively fast. On a Pentium
1.8 Ghz computer, it took about 24 hours to run 50,000 iterations of a model with multiple latent
classes (including the generation of replicated data). In addition, we used two parallel MCMC
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samplers using dispersed initial values. Quick mixing of the parameters is obvious, and the cor-
rected Gelman and Rubin convergence diagnostic (Brooks & Gelman, 1998) also suggested good
mixing within and between chains.

We programmed the model in MATLAB. For three reasons, we did not use WinBugs. First,
in WinBugs, it is difficult to simultaneously estimate thresholds and structural models (see Lee,
2007). Second, the model is identified by scaling the model via the item parameters in each itera-
tion. This is not possible in WinBugs as far as we could determine. Third, WinBugs is extremely
slow with large datasets—which are the type of data for our model.

3.6. Model Fit & Model Comparison

There are several ways to check the accuracy of the model. One way is to use posterior
predictive model checking (Gelman, Carlin, Stern, & Rubin, 2004). The observed scores of all
persons and items are stored in the matrix X, and all model parameters in the vector ω. Then the
sample of parameter draws ω1,ω2, . . . ,ωd available from the MCMC algorithm is used along
with the sampling distribution p(X|ω) to generate replicated datasets X1

rep,X
2
rep, . . . ,X

d
rep. The

posterior predictive distribution of the replicated data is

p(Xrep|X) =
∫

p(Xrep|w)p(w|X) dω (19)

where p(ω|X) ∝ p(X|ω)p(ω) is the posterior of all parameters in the model, and p(ω) is the
prior of all model parameters. The actual dataset is then compared with the replicated datasets in
several ways.

First, the approach developed by Béguin and Glas (2001) for the single group setting can be
extended to a multigroup setting. If an IRT model fits the data, the distribution of posterior scores
should overlap with the distribution of the observed sum scores. In each country and for each
construct, a frequency distribution of the sum scores is calculated for the replicated data. We note
that the latent variables are not considered part of ω (see Sinharay et al., 2006, p. 301). For each
replicated dataset, we simulate the latent variables. The posterior predictive score distribution is
computed as the mean of the generated frequency distributions over iterations. If the model fits
the data in a particular country, the posterior score distribution should overlap with the observed
sum score distribution.

Another way to assess fit, is to rely on test quantities. In this case, we use a posterior predic-
tive p-value based on a test quantity T (X,ω), given by

p(X) = Pr
(
T (Xrep,ω) ≥ T (Xobs,ω)|Xobs

)

=
∫

I
(
T (Xrep,ω) ≥ T (Xobs,ω)

)
p(ω|X)p(Xrep|ω) dω dXrep (20)

which can be approximated from the MCMC sequence of draws:

p(X) = 1

d

∑

r

I
(
T

(
Xr

rep,ω
r
) ≥ T

(
X,ωr

))
(21)

In other words, the p-value is calculated as the proportion of draws in which the test quantity
measure exceeds the realized value. p-values close to zero or one indicate that the test quanti-
ties based on replicated data are more extreme than the test quantity based on the actual data,
indicating a violation of the model. Different test quantities can be considered, based on, e.g.,
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(latent) residuals. A Bayesian residual is defined as the difference between the latent response
and the expected (latent) response, rijk = Xijk −∑

c · Pr(Xijk = c). A possible function of sums
of squared residuals is Tk(X) = ∑

j

∑
i|j r2

ijk , which can then be used as a discrepancy measure
in a posterior predictive check.

To determine the number of classes, we estimate several models with different numbers of
classes. We compute the log marginal density log p(X) (abbreviated as LMD) for each model
based on importance sampling (Newton & Raftery, 1994), and select the model with the largest
posterior probability (Lenk & DeSarbo, 2000). The LMD is more suited for model selection than
for instance the DIC statistic (Spiegelhalter, Best, Carlin, & van der Linde, 2002), because in
hierarchical models, basic notions like parameters and deviance may take several equally accept-
able meanings, with direct consequences for the properties of the corresponding DICs (Celeux
et al., 2006). The LMD does not suffer from such limitations (see Lee, 2007, pp. 344–347).

4. Simulation Study

4.1. Design

In our simulation study, we consider two scenarios. In the first scenario, we have a two-
dimensional model for a single metagroup of countries. Hence, there are no latent classes, so that
the mixture model collapses to a multilevel multidimensional IRT model. We focus on parame-
ter recovery. In the second scenario, we have a two-dimensional model with two subgroups of
countries, where there is heterogeneity in measurement operations within each subpopulation as
well. We focus on parameter recovery as well as model selection.

4.2. Scenario 1: Single Metagroup of Countries

We specify 10 countries, N = 1,000 per country, and two constructs, each measured by 8
items on a 5-point rating scale. We set ak ∼ logN(0,0.1), γk,1 = −1 + 0.5U(0,1), γk,c = γk,c +
0.2 + U(0,1). The standard deviation of the discrimination parameters across countries is set
equal to σ a = (0.2,0.3), while the threshold variance across countries is set equal to σ γ = (1,1)

(before truncation due to order constraints). At level 1, the elements of the symmetric matrix �j

are set equal to

�j =
(

0.8 + 0.3 × U(0,1) 0.2 + 0.3 × U(0,1)

· 0.8 + 0.3 × U(0,1)

)
, (22)

where U(0,1) denotes the standard uniform distribution, and the dot indicates symmetry. At
level-2, we stipulate

� =
(

0.6 0.2
· 0.6

)
, (23)

μ =
(

0
0

)
(24)

For model calibration purposes, the burn-in phase consists of 20,000 iterations, and the next
30,000 iterations are used for inference.

We first performed some validity checks. The predictive score distribution indicates that
the data generated from the model closely resemble the observed data, which indicates that the
model is appropriately estimated. Figure 1—panel 1 provides the plots for both latent constructs
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FIGURE 1.
Observed and replicated sum score distributions in simulation study.

for a randomly picked country. Bayesian p-values based on test statistics for residuals, such as
squared residuals summed across individuals for an item, did not show any problems.

The focal point of interest is the recovery of item parameters and country means, variances,
and covariances. In Table 1, the true data generating parameters of the structural model, as well as
the posterior means are displayed. The item parameters are also recovered accurately. Due to the
large number of parameters, the parameter recovery results are presented graphically. Figure 2—
panel 1 presents the 95% credible intervals of the 16 discrimination parameters minus their true
values for a randomly chosen country (plots in other countries look similar). The plot confirms
that zero is contained in the credible intervals. Plots for the threshold parameters yielded the
same conclusion (but are not shown due to the large number of parameters).

4.3. Scenario 2: Two Subgroups of Countries

We use the same specification as in (22), (23), and (24). It is assumed that there are 20
countries, N = 1,000 per country, and that there are two constructs, each measured by 8 items
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FIGURE 2.
95% Credible intervals true minus estimated discrimination parameters in randomly picked country.

on a 5-point rating scale. For the model with two latent classes, we set

a
(1)
k ∼ logN(0,0.1), a

(2)
k ∼ logN(0,0.1),

γ
(1)
k,1 = −2 + 0.5U(0,1), γ

(2)
k,1 = −1 + 0.5U(0,1),

γ
(1)
k,c = γ

(1)
k,c+1 + 0.2 + U(0,1), γ

(2)
k,c = γ

(2)
k,c+1 + 0.2 + U(0,1),

σ (1)
a = (0.01,0.01), σ (2)

a = (0.3,0.3),

σ (1)
γ = (0.01,0.01), σ (2)

γ = (1,1), ψ = (0.33,0.67)

which corresponds to a situation with one set of countries that has approximately invariant item
parameters and another set of countries with larger within-group DIF. In this scenario, we are
primarily interested in seeing to what extent the random effects model used in scenario 1 is
adequate for the data at hand. As mentioned earlier, the prior specification in (4) and (5) cannot
easily deal with subsets of countries. Indeed, as expected, the log marginal densities indicate a
significantly worse fit for the model with common prior (i.e., assuming a single meta group) than
a model with two subgroups. The estimated LMDs for the common-prior model, two subgroups
model, and three subgroups model are −1.2285 × 106, −1.2267 × 106, and −1.2328 × 106,
respectively. Thus, the model with two classes is preferred to the other models.
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16 PSYCHOMETRIKA

The distribution of the posterior predictive sum scores closely resembles the distribution
of the observed sum scores. Figure 1—panel 2 provides the plots for both latent constructs for
a randomly picked country. Table 2 gives the true data-generating parameters of the structural
model, as well as the posterior means for each country. It can be seen that latent means, variances,
and covariances can be accurately recovered.

Latent class membership is perfectly recovered. After the burn-in phase, the correct latent
classes are identified with posterior probability 1. The item parameters are recovered accurately
as well. Figure 2—panel 2 presents the 95% credible intervals of the 16 discrimination parame-
ters minus their true values for a randomly chosen country (plots in other countries look similar).
The plot confirms that zero is contained in the credible intervals. Plots for the threshold parame-
ters yielded the same conclusion.

In order to compare the IRT-based method to an established method used by psychologists,
we compare the correlation between the two constructs resulting from our model with the cor-
relation based on sum scores for both constructs. The sum scores are obtained by adding item
scores per construct. The results are shown in Table 3, together with the percentage of estimated
bias in sum scores compared to the IRT model. The bias varies between 18.3% and 42.2% with
a mean of 27.5%. One cannot even conclude that the bias exerts the same uniform effect on
construct correlations, which further complicates substantive conclusions.

Summarizing, various models can be considered in cross-national research. Model choice
depends on the specific application at hand. It is well known that the degree of invariance varies
from sample to sample and from construct to construct. Our set of models is encompassing in
the sense that a wide variety of models can be fitted to the data in order to explore the most
appropriate model, and to check the robustness of simpler models.

5. Empirical Application

5.1. Affective Subjective Well Being

Research on subjective well being (SWB), which is concerned with people’s evaluation of
their lives, the presence of pleasant affect, and the absence of unpleasant affect has mushroomed
in the last decades, and shows no signs of abating (Lyubomirsky, King, & Diener, 2005). SWB
is a key construct in understanding people’s capacity to support and enhance their lives (Diener,
Suh, Lucas, & Smith, 1999). Evaluations of SWB include both cognitive judgments of life satis-
faction and affective evaluations of moods and emotions. In our empirical application, we focus
on the affective dimension. The affective evaluations are commonly hypothesized to consist of
two negatively related components—positive affect (PA), and negative affect (NA) (Schimmack
et al., 2002). A high score on affective SWB has been shown to lead to happiness, and to foster
behaviors that parallel success (Lyubomirsky et al., 2005). For instance, people high on affec-
tive SWB are relatively more successful in life domains such as marriage, mental health, and
longevity compared to individuals low on affective SWB. Other interesting and important find-
ings come from the domain of work. High scorers on affective SWB are likely to be evaluated
more positively by superiors, and show superior performance and productivity.

Most research on affective SWB has been conducted on US samples, but there is a grow-
ing body of international research as well (e.g., Diener et al., 1995; Schimmack et al., 2002).
International surveys show consistent mean differences in affective SWB across countries. How-
ever, past researchers have cautioned that valid cross-national comparisons may be impaired by
response artifacts (Diener, Oishi, & Lucas, 2003, p. 413). Given the theoretical and applied im-
portance of affective SWB in psychology, it is important to investigate the functioning of an
existing instrument for affect across many nations.
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TABLE 3.
Results simulation study—Scenario 2: correlations between latent constructs based
on sum scores, and irt model.

Sum score Multivariate IRT Bias in sum score
correlations correlations correlations (%)

Country 1 0.232 0.363 36.1
Country 2 0.365 0.500 27.1
Country 3 0.301 0.391 23.1
Country 4 0.349 0.454 23.1
Country 5 0.342 0.448 23.6
Country 6 0.380 0.542 29.9
Country 7 0.252 0.327 22.9
Country 8 0.278 0.364 23.7
Country 9 0.240 0.316 23.9
Country 10 0.201 0.246 18.3
Country 11 0.188 0.270 30.4
Country 12 0.324 0.435 25.4
Country 13 0.191 0.253 24.3
Country 14 0.347 0.476 27.1
Country 15 0.256 0.356 28.1
Country 16 0.241 0.319 24.3
Country 17 0.272 0.379 28.2
Country 18 0.234 0.312 25.1
Country 19 0.234 0.331 29.3
Country 20 0.134 0.181 25.9
Country 21 0.346 0.487 28.9
Country 22 0.294 0.423 30.4
Country 23 0.388 0.546 29.0
Country 24 0.190 0.310 38.7
Country 25 0.209 0.312 32.9
Country 26 0.296 0.407 27.1
Country 27 0.248 0.329 24.5
Country 28 0.251 0.337 25.6
Country 29 0.265 0.459 42.2
Country 30 0.155 0.210 25.9

5.2. Method

We operationalized affective SWB with adjectives items from the Affectometer 2 scale
(Kamman & Flett, 1983). PA and NA were both measured with 10 adjectives. Respondents were
told to consider various feelings that they might use to describe how happy they are in their lives
and to indicate how often they had felt each feeling over the past month. Responses were col-
lected on a five-point ordinal scale with scale steps of none of the time, rarely, sometimes, often,
and all the time. All 20 items were in the same part of the questionnaire, but the items were put
in random order. The items are listed in Table 4.

Two global market research agencies, GfK and Taylor Nelson Sofres, collected the data
in 28 countries around the world (see Table 6 for the countries included). A web survey was
used in countries in which the internet is widespread. In other countries mall intercepts were
used, in which respondents either filled out the questionnaire on laptops or completed a hard-
copy version of the questionnaire. The sample in each country was drawn so as to be broadly
representative of the total population in terms of region, age, education, and gender, although
of course full representativeness in survey research remains an elusive ideal. The number of
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TABLE 4.
Positve and negative affect items used in global study.

Item Items positive affect Items negative affect

1 Clear-headed Confused
2 Confident Depressed
3 Enthusiastic Discontented
4 Free-and-easy Helpless
5 Good-natured Hopeless
6 Loving Impatient
7 Optimistic Insignificant
8 Satisfied Lonely
9 Understood Tense

10 Useful Withdrawn

TABLE 5.
Model selection and latent class membership.

Models LMD

Model with common prior −6.6676 × 105

Model with 2 latent classes −6.4153 × 105

Model with 3 latent classes −6.3127 × 105

Model with 4 latent classes −6.2756 × 105

Model with 5 latent classes −6.6062 × 105

Latent classes
Class 1 UK, Ireland, Netherlands, Norway, Sweden, Denmark, USA

Class 2 Germany, France, Austria, Belgium, Hungary, Switzerland, Spain

Class 3 Japan, China, Taiwan, Thailand, Italy, Czech Republic

Class 4 Slovakia, Poland, Romania, Argentina, Russia, Ukraine, Brazil

respondents ranged from 355 in Great Britain to 640 in Germany. However, the sample size in
the US was considerably larger (1,181). The total number of respondents was 13,112.

5.3. Results

We analyze the Affectometer instrument in several phases. First, it is important to determine
whether a mixture model is necessary, and if so, how many latent classes. For this purpose,
we run a model with invariant item parameters, a model with a common random effects prior,
and also models with 2–5 latent classes. The log marginal density is used for model selection
purposes. The results are in Table 5.

In the present empirical application, the model with four latent classes outperforms the other
models. Hence, we continue with this model. We find a group with primarily Asian countries,
a group with emerging countries (Eastern Europe and South America), one group of Nordic and
Anglo countries, and a group of Germanic and developed-Latin countries.

Before drawing any further inferences, model fit is examined. Figure 3 displays the poste-
rior predictive sum score distributions for each construct, together with the observed data are
displayed for one major country from five regions: Asia, Western Europe, Eastern Europe, North
America, and Latin America. The model captures the pattern of the sum scores very well in
each nation, both for the PA and the NA items. This also holds true for the other 23 countries
(not shown). The posterior predictive sum plots provide evidence that the IRT model fits the
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FIGURE 3.
Frequency distribution of sum scores for observed and replicated data for positive and negative affect.

data in all countries. We also calculated posterior predictive p-values based on residuals.3 These
analyses did not flag any problems with the model either.

The posterior means of the discrimination parameters for PA and NA are shown in Tables 6
and 7, respectively. There is a substantial degree of cross-national variation in discrimination.
This is also clear from the posterior mean variance components of the segments capturing the

3The p-values for the different items were not extremely close to 0 or 1, which would indicate that the replicated
data is different from the observed data.

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 21:32:03, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


MARTIJN G. DE JONG AND JAN-BENEDICT E.M. STEENKAMP 21

FIGURE 3.
(Continued.)

amount of variation in discrimination for PA and NA, respectively. The estimated posterior mean
discrimination variances for the four classes are: (0.071, 0.090), (0.075, 0.081), (0.050, 0.066),
(0.059, 0.058). There is ample evidence for non-equality of threshold parameters across cul-
tures as well. If anything, the thresholds display even more cross-national variation than the dis-
crimination parameters. The estimated posterior mean threshold variances are: (0.0043, 0.0048),
(0.0040, 0.0070), (0.0028, 0.0030), (0.0040, 0.0088).

Figure 4 shows an illustrative posterior category response function for one specific item—i6
(“How often have you felt loving the last month?”)—in Russia and China. The category response
functions reveal that in Russia, a latent score of 2 would have a large probability of generating
an observed score of 5 on the 5-point scale, whereas in China, there is a large probability of an
observed score of 4. In fact, in China, a person with a latent score of 2 is as likely to give an
observed score of 3 as to give an observed score of 5. Similar substantial cross-national variation
in category response functions were found for other items and countries.

Next, we turn our attention to the structural part of the model. In interpreting the results,
we assume that DIF is of the “first type,” that is, DIF represents variation in item parame-
ters within an invariant conceptual map of what is being measured.4 With this caveat in mind,

4This assumption is likely to hold for established scales such as positive and negative affect. Nevertheless, we
assessed whether this assumption is reasonable by examining the factor structure for each country separately, using
confirmatory factor analysis. In all countries, the hypothesized two-factor structure, with positive and negative items
lading significantly on separate factors was supported.
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TABLE 6.
Posterior mean discrimination parameters positive affect items.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10

UK 0.867 1.126 1.161 0.906 1.008 0.787 1.327 1.148 0.812 0.999
Germany 0.797 1.366 0.656 0.748 1.353 0.762 1.808 1.496 0.840 0.807
Ireland 0.913 1.154 1.179 0.859 0.963 0.731 1.438 1.188 0.791 0.989
France 0.507 1.206 1.343 0.342 1.533 0.933 1.902 1.475 0.834 1.082
Austria 0.868 1.382 0.656 0.645 1.328 0.700 1.677 1.591 0.893 0.897
Netherlands 0.921 1.119 1.182 0.864 0.801 0.653 1.453 1.444 0.895 0.975
Belgium 0.664 1.066 1.074 0.683 1.294 0.770 1.597 1.458 0.848 0.987
Italy 0.529 1.351 1.128 0.727 0.995 0.980 1.476 1.375 0.817 1.067
Norway 0.876 1.065 1.095 0.882 0.909 0.595 1.531 1.398 0.899 1.070
Slovakia 0.557 0.955 0.999 0.896 1.031 1.072 1.682 1.320 0.855 1.015
Poland 0.643 1.032 0.921 0.839 0.973 0.976 1.523 1.325 0.945 1.091
Sweden 0.888 1.147 1.159 0.836 0.769 0.565 1.496 1.449 1.008 1.072
Denmark 1.173 1.156 1.135 0.499 0.872 0.422 1.632 1.616 1.104 1.229
Hungary 0.806 1.091 1.082 0.910 1.405 0.820 1.415 0.918 0.758 1.025
Romania 0.764 1.088 0.988 0.452 1.323 1.143 1.742 1.120 0.824 1.121
United States 0.986 1.222 1.080 0.840 0.990 0.773 1.324 1.140 0.780 1.020
Argentina 0.850 1.143 1.156 0.527 0.929 0.958 1.545 1.207 0.831 1.238
Portugal 1.199 1.272 1.099 0.605 1.077 0.879 1.222 1.194 0.731 0.984
Switzerland 0.755 1.307 0.667 0.702 1.352 0.774 1.650 1.498 0.903 0.934
Czech. Rep. 0.886 1.085 0.893 0.931 0.940 0.934 1.401 1.420 0.837 0.863
Taiwan 1.118 1.317 1.219 0.610 0.999 0.824 1.310 1.329 0.700 0.918
Russia 0.713 1.017 0.985 0.924 1.076 0.870 1.565 1.132 0.941 0.983
Ukraine 0.599 1.034 1.099 0.986 0.963 0.847 1.612 1.356 0.909 0.931
Brazil 0.970 1.412 1.371 1.091 1.435 0.087 1.718 1.795 1.275 1.115
Thailand 0.813 1.099 1.049 0.642 1.037 0.957 1.619 1.209 0.710 1.219
China 1.070 1.333 1.227 0.668 0.892 0.770 1.334 1.313 0.845 0.848
Spain 0.725 1.181 0.955 0.724 1.294 0.785 1.562 1.251 0.833 1.029
Japan 0.888 1.118 0.907 0.700 0.954 0.773 1.515 1.587 0.919 0.993

the structural results (reported in Table 8 and Figure 5) show several interesting insights. First,
PA and NA, while being separate dimensions, are quite strongly negatively correlated. While it
is well established that in principle a person can be high on PA and high on NA, or being low on
both (Watson & Clark, 1991), our results reveal that in practice, this is more an exception than a
rule.

Second, on average, the Netherlands, Ireland, and the US are among the happiest countries
in the world—they are both high on PA and low on NA. One may wonder whether this is simply
a wealth effect, as these countries are also among the world’s richest countries. That reality is
more complex, is shown by the results for Japan, which is on average the least happy country
in the sample despite the high GDP per capita. Japan scores lowest on PA and highest on NA
of all countries in our study. One explanation is that income is most strongly related to affective
well being at low levels of income. At low income levels, an increase in income is likely to be
related to inherent human needs, such as shelter and food, whereas at high levels, increases lead
to purchase of more luxury items.

Third, the latent variances give information on the within-country heterogeneity in PA and
NA. Smaller countries tend to exhibit less heterogeneity in happiness than larger countries. This
makes intuitive sense, as smaller countries are usually more homogeneous and this homogeneity
offers a basis for greater caring for less fortunate people in their societies.
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TABLE 7.
Posterior mean discrimination parameters negative affect items.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10

UK 0.823 1.284 1.136 1.225 1.562 0.414 1.061 0.957 1.027 1.033
Germany 1.086 1.498 1.309 1.357 1.773 0.522 0.993 0.914 0.525 0.800
Ireland 0.842 1.320 1.197 1.051 1.470 0.442 1.105 1.029 0.920 1.073
France 0.756 1.549 0.973 1.421 1.761 0.390 1.048 0.909 0.946 1.034
Austria 1.019 1.359 1.246 1.498 1.828 0.556 0.850 0.947 0.629 0.772
Netherlands 1.238 1.619 1.010 1.264 1.598 0.485 0.843 1.020 0.791 0.756
Belgium 0.777 1.599 1.089 1.356 1.718 0.532 0.854 0.960 0.835 0.890
Italy 0.892 1.469 1.166 1.147 1.425 0.621 1.188 1.136 0.787 0.624
Norway 1.076 1.443 1.046 1.419 1.578 0.263 1.164 1.011 1.218 0.753
Slovakia 0.985 1.495 0.790 1.193 1.529 0.601 1.217 0.944 0.916 0.764
Poland 0.796 1.483 1.054 1.225 1.444 0.641 1.236 0.953 0.805 0.767
Sweden 1.074 1.394 1.038 1.285 1.481 0.369 1.058 0.999 0.995 0.888
Denmark 0.935 1.158 0.922 1.243 1.587 0.515 1.279 1.160 1.107 0.614
Hungary 1.085 1.501 0.753 1.241 1.512 0.614 1.087 0.899 0.815 0.904
Romania 1.002 1.703 1.118 1.179 1.592 0.510 0.903 0.886 0.980 0.722
United States 0.871 1.183 1.170 1.232 1.560 0.490 1.116 0.933 0.801 1.065
Argentina 1.142 1.833 1.232 1.151 1.535 0.541 1.047 1.083 0.984 0.377
Portugal 0.769 1.412 0.958 1.174 1.331 0.681 1.173 1.221 0.816 0.791
Switzerland 0.931 1.469 1.272 1.498 1.812 0.412 0.922 0.954 0.706 0.854
Czech. Rep. 0.972 1.358 0.978 1.169 1.440 0.488 1.299 1.246 0.778 0.763
Taiwan 0.927 1.245 0.873 1.127 1.429 0.825 1.168 1.077 0.720 0.840
Russia 1.014 1.551 1.082 1.266 1.517 0.617 1.180 0.869 0.731 0.677
Ukraine 0.912 1.486 0.924 1.346 1.579 0.606 1.268 0.842 0.769 0.773
Brazil 0.877 1.304 0.763 1.239 1.391 0.914 1.126 1.129 0.806 0.729
Thailand 0.951 1.720 1.271 1.094 1.477 0.693 1.287 1.062 0.886 0.370
China 0.870 1.221 0.813 1.210 1.344 0.909 1.034 1.125 0.759 0.903
Spain 0.812 1.224 1.139 1.437 1.628 0.632 1.214 1.042 0.872 0.553
Japan 0.744 1.454 1.059 1.339 1.266 0.810 1.241 1.080 0.522 0.924

Fourth, we correlate country means, variances, and correlations between PA and NA with the
four dimensions of Hofstede’s (2001) well-known cultural framework. Table 9 shows a consistent
pattern of correlations across mean PA and NA. Happier nations tend to be lower on power
distance and uncertainty avoidance, and more individualistic. These correlations help to shed
light on why Japan rates so low on happiness, although it is so wealthy. Japan’s cultural profile
is quite opposite to the cultural profile of happy nations: it is medium-high on power distance,
tends to be collectivistic, and is high on uncertainty avoidance.5 Table 9 further reveals that
while culture does not correlate much with within-country heterogeneity in happiness (except
for the relationship between heterogeneity in negative affect and uncertainty avoidance), there
are very strong correlations between power distance and individualism and the magnitude of the
correlation between PA and NA. In individualistic countries and countries low on power distance,
high PA and low NA and vice versa, more often go hand-in-hand.

Fifth, SWB researchers typically construct scores on PA and NA by summing the item
scores. We find that this practice substantially underestimates the correlation between the two

5The correlations in Table 9 are not a function of Japan being clearly lower on PA and higher on NA compared to
the other countries. Deleting Japan yielded exactly the same pattern of significant and insignificant correlations. That is,
all correlations that are significant (insignificant) in the total set of countries are significant (insignificant) in the set of
countries excluding Japan. Also note that research has also shown that Japan rates low compared to other countries on
subjective well-being (Diener et al., 1995; Schimmack et al., 2002).
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FIGURE 4.
Category response functions for the positive affect item “how often have you felt enthusiastic the last month” for China
and Russia.

constructs. When we compare the correlations obtained with our IRT model with the correla-
tions based on sum scores we find that the mean downward “bias” is 28%, with a maximum
of 43%.

6. Conclusions

6.1. Summary

In this article, we focused on issues of measurement invariance in large-scale cross-cultural
research. This has been an issue of long-standing interest in psychology, sociology, management,
organizational research, and many other fields. A citation count in Web-of-Science based on the
keywords “measurement invariance” or “measurement equivalence” or “differential item func-
tioning” documents an impressive number of articles (>1,200),6 giving currency to the relevance
of this body of research (Millsap, 2008).

6Date last checked: February 28, 2009.
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TABLE 8.
Affective well-being structural parameters.

Mean Mean Variance Variance r(PA,NA) r(PA,NA)
PA NA PA NA for IRT scores for sum scores

UK 1.954 −0.225 0.715 0.865 −0.842 −0.646
Germany 1.680 −0.291 0.555 0.719 −0.743 −0.558
Ireland 2.195 −0.377 0.816 0.756 −0.785 −0.612
France 1.605 −0.185 0.526 0.570 −0.763 −0.517
Austria 1.907 −0.538 0.586 0.590 −0.702 −0.497
Netherlands 2.178 −0.694 0.483 0.641 −0.754 −0.535
Belgium 1.881 −0.353 0.599 0.642 −0.758 −0.568
Italy 1.538 −0.025 0.633 0.557 −0.746 −0.524
Norway 1.990 −0.265 0.669 0.617 −0.734 −0.551
Slovakia 1.402 −0.334 0.436 0.623 −0.600 −0.468
Poland 1.291 −0.037 0.572 0.538 −0.679 −0.494
Sweden 2.025 −0.401 0.842 0.998 −0.829 −0.670
Denmark 1.879 −0.490 0.471 0.571 −0.778 −0.555
Hungary 2.016 −0.441 0.605 0.680 −0.750 −0.572
Romania 1.705 −0.191 0.510 0.421 −0.557 −0.394
United States 2.195 −0.422 0.902 1.008 −0.813 −0.658
Argentina 1.657 −0.160 0.548 0.642 −0.638 −0.442
Portugal 1.983 0.054 0.652 0.597 −0.742 −0.549
Switzerland 1.903 −0.352 0.536 0.583 −0.824 −0.594
Czech. Rep. 1.712 −0.269 0.612 0.809 −0.631 −0.439
Taiwan 1.733 0.097 0.687 0.906 −0.586 −0.410
Russia 1.502 −0.056 0.742 0.778 −0.664 −0.494
Ukraine 1.332 0.038 0.399 0.678 −0.412 −0.247
Brazil 1.604 −0.096 0.292 0.691 −0.626 −0.358
Thailand 1.968 −0.198 0.612 0.487 −0.477 −0.309
China 1.872 −0.183 0.566 1.076 −0.402 −0.265
Spain 1.984 −0.250 0.695 0.661 −0.775 −0.585
Japan 0.860 0.529 0.528 0.827 −0.595 −0.409

TABLE 9.
Correlations Hofstede dimensions & structural model parameters. Dimensions: PDI = Power
Distance Index, IND = Individualism/Collectivism, MAS = Masculinity/Femininity, UAI =
Uncertainty Avoidance Index

PDI IND MAS UAI

Mean PA −0.512∗∗∗ 0.376∗∗ −0.268 −0.502∗∗∗
Mean NA 0.451∗∗ −0.573∗∗∗ 0.025 0.557∗∗∗
Variance PA −0.320∗ 0.339∗ −0.154 −0.187
Variance NA −0.099 0.001 0.012 −0.434∗∗
Correlation PA & NA 0.662∗∗∗ −0.760∗∗∗ 0.095 0.261

Focusing on IRT models, we outlined several limitations of fixed-effects and random-effects
multigroup models for ordinal data in the psychometric literature. Applying equivalence tests
becomes all the more burdensome as the number of countries in a study increases. Unfortu-
nately, for proper identification of theoretical boundary conditions to one’s theory, a substan-
tial number of countries is exactly what is needed (Van de Vijver & Leung, 1997)! Moreover,
imposing invariance without testing for it, as in many of the multilevel IRT models in the lit-
erature is not satisfactory either. Our proposed class of finite mixture multilevel multidimen-
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FIGURE 5.
Affective well-being scores of nations.

sional ordinal IRT models allows a detailed investigation of relationships among latent con-
structs and the degree of invariance, provided that configural invariance is supported. Thus,
our model can handle research situations where DIF represents variation in item parameters
within an invariant conceptual map of what is being measured. This assumption is most realistic
for established scales, but can be tested in any research context by estimating a measurement
model for each country separately. Our model is encompassing in the sense that a wide vari-
ety of models can be fitted to the data in order to explore the most appropriate model, and to
check the robustness of simpler models. In two simulation studies, we showed that under this
assumption of configural invariance, our model allows for cross-national comparisons of latent
country means and latent structural parameters. However, our model cannot handle situations
where variation in item parameters is due to variation in what is being measured across coun-
tries.

In the empirical section, we applied our model to substantive data on affective SWB, col-
lected in large, sociodemographically diverse, samples from many countries. We showed that
there was considerable evidence of DIF, even for established scales. Our empirical application
also showed that our model can be applied to realistic sample sizes (in the 300–600 subjects
range per country). Moreover, we were able to derive a number of substantively interesting con-
clusions, using an anchoring strategy that does not require invariant items.

6.2. Future Research

Our model assumes configural invariance, and thus does not allow for valid cross-national
inferences when DIF is due to variation in what is being measured across countries. Future re-
search could extend our model by accommodating both sources of DIF, although it is not clear
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whether by allowing absence of form invariance as well as absence of invariant measurement
properties of the items.

Our model does not specify latent factors at level 2, does not include covariates, and only
considers the ordinal data format. Recent work by Goldstein et al. (2007), Rabe-Hesketh et al.
(2004), Rabe-Hesketh and Skrondal (2007) discusses level-2 factors and the incorporation of
structural covariates in multilevel structural equation models, as well as alternative data formats.
Future research is needed to accommodate these aspects in our multigroup IRT model. Covariates
could be incorporated into our structural model. In addition, covariates could be included in the
measurement model to understand the reasons why countries display DIF.

Although much work remains to be done in the area of large scale latent variable multilevel
modeling, we hope that the current article stimulates large scale cross-cultural researchers to pay
attention to issues of measurement equivalence and to further develop statistical models that can
appropriately deal with large scale comparative data.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.

Appendix. Estimation Details

We use data augmentation (Tanner & Wong, 1987) to facilitate estimation. The augmented
data is given by the parameters Zijk , and by latent class membership ej .

(1) Sample from [Zijk|rest] for i = 1, . . . ,Nj , and j = 1, . . . , J .

The variables Zijk are independent and normally distributed:

Zijk|rest ∼ N

(∑

m

akjmθijm,1

)
I (γkj,c−1 < Zijk < γkj,c) if Xijk = c.

(2) Sample from [θ ij |rest], for i = 1, . . . ,Nj , j = 1, . . . , J .

Write Zij = Aj θ ij +εij , with Aj defined as in formula (3), and Zij and εij vectors of length K .
Then, with the prior given by θ ij ∼ MVN(μj ,�j ), the full conditional is normal:

θ ij |rest ∼ MVN
((

AT
j Aj + �−1

j

)−1(
AT

j Zij + �−1
j μj

)
,
(
AT

j Aj + �−1
j

)−1)
.

(3) Sample from [akjm|rest].
The prior given ej = l is akjm ∼ N(a

(l)
km,σ

2,(l)
a,m ) if k ∈ Ωm and 0 otherwise. Therefore, the poste-

rior is normal, with

akjm|ej = l, rest ∼ N

(∑Nj

i=1 θijmZijk + a
(l)
km/σ

2,(l)
a,m

∑Nj

i=1 θ2
ijm + σ

−2,(l)
a,m

,
1

∑Nj

i=1 θ2
ijm + σ

−2,(l)
a,m

)

.

For identification, it is imposed that
∏

k∈Ωm
akjm = 1.
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(4) Sample from [γkj |ej = l, rest].
A Metropolis–Hastings algorithm is used to simulate a realization from this posterior distribution.
In the bth iteration of the MCMC chain, we draw a candidate γ ∗

kj,c from

γ ∗
kj,c ∼ N

(
γ b−1
kj,c , σ 2

MH

)
I
(
γ ∗
kj,c−1 < γ ∗

kj,c < γ b−1
kj,c+1

)
for c = 1, . . . ,C − 1,

where σ 2
MH is a tuning parameter to adjust the accept/reject rate of the algorithm. We aimed for

an acceptance rate of about 40%. The Metropolis–Hastings acceptance probability is then given
by

min

[ Nj∏

i=1

Pr(Xijk = xijk|γ ∗
kj )f (γ ∗

kj |γ (l)
k , σ

2,(l)
γ,m(k))f (γ b−1

kj |γ ∗
k , σ 2

MH)

Pr(Xijk = xijk|γ b−1
kj )f (γ b−1

kj |γ (l)
k , σ

2,(l)
γ,m(k))f (γ ∗

kj |γ b−1
k , σ 2

MH)
,1

]

,

where m(k) indicates the construct which is measured by item k. For identification, we set∑
k∈Ωm

γkj,3 = 0.

(5) Sample from [a(l)
km|rest].

The posterior is given by:

a
(l)
km|rest ∼ N

(
1

{#j : ej = l}
∑

j :ej =l

akjm,σ 2,(l)
a,m

)
.

(6) Sample from [γ (l)
k |rest].

A Metropolis–Hastings algorithm is used to simulate a realization from this posterior distribution.
The full conditional is proportional to

∏

j :ej =l

f
(
γkj |γ (l)

k , σ
2,(l)
γ,m(k)

)
f

(
γ

(l)
k

)
.

In the bth iteration of the MCMC chain we draw a candidate γ
(l),∗
k,c from

γ
(l),∗
k,c ∼ N

(
γ

(l),b−1
k,c , σ 2

MH

)
I
(
γ

(l),∗
k,c−1 < γ

(l),∗
k,c < γ

(l),b−1
k,c+1

)
for c = 1, . . . ,C − 1,

where σ 2
MH is a tuning parameter to adjust the accept/reject rate of the algorithm. We aimed for

an acceptance rate of about 40%. The Metropolis–Hastings acceptance probability is then given
by

min

[ ∏

j :ej =l

f (γkj |γ (l),∗
k , σ

2,(l)
γ,m(k))f (γ

(l),∗
k )f (γ b−1

kj |γ (l),∗
k , σ 2

MH)

f (γkj |γ (l),b−1
k , σ

2,(l)
γ,m(k))f (γ

(l),b−1
k )f (γ ∗

kj |γ (l),b−1
k , σ 2

MH)
,1

]
.

(7) Sample from [σ 2,(l)
a,m |rest].

For the first set of variance parameters, an inverse gamma prior is specified with parameters g1
and g2. As a result, each full conditional has an inverse gamma distribution with shape parameter
Km × {#j : ej = l}/2 + g1, and scale parameter

g2 +
∑

j :ej =l

∑

k∈Ωm

(
akjm − a

(l)
km

)2
.

Noninformative proper priors were specified with g1 = g2 = 1.
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(8) Sample from [σ 2,(l)
γ,m |rest].

For σ
2,(l)
γ,m a Metropolis–Hastings algorithm was used with an inverse gamma prior with parame-

ters 1 and 1. The full conditional is proportional to

∏

j

∏

k∈Ωm

f
(
γkj |γ (l)

k , σ 2,(l)
γ,m

)
f

(
σ 2,(l)

γ,m

)
.

In the bth iteration of the MCMC chain, we draw a candidate σ
2,(l),∗
γ,m from an IG(g1, g2) with

expectation equal to the previous draw. That is, g1 = w + 1 and g2 = wσ
2,(l),b−1
γ,m , and w a tuning

parameter to adjust the acceptance rate. We aimed for an acceptance rate of about 40%. Then the
acceptance probability is

min

[ ∏

j :ej =l

∏

k∈Ωm

f (γkj |γ (l)
k , σ

2,(l),∗
γ,m )f (σ

2,(l),∗
γ,m )f (σ

2,(l),b−1
γ,m |σ 2,(l),∗

γ,m ,w)

f (γkj |γ (l)
k , σ

2,(l),b−1
γ,m )f (σ

2,(l),b−1
γ,m )f (σ

2,(l),∗
γ,m |σ 2,(l),b−1

γ,m ,w)
,1

]
.

(9) Sample from [ej |rest].

The prior is M(1,ψ), so the posterior is

ej |rest ∼ M

(
1,

[
ψ1

∏
k f (akjm|a(1)

km,σ
2,(1)
a,m(k))f (γkj |γ (1)

k , σ
2,(1)
γ,m(k))

∑
l ψl

∏
k f (akjm|a(l)

km,σ
2,(l)
a,m(k))f (γkj |γ (l)

k , σ
2,(l)
γ,m(k))

, . . . ,

ψL

∏
k f (akjm|a(L)

km ,σ
2,(L)
a,m(k))f (γkj |γ (L)

k , σ
2,(L)
γ,m(k))

∑
l ψl

∏
k f (akjm|a(l)

km,σ
2,(l)
a,m(k))f (γkj |γ (l)

k , σ
2,(l)
γ,m(k))

])
.

(10) Sample from [ψ |rest].

The prior is ψ ∼ Ord − D(ψ̃), and the posterior is therefore also ordered Dirichlet, given by
ψ |rest ∼ Ord − D(

�

ψ), where a slice sampler is used to draw from the ordered Dirichlet distrib-
ution.

(11) Sample from [μj |rest].
The prior is μj ∼ N(μ,�), so that the posterior is given by

μj |rest ∼ MVN

(
(
nj�

−1
j + �−1)−1

(

�−1
j

Nj∑

i=1

θij + �−1μ

)

,
(
nj�

−1
j + �−1)−1

)

.

(12) Sample from [μ|rest].
The prior is flat, so that the posterior is given by

μ|rest ∼ MVN

(

J−1
J∑

j=1

μj , J
−1�

)

.

(13) Sample from [�j |rest].
The prior is �−1

j ∼ Wish(n0,S0), so that the posterior is equal to �j |rest ∼ Inv − Wish(n0 +nj ,
∑Nj

i=1(θ ij − μj )(θ ij − μj )
T + S0). We set n0 = 3, S0 = 0.1I
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(14) Sample from [�|rest].
The prior is �−1 ∼ Wish(n0,S0), where we again set n0 = 3, S0 = 0.1I so that the posterior is
equal to

�|rest ∼ Inv − Wish

(

n0 + J,

J∑

j=1

(μj − μ)(μj − μ)T + S0

)

.
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