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Abstract. In this paper we extend to non-classical set theories the standard strategy of
proving independence using Boolean-valued models. This extension is provided by means of a
new technique that, combining algebras (by taking their product), is able to provide product-
algebra-valued models of set theories. In this paper we also provide applications of this new
technique by showing that: (1) we can import the classical independence results to non-classical
set theory (as an example we prove the independence of CH); and (2) we can provide new
independence results. We end by discussing the role of non-classical algebra-valued models for
the debate between universists and multiversists and by arguing that non-classical models should
be included as legitimate members of the multiverse.

§1. Introduction. There are two ways to conceive a set theory that is alternative
to the standard first order axiomatization of Zermelo and Fraenkel, ZFC. Either we
change the non-logical axioms of the set theory, or we modify its underlying logic. In
this paper we will concentrate on the second strategy, presenting models of ZF-like set
theories and extending independence results to this non-classical context.

The strategy that we follow in this paper consists in widening the range of application
of Boolean-valued models to non-classical set theories. The reason for this choice is
twofold. On the one hand Boolean-valued models represent (together with forcing,
with respect to which are another side of the same coin) the most versatile and used
method for proving independence results from ZFC. On the other hand, the method of
Boolean-valued models has been recently extended to include models of (fragments of)
ZF whose internal logic is non-classical. This was done by building algebra-valued
models able to interpret the sentences of set theory in algebras that are not necessarily
Boolean.

The first step in the construction of non-classical algebra-valued models of
set theories was undertaken in [13] where the authors produced a model, V(PS3),
of the negation free fragment of ZF, using an algebra, PS3, associated to a
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980 SOURAV TARAFDER AND GIORGIO VENTURI

paraconsistent1 logic. The model thus produced is very different from those normally
studied in paraconsistent set theory.2 Indeed, not only Unrestricted Comprehension is
not valid in V(PS3), but the set theory of this model shows a close resemblance with the
classical one of ZFC, since it allows us to develop a fine-grained notion of ordinal [16].
This first breakthrough then suggested that ZFC should not be understood necessarily
as a classical theory.

This insight was then confirmed in [10], where the authors discovered algebras
that, although neither Boolean nor Heyting, allowed algebra-valued models for all the
axioms of ZF. This work was then extended in [9] to show that all ZF axioms are
even compatible with a paraconsistent setting, that is: there are algebras for which
the corresponding algebra-valued models are paraconsistent and where all axioms
of ZF receive value 1. This came of the confirmation for the width of the class of
non-classical models of ZF.

The discovery of the existence of many different models of ZF-like non-classical set
theories, therefore, raised the obvious question of the status of independence in this
new non-classical context. This paper tackles this problem directly introducing a new
method for the construction of models of non-classical set theories.

The simple idea on which this new technique is based is that of combining algebras for
producing new algebra-valued models of set theories. The way in which the algebras are
combined is also quite elementary. Indeed, we will show that by considering a product
of algebras, where the operations are defined coordinate-wise, it is possible to merge two
algebra-valued models into one that validates what is common to both (Observation
3.22). Thus, these product algebra-valued models will allow us to extend independence
to non-classical set theories, by combining them with the standard Boolean-valued
constructions.

The two main results of the paper show two important aspects of independence in
non-classical set theory. On the one hand we show that we can import into this context
all the independence results obtained for classical ZFC (Theorem 5.35), while on the
other hand we show that there are new instances of independence that arise in this
non-classical context (Theorem 5.48). To show the fruitfulness of this new technique
we show the independence of the Continuum Hypothesis (CH) from the non-classical
set theory which originated this line of work: that of V(PS3) (Theorem 5.45).

The paper is organized as follows. In Section 2, we introduce the main notions and
results from the literature on algebra-valued models of set theory. In Section 3, we
introduce the product construction and we show how validity in the product-algebra-
valued models depends on the validity in the single algebra-valued models that compose
the product. Then, Section 4 presents a study of the many non-classical set theories
that this new method gives rise to. This variability will take into account the possible
mismatch between the logic associated to an algebra and the one associated to the
corresponding algebra-valued model (as presented in [12]). Moreover, as an application
of this new method we will also present a new set theory that is both paraconsistent and
paracomplete.3 The main results on independence are presented in Section 5 Besides

1 A logic is said to be paraconsistent if there exist two formulas ϕ and� such that (ϕ ∧ ¬ϕ) →
� is not a theorem.

2 See [8] for a review of this topic.
3 A logic is said to be paracomplete if there exists a formula ϕ such that ϕ ∨ ¬ϕ is not a

theorem.
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INDEPENDENCE PROOFS IN NON-CLASSICAL SET THEORIES 981

presenting the general pattern that independence follows in non classical set theories,
we will also give specific applications of the general method of product-algebra-valued
models. We conclude with Section 6, where we discuss the relevance of these results
for the multiverse debate in set theory. We will discuss to what extent non-classical set
theories can offer new interesting additions to the classical multiverse and, moreover,
to what extent algebra-valued models can considered models of set theory.

§2. Algebra-valued models of set theories. The theory of algebra-valued models
of set theory was initiated in the 1960s by Dana Scott, Robert M. Solovay, and Petr
Vopěnka. Practically it consists in taking a model of set theory V and a complete
Boolean algebra B and to construct a new algebra-valued model of set theory V(B).
Because of the properties of the Boolean algebra, the model V(B) verifies all axioms of
ZFC.4

Following the Boolean-valued model construction for ZFC, we briefly recall the
construction of general algebra-valued models of set theories, which follows very
closely the construction described in [3].

2.1. Generalized algebra-valued models. Let Λ be a set of logical connectives; we
shall assume that

{∧,∨,�,⊥} ⊆ Λ ⊆ {∧,∨,→,¬,�,⊥},
where ∧,∨, and → are binary connectives; ¬ is a unary connective; � and ⊥ are two
0-ary connectives.

Definition 2.1. An algebra A with an underlying set A is called a Λ-algebra if
corresponding to every logical connective in Λ, there is an operation in A such that
(A,∧,∨, 1, 0) satisfies the properties of bounded distributive lattices having 1 and 0 as
the top and bottom elements, respectively.

Definition 2.2. A Λ-algebra A is said to be complete if for any subset S of the
underlying set A of A, sup(S) and inf(S) exist in A, which will be denoted by

∨
S and∧

S, respectively.

Definition 2.3. Let A be a Λ-algebra having the underlying set A. A set D ⊆ A is
called a designated set if it is a filter in (A,∧,∨, 1, 0), i.e., D satisfies the following
properties:

(i) 1 ∈ D,
(ii) 0 /∈ D,
(iii) if x ∈ D and x ≤ y, then y ∈ D, and
(iv) for x, y ∈ D, we have x ∧ y ∈ D.

Fix a countable set of propositional variables, that we call Prop, and a countable
set of first-order variables, that we call Var. The propositional logic with propositional
variables in Prop and connectives in Λ will be denoted by LΛ. The first-order logic
of set theory with variables in Var, the binary predicate symbol ∈, and propositional
connectives from Λ will be denoted by LΛ,∈. The set of sentences of LΛ,∈ will be
denoted by SentΛ,∈. Observe that both LΛ and SentΛ,∈ have the same structure of

4 Throughout the paper we will slightly abuse notation expressing that an algebra-valued
model validates a theory T by writing V(A) |= T. This formal expression should stand for a
schema of sentences, each expressing the validity of one of the axioms of T in V(A).
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982 SOURAV TARAFDER AND GIORGIO VENTURI

Λ-algebra, for a fixed Λ. This fact will be used in Section §4.1 to define homomorphisms
between these structures.

For a set of logical connectives Λ, we define NFFΛ,∈ to be the closure of the atomic
formulas in LΛ,∈ under the connectives in Λ other than the connective ¬. It might be
the case that Λ does not contain ¬, in which case NFFΛ,∈ will be same as LΛ,∈. Since,
any formula ¬ϕ is classically (intuitionistically) equivalent to ϕ → ⊥, NFFΛ,∈ and
LΛ,∈ are equivalent in strength in first-order classical (intuitionistic) logic. If the set
of connectives is clear from the context, we shall denote NFFΛ,∈ by NFF only. The
formulas in NFF are called the negation-free formulas. By NFF-ZF and NFF-ZF– we
mean the negation free fragment of ZF and the negation free fragment of ZF excluding
the FoundationAxiom,5 respectively.

Consider a model V ofZFC and a complete Λ-algebraA = 〈A,∧,∨,⇒,∗ , 1, 0〉, where
(i) Λ = {∧,∨,→,¬,�,⊥},
(ii) the operators ∧, ∨, ⇒, and ∗ of A correspond to the connectives ∧, ∨, →, and

¬ of Λ, respectively,
(iii) the constants 1 and 0 of A correspond to the 0-ary connectives � and ⊥ of Λ,

respectively.
A universe of A-names is constructed by transfinite recursion:

V(A)
α = {x : x is a function and ran(x) ⊆ A

and there is � < α with dom(x) ⊆ V(A)
� )}, and

V(A) = {x : ∃α(x ∈ V(A)
α )}.

Let LA stand for the logic in the extended language of LΛ,∈, extended by adding
constants corresponding to each element in V(A).

Following the Boolean-valued model construction a map [[·]]A is defined from the
class of all formulas in the extended language to the set A of truth values as follows. If
u, v ∈ V(A) and ϕ,� are any two formulas, then

[[�]]A = 1,
[[⊥]]A = 0,

[[u ∈ v]]A =
∨

x∈dom(v)

(v(x) ∧ [[x = u]]A),

[[u = v]]A =
∧

x∈dom(u)

(u(x) ⇒ [[x ∈ v]]A) ∧
∧

y∈dom(v)

(v(y) ⇒ [[y ∈ u]]A),

[[ϕ ∧ �]]A = [[ϕ]]A ∧ [[�]]A,

[[ϕ ∨ �]]A = [[ϕ]]A ∨ [[�]]A,

[[ϕ → �]]A = [[ϕ]]A ⇒ [[�]]A,

[[¬ϕ]]A = [[ϕ]]∗
A
,

[[∀xϕ(x)]]A =
∧

u∈V(A)

[[ϕ(u)]]A, and

[[∃xϕ(x)]]A =
∨

u∈V(A)

[[ϕ(u)]]A.

5 Following [3], in this paper, we interpret the FoundationAxiom as a scheme: ∀x[∀y(y ∈ x →
ϕ(y)) → ϕ(x)] → ∀zϕ(z).
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Let D ⊆ A be a designated set. A formula ϕ of LA is said to be D-valid in V(A) if
[[ϕ]]A ∈ D and is denoted by V(A) |=D ϕ. Abusing the notations, sometimes we shall
denote the map [[·]]A by [[·]] and the validity relation V(A) |=D ϕ by V(A) |= ϕ when the
algebra A and the designated set D are clear from the context.

It is well-known that if A is a Boolean algebra or Heyting algebra then V(A) |= ZF,
also in particular if A is a Boolean algebra then we get V(A) |= Axiom of Choice (cf.
[3, 6]).

Bounded quantification in the algebra-valued models. Let us consider a Λ-algebra A,
a formula ϕ(x) in LA and an element u ∈ V(A). Then, the formula ∀x(x ∈ u → ϕ(x))
is a bounded quantification over the formula ϕ(x). Following the definition of the map
[[·]], we have

[[∀x(x ∈ u → ϕ(x))]] =
∧

x∈V(A)

(u(x) ⇒ [[ϕ(x)]]).

For any formula ϕ(x) in LA, consider the following equation:

[[∀x(x ∈ u → ϕ(x))]] =
∧

x∈dom(u)

(u(x) ⇒ [[ϕ(x)]]). (BQϕ)

If A is a Boolean algebra (or Heyting algebra) then it can be proved that for any
formula ϕ(x) and any u ∈ V(A),

∧

x∈V(A)

(u(x) ⇒ [[ϕ(x)]]) =
∧

x∈dom(u)

(u(x) ⇒ [[ϕ(x)]]),

which implies that BQϕ holds in V(A) for every formula ϕ [3, corollary 1.18]. But there
exists Λ-algebra A and formulas ϕ in LA such that BQϕ does not hold in V(A) [13,
p. 196].

For a given Λ- algebra A, we say that the bounded quantification property holds
for a formula ϕ of LA if BQϕ holds in V(A). It will said to be that the NFF-
bounded quantification property (NFF-BQϕ) holds in V(A) if the bounded quantification
property BQϕ hold in V(A) for all negation free formulas ϕ. We will heavily depend on
this property to establish the results throughout this paper.

2.2. Reasonable implication algebra (RIA). The notion of reasonable implication
algebra was first introduced in [13] to develop a theory on generalized algebra-valued
models which validate a ‘reasonable’6 fragment of ZF, viz. NFF-ZF–.

Definition 2.4 [13, p. 194]. A complete distributive lattice, augmented with an
operation ⇒, A := 〈A,∧,∨,⇒, 1, 0〉 is called a reasonable implication algebra (RIA)
if the following properties hold:

6 In this sense, reasonable is intended to convey the idea that a deductive RIA-valued model
is able to validate a reasonable amount of ZF. The reason to focus on RIAs, in [13], was
motivated by the syntactic forms of the ZF axioms, which are normally presented in form
of implications. On the other hand, besides the InfinityAxiom, negation only appears in the
axiom schemata, within the formulas that are used to instantiate the schemata.
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984 SOURAV TARAFDER AND GIORGIO VENTURI

Table 1. Truth tables of the operations of PS3

∧ 1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 0
0 0 0 0

∨ 1 1/2 0

1 1 1 1
1/2 1 1/2 1/2
0 1 1/2 0

⇒ 1 1/2 0

1 1 1 0
1/2 1 1 0
0 1 1 1

P1. (x ∧ y) ≤ z implies x ≤ (y ⇒ z),
P2. y ≤ z implies (x ⇒ y) ≤ (x ⇒ z), and
P3. y ≤ z implies (z ⇒ x) ≤ (y ⇒ x).

A reasonable implication algebra is said to be deductive if, in addition,

((x ∧ y) ⇒ z) = (x ⇒ (y ⇒ z)). (P4)

Theorem 2.5 [13, theorems 3.3 and 3.4]. If A is a deductive RIA such that NFF-BQϕ
holds in V(A) then for any choice of the designated set we have V(A) |= NFF-ZF–.

2.3. A deductive RIA, PS3. As an example of a deductive reasonable implica-
tion algebra, beside Heyting and Boolean, we find a three-valued algebra PS3 =
〈{1, 1/2, 0},∧,∨,⇒, 1, 0〉 with operations defined in Table 1 and supplemented with
a unary operator ∗ defined by 1∗ = 0, 1/2∗ = 1/2, and 0∗ = 1. We use the symbol
PS3 to refer to the augmented structure 〈PS3,

∗ 〉. The designated set is taken to be
DPS3 = {1, 1/2}. In [18] a propositional logic LPS3 is developed which is sound and
(weak) complete with respect to PS3. The axioms of LPS3 are theorems of the classical
propositional logic as well. Theorem 2.6 explains precisely the connection between
LPS3 and the classical propositional logic.

Theorem 2.6 [18, theorem 4.2]. LPS3 is a maximal paraconsistent logic with respect to
the classical propositional logic, CPL, i.e., if the set of axioms of LPS3 is extended by
adding any theorem of CPL, which is not a theorem of LPS3, then the extended theory
will be equivalent to CPL.

It was proved in [13] that for any negation free formula ϕ, V(PS3) satisfies BQϕ .
Moreover the negation free fragment of Foundation Axiom is valid in V(PS3). Hence,
combining these results and using Theorem 2.5 we have the following theorem.

Theorem 2.7 [13, corollary 5.2]. V(PS3) |= NFF-ZF.

As a consequence V(PS3) becomes an algebra-valued model for a paraconsistent set
theory, which, however, differs from the classical ZF, since some instances of the axiom
schemata of ZF fail in V(PS3).

Theorem 2.8. There is a non-negation-free formula ϕ(x) in the language LΛ,∈ of ZFC,
for which the corresponding instance of the SeparationAxiom fails in V(PS3).

Proof. Consider the following two PS3-names: u = {〈∅, 1〉} and v = {〈∅, 1/2〉}.
Then,

[[u = v]]PS3 = (1 ⇒ 1/2) ∧ (1/2 ⇒ 1) ∈ DPS3 ,

by the definitions of implication and equality.
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Consider the formula ϕ(x) := ¬∃y(y ∈ x). Now,

[[ϕ(v)]]PS3 = [[¬∃y(y ∈ v)]]PS3

=
( ∨

y∈VPS3

(
v(∅) ∧ [[∅ = y]]PS3

))∗

=
(

1/2 ∧ [[∅ = ∅]]PS3

)∗
∈ DPS3 , by definition of the negation.

Similarly, since u(∅) = 1 = [[∅ = ∅]]PS3 , we calculate [[ϕ(u)]]PS3 = 0, which implies
that [[ϕ(u)]]PS3 /∈ DPS3 . We go on to show that Separation fails. Consider the PS3-
names u, v and the formula ϕ(x), as defined above and fix an element w of V(PS3) as
w = {〈u, 1〉, 〈v, 1〉}. In particular, we show that:

∨

y∈VPS3

( ∧

x∈VPS3

([[x ∈ y]]PS3 ⇒ ([[ϕ(x)]]PS3 ∧ [[x ∈ w]]PS3))∧

∧

x∈VPS3

(([[x ∈ w]]PS3 ∧ [[ϕ(x)]]PS3) ⇒ [[x ∈ y]]PS3)
)

/∈ DPS3 .

Now suppose that, for an arbitrary y0 ∈ VPS3 we have
∧

x∈VPS3

([[x ∈ w]]PS3 ∧ [[ϕ(x)]]PS3 ⇒ [[x ∈ y0]]PS3) ∈ DPS3 .

In particular
(
[[v ∈ w]]PS3 ∧ [[ϕ(v)]]PS3 ⇒ [[v ∈ y0]]PS3

)
∈ DPS3 . Since [[v ∈ w]]PS3 = 1

and [[ϕ(v)]]PS3 ∈ DPS3 , we have [[v ∈ y0]]PS3 ∈ DPS3 . Therefore, there exists a z0 ∈
dom(y0) such that y0(z0) ∧ [[v = z0]]PS3 ∈ DPS3 . So we get [[u = v]]PS3 ∧ [[v = z0]]PS3 ∈
DPS3 and thus [[u = z0]]PS3 ∈ DPS3 . This implies [[u ∈ y0]]PS3 ∈ DPS3 . But then since
[[ϕ(u)]]PS3 = 0 we have:

[[u ∈ y0]]PS3 ⇒ ([[ϕ(u)]]PS3 ∧ [[u ∈ w]]PS3) = 0.

Thus, for any y ∈ V(PS3) if
∧

x∈VPS3

(([[x ∈ w]]PS3 ∧ [[ϕ(x)]]PS3) ⇒ [[x ∈ y]]PS3) �= 0,

then, ∧

x∈VPS3

[[x ∈ y]]PS3 ⇒ ([[ϕ(x)]]PS3 ∧ [[x ∈ w]]PS3) = 0,

i.e., ∨

y∈VPS3

( ∧

x∈VPS3

([[x ∈ y]]PS3 ⇒ ([[ϕ(x)]]PS3 ∧ [[x ∈ w]]PS3))∧

∧

x∈VPS3

(([[x ∈ w]]PS3 ∧ [[ϕ(x)]]PS3) ⇒ [[x ∈ y]]PS3)
)

= 0.

And this concludes the proof.
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For latter use, let us give the name Sep to the instance of the SeparationAxiom that
Theorem 2.8 shows to fail in V(PS3):

∀x∃y∀z
(
z ∈ y ↔ (z ∈ x ∧ (¬∃w(w ∈ z)))

)
.

§3. Extending the class of algebra-valued models of set theories. We now introduce
a generalization of algebra-valued models in terms of product algebras. We will present
their main definitions and describe validity and invalidity for these structures.

3.1. Product of two algebras. In order to extend the class of algebras which give rise
to algebra-valued models of set theories we shall combine them, using products. From
now on, unless otherwise stated, we fix the following signature Λ = {∧,∨,→,¬,�,⊥}.

Definition 3.9. Let us consider two Λ-algebras A = 〈A,∧A,∨A,⇒A,
∗A , 1A, 0A〉 and

B = 〈B,∧B,∨B,⇒B,
∗B , 1B, 0B〉. The product algebra A× B is the structure 〈A ×

B,∧,∨,⇒,∗ , 1, 0〉 having domain A × B and with operations defined coordinate-wise:
i.e., for any a, c ∈ A and b, d ∈ B,

(a, b) ∧ (c, d ) = (a ∧A c, b ∧B d ),

(a, b) ∨ (c, d ) = (a ∨A c, b ∨B d ),

(a, b) ⇒ (c, d ) = (a ⇒A c, b ⇒B d ),

(a, b)∗ = (a∗A , b∗B ),

1 = (1A, 1B), and

0 = (0A, 0B).

Observation 3.10. From the definition it follows that A× B is also a Λ-algebra having
the following property: for any two elements (a, b), (c, d ) ∈ A× B,

(a, b) ≤ (c, d ) iff a ≤A c and b ≤B d.

Proof. The operations of the product algebra are defined coordinate wise and both
the component algebras are bounded distributive lattices. Hence, the product algebra
〈A × B,∧,∨,⇒,∗ , 1, 0〉 is a bounded distributive lattice.

Let us now consider two elements (a, b), (c, d ) ∈ A× B. Then, (a, b) ≤ (c, d ) iff
(a, b) ∧ (c, d ) = (a, b) iff (a ∧ c, b ∧ d ) = (a, b) iff a ∧ c = a and b ∧ d = b iff a ≤A c
and b ≤B d .

Notice that, for each element (a, b) ∈ A× B, we have 0 ≤ (a, b) ≤ 1.

Theorem 3.11. For two complete Λ-algebras A and B the product algebra A× B is also
complete, satisfying

(i)
∨
i∈I (ai , bi) = (

∨
i∈I ai ,

∨
i∈I bi), and

(ii)
∧
i∈I (ai , bi) = (

∧
i∈I ai ,

∧
i∈I bi),

where I is an index set and ai ∈ A, bi ∈ B for every i ∈ I .

Proof. Let us consider an arbitrary collection {(ai , bi) ∈ A× B : i ∈ I }, where I is
an index set. Since A and B are complete,

∨
i∈I ai and

∨
i∈I bi exist. For each j ∈

I, aj ≤
∨
i∈I ai and bj ≤

∨
i∈I bi . Hence for each j ∈ I, (aj, bj) ≤ (

∨
i∈I ai ,

∨
i∈I bi),

which shows that (
∨
i∈I ai ,

∨
i∈I bi) is an upper bound of the set {(ai , bi) ∈ A× B :

i ∈ I }. Let (c, d ) be an upper bound of {(ai , bi) ∈ A× B : i ∈ I }. Then ai ≤ c and
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bi ≤ d for all i ∈ I . This leads to the fact that
∨
i∈I ai ≤ c and

∨
i∈I bi ≤ d , i.e.,

(
∨
i∈I ai ,

∨
i∈I bi) is the least upper bound of the set {(ai , bi) ∈ A× B : i ∈ I }. So we

get (i)
∨
i∈I (ai , bi) = (

∨
i∈I ai ,

∨
i∈I bi).

By the similar argument we can prove that (
∧
i∈I ai ,

∧
i∈I bi) is the greatest

lower bound of the set {(ai , bi) ∈ A× B : i ∈ I }. Hence we have (ii)
∧
i∈I (ai , bi) =

(
∧
i∈I ai ,

∧
i∈I bi).

Theorem 3.12. If two Λ-algebras A and B are complete deductive RIAs then their
product algebra A× B is also a Λ-algebra which is a complete deductive RIA.

Proof. Let us consider two Λ-algebras A = 〈A,∧A,∨A,⇒A,
∗A , 1A, 0A〉 and B =

〈B,∧B,∨B,⇒B,
∗B , 1B, 0B〉 and suppose the product algebra A× B is the structure

〈A × B,∧,∨,⇒,∗ , 1, 0〉. That the product algebra A× B is a Λ-algebra, follows from
Observation 3.10 Since, both the algebras A and B are complete, Theorem 3.11 proves
the completeness of the product algebra A× B.

We claim that the product algebra is a deductive RIA. In order to prove that the
property P1 holds in A× B, let (a, b), (c, d ), (e, f) ∈ A × B be three elements such
that (a, b) ∧ (c, d ) ≤ (e, f). Then by Observation 3.10, we have a ∧A c ≤ e and b ∧B
d ≤ f. Since, the property P1 holds in A and B both, we can conclude that a ≤
c ⇒A e and b ≤ d ⇒B f. Hence, one more application of Observation 3.10 gives that
(a, b) ≤ (c, d ) ⇒ (e, f). The other properties P2, P3, and P4 can similarly be proved
by applying Observation 3.10 and using the fact that the operations of the product
algebra are defined coordinate wise.

3.2. Algebra-valued models using the product algebras. In this paper, unless
otherwise stated, we shall consider the designated set of the product algebra A× B
asDA ×DB, whereDA andDB are the designated sets of A and B, respectively. Indeed,
it is easy to check thatDA ×DB is a designated set of A× B. We denote this designated
set DA ×DB of A× B by DA×B.

Remark 3.13. As a direct consequence of the notion of validity in algebra-
valued models, for any two Λ-algebras A and B, we get that a formula ϕ(of the
extended language of LA×B) is valid in the product-algebra-valued model V(A×B),
i.e., V(A×B) |=DA×B ϕ, whenever [[ϕ]]A×B ∈ DA×B = DA ×DB, where DA and DB are
the designated sets of A and B, respectively. We will often express the notation of the
validity of a formula ϕ in the product-algebra-valued model as V(A×B) |= ϕ, only when
the designated set of A× B is considered to be DA×B.

Observation 3.14. If A and B are two complete deductive RIA s such that A× B in
addition satisfies NFF-BQϕ , then from Theorems 2.5 and 3.12 we obtain that V(A×B) |=
NFF-ZF–. Therefore, from two algebra-valued models V(A) and V(B) which validate NFF-
ZF– we immediately get a product-algebra-valued model V(A×B) which also validates
NFF-ZF–.

Since, the validity of a formula ϕ of LA×B depends on whether the algebraic value
of [[ϕ]]A×B, which is an element of A × B, belongs to the set DA ×DB, an immediate
question consists in asking whether the value of [[ϕ]]A×B depends on the values of [[ϕ]]A
and [[ϕ]]B. If this is the case, then validity in V(A×B) can be transferred to the validity in
V(A) and V(B) separately. A positive answer of this question will be given in Theorem
3.17 In order to do so we need Definition 3.15 and Lemma 3.16 which will explain how
the value of [[ϕ]]A×B can be calculated coordinate wise.
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Then Theorem 3.17 is enough to show Theorem 3.19, which in turn states that if
BQϕ holds in both of V(A) and V(B) then BQϕ also holds in V(A×B), for every formula
ϕ. Thus Theorem 3.19 represents the cornerstone for the constructions of product
algebra-valued models of the negation free fragment of ZF.

We shall use (meta-)induction to prove the following results. This principle can be
proved in V(A×B) by using the same rank arguments used for Boolean-valued models
[3, induction principle 1.7]. In V(A×B), the (meta-)induction principle states that, for
every property Φ of names, if for all u ∈ V(A×B),

∀v ∈ dom(u)(Φ(v)) implies Φ(u),

then every u ∈ V(A×B) has the property Φ.

Definition 3.15. Let A and B be two complete Λ-algebras. Then for any u ∈ V(A×B)

recursively ū and u are defined as follows.

(i) dom(ū) = {x̄ : x ∈ dom(u)} and ū(x̄) = a if u(x) = (a, b), for some b ∈ B.
(ii) dom(u) = {x : x ∈ dom(u)} and u(x) = b if u(x) = (a, b), for some a ∈ A.

From the definition it is clear that for any u ∈ V(A×B), ū ∈ V(A) and u ∈ V(B).

Lemma 3.16. Let A,B be two complete Λ-algebras. For any u, v ∈ V(A×B)

(i) [[u = v]]A×B = ([[ū = v̄]]A, [[u = v]]B),
(ii) [[u ∈ v]]A×B = ([[ū ∈ v̄]]A, [[u ∈ v]]B).

Proof. (i) The proof is done by (meta-)induction. Let v ∈ V(A×B) be an element
such that for any u ∈ V(A×B) and w ∈ dom(v), we have

[[u = w]]A×B = ([[ū = w̄]]A, [[u = w]]B),

where suppose A = 〈A,∧A,∨A,⇒A,
∗A , 1A, 0A〉, B = 〈B,∧B,∨B,⇒B,

∗B , 1B, 0B〉 and
A× B = 〈A × B,∧,∨,⇒,∗ , 1, 0〉. It is then sufficient to prove that [[u = v]] = ([[ū =
v̄]], [[u = v]]).

[[u = v]]A×B

=
∧

x∈dom(u)

(u(x) ⇒ [[x ∈ v]]A×B) ∧
∧

w∈dom(v)

(v(w) ⇒ [[w ∈ u]]A×B), definition of [[· = ·]]

=
∧

x∈dom(u)

(u(x) ⇒
∨

w∈dom(v)

(v(w) ∧ [[w = x]]A×B))∧

∧

w∈dom(v)

(v(w) ⇒
∨

x∈dom(u)

(u(x) ∧ [[x = w]]A×B)), using the definition of [[· ∈ ·]]

=
∧

x∈dom(u)

(ū(x̄) ⇒A

∨

w∈dom(v)

(v̄(w̄) ∧A [[w̄ = x̄]]A), u(x) ⇒B

∨

w∈dom(v)

(v(w) ∧B [[w = x]]B)) ∧
∧

w∈dom(v)

(v̄(w̄) ⇒A

∨

x∈dom(u)

(ū(x̄) ∧A [[x̄ = w̄]]A), v(w) ⇒B

∨

x∈dom(u)

(u(x) ∧B [[x = w]]B)),

using the induction hypothesis, that u(x) = (ū(x̄), u(x)), and that

v(w) = (v̄(w̄), v(w)), for all x ∈ dom(u) and w ∈ dom(v)

= ([[ū = v̄]]A, [[u = v]]B), by using Theorem 3.11. and the definition of [[· = ·]].
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(ii) For any u, v ∈ V(A×B)

[[u ∈ v]]A×B =
∨

w∈dom(v)

(v(w) ∧ [[w = u]]A×B)

=
∨

w∈dom(v)

(v(w) ∧ ([[w̄ = ū]]A, [[w = u]]B)), applying (i)

= (
∨

w̄∈dom(v̄)

(v̄(w̄) ∧A [[w̄ = ū]]A),
∨

w∈dom(v)

(v(w) ∧B [[w = u]]B)),

by Theorem 3.11. and the fact that v(w) = (v̄(w̄), v(w)),

for all w ∈ dom(v)

= ([[ū ∈ v̄]]A, [[u ∈ v]]B).

As a conclusion of Lemma 3.16 we have the following theorem.

Theorem 3.17. Let A and B be two complete Λ-algebras. If ϕ(x1, ... , xn) is a formula
of LΛ,∈, the language of ZFC, having n free variables x1, ... , xn, then for any u1, ... , un ∈
V(A×B),

[[ϕ(u1, ... , un)]]A×B = ([[ϕ(ū1, ... , ūn)]]A, [[ϕ(u1, ... , un)]]B).

Proof. The proof can be completed with the usual induction on the complexity of
the formula ϕ, where the base cases follow from Lemma 3.16 (and Theorem 3.11 is
needed in the cases of quantifiers).

Corollary 3.18. If ϕ ∈ SentΛ,∈, i.e., ϕ is a sentence in the language of ZFC, then
[[ϕ]]A×B = ([[ϕ]]A, [[ϕ]]B).

We now prove that not only the properties of the algebra but the property BQϕ for
any formula ϕ is also hereditary in the product algebras.

Theorem 3.19. Let A and B be two complete Λ-algebras. If BQϕ holds for a formula ϕ
in V(A) and V(B) both, then BQϕ holds in V(A×B).

Proof. Consider two complete Λ-algebras A = 〈A,∧A,∨A,⇒A,
∗A , 1A, 0A〉 and B =

〈B,∧B,∨B,⇒B,
∗B , 1B, 0B〉. Consider the product algebraA× Bwith the structure 〈A ×

B,∧,∨,⇒,∗ , 1, 0〉. Let ϕ be a formula such that BQϕ holds in both V(A) and V(B) and
let u ∈ V(A×B) be any element. Then we have the following.

[[∀x(x ∈ u → ϕ(x))]]A×B

= ([[∀x(x ∈ ū → ϕ(x))]]A, [[∀x(x ∈ u → ϕ(x))]]B), by Theorem 3.17.

= (
∧

x∈dom(ū)

(ū(x) ⇒A [[ϕ(x)]]A),
∧

x∈dom(u)

(u(x) ⇒B [[ϕ(x)]]B)),

since BQϕ holds in V(A) and V(B) both

= (
∧

x∈dom(u)

(ū(x̄) ⇒A [[ϕ(x̄)]]A),
∧

x∈dom(u)

(u(x) ⇒B [[ϕ(x)]]B)),

follows from the definitions of ū and u

=
∧

x∈dom(u)

((ū(x̄) ⇒A [[ϕ(x̄)]]A), (u(x) ⇒B [[ϕ(x)]]B)), by Theorem 3.11.(ii).
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=
∧

x∈dom(u)

((ū(x̄), u(x)) ⇒ ([[ϕ(x̄)]]A, [[ϕ(x)]]B)), by the definition of ⇒

=
∧

x∈dom(u)

(u(x) ⇒ [[ϕ(x)]]A×B),

by Theorem 3.17. and the definitions of ū and u.

Hence, BQϕ holds in V(A×B).

The following theorem acts as a backbone of the model constructions of non-classical
set theories in this paper.

Theorem 3.20. Let A and B be two Λ-algebras such that they are complete deductive
RIA s and NFF-BQϕ holds in both of the algebra-valued models V(A) and V(B). Then,
V(A×B) |= NFF-ZF–.

Proof. The theorem follows as an application of Theorem 2.5, in addition to the
results proved in Theorems 3.12 and 3.19.

Definition 3.21. For a Λ-algebra A with a designated set D, ValSent(A,D) is the
collection of all sentences valid in V(A), i.e.,

ValSent(A,D) = {ϕ ∈ SentΛ,∈ : V(A) |=D ϕ}.
To keep the notation uniform with the other notations used in this paper, we

sometimes denote ValSent(A,D) by ValSentA when the designated set D is clear from
the context.

Observation 3.22. For any two complete Λ-algebras A and B, having the designated sets
DA and DB, respectively, ValSent(A×B,DA×B) = ValSent(A,DA) ∩ ValSent(B,DB).

Proof. For any two complete Λ-algebras A and B,

ValSent(A×B,DA×B) = {ϕ ∈ SentΛ,∈ : V(A×B) |=DA×B
ϕ}

= {ϕ ∈ SentΛ,∈ : [[ϕ]]A×B ∈ DA ×DB},
= {ϕ ∈ SentΛ,∈ : ([[ϕ]]A, [[ϕ]]B) ∈ DA ×DB}, by Corollary 3.18.

= {ϕ ∈ SentΛ,∈ : [[ϕ]]A ∈ DA} ∩ {ϕ ∈ SentΛ,∈ : [[ϕ]]B ∈ DB}
= ValSent(A,DA) ∩ ValSent(B,DB).

This completes the proof.

Notice that Observation 3.22 depends on the specific choice of the designated set
of A× B, that is DA×B, in terms of the product of the single designated sets DA and
DB. To see this, consider the case when both the algebras A and B are equal to PS3.
The designated set of PS3 is DPS3 = {1, 1/2}. Let us now take the following formula in
SentΛ,∈:

∃x∃y∃z(z ∈ x ∧ z /∈ y ∧ x = y). (Par)

It was proved in [13, theorem 6.2] that [[Par]]PS3 = 1/2, i.e., V(PS3) |=DPS3
Par. Hence,

Par ∈ ValSent(PS3,DPS3
) ∩ ValSent(PS3,DPS3

). If the designated set of the product algebra

PS3 × PS3 was taken to be D = {(1, 1)}, instead of DPS3×PS3 , then

[[Par]]PS3×PS3 = ([[Par]]PS3 , [[Par]]PS3) = (1/2, 1/2) /∈ D.
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Hence, by the definition of validity,

V(PS3×PS3) �|=D Par, i.e., Par /∈ ValSent(PS3×PS3,D),

which implies that ValSent(PS3×PS3,D) � ValSent(PS3,DPS3
) ∩ ValSent(PS3,DPS3

).

3.3. Invalidity in product algebras. So far we discussed validity in product algebra-
valued models, showing that the product structure determines a coordinate-wise notion
of validity. This is enough to transfer from the single algebra-valued models to their
product the validity of the negation free fragment of ZF.

Since the general goal of this work is to discuss independence in non-classical set
theory, we also need to discuss the notion of invalidity. In this respect, we notice
that the coordinate-wise functioning of validity generates a fundamental mismatch
between the invalidity of a formula and the validity of its negation. Indeed, given
a formula ϕ ∈ SentΛ,∈, we have that V(A×B) |= ϕ iff [[ϕ]]A×B ∈ DA×B iff

(
[[ϕ]]A ∈ DA

and [[ϕ]]B ∈ DB

)
. Therefore, we get that V(A×B) �|= ϕ iff

(
[[ϕ]]A /∈ DA or [[ϕ]]B /∈ DB

)
.

However, this does not necessarily means that V(A×B) |= ¬ϕ, since this holds only when(
[[¬ϕ]]A ∈ DA and [[¬ϕ]]B ∈ DB

)
.

Let us consider a concrete case, within a Boolean setting. Consider two complete
Boolean algebrasB1 andB2 and two ultrafilters,DB1 andDB2 ofB1 andB2, respectively,
such that the corresponding Boolean-valued models validate, respectively, CH and
¬CH, say, V(B1) |=DB1

CH and V(B2) |=DB2
¬CH. First of all notice that, the product

algebra B1 × B2 is a Boolean algebra, as the operations are defined coordinate-wise.
Now, because of the validity in V(B2), we have that V(B1×B2) �|=DB1×B2

CH. However,

because of the validity in V(B1), we also have that V(B1×B2) �|=DB1×B2
¬CH. This

observation is even more striking if we realize that, since both V(B1) and V(B2) are
classical models of ZF, we have that classical logic, including Terzium non Datur,
is valid in V(B1×B2). Hence, for every formula ϕ we have V(B1×B2) |=DB1×B2

ϕ ∨ ¬ϕ.

Hence, in particular, V(B1×B2) |=DB1×B2
CH ∨ ¬CH.

The explanation for this peculiar phenomenon is twofold. On the one hand we can
simply notice that the filterD1 ×D2 is not an ultrafilter (although bothD1 andD2 are).
On the other hand, we can also notice that it is the peculiar structure of the product
algebra-valued models which is responsible for the indeterminateness of CH. Indeed, it
is exactly the use of a coordinate-wise notion of validity that allows these structures to
internalize the meta-theoretical indeterminacy of the truth-value of a sentence like CH.
For this same reason, these structures seem perfectly suited to provide a fine-grained
analysis of independence in set theory.7 Toward this goal let us define what we mean
by independence in this context.

The choice of the following definition is motivated by the attempt to separate the
notion of independence from the specific (and possibly peculiar) properties of negation.
Moreover, it is classically equivalent to the standard one.

Definition 3.23. Let T and ϕ be, respectively, a theory and sentence in SentΛ,∈. We
say that ϕ is independent from T whenever there are two Λ-algebras A and B such that:

7 We defer to Section 6 a discussion on the relationships between algebra-valued model and
genuine models of set theory.
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(i) V(A) |= T and V(B) |= T,
(ii) V(A) |= ϕ,
(iii) V(B) �|= ϕ.

Thanks to Definition 3.23 we can account for proper cases of independence, even in
the context of paraconsistent negations. For example, in the case of PS3, we have that if
[[ϕ]]PS3 = 1/2, then [[¬ϕ]]PS3 = 1/2. Thus, every sentence receiving the intermediate value
of PS3 (and showing the paraconsistency of V(PS3)) could automatically be understood
as independent from the set theory of V(PS3). Thus Definition 3.23 avoids these trivial
cases allowing one to account for real instances of independence in non-classical set
theories.

Before using product algebras to provide independence results, we will devote an
entire section to the study of the different logics that can result by taking products
of well-known algebras. To this end, we will revise few definitions from the literature.
These are devised to account for the variability that can subsist between the logic
associate to an algebra and the one associated to an algebra-valued model built from
that algebra [12].

§4. The logics and the set theories of product algebras. In this section we will explore
the many logical and set-theoretical systems that results in combining well-known logics
and by then producing new product-algebra-valued models.

Toward this aim we will first review the issue (and the formal tools to study it) of
the separation between the logic associated to an algebra and the logic underlying the
set theory of the algebra-valued model thus constructed [12].

Besides presenting concrete examples of product algebra-valued models, this section
presents the first applications of our general method. On the one hand (in Section
§4.1), we will continue and deepen the study of the notions of loyalty and faithfulness,
introduced in [12], and we will offer a general characterization of the relation between
the logic of a product algebra-valued model and the logics of the component algebras
(Table 2). On the other hand (in Section §4.2), we will use the product construction to
produce a new example of algebra-valued model which validate a set theory that is both
paraconsistent and paracomplete and that still validates the negation free fragments of
ZF. This second application will therefore extend the result from [13], showing that it
is possible to validate NFF-ZF in a logical environment that is even weaker than that
of PS3.

4.1. Loyalty and faithfulness with respect to product algebras. In this section we will
follow the notations of [12]. For any two structures U1 = 〈U1,Λ〉 and U2 = 〈U2,Λ〉
having domains U1 and U2, respectively, and operations corresponding to all the
connectives in Λ, a map f : U1 → U2 is said to be a Λ-homomorphism if it preserves
all the connectives in Λ. A Λ-homomorphism f is said to be a Λ-isomorphism if in
addition f is a bijective function. A Λ-isomorphism from a structure into itself is said
to be a Λ-automorphism.

In Section 2.1, we defined that LΛ is the collection of all propositional formulas and
SentΛ,∈ is the collection of all sentences in LΛ,∈. Let us now consider any Λ-algebra
A, having domain A. Then, for the structures 〈LΛ,Λ〉 and A, any Λ-homomorphisms
v : LΛ → A are called A-assignments. Similarly, consider the two structures 〈LΛ,Λ〉
and 〈SentΛ,∈,Λ〉; Λ-homomorphisms T : LΛ → SentΛ,∈ are called translations.
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For a Λ-algebra A and a designated set D of A, following the standard way, the
propositional logic of (A, D) is defined as

L(A, D) := {ϕ ∈ LΛ : v(ϕ) ∈ D for all A-assignments v}.
Notice that if B is a Boolean algebra and D is any filter, then L(B, D) = CPL, the

classical propositional logic.
Let A be a Λ-algebra having domain A and the designated set D. Corresponding

to the two structures 〈SentΛ,∈,Λ〉 and A, the map [[·]]A restricted over SentΛ,∈,
[[·]]A �SentΛ,∈ : SentΛ,∈ → A is a Λ-homomorphism. Following [12, sec. 2.6], we will
define the propositional logic of ([[·]]A �SentΛ,∈ , D) as

L([[·]]A �SentΛ,∈ , D) := {ϕ ∈ LΛ : [[T (ϕ)]] ∈ D for all translations T}.

To make the notation more readable, from now on, we will denote L([[·]]A �SentΛ,∈ , D)
by L([[·]]A, D). Note that, the collection L([[·]]A, D) contains all those propositional
formulas ϕ such that if every propositional variable of ϕ is replaced by an arbitrarily
chosen set theoretic sentence then the resultant sentence remains valid in V(A).
Intuitively, L([[·]]A, D) is the logic of the algebra-valued model V(A).

It is not hard to check that, for any Λ-algebra A and a designated set D we have,
L(A, D) ⊆ L([[·]]A, D).

Definition 4.24 [12]. For a Λ-algebra A and a designated set D, the map [[·]]A �SentΛ,∈
is said to be loyal to (A, D) if L(A, D) = L([[·]]A, D).

Intuitively, the loyalty confirms that the logic of an algebra A and the logic of its
corresponding algebra-valued model coincide. Hence, abusing notation, sometimes we
shall refer to the fact that [[·]]A �SentΛ,∈ is loyal to (A, D) by saying that V(A) is loyal to
(A, D).

Although counter-intuitive, it is not the case that for any algebra A the algebra-
valued model V(A) is loyal to (A, D) and already at the level of Heyting algebras we
find cases of illoyal structures in [12, sec. 5.2]. For example, consider the Heyting
algebra H5 (displayed in Figure 1) of five elements which is the tail stretch of the
four-valued Boolean algebra B4 = 〈B,∧B,∨B,⇒B,

∗B , 1, 0〉 (displayed in Figure 2) by
adding one element 1′ at the top of B4, where B = {1, 1/2, (1/2)′, 0}.

The structure H5 becomes a complete Λ-algebra having 1′ as the top element and
B4 as a substructure, where the operator ⇒ of H5 is defined as follows:

a ⇒ b :=

⎧⎨
⎩
a ⇒B b if a, b ∈ B such that a �≤ b,

1′ if a, b ∈ B with a ≤ b or if b = 1′,
b if a = 1′,

One can check that H5 is a Heyting algebra and that V(H5) is illoyal to (H5, {1′}).

Definition 4.25 [12]. For a Λ-algebra A, the map [[·]]A �SentΛ,∈ is said to be faithful to
A if for every a ∈ A, there is ϕ ∈ SentΛ,∈ such that [[ϕ]] = a.

To unify the notations of loyalty and faithfulness, the fact that [[·]]A �SentΛ,∈ is faithful
to A will be expressed by saying that V(A) is faithful to A. Observe that the notion of
faithfulness is independent of the choice of the designated set of A.

Theorem 4.26 [12, lemma 1]. Let A be a Λ-algebra and D be any designated set. If V(A)

is faithful to A, then it is loyal to (A, D).
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Figure 1. The Heyting algebra H5.
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0
Figure 2. The Boolean algebra B4.

We shall now explore the loyalty and faithfulness of the product-algebra-valued
models depending on the loyalty and faithfulness of the algebra-valued models of the
component algebras. In this process we need the following theorem.

Theorem 4.27 [12, corollary 8]. Let A be a Λ-algebra having the underlying set A. If
there exist an element a ∈ A and a Λ-automorphism f : A → A such that f(a) �= a,
then there does not exist any ϕ ∈ SentΛ,∈ such that [[ϕ]]A = a.

4.1.1. Product of algebras corresponding to two loyal models. As expected, the logic
of the product-algebra-valued model will be equal to the intersection of the logics of
the algebra-valued models of the component algebras.

Theorem 4.28. For any two Λ-algebras A and B having the designated sets DA and DB,
respectively, L([[·]]A×B, DA×B) = L([[·]]A, DA) ∩ L([[·]]B, DB).

Proof. For a formula ϕ ∈ LΛ, ϕ /∈ L([[·]]A, DA) ∩ L([[·]]B, DB) iff there exists a
translation T : LΛ → SentΛ,∈ such that either [[T (ϕ)]]A /∈ DA or [[T (ϕ)]]B /∈ DB or
both iff ([[T (ϕ)]]A, [[T (ϕ)]]B) /∈ DA×B iff [[T (ϕ)]]A×B /∈ DA×B, by Corollary 3.18 iff
ϕ /∈ L([[·]]A×B, DA×B).

Theorem 4.29. Let A and B be two Λ-algebras having the designated sets DA and DB,
respectively. If V(A) and V(B) are loyal to (A, DA) and (B, DB), respectively, then V(A×B)

is loyal to (A× B, DA×B).

Proof. We have

L([[·]]A×B, DA×B) = L([[·]]A, DA) ∩ L([[·]]B, DB), by Theorem 4.28.

= L(A, DA) ∩ L(B, DB), since V(A) andV(B) are loyal to (A, DA)

and (B, DB), respectively

= L(A× B, DA×B), by the definition of the product algebra.

This completes the proof.
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4.1.2. Product of algebras corresponding to one loyal and one illoyal model. First we
shall give examples of two Λ-algebras A and B such that V(A) is loyal to (A, DA), V(B)

is illoyal to (B, DB), and V(A×B) is illoyal to (A× B, DA×B).
Let us first consider the two-valued Boolean algebra B2. Notice that V(B2) is loyal to

(B2, {1}) since we have that L([[·]]B2 , {1}) = CPL = L(B2, {1}), where 1 is assumed to
be the top element of B2.

Second, consider a four-valued algebraBH := 〈{1, 1/2, (1/2)′, 0},∧,∨,⇒,∗ , 1, 0〉 such
that the operators ∧,∨, and ⇒ are exactly as those of the four-valued Boolean algebra
B4, where 1 and 0 are the top and bottom elements of the lattice, respectively, and
1/2, (1/2)′ are the two intermediate incomparable values. The unary operator ∗ of BH
is defined as follows: 1∗ = 1/2∗ = (1/2)′

∗
= 0 and 0∗ = 1. Observe that, there exists

a non-trivial automorphism f : BH → BH, defined as f(1) = 1, f(0) = 0, f(1/2) =
(1/2)′, and f((1/2)′) = 1/2. Hence, there is no ϕ ∈ SentΛ,∈ such that [[ϕ]]BH = 1/2 or
[[ϕ]]BH = (1/2)′, by Theorem 4.27 This leads to the fact that the range of [[·]]BH is B2

and hence L([[·]]BH, {1}) = CPL. But for ϕ ∈ LΛ, the formula ϕ ∨ ¬ϕ /∈ L(BH, {1}),
i.e., L(BH, {1}) � L([[·]]BH, {1}). Therefore V(BH) is illoyal to (BH, {1}).

By Theorem 4.28, L([[·]]B2×BH, {(1, 1)}) = L([[·]]B2 , {1}) ∩ L([[·]]BH, {1}) = CPL.
But L(B2 × BH, {(1, 1}) �= CPL as ϕ ∨ ¬ϕ /∈ L(B2 × BH, {(1, 1)}).

Hence, we get that V(B2×BH) is illoyal to (B2 × BH, {(1, 1)}).

Question 4.1.3. Do there exist Λ-algebras A and B such that V(A) is loyal to (A, DA),
V(B) is illoyal to (B, DB), and V(A×B) is loyal to (A× B, DA×B)?

We shall give a partial answer to Question 4.1.3 If there exists a Heyting algebra H
such that the intuitionistic propositional logic IPL is complete with respect to H and
V(H) is loyal to (H, {1}) then the answer to Question 4.1.3 will be affirmative. For such
an algebra H, if exists, we have L([[·]]H, {1}) = L(H, {1}) = IPL. Let us one more time
consider the Heyting algebra H5 and the Λ-automorphism f : H5 → H5, defined as
f(1′) = 1′, f(1) = 1, f(0) = 0, f(1/2) = (1/2)′, and f((1/2)′) = 1/2. By Theorem 4.27,
we can conclude that the range of [[·]]H5 � SentΛ,∈ contains neither 1/2 nor (1/2)′, which
produces the three-valued Heyting algebra H3. Hence IPL ⊆ L([[·]]H5 , {1′}). By our
assumption L([[·]]H, {1}) = L(H, {1}) = IPL. So we get

L([[·]]H×H5 , {(1, 1′)}) = L([[·]]H, {(1)}) ∩ L([[·]]H5 , {1′})

= IPL

= L(H, {(1)}) ∩ L(H5, {(1′)})

= L(H×H5, {(1, 1′)}).

Note that if there exists an illoyal Boolean algebra B then also we get a positive
answer to Question 4.1.3 by replacing H and H5 by B2 and B, respectively, in the above
argument.

If such Boolean algebra B and Heyting algebra H exist then in addition we shall get
V(H×H5) |= IZF and V(B2×B) |= ZFC. The reason being that for any axiom ϕ of IZF,
V(H) |= ϕ and V(H5) |= ϕ. Hence, ϕ belongs to both ValSentH and ValSentH5 . This
implies that ϕ ∈ ValSentH ∩ ValSentH5 = ValSentH×H5 , by Observation 3.22 Hence,
V(H×H5) |= ϕ. Similarly, we can show that V(B2×B) |= ZFC.

4.1.4. Product of algebras corresponding to two illoyal models. Consider the
product algebra H5 ×H5. Notice that the range of [[·]]H5 � SentΛ,∈ produces the
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linear three-valued Heyting algebra H3. So, for any two formulas ϕ,� ∈
LΛ, we have ϕ → � ∨ � → ϕ ∈ L([[·]]H5 , {1′}). Hence, ϕ → � ∨ � → ϕ ∈
L([[·]]H5×H5 , {(1′, 1′)}). But, ϕ → � ∨ � → ϕ /∈ L(H5 ×H5, {(1′, 1′)}), since H5 ×
H5 is not a linear Heyting algebra. Hence, V(H5×H5) is illoyal to L(H5 ×H5, {(1′, 1′)}).

Question 4.1.5. Do there exist two Λ-algebras A and B such that both V(A) and V(B)

are illoyal to, respectively, (A, DA) and (B, DB) but such that the product-algebra-valued
model V(A×B) is loyal to (A× B, DA×B)?

4.2. The product algebra of a paraconsistent and a Heyting algebra. Notice that
PS3 and H3 are two Λ-algebras, having the same underlying set {1, 1/2, 0}, where
the designated sets corresponding to PS3 and H3 are DPS3 = {1, 1/2} and DH3 = {1},
respectively. We shall explore the product algebra PS3 ×H3 and its corresponding
algebra-valued model. It is proved in [12] that V(PS3) is faithful to PS3. On the other
hand, V(H3) is also faithful to H3:

(i) [[∀x(x = x)]]H3 = 1,
(ii) [[∀x(x �= x)]]H3 = 0, and
(iii) [[∃y∀x(y ∈ x ∨ y /∈ x)]]H3 = 1/2.

Hence, using Theorem 4.26, one can get the following theorem.

Theorem 4.30. The algebra-valued models V(PS3) and V(H3) are, respectively, loyal to
(PS3, DPS3) and (H3, DH3).

The designated set DPS3×H3 of PS3 ×H3 is DPS3 ×DH3 = {(1, 1), (1/2, 1)}. By The-
orem 2.6, L(PS3, DPS3) = LPS3 � CPL and L(PS3, DPS3) is paraconsistent. Similarly,
L(H3, DH3) = IPL � CPL.

Theorem 4.31. L(PS3 ×H3, DPS3×H3) is neither CPL nor IPL, but it is both paracon-
sistent and paracomplete.

Proof. It is easy to check that L(PS3 ×H3, DPS3×H3) = L(PS3, DPS3) ∩ L(H3, DH3).
This entails that L(PS3 ×H3, DPS3×H3) is not CPL.

Since, there exist formulas ϕ,� ∈ LΛ such that (ϕ ∧ ¬ϕ) → � /∈ L(PS3, DPS3) and
ϕ ∨ ¬ϕ /∈ L(H3, DH3) we get that

(ϕ ∧ ¬ϕ) → �, ϕ ∨ ¬ϕ /∈ L(PS3 ×H3, DPS3×H3)

as well. Hence, L(PS3 ×H3, DPS3×H3) is both paraconsistent and paracomplete.
On the other hand, we know that for any two formulas ϕ,� ∈ LΛ, (ϕ ∧ ¬ϕ) → �

is a theorem of IPL. Since there exist ϕ,� ∈ LΛ such that (ϕ ∧ ¬ϕ) → � /∈ L(PS3 ×
H3, DPS3×H3), therefore L(PS3 ×H3, DPS3×H3) is not IPL.

Observation 4.32. L(PS3 ×H3, DPS3×H3) � L(PS3, DPS3) : for any ϕ ∈ LΛ, the for-
mula ϕ ↔ ¬¬ϕ is an axiom in LPS3(as shown in [18]), but ϕ ↔ ¬¬ϕ /∈ L(PS3 ×
H3, DPS3×H3), since ϕ ↔ ¬¬ϕ /∈ L(H3, DH3).

Hence we can conclude that L(PS3 ×H3, D) is a paraconsistent logic which is a
proper subclass of L(PS3, DPS3) and so it is not a maximal paraconsistent logic with
respect to CPL. But still we have the following theorem.

Theorem 4.33. V(PS3×H3) |= NFF-ZF.
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Table 2. Loyalty and faithfulness of product algebra-valued model

V(A) to (A, DA) V(B) to (B, DB) V(A×B) to (A× B, DA×B)

Loyal Loyal Loyal
Loyal Illoyal One example showing illoyal

(algebras B2 and BH) and Question 4.1.3
Illoyal Illoyal One example showing illoyal

(both the algebras are H5) and Question 4.1.5
Faithful Faithful One example showing faithful

(algebras PS3 and H3) and Question 4.2.1
Faithful Not faithful Not faithful
Not faithful Not faithful Not faithful

Proof. Both the algebras PS3 and H3 are complete deductive RIAs and NFF-BQϕ
holds in both of V(PS3) and V(H3). Hence, using Theorem 3.20 we get that V(PS3×H3) |=
NFF-ZF–. In addition, the Axiom of Foundation is valid in both V(PS3) and V(H3).
Hence, V(PS3×H3) |= Axiom of Foundation, by Observation 3.22 Combining the results,
the proof is complete.

The logic of the algebra-valued model V(PS3×H3) is not CPL: for ϕ ∈ LΛ,
the formula ϕ ∨ ¬ϕ /∈ L(H3, DH3) = L([[·]]H3 , DH3), which implies ϕ ∨ ¬ϕ /∈
L([[·]]PS3×H3 , DPS3×H3), by Theorem 4.28, but ϕ ∨ ¬ϕ ∈ CPL.

We can derive from Theorem 4.29 that V(PS3×H3) is loyal to (PS3 ×H3, DPS3×H3), as
V(PS3) and V(H3) are loyal to (PS3, DPS3) and (H3, DH3), respectively. We will further
show that V(PS3×H3) is faithful to the algebra PS3 ×H3 as well.

Theorem 4.34. V(PS3×H3) is faithful to the algebra PS3 ×H3.

Proof. If � := ∀x(x = x) then [[�]]PS3×H3 = (1, 1) and [[¬�]]PS3×H3 = (0, 0).
Ifϕ := ∃x ∃y ∃z (z ∈ x ∧ z /∈ y ∧ x = y) and� := (ϕ ∧ ¬ϕ) → ¬∀x(x = x) then

[[�]]PS3×H3 = (0, 1) and hence [[¬�]]PS3×H3 = (1, 0).
Let � := ∃y∀x(y ∈ x ∨ y /∈ x). Then [[�]]PS3×H3 = (1/2, 1/2). This shows that

[[¬�]]PS3×H3 = (1/2, 0) and [[¬¬�]]PS3×H3 = (1/2, 1).
Also [[� ∧ �]]PS3×H3 = (0, 1/2) and [[� → �]]PS3×H3 = (1, 1/2).
Hence we get that [[·]]PS3×H3 is faithful to PS3 ×H3.

It is not hard to see that if one of the component algebras A (say) is such that V(A)

is not faithful to A then the product-algebra-valued model will also not be faithful to
the product algebra. But, the following question is still open.

Question 4.2.1. Do there exist two Λ-algebras A and B such that V(A) and V(B) both are
faithful to A and B, respectively, but such that V(A×B) is not faithful to A× B?

We end Section 4 with Table 2, which displays in one look the loyalty and faithfulness
of a product-algebra-valued models.

§5. Independence using product algebras. In this section we will use product
algebra-valued models to provide independence proofs in non-classical set theories.
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The backbone of these results is the use of both Boolean and non-Boolean algebras,
in order to import the classical independence results to a non-classical setting.

5.1. Sentences which inherit independence from classical set theory. We shall first
prove one of the main results of the paper in its most general form and then we will
apply it in the context of LPS3.

Remark. In this section we shall make a notational distinction between ZF and BZF,
in order to distinguish between the system of non-logical axioms of set theory : ZF and
the collection of ZF-axioms together with the first order classical logical axioms : BZF.

Theorem 5.35. Let A be a complete Λ-algebra and ϕ ∈ SentΛ,∈ be such that

(i) ϕ is independent with respect to BZF,
(ii) LΛ � CPL, where LΛ is the corresponding logic of A,
(iii) V(A) validates ϕ and a proper fragment T of BZF.

Then, there are two algebra-valued models of T, but not of BZF, whose internal logic is
LΛ and which do not agree on the truth value of ϕ.

Proof. Let B1,B2 be two Boolean algebras such that V(B1) |= ϕ but V(B2) �|= ϕ. We
know thatDA×B1 = DA ×DB1 be the designated set of A× B1, whereDA and DB1 are
the designated sets of A and B1, respectively. By our assumption,

[[ϕ]]A×B1 = ([[ϕ]]A, [[ϕ]]B1 ) ∈ D,

i.e., V(A×B1) |= ϕ. On the other hand, since [[ϕ]]B2 /∈ DB2 , where DB2 is the designated
set of B2, we can conclude that V(A×B2) �|= ϕ. By our assumption we also get that
L(A× Bi , DA×B1) = LΛ ∩ CPL = LΛ, for i = 1, 2. Moreover, by Observation 3.22 we
get that ValSentA×Bi

= ValSentA ∩ ValSentBi , for i = 1, 2. Hence, by our assumption,
T ⊆ ValSentA×Bi

� BZF, i.e., V(A×Bi ) |= T but V(A×Bi ) �|= BZF, for i = 1, 2.

Notice that the result above shows not only the formal independence of ϕ with
respect to a proper fragment T of BZF, but also that the independence of ϕ is carried
out in models that validate only the weaker theoryT. Therefore, Theorem 5.35 is telling
us more than the trivial observation that independence is preserved in weaker theories.

To get a more concrete sense of this observation, let us consider a theory T which is
a proper fragment of both BZF and ZF. In other words, there are axioms of ZF that
are not contained in (the deductive closure of) T. To simplify the exposition, let us
suppose that this axiomatic difference consists of an axiom � and consider an algebra
A such that the algebra-valued model V(A) validates T and ϕ, but not �, for a sentence
ϕ as in the proof of Theorem 5.35: i.e., provably independent from BZF using two
Boolean algebras B1,B2. Then we get the following:

(i) V(A×B1) |= T and V(A×B2) |= T,
(ii) V(A×B1) |= ϕ and V(A×B2) �|= ϕ,
(iii) V(A×B1) �|= � and V(A×B2) �|= �.

In this way it is possible to show that the independence of ϕ with respect to T does
not need the axiom � (and thus the full strength of ZF). In this sense, Theorem 5.35
can provide a sort of reverse analysis for independence proofs, providing models of
weaker theories for independence results.

There is an even stronger version of this phenomenon that is captured by the
following definition.
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Definition 5.36. Consider a theory T and two sentences ϕ and � in SentΛ,∈. We say
that � is superfluous for the independence of ϕ from T if there are four algebra-valued
models V(A1), V(B1), V(A2), and V(B2) such that

(i) V(A1) |= T, V(A1) |= ϕ, and V(A1) |= ¬�,
(ii) V(B1) |= T, V(B1) �|= ϕ, and V(B1) |= ¬�.
(iii) V(A2) |= T, V(A2) |= ϕ, and V(A2) |= �,
(iv) V(B2) |= T, V(B2) �|= ϕ, and V(B2) |= �.

Notice that Definition 5.36 can capture a phenomenon that can be recast in syntactic
terms. Indeed, if � is superfluous for the independence of ϕ from T, then ϕ is actually
independent from the theory T ∪ {¬�}. This observation becomes relevant once � is
taken to be an axiom of ZF. Indeed, in this case, T ∪ {¬�} is not anymore a fragment
of ZF. Therefore, a proof of independence from such a theory represents a result that
cannot be obtained using Boolean-valued models.

We will now provide a concrete application of algebra-valued models in the proof
of the independence of CH in the context of the logic LPS3. We will provide two such
proofs. The first uses Theorem 5.35, while the second uses the specific set-theoretical
properties of V(PS3). The reason for a second proof is to be found in the possibility to
provide a concrete example of the phenomenon captured by Definition 5.36

5.2. The independence of CH. In this section we offer an important example of
independence in non-classical set theory: the independence of CH from a set theory
whose underlying logic is LPS3. We will provide two proofs of this fact. One using
Theorem 5.35 and one using a detailed study of cardinality results in V(PS3). Toward
this end we first need to properly define the set theory from which CH will be proved
independent.

Definition 5.37. LetA be a complete Λ-algebra. Then, byA-ZF we mean the fragment
of BZF that holds in all algebra-valued models of the form V(A×B), for all complete
Boolean algebra B.

In this section, we will work with PS3-ZF.

Observation 5.38. We can notice that:

(i) NFF-ZF is included in PS3-ZF,
(ii) PS3-ZF is a proper fragment of BZF, and
(iii) PS3-ZF is a paraconsistent set theory.

Proof. (i) By Theorem 2.7, we know that V(PS3) |= NFF-ZF. It is also clear that
for any complete Boolean algebra B, V(B) |= NFF-ZF. Hence, we can conclude that
V(PS3×B) |= NFF-ZF, where B is any complete Boolean algebra.

(ii) Immediate from the definitions of PS3-ZF and BZF.
(iii) In Section §3.2, we have already discussed that [[Par]]PS3 = 1/2, which implies

that [[¬Par]]PS3 = 1/2∗ = 1/2 as well. Now, consider the formula ϕ ∈ SentΛ,∈ as follows:

ϕ := (Par ∧ ¬Par) → ⊥.

Clearly, [[ϕ]]PS3 = 1/2 ∧ 1/2 ⇒ 0 = 0. Hence, independent of the choice of a complete
Boolean algebra B, it can be concluded that V(PS3×B) �|= ϕ, i.e., ϕ /∈ PS3-ZF. Thus,
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by the definition of paraconsistency, we get that PS3-ZF is a paraconsistent set
theory.

The general structure of the proof of the independence of CH from PS3-ZF can be
summarized as follows. There are two Λ-algebras A, B, such that the following hold:

(i) L(A, DA) = L(B, DB) = LPS3,
(ii) V(A) |= PS3-ZF, V(B) |= PS3-ZF,
(iii) V(A) |= ϕ but V(B) �|= ϕ.

Let us now develop some cardinal notions in V(PS3) in order to show that CH is still
a meaningful sentence in PS3-ZF, which really expresses what we expect it to express.

5.2.1. Cardinality in V(PS3) and the Continuum Hypothesis. For notational simplic-
ity, let D be the designated set of PS3. For any u ∈ V(PS3), the subset domD(u) of dom(u)
is defined as follows: x ∈ domD(u) iff u(x) ∈ D. It was shown in [13] that the relation
∼, defined as u ∼ v iff V(PS3) |= u = v, is an equivalence relation. Hence, domD(u)
can be partitioned by ∼ into equivalent classes. Let Part(domD(u)) = domD(u)/ ∼,
the quotient (or partition) of domD(u) by ∼. If InjFunc(f;x, y), SurjFunc(f;x, y),
and BijFunc(f;x, y) stand for the first order formulas stating that f is an injection,
surjection, and bijection from x into y, respectively, then the following theorem holds.

Theorem 5.39 [17]. If V is a model of ZFC, then for any two elements u, v ∈ V(PS3),

(i) there exists an injection between Part(domD(u)) and Part(domD(v)) in V if
and only if V(PS3) |= ∃fInjFunc(f;x, y),

(ii) there exists a surjection between Part(domD(u)) and Part(domD(v)) in V if
and only if V(PS3) |= ∃fSurjFunc(f;x, y),

(iii) there exists a bijection between Part(domD(u)) and Part(domD(v)) in V if and
only if V(PS3) |= ∃fBijFunc(f;x, y).

Let us denote ORD as the class of all ordinal numbers in V. Then for each α ∈ ORD
the α-like elements in V(PS3) are defined by transfinite recursion as follows.

Definition 5.40 [16]. An element x ∈ V(PS3) is called:

(i) 0-like if x(y) = 0 for any y ∈ dom(x),
(ii) α-like for some α ∈ ORD if for each � ∈ α there exists y ∈ dom(x) which is

�-like and x(y) ∈ D = {1, 1/2}, and for any z ∈ dom(x) if it is not �-like for
any � ∈ α then x(z) = 0,

(iii) ordinal-like if it is α-like, for some α ∈ ORD.

Let Ord(x) be the first order formula in LΛ,∈, naively states that x is an ordinal
number. Then we have the following theorem.

Theorem 5.41 [16, theorem 13]. Let α ∈ ORD and u be an α-like element in V(PS3).
Then V(PS3) |= Ord(u).

Theorem 5.42 [17]. Let u ∈ V(PS3) be any element and κ be the cardinality of
Part(domD(u)) in V, a model of ZFC. Then in V(PS3), there exist bijections between
u and κ-like elements, but there does not exist any bijection between u and any α-like
element, where α < κ in V.

Proof. Follows from Theorem 5.39.
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Let Card(x) be the first order formula expressing that ‘x is a cardinal number’.
Then, for a given u ∈ V(PS3), consider the following collection of names of the cardinal
number of u in V(PS3):

Cardinalu := {v ∈ V(PS3) : V(PS3) |= Card(v) ∧ ∃fBijFunc(f; u, v)}.
Any element of Cardinalu will be called a name of the cardinal number of u or simply
a cardinal number of u in V(PS3).

For each x ∈ V, let us define an element x̂ of V(A) recursively as: ∅̂ = ∅ and x̂ =
{〈ŷ, 1〉 : y ∈ x}. It is proved in [17] that, if u ∈ V(PS3) is an element such that the
cardinality of Part(domD(u)) in V is κ, then Cardinalu is the class of all κ-like elements
and hence, in particular, κ̂ ∈ Cardinalu . Moreover, for any two elements u, v ∈ V(PS3),
V(PS3) |= ∃fBijFunc(f; u, v) if and only if Cardinalu = Cardinalv .

Definition 5.43 [17]. For two elements u, v ∈ V(PS3), it will be said that the cardinality
of u is less than the cardinality of v, denoted by |u|

V(PS3) < |v|
V(PS3) , if for any p ∈

Cardinalu and q ∈ Cardinalv , V(PS3) |= p ∈ q.
In [17], it is proved that for any pair u, v ∈ V(PS3), not only the notion of |u|

V(PS3) <

|v|
V(PS3) is well-defined, but also that |u|

V(PS3) < |v|
V(PS3) holds if and only if V(PS3) |=

∃fInjFunc(f; u, v) but V(PS3) �|= ∃fInjFunc(f; v, u).

Theorem 5.44 [17]. For a model V of ZFC, V |= CH if and only if V(PS3) |= CH.

Proof. Let V |= CH. Suppose u ∈ V(A) be an 
-like element and v ∈ V(PS3) be a
name for the power set of u in V(PS3). Then, it can be proved that ℵ̂0 ∈ Cardinalu

and ˆ(2ℵ0 ) ∈ Cardinalv . If there exist s ∈ V(PS3) such that |u|
V(PS3) < |s |

V(PS3) < |v|
V(PS3)

and κ̂ ∈ Cardinals , where κ is a cardinal number in V, then we can conclude that
ℵ̂0 ∈ κ̂ ∈ ˆ(2ℵ0 ) holds in V(PS3). Hence, ℵ0 < κ < 2ℵ0 holds in V, which contradicts our
assumption V |= CH.

Conversely, suppose V �|= CH. Then there exists a cardinal number κ in V
such that ℵ0 < κ < 2ℵ0 . Hence, ℵ̂0 ∈ κ̂ ∈ ˆ(2ℵ0) holds in V(PS3), which implies that
V(PS3) �|= CH.

We are now in the position to state the independence result for CH.

Theorem 5.45. There are two algebra-valued models of PS3-ZF, and not of BZF, which
do not agree on the validity of CH, thus showing the independence of CH from PS3-ZF.

Proof. Let B1,B2 be two Boolean algebras such that V(B1) |= CH and V(B2) �|= CH
and, without loss of generality, let us assume that V |= CH (if not, i.e., V |= ¬CH, we
just need to switch the role of B1 and B2 in the rest of the proof). Then using Theorems
5.35 and 5.44 we can conclude that:

(i) L(PS3 × B1, DPS3×B1) = L(PS3 × B2, DPS3×B2) = LPS3,
(ii) V(PS3×B1) |= PS3-ZF, V(PS3×B2) |= PS3-ZF, and
(iii) V(PS3×B1) |= CH, but V(PS3×B2) �|= CH.

Then, remember that Sep is the instance of the SeparationAxiom schema that, as
shown in Theorem 2.8, fails in V(PS3). Because of the coordinate-wise definition of
validity in product algebras, we get that V(PS3×B1) �|= Sep and V(PS3×B2) �|= Sep. Hence
V(PS3×B1) and V(PS3×B2) are two algebra-valued models of PS3-ZF, but not of BZF,
witnessing the independence of CH.
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It is possible to improve Theorem 5.45 by providing a more direct proof of the
independence of CH that uses only the ability to transfer cardinal properties from V to
V(PS3).

Theorem 5.46. CH is independent from NFF-ZF ∪ {¬Sep}.

Proof. It is sufficient to consider two classical models of ZFC, V1 and V2 such that
V1 |= CH and V2 |= ¬CH and then to build an algebra-valued model with values in
PS3 over each of these two classical structures, say V(PS3)

1 and V(PS3)
2 . Then, because

the validity of Theorem 2.7 only depends on the fact that the ground model satisfies
ZFC, we get that both V(PS3)

1 and V(PS3)
2 validate NFF-ZF. Moreover, Theorem 2.8 can

be applied in both V(PS3)
1 and V(PS3)

2 to provide the validity of ¬Sep. Finally, Theorem

5.44 yields V(PS3)
1 |= CH and V(PS3)

2 �|= CH.

Notice that Theorem 5.46 states the independence of CH with respect to NFF-
ZF ∪ {¬Sep} and not PS3-ZF ∪ {¬Sep}. The reason is that the theory of an algebra-
valued model based on PS3 depends on the theory of the ground model (as shown in
Theorem 5.44). Our definition of PS3-ZF is given in terms of (the real) V as the ground
model, but nothing forbids us to define a similar theory in terms of a different ground
model. It is unknown to the authors if the definition of PS3-ZF is invariant on the
choice of a ground model.8 For this reason we decided to state Theorem 5.46 in terms
of NFF-ZF. However, we should remark that the proof of Theorem 5.46 yields the
independence of CH from the theory that is stronger than NFF-ZF ∪ {¬Sep}, namely,
Th∈(V(PS3)

1 ) ∩ Th∈(V(PS3)
2 ), where Th∈(M) is the theory (in the model theoretic sense)

of M, in the signature of the pure language of set theory i.e., of LΛ,∈.
Now, considering that CH is independent from BZF, using the standard Cohen

construction, we get the following corollary.

Corollary 5.47. There are instances of SeparationAxiom that are superfluous for the
proof of independence of CH from NFF-ZF.

The example of CH has given an example of the preservation of independence from
the classical to the non-classical case. We now turn to the study of set theoretic sentences
which are only independent with respect to proper fragments of BZF.

5.3. Sentences independent from non-classical set theory only. Let A be a Λ-algebra
and recall that, by definition, A-ZF is a first order fragment of BZF. The second main
result of the paper states the following.

Theorem 5.48. If V(A) is an algebra-valued model of set theory and ϕ ∈ SentΛ,∈ is a
formula such that one of the following two (exclusive) conditions holds:

(i) V(A) |= ϕ but BZF |= ¬ϕ,
(ii) V(A) �|= ϕ but BZF |= ϕ.

Then, ϕ is independent from A-ZF but not from BZF.

8 To get a sense of the problem, consider that this question rests on the possibility, or
impossibility, of finding two models of ZFC what witness the independence of a sentence that
cannot be proved to be independent by forcing. In other terms, if forcing is the only method
available for independence results in BZF, then the definition of PS3-ZF does not depend on
the choice of the ground model.
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Proof. (i) Suppose V(A) |= ϕ but BZF |= ¬ϕ. For any complete Boolean algebra B,
V(A×B) |= A-ZF and also V(A) |= A-ZF. Then by the assumption, A-ZF has an algebra-
valued model V(A) which validatesϕ. However, sinceBZF is preserved in every Boolean-
valued model, V(A×B) �|= ϕ.

(ii) Suppose V(A) �|= ϕ but BZF |= ϕ. Then, for any complete Boolean algebra B,
V(B) |= ϕ and V(A×B) �|= ϕ. But notice that, since A-ZF ⊆ BZF, we have that both of
V(B) and V(A×B) are algebra-valued models of A-ZF.

Notice that there is a small difference between the two possibilities described in
Theorem 5.48 Indeed, while in the proof of (i) both models witnessing the independence
of ϕ are only models of the smaller theory A-ZF, this is not the case anymore in (ii).
As a matter of fact, in (ii) we need to resort to a classical Boolean-valued model,
which being a model of BZF is a fortiori a model of A-ZF. However, it is important to
stress the importance of (ii) from a more conceptual perspective, since it shows that
the strength of a stronger theory is only a matter of solving independence from the
perspective of a weaker theory.

The following examples are few applications of Theorem 5.48

Example 5.3.1. Let us one more time consider the proper fragment PS3-ZF of BZF and
the sentencePar ∈ SentΛ,∈. Since [[Par]]PS3 = 1/2, V(PS3) |= Par. But clearlyBZF � ¬Par.
Using the condition (i) of Theorem 5.48, we get that Par is independent from PS3-ZF
but not from BZF.

Example 5.3.2. To produce another example using the sentence Par, let us consider
the formula

SB(x, y) :=
(
∃fInjFunc(f;x, y) ∧ ∃gInjFunc(g; y, x)

)
→ ∃hBijFunc(h;x, y).

Intuitively SB(x, y) states that ‘if there exists an injective function from x into y and
an injective function from y into x then there exists a bijective function from x onto
y’. By the Schröder–Bernstein theorem we know that V |= ∀x∀ySB(x, y). In [17], it is
proved that V(PS3) |= ∀x∀ySB(x, y). Hence, considering the formula

ϕ := ∃x∃y∃z
(
z ∈ x ∧ ¬(z ∈ y) ∧ x = y ∧ SB(x, y)

)
,

we get that V(PS3) |= ϕ but clearly BZF � ¬ϕ. Hence, ϕ is independent from PS3-ZF
but not from BZF, by using the condition (i) of Theorem 5.48. However, notice
that, V(PS3×B) |= ∀x∀ySB(x, y), for any complete Boolean algebra B. Hence, we have
∀x∀ySB(x, y) ∈ PS3-ZF, which shows that ∀x∀ySB(x, y) is not independent from
PS3-ZF.

Example 5.3.3. Let us consider the formula Sep. We know that [[Sep]]PS3 = 0, by
Theorem 2.8 Hence, V(PS3) �|= Sep. In addition, we getBZF |= Sep, as Sep is an instance
of the SeparationAxiom. Therefore, by using condition (ii) of Theorem 5.48, it can be
concluded that Sep is independent from PS3-ZF but not from BZF.

Example 5.3.4. Consider the three-valued Heyting algebra H3. We will provide an
example of a set theoretic sentence which is independent from the proper fragment H3-
ZF of BZF, but not from BZF. Let ϕ ∈ SentΛ,∈ be the formula which intuitively states
that ‘if κ is the cardinal number of a set, then 2κ is the cardinal number of its power
set’. It is well-known that, in IZF, the cardinality of the power set of a singleton set
cannot be 2(since this would imply the Law of Excluded Middle). Using this fact, we

https://doi.org/10.1017/S1755020321000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000095


1004 SOURAV TARAFDER AND GIORGIO VENTURI

can prove that V(H3) �|= ϕ. However, we know that BZF |= ϕ. Hence, by the condition
(ii) of Theorem 5.48, ϕ is independent from H3-ZF, but not from BZF.

§6. Classical vs. non-classical multiverses. We are now in a position to reflect on
the philosophical import of the results of this paper. In these pages we introduced
a technique that allows us to extend the scope of independence to non-classical
contexts. But did we make the puzzles surrounding independence even broader? In
other terms, by extending forcing-like constructions to non-classical logic, did we
strengthen independence in set theory? In order to address these questions we need,
first, to recall the recent debate on the foundations of set theory and, then, to explain
the effect of our results for this discussion. Toward this end we will clarify to what extent
the structures built in this paper can be seen as non-classical models of set theory.

One of the many effects that the introduction of forcing brought to set theory was
the proliferation of the models of ZFC. This had the consequence to put into question
the foundational role of set theory and it sustained a more algebraic approach to its
models. Therefore, these structures started to be investigated for their own sake and
not necessarily with the aim to settle, once and for all, questions like the Continuum
Problem. The sharp contrast of this algebraic perspective with the classical role of set
theory as a foundations for mathematics generated a heated debate on the role and the
goal of set theory. Recently, this debate took the form of a contraposition between two
alternative positions: universism vs. multiversism.

The main point of disagreement between universism and multiversism lays in the
interpretation of the independence phenomenon. For the universist, independence is
seen as a defect of our theory of sets to capture truth, whereas for the multiversist it is
a natural phenomenon corresponding to the way things really are and that, although
witnessing the limits of the axiomatic approach, it nonetheless testifies the richness of
a set theoretical semantics. A possible way to overcome the weakness of the axiomatic
side consists in fulfilling Gödel’s program which consists in extendingZFCwith justified
new axioms able to capture the truth in V.9 Contrary to this proposal, multiversists
maintain that there is not a unique universe of sets, but a plurality of universes (a
multiverse), each with its own right of existence and expression. Consequently, truth
in set theory is taken, by the multiversists, to be the study of the truths of the different
universes.

An important point, relevant for the present discussion, is that the choice of the
models that compose a multiverse is also up for discussion. Indeed, we find in the
literature different views on the composition of the multiverse, from more restrictive
ones that only include generic extensions of countable transitive models of ZFC (e.g.,
[21]), to more liberal ones that allow also ill-founded models (e.g., [7]).10 However,
one aspect that seems to be fairly agreed upon is that the elements of the multiverse
should be models of set theory. Thus, the variability of the parameters that occur in the
definition of a multiverse is found in the choice of the techniques allowed to construct

9 Although Gödel’s program nicely fit with a universist position, it is not necessarily the
outcome of this perspective. Indeed, universism does not necessarily implies strong forms of
semantic realism, according to which every mathematical sentence is, in principle, decidable.
See [2, 5, 15].

10 For a general presentation of the many multiversist positions we refer the interested reader
to [1, 14, 20].
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models and in the choice of the theories of sets validated in these models. Consequently,
we might wonder whether and to what extend the algebra-valued models produced in
this paper can enrich a multiverse perspective.

In order to address this point we first need to clarify in which sense an algebra-
valued model is a model. As a matter of fact, stricto sensu, an algebra-valued model is
a definable class and not a model, since its domain is not a set. This aspect is normally
overcome, in the classical case, by quotienting a structure V(B) by a filterG ⊆ B and thus
by identifying two elements x, y ∈ V(B), whenever the truth value of their equality is in
G: i.e., [[x = y]]B ∈ G . This process then allows us to reduce Boolean-valued models
to generic extensions obtained by forcing. However, this identification is far from
straightforward. As discussed in Section §3.3, Boolean-valued models represent only
blueprints for possible (even incompatible) models of ZFC. It is only after quotienting
a Boolean-valued model by means of an ultrafilter that one of these possibilities is
realized. In this sense, every Boolean-valued model represents a small multiverse in
itself. This observation seems to sustain the idea of using Boolean-valued models, and
more in general algebra-valued models, to define a corresponding multiverse. But there
is caveat. Is this quotient construction available in a non-classical setting? Is it possible
to turn an algebra-valued model into a bona fide model of set theory? And is this a
necessary condition for a semantic structure to be rightfully considered a member of a
multiverse?

With respect to these questions we have, in turn, a negative answer, a positive one,
and a proposal. Let us start with the negative part. In order to obtain a well-behaved
quotient structure V(A)/G from an algebra-valued model V(A) (one that for example
satisfies Łos Theorem), we normally need V(A) to satisfy the so-called schema of
Leibniz’s Law (of indiscernibility of identicals): (x = y ∧ ϕ(x)) → ϕ(y), for all formula
ϕ. In this way, the elements of V(A)/G can act as a proper ontology for the amount
of set theory realized in V(A). Unfortunately this is not the case in V(PS3), since in this
structure, there are non-negation-free formulas for which Leibniz’s Law fails [13, p.
202]. This failure seems to be linked to the same reason that prevents V(PS3) from being
a model of ZFC. Indeed, the proof of Theorem 2.8 can be immediately adapted to
show the failure of Leibniz’s Law in V(PS3). Let us now turn to the positive part of our
analysis.

But is it even possible to quotient non-classical algebra-valued models and thus to
construct nice models of set theory? We have here a positive answer. As a matter of
fact, there are non-classical algebras A’s for which not only we can construct non-
classical algebra-valued models V(A) validating all axioms of ZF, but in which also
Leibniz’s Law holds.11 Therefore, for these structures we can build proper models of
ZF, by quotienting them down, as in the classical case. The key ingredients of this
construction are two: (1) a modification of the function evaluating the LA-sentences
in A and (2) a modified ExtensionalityAxiom: ∀x∀y

(
∀z

(
(z ∈ x ↔ z ∈ y) ∧ (z /∈ x ↔

z /∈ y)
)
→ x = y

)
. What makes these modifications well justified is that they produce

an evaluation function and an Extensionality axiom which are classically equivalent12

to, respectively, the standard evaluation function (as the one used in this paper) and

11 For reason of space we will not enter the details of these constructions. For now we only
refer the interested reader to [9].

12 This equivalence can be proved just in classical propositional logic. Thus these modifications
can be seen as insignificant from a classical perspective.
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the standard form of the Extensionality axiom. It is interesting to notice that, thanks
to this construction, even the algebra PS3 can give rise to a model of ZF. Thus,
by quotienting these algebra-valued models we obtain proper models of ZFC, that,
however, because of their non-classical character, are not Tarskian. This is of course
expected, since we are modifying the underlying logic of a model. Indeed, by extending
algebra-valued constructions to non-classical logics we will also extend the notion of
model for set theory, in order to match it with the logic. In this sense the notion of
multiverse generated by such well-behaved algebra-valued models has a very strong
family resemblance with the notion of classical multiverse, although it is not identical.

It is now time to introduce our proposal on what should count as a multiverse. To be
very straightforward, we anticipate that our position is very liberal and we believe that
any collection of algebra-valued models of set theory should be taken as a multiverse.
Of course the crux of the matter here is whether a given algebra-valued model should
count as a model of set theory. We have just named two different collections of set-
theoretic structures: one made of non-classical algebra-valued models of fragments of
ZF and another of proper non-classical models of full ZF. Although the latter case
is clearly closer to a classical multiverse, however, we believe that also the first one
should be considered a multiverse. To state our view more clearly, we believe that it
is sufficient to validate a sufficiently reasonable fragment of ZF to be considered a
model of set theory. On the contrary, the failure of Leibniz’s Law (and the consequent
failure of the Łos Theorem) does not seem to be a fundamental impediment to such a
goal, at least from a non-classical perspective. The reason being that, once we start to
explore the world of non-classical set theories, we should probably not stick to classical
logic (and its properties) as the benchmark to measure the success of our discoveries.
Leibniz’s Law is of course desirable in the context of a classical ontology of sets, where
the objects of our investigation should not contradict the Law of Non-Contradiction.
However, once we embrace a more liberal semantic perspective (one including non-
classicality), we should probably expect to need to give up some of the most familiar
principles from classical logic. We believe that this does not betray the expectation of
doing non-classical set theory, at least as far as we do not contradict the axiom of
Extensionality (or classically equivalent forms).13

Another important point in favor of considering algebra-valued models as acceptable
semantic structures (that can witness independence) is their relationship with the
universe of all sets V. Exactly as the Boolean-valued models, also algebra-valued
models consist of definable inner classes of V. However, a fundamental difference
between these constructions (both Boolean and non-Boolean) and other inner models
of set theory is their treatment of equality, which, being defined algebraically, does
not coincide with the classical meta-theoretical relation of equality.14 But again, we
should keep in mind that we are dealing here with non-classical set theories. To include

13 Here we are just echoing Boolos’ view on this matter: “That the concepts of set and being
a member of obey the axiom of extensionality is a far more central feature of our use of
them than is the fact that they obey any other axiom. A theory that denied, or even failed
to affirm, some of the other axioms of ZF might still be called a set theory, albeit a deviant
or fragmentary one. But a theory that did not affirm that the objects with which it dealt
were identical if they had the same members would only by charity be called a theory of sets
alone” [4, p. 27]. The italics are Boolos’.

14 It is exactly to overcome this issue that the quotient construction is applied to Boolean-valued
models.
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standard equality in the logical part of our theory is the effect of a choice that clearly
reduces the spectrum of what counts as a logic. In other words we are facing here a
difficult problem that is well-known and discussed in the literature on logical pluralism:
where should we trace the dividing line between the logical and the non-logical parts
of a theory?15 We do not have a clear answer to this question, but we just acknowledge
that the liberty defended by the multiversists should probably not be restricted only to
the non-logical part of a theory.

So far we have defended the possibility of considering algebra-valued models as
legitimate elements of a multiverse on the ground that the non-standard picture of set
theory they offer is compatible with a more liberal perspective that is opened to non-
classical logics. In appealing to non-classicality, however, we lay ourselves open to two
possible criticisms. One may object that the appeal to a non-classical perspective is not
genuine, since we are constantly using classical logic in the meta-theory.16 Moreover,
someone might also object that the position defended here corresponds to a logical
laissez-faire that will inevitably dilute the liberal perspective of multiversism into a
form of “anything goes.” It is to answering these two objections that we now turn.

For what concerns the role of classical logic in our investigations, it is true that a
classical meta-theory is the background theory where all the results of this paper are
proved. However, this is not a problem for the proposal defended here. Indeed, it is
neither the aim of this paper, nor the general goal of our work, to defend that the correct
underlying logic of set theory is non-classical, let alone paraconsistent. On the contrary,
being an algebra-valued model constructed within V, what we propose is to expand
the concept of classical multiverse to include also non-classical models of set theory.
Hence, from this perspective the appeal to a classical meta-theory is perfectly justified.
As a matter of fact, we agree with the multiversists that the many different models
of set theory we have at disposal witness the expressive strength and the versatility
of a set-theoretical semantics. The possibility to build non-classical structures for set
theory using classical methods (algebra-valued constructions within V), therefore,
suggests that we should not restrict ourselves only to classical models of set theory.
Then, to ask whether there is just one set theory or many different ones (one for each
choice of a logic) is not very different from asking whether set theory describes one
or many different universes. In other terms, we are suggesting that the debate between
universism and multiversism is not very different from the one that opposes logical
monism and logical pluralism. The former is centered on the non-logical part of a
theory, while the latter on the logical part. Without taking position here, we are only
suggesting that a comprehensive multiverse should also include non-classical models
of set theory.

For what concerns the answer to the second objection (whether to include non-
classical models in the multiverse results in a form of “anything goes”), we follow the
same line of reasoning that guided the answer to the first one: a neutral position with
respect to the foundations of set theory. To stress the point one more time, we believe
that by extending the range of variability for the elements of a multiverse we do not
force ourselves to accept that each such structure displays a correct, alternative, picture
of the universe of set theory. It is only in the arena of applications that we might test the

15 See [19] for an illuminating discussion on this point and [11] for an application of these ideas
to the study of negation in non-classical set theory.

16 We thank an anonymous referee for bringing this point to our attention.
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fruitfulness of competing set theories (classical or non-classical). In this paper we just
started this study, showing how an algebraic semantics can offer a sufficiently inclusive
arena where to consider (and potentially to evaluate the competition between) set
theories based on different logics.

§7. Conclusion. We believe that the results of this paper can be of interest for both
universists and multiversists, in the context of the philosophy of set theory, and both
for monists and pluralists, for what concerns the philosophy of logic.

From the perspective of a multiversist and a pluralist, the extension of the multiverse
to non-classical set theory brings clear benefits. Not only we can extend to this context
the independence results from classical set theory (Theorem 5.35), but we can also
produce new independence proofs, which were not available with the standard tools
of Cohen forcing (Theorem 5.48). For this reason we can see the method presented in
this paper as a generalization of the forcing technique. In connection to this, a problem
that still remains open is whether it is possible to extend to the non-classical context
an analog of the forcing relation, in order to have a more fine-grained control of truth
in a non-classical algebra-valued models.

From the perspective of an universist and a classical monist, the possibility of proving
independence in theories that are weaker thanBZF allows a finer control of the classical
tools used for such proofs. Indeed, results like Theorem 5.46 allow us to understand
which axioms of classical set theory are needed in independence results. In conclusion,
we hope to have drawn attention to the study of independence in non-classical set
theory, showing its relevance for an open discussion on the set theoretical multiverse.
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