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We present the results of a theoretical investigation of orbital stability in pilot-wave
hydrodynamics, wherein a droplet bounces and self-propels across the surface of a
vertically vibrating liquid bath. A critical notion in pilot-wave hydrodynamics is that
the bath plays the role of the system memory, recording the history of the droplet in its
wave field. Quantised orbital motion may arise when the droplet is confined by either an
axisymmetric potential or the Coriolis force induced by system rotation. We here elucidate
the dependence of the stability of circular orbits on both the form of the confining force and
the system memory. We first provide physical insight by distinguishing between potential-
and wave-driven instabilities. We demonstrate that the former are a generic feature of
classical orbital dynamics at constant speed, while the latter are peculiar to pilot-wave
systems. The wave-driven instabilities are marked by radial perturbations that either grow
monotonically or oscillate at an integer multiple of the orbital frequency, in which case
they are said to be resonant. Conversely, for potential-driven wobbling, the instability
frequency may be resonant or non-resonant according to the form of the applied potential.
Asymptotic analysis rationalises the different stability characteristics for linear-spring
and Coriolis forces, the two cases that have been explored experimentally. Our results
are generalised to consider other potentials of interest in pilot-wave hydrodynamics, and
elucidate the distinct roles of wave- and potential-driven instabilities. Our study highlights
the limitations of prior heuristic arguments for predicting the onset of orbital instability.
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1. Introduction
Pilot-wave hydrodynamics (Bush 2015) was initiated by the discovery of Yves Couder
and Emmanuel Fort that millimetric droplets may self-propel or ‘walk’ across the surface
of a vibrating liquid bath, propelled by their own wave field (Couder et al. 2005).
This walking-droplet system has provided the basis for the nascent field of hydrodynamic
quantum analogues, which is devoted to exploring the ability of this system to capture
features typically associated with the quantum realm (Bush & Oza 2020). The key feature
responsible for the emergent quantum-like behaviour is the non-Markovian nature of the
droplet dynamics: the bath serves as the memory of the droplet, the extent of which
depends on the longevity of the Faraday pilot-wave field as is prescribed by the vibrational
acceleration’s proximity to the Faraday threshold (Eddi et al. 2011). When the walkers are
confined by applied forces, the droplets may execute circular orbits (see figure 1), arising
through the balance of the inward confining force and the outward inertial force. At high
memory, the circular orbits become quantised owing to the dynamical constraint imposed
on the droplet by its pilot wave, which serves as an effective self-potential (Fort et al. 2010;
Oza et al. 2014a). We here present the results of a theoretical investigation in which we
compare the onset of orbital instability and quantisation for pilot-wave hydrodynamics in
the presence of a radial force field and in a rotating frame. Doing so allows us to assess
the relative importance of the imposed potential and the memory-induced self-potential
on the orbital stability.

Fort et al. (2010) examined droplets walking in a rotating frame, so subjected to a
Coriolis force. At low memory, the droplet executes anticyclonic inertial orbits at its free-
walking speed, in which the outward inertial force is balanced by the confining Coriolis
force. The orbital radius reflects this balance and differs from that of classical inertial
orbits only through the wave-induced added mass of the droplet (Bush, Oza & Moláček
2014; Oza et al. 2014a). At higher memory, the droplet encounters its own wake, which
comprises a circular corrugation on the free surface, centred on the orbital centre (see
figure 1b). As a consequence, the droplet is restricted to one of a set of circular orbits
with quantised radii corresponding approximately to integer multiples of half the Faraday
wavelength (Fort et al. 2010; Blitstein, Rosales & Sáenz 2024). This radial quantisation
may be rationalised in terms of the successive destabilisation of orbits of other radii as
the path memory is increased (Fort et al. 2010; Harris & Bush 2014; Oza et al. 2014a).
As the orbital radius is increased progressively, the instabilities are marked by either
monotonically growing perturbations or resonant wobbles with a wobbling frequency
twice the orbital frequency (Oza et al. 2014a; Liu, Durey & Bush 2023), as depicted in
figure 2(a,b). At the highest memory considered, Harris & Bush (2014) demonstrated that
these quantised orbits destabilise into chaotic trajectories marked by intermittent switching
between quantised orbits, a feature captured in accompanying theoretical (Oza et al. 2014a)
and numerical (Oza et al. 2014b) investigations.

Quantised orbital motion may also be induced when the droplet is confined by a central
force. This configuration was first explored experimentally by Perrard et al. (2014a,b), who
applied a vertical magnetic field with a radial gradient to a droplet filled with ferrofluid,
thereby imparting a linear spring force to the droplet. The authors discovered that the
droplet has a propensity for orbits that are quantised in both mean radial position and mean
angular momentum, which include circles, lemniscates and trefoils (Labousse et al. 2014).
While the radii of the circular orbits were found to be quantised in a fashion similar to
those arising in a rotating frame (Labousse et al. 2016; Durey & Milewski 2017), different
instabilities set in as the memory was increased. Specifically, all instabilities were found
to be wobbles (Tambasco et al. 2016), with the wobbling frequency being either close
to 2ω (see figure 2b), and thus resonant with the orbital frequency, ω, or close to

√
2ω
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Figure 1. Orbital pilot-wave dynamics in a confining force field. (a) Schematic diagram of the physical system,
in which a droplet walks along a liquid bath driven vertically with acceleration γ cos(2π f t). Two distinct force
fields are considered. In the first, the system rotates at an angular velocity Ω = Ω ẑ, so the droplet is subjected
to a Coriolis force and is thus prone to anticyclonic circular orbits. In the second, the droplet is constrained by
a central force F = −∇V(r). The vertical axis represents either the centre of force for a central force, or the
rotation axis, ẑ, in the rotating system. (b) Simulated wave field generated by a droplet walking in a circular orbit
(black dashed circle) at high memory. Red and blue designate regions of elevation and depression, and white
indicates no surface displacement. The Faraday wavelength is λF = 4.75 mm for the experimental parameters
detailed in § 3.
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Figure 2. Three forms of orbital instability. Evolution of the droplet trajectory when perturbed from an unstable
circular orbit (dashed curve), with (a) a monotonic instability, (b) a 2ω instability and (c) a

√
2ω instability,

where ω is the orbital frequency. Monotonic instabilities lead to a jump up/down to a nearby stable circular
orbit, 2ω-instabilities lead to a stable 2-wobble orbit and

√
2ω-instabilities lead to quasi-periodic wobbling, for

which the wobbling frequency is incommensurate with the orbital frequency. Monotonic and 2ω-instabilities
are prevalent for orbital motion in a rotating frame, whereas 2ω- and

√
2ω-wobbles mark the onset of instability

in the presence of a linear spring force.

(see figure 2c), and thus non-resonant (Labousse & Perrard 2014). As arose in the rotating
frame, at higher memory, the periodic orbital states destabilise, leading to an intermittent
switching between unstable periodic orbits (Perrard et al. 2014a,b).

A similar progression from periodic orbits to chaotic trajectories was reported by
Cristea-Platon, Sáenz & Bush (2018) in their study of walkers confined to circular corrals.
Specifically, as the memory was increased progressively, periodic orbital states, such
as circles, lemniscates and trefoils, gave way to chaotic motion marked by intermittent
switching between these orbits, a progression also captured in the simulations of Durey,
Milewski & Wang (2020a). The effective radial force imparted to the droplet by the
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submerged topography has been likened to that of a potential that is flat within the corral
and increases steeply over the submerged step (Hélias & Labousse 2023), as might be
modelled by a power-law radial potential (Cristea-Platon et al. 2018). Circular orbits have
also been observed for walkers over inverted conical topography, for which an effective
radial confining potential of the form V(r) ∝ r was inferred for circular orbits (Turton
2020). Orbiting in response to other confining potentials, including a logarithmic (two-
dimensional Coulomb) potential (Tambasco et al. 2016) and an oscillatory potential of
Bessel form (Tambasco & Bush 2018), have been explored numerically. Thus, while walker
motion in response to Coriolis and linear central forces will be the focus of our study, we
will extend our analysis to consider more general radial forces of interest in pilot-wave
hydrodynamics.

Owing to the complexity of orbital pilot-wave dynamics and the associated linear
stability analysis, several heuristic arguments have been proposed in an attempt to predict
the critical radii of instability. For a linear central force, Labousse et al. (2016) noted
that the critical radii correspond approximately to zeros of Bessel functions, which was
rationalised in terms of the resonance between the perturbation and the system’s wave
modes. Durey (2018) noted that the orbits with the largest wave energy destabilise at the
lowest memory and do so with monotonically growing perturbations. The efficacy of both
these heuristic arguments was tested by Liu et al. (2023) for orbiting in response to a
Coriolis force: although a favourable agreement in the critical radii was obtained, neither
heuristic argument accounted for the dependence of the critical radii on droplet inertia.
For orbiting in a rotating frame, Liu et al. (2023) suggested that one can predict the form
of orbital instability of a circular orbit of a given radius according to the form of the local
mean pilot wave, which acts as a self-potential at high memory. Specifically, monotonic
instabilities were found to arise for orbits where the local mean wave force increases with
orbital radius, with wobbling instabilities appearing otherwise. We note, however, that all
three heuristic arguments are based solely on the structure of the wave field and so cannot
predict either the critical memory or the frequency of instability as they do not take into
account the form of the external force field.

We here present a theoretical study of the stability of circular orbits for walkers
confined by a radial or Coriolis force, the two systems that have been considered
experimentally. When the orbits are unstable, three possibilities exist: monotonically
growing perturbations, or wobbling at a frequency that is either resonant or non-resonant
with the orbital frequency, as detailed in figure 2. We demonstrate that the frequency
of instability depends on the relative influence of the wave-induced self-potential and
the applied potential. Wave-driven wobbling, which is peculiar to pilot-wave systems, is
always resonant. Potential-driven wobbling, which we show to be a generic feature of
classical particle motion at constant speed, may be resonant or non-resonant, depending
on the precise form of the confining potential.

In § 2, as a point of comparison for the hydrodynamic pilot-wave system, we consider
classical orbital mechanics (specifically, constrained particle motion in the absence of
a pilot wave) at constant speed. Doing so reveals the frequency of potential-driven
wobbling, but does not yield insight into the influence of memory, specifically the
geometric constraint imposed by the pilot-wave field, on orbital stability. This dependence
is investigated in § 3 by applying linear stability analysis to the stroboscopic pilot-wave
model (Oza, Rosales & Bush 2013) and so constructing numerically the system’s orbital
stability diagram. We highlight the differences between orbital stability in the Coriolis and
linear central force systems as the orbital radius and memory are varied, and classify the
emergence of wave- and potential-driven instabilities. In § 4, we use asymptotic analysis to
deduce the dependence of the critical memory and frequency of instability on the orbital
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radius for both wave-driven and potential-driven instabilities. We then generalise our
analysis to consider the stability of orbits in a variety of confining potentials considered in
prior studies of pilot-wave hydrodynamics. Particular attention is given to power-law radial
force fields, as may play a role analogous to topographic confinement in, for example, the
corral experiments (Harris et al. 2013; Cristea-Platon et al. 2018). In § 5, we discuss the
emerging physical picture for orbital stability in pilot-wave hydrodynamics along with
potential directions for future research.

2. Physical picture
We first consider the behaviour of particles executing circular orbits in the plane in the
presence of an axisymmetric potential. Celestial mechanics, wherein satellites or planets
may execute circular orbits under the influence of the gravitational force, provides a
valuable point of comparison for our study. In such classical orbital dynamics (in which
there is no pilot wave), the form of the applied external potential affects the stability of
circular orbits. Specifically, it is well established that stable circular orbits in the plane
can only be supported for confining potentials of the form V(r) ∝ rq provided q > −2
(Goldstein, Poole & Safko 2002). We begin by re-deriving this result in § 2.1, and then
compare it to the analogous stability condition relevant to the hydrodynamic pilot-wave
system in § 2.2.

2.1. Classical orbital mechanics
We consider the dynamics of a particle of mass m moving in response to an axisymmetric
potential, V(r), in two dimensions. By denoting the particle position in polar coordinates
as xp(t) = r(t)(cos θ(t), sin θ(t)), one may express the radial force balance as

m(r̈ − r θ̇2) = −V ′(r). (2.1)

Conservation of angular momentum implies that l = mr2θ̇ is constant for all time. By
substituting θ̇ = l/mr2 into (2.1), we deduce that the radial motion of the particle satisfies

mr̈ = −V ′
eff(r), where Veff(r) = V(r) + l2

2mr2 (2.2)

is the effective potential. Notably, the effective potential is the sum of the applied potential
and the so-called centrifugal barrier, which is a potential barrier arising due to the
conservation of angular momentum that prevents the particle from approaching the origin.

For steady orbital motion with radius r0, the radial force balance implies that l2 =
mr3

0 V ′(r0), which can be satisfied only when V ′(r0) > 0. If r(t) = r0 + εr1(t), the radial
perturbation will necessarily evolve according the linearised equation r̈1 + ω2

cr1 = 0,
where

ω2
c = V ′′

eff(r0)

m
, or ω2

c = ω2
(

3 + r0V ′′(r0)

V ′(r0)

)
, (2.3)

and ω = l/mr2
0 is the orbital frequency. For a power-law potential of the form V(r) ∝ rq ,

we deduce from (2.3) the relationship ω2
c = (q + 2)ω2, which may be used to assess the

linear stability of circular orbits. If q �−2, perturbations grow in time, with circular
orbits thus being unstable. Circular orbits thus destabilise if the confining force decays
too quickly. Conversely, circular orbits are stable for q > −2, with radial perturbations un-
dergoing closed orbits in phase space. Notably, the perturbation frequency, ωc, is generally
incommensurate with the orbital frequency, ω, except when q + 2 is a perfect square.
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2.2. Orbital mechanics at a constant speed
A key feature of orbital pilot-wave dynamics in a rotating frame is that the walker speed
remains close to the free-walking speed, u0. While substantial speed variations arise for
walker motion in a central force (Perrard et al. 2014b; Kurianski, Oza & Bush 2017),
one expects such variations to be small for nearly circular orbits. To gain insight into
the influence of a fixed speed on the stability of circular orbits, we consider the planar
motion of a particle of mass m moving in response to a potential, V , with the particle
speed fixed at u0 for all time. The radial motion of the particle is thus governed by (2.1),
whereas the constancy of the particle speed gives rise to the condition u2

0 = ṙ2 + r2θ̇2. By
eliminating θ̇2 from (2.1), we deduce that the radial motion of the constant-speed particle is
governed by

m

(
r̈ + ṙ2

r

)
= −V ′

eff(r), where Veff(r) = V(r) − mu2
0 ln

(
r

r0

)
(2.4)

is an effective potential, analogous to (2.2) for particle motion in the plane. Notably,
the centrifugal barrier for constant-speed dynamics is now logarithmic, which alters the
stability of circular orbits relative to those considered in § 2.1.

In a manner similar to § 2.1, we deduce that the steady orbital radius satisfies mu2
0 =

r0V ′(r0) for V ′(r0) > 0. Furthermore, perturbations of the form r(t) = r0 + εr1(t) evolve
according to the linearised equation r̈1 + ω2

pr1 = 0, where

ω2
p = V ′′

eff(r0)

m
, or ω2

p = ω2
(

1 + r0V ′′(r0)

V ′(r0)

)
, (2.5)

and ω = u0/r0 is the orbital frequency. Notably, ωp has a form similar to that of ωc for
classical orbital mechanics (see 2.3). Furthermore, the circular orbit is unstable when
V ′(r0) + r0V ′′(r0)� 0, with perturbations growing monotonically in time, but is stable
otherwise. We refer to ωp as the potential-driven frequency as it reflects the influence of
the applied potential on the particle dynamics and is independent of the pilot wave.

We proceed by evaluating the potential-driven frequency, ωp, for different forms of
the confining potential relevant to pilot-wave hydrodynamics. For the power-law potential
V(r) ∝ rq , it follows directly from (2.5) that ωp = ω

√
q. Consequently, the perturbation

frequency is scaled by a factor
√

q relative to the orbital frequency when q > 0, with
perturbations instead growing in time when q � 0. For the special case of a linear central
force, for which V(r) ∝ r2, (2.5) indicates that ωp = √

2ω, which is precisely equal to
the instability frequency reported by Labousse & Perrard (2014) for a droplet executing
circular orbits in a harmonic potential (see figure 2c). We note that Labousse & Perrard
(2014) performed their stability analysis of the Rayleigh oscillator in a frame translating,
but not rotating, with the orbiting particle, and so their wobbling frequencies of (1 ± √

2)ω

are equivalent to ±√
2ω in our framework. Finally, (2.5) yields ωp = 0 for the logarithmic

potential V(r) ∝ ln(r), corresponding to a two-dimensional Coulomb force, consistent
with the prevalent monotonic instabilities identified by Tambasco et al. (2016).

A very different physical picture emerges for a constant-speed particle moving in
response to a Coriolis force, F = −2mΩ × ẋp, where Ω = Ω ẑ is the rotation vector,
aligned orthogonal to the plane of particle motion (see figure 1a). In this case, radial
perturbations evolve according to the linearised equation r̈1 + ω2r1 = 0, where ω = −2Ω

is the orbital frequency. The perturbation is neutrally stable, representing a periodic
oscillation in the radial distance to the centre of the original orbit at precisely the orbital
frequency, ω. This oscillation corresponds to a shift in the orbital centre upon perturbation,
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which reflects the fact that the Coriolis force does not depend on the particle position, xp,
and is thus invariant to translations. There are thus no potential-driven oscillations for
particle motion in a rotating frame.

Our physical picture of walkers as particles moving at a constant speed highlights
several features that appear throughout our study. First, the radial perturbation frequency,
ωp = √

qω, for orbital pilot-wave dynamics differs from that of celestial mechanics,
ωc = √

q + 2ω, giving rise to instability in power-law potentials for q � 0 instead of the
classical result of q �−2 (Goldstein et al. 2002). Second, the potential-driven frequency,
ωp, is exclusive to particle motion confined by a central force, absent for inertial orbits
in the rotating frame. Third, the perturbation frequency ωp = √

qω is incommensurate
with the orbital frequency, ω, when

√
q is irrational, but can resonate with the orbital

frequency when the potential is such that q is a perfect square. Notably, this simplified
physical picture does not account for the influence of memory on orbital pilot-wave
dynamics, as expressed through the geometric constraint imposed on the droplet by the
quasi-monochromatic pilot-wave field. We thus seek to rationalise the influence of the
self-generated wave field on orbital stability for the hydrodynamic pilot-wave system,
paying particular attention to evaluating the relative importance of wave-driven and
potential-driven instabilities in various settings.

3. Pilot-wave hydrodynamics
We consider the dynamics of a millimetric droplet of mass m, self-propelling across
the surface of a liquid bath vibrating vertically with frequency f and acceleration
γ cos(2π f t); see figure 1(a). When the vibrational acceleration exceeds the Faraday
threshold, γ > γF , the fluid surface is unstable to standing, subharmonic Faraday waves
with period TF = 2/ f and wavelength λF = 2π/kF , where kF is prescribed by the water-
wave dispersion relation, (π f )2 = (gkF + σk3

F/ρ) tanh(kFH) (Benjamin & Ursell 1954).
The parameter range of interest is γ < γF , corresponding to an undisturbed bath in the
absence of the droplet. We focus on the hydrodynamic parameter regime considered by
Harris & Bush (2014), who used a silicone oil of density ρ = 949 kg m−3, kinematic
viscosity ν = 20 cSt and surface tension σ = 0.0206 N m−1. The bath was H= 4 mm deep
and subjected to a vibrational frequency of f = 80 Hz. The droplet had radius R = 0.4 mm
and a free-walking speed of approximately u0 = 11 mm s−1, with an impact phase of
sin Φ = 0.2 (Oza et al. 2014b). Further parameters are given in table 1.

3.1. Integro-differential trajectory equation
The droplet’s horizontal motion is modelled using the stroboscopic trajectory equation
developed by Oza et al. (2013, 2014a), as is deduced by time-averaging the dynamics over
a bouncing period, TF (Moláček & Bush 2013). The droplet’s horizontal position, xp(t),
thus evolves according to

m ẍp + D ẋp = −mg∇h(xp(t), t) + F, (3.1a)

where upper dots denote differentiation with respect to time, t . The drop is propelled by the
wave force, −mg∇h(xp, t), and resisted by the linear drag force, −D ẋp. We consider two
different forms of the external force, F (see figure 1). For a droplet in a rotating frame, the
droplet is subjected to a Coriolis force, F = −2mΩ × ẋp, where Ω = Ω ẑ is the vertical
rotation vector. When the droplet is confined by an axisymmetric potential, V(|x|), the
applied force is F = −∇V(|xp|).

The stroboscopic pilot wave,

h(x, t) = A

TF

∫ t

−∞
J0(kF |x − xp(s)|)e−(t−s)/TM ds, (3.1b)
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Dimensional parameters Definition

m, R Droplet mass, radius
σ , ρ Liquid surface tension, density
ν, νeff (Effective) liquid kinematic viscosity
H, g Liquid bath depth, gravitational acceleration
μair , ρair Air dynamic viscosity, density
f , γ Vibrational forcing frequency, acceleration
γF Faraday instability threshold
λF , kF = 2π/λF , TF = 2/ f Faraday wavelength, wavenumber, period
Td = (νeffk2

F )−1 Wave decay time in the absence of forcing
TM = Td/(1 − γ /γF ) Wave decay (memory) time
Φ Mean phase of wave during contact

Amplitude of single surface wave
A =

√
νeffTF

2π

mgk3
F sin Φ

3k2
Fσ + ρg

Drag coefficient
D = 0.17mg

√
ρR

σ
+ 6πμair R

(
1 + ρairgR

12μair f

)
F = mg AkF Wave force coefficient
c = √

F/DTF kF Maximum walking speed
TW = √

2/ckF , γW /γF = 1 − Td/TW Memory time (vibrational acceleration) at walking
threshold

u0 = (c/2)

√
4 − (1 − Γ )2 − (1 − Γ )

√
(1 − Γ )2 + 8 Free-walking speed

Ω , k Rotation vector, spring constant
r0, ω, U = r0ω Orbital radius, angular frequency, speed
TO = 2π/ω Orbital period
s Asymptotic complex growth rate of perturbations
S = |Im(s)| Perturbation frequency

Dimensionless parameters Definition

M = mckF/D Inertia-to-drag ratio
Γ = (γ − γW )/(γF − γW ) Memory parameter
r̂0 = r0kF , ω̂ = ω/ckF , Û = r̂0ω̂ Dimensionless orbital radius, angular frequency, speed
M O

e = TM/TO Orbital memory
β = 1/ωTM = 1/2π M O

e Reciprocal orbital memory parameter
ŝ = s/ckF Dimensionless complex growth rate
ξ = S/ω Wobble number

Table 1. Parameters appearing in the pilot-wave system (3.2) and subsequent analysis.

is modelled as a continuous superposition of axisymmetric waves of amplitude A centred
along the droplet’s path, decaying exponentially in time over the memory time scale,
TM = Td/(1 − γ /γF ), where Td is the viscous decay time of the waves in the absence
of vibrational forcing (Oza et al. 2013). The slower the waves decay, the greater the
influence of the waves generated along the droplet’s path and so the longer the droplet’s
path memory. Projecting the pilot wave onto the droplet’s path makes clear the influence
of path memory on the droplet motion, as is encapsulated within the integro-differential
trajectory equation (Oza et al. 2013, 2014a)

m ẍp + Dẋp = F

TF

∫ t

−∞
J1(kF |xp(t) − xp(s)|)

|xp(t) − xp(s)| (xp(t) − xp(s))e−(t−s)/TM ds + F, (3.2)
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where F = mg AkF denotes the magnitude of the wave force. The quasi-monochromatic
form of the pilot-wave field imposes a geometric constraint on the droplet’s motion whose
effects are most pronounced at high memory, where the Faraday waves are most persistent.

Although the stroboscopic model (3.1) has adequately captured the majority of walker
behaviours, it is based on the assumption that the droplet bounces in perfect resonance with
the oscillation of the Faraday wave field. Recent work has demonstrated that significant
non-resonant effects arise when droplets navigate a substantial wave field (Primkulov et al.
2025a,b); their role in orbital stability will be considered elsewhere. We also neglect the
exponential far-field decay of the wave field (Tadrist et al. 2018; Turton, Couchman & Bush
2018), which one expects to influence the stability of large circular orbits. Finally, we focus
on small-amplitude perturbations from circular orbits; thus, our linear theory cannot lend
insight into nonlinear effects as are responsible for the emergence of trefoil and lemniscate
trajectories in a central force (Perrard et al. 2014a,b).

3.2. Memory and orbital memory
In the absence of an applied force, the droplet self-propels at a constant speed, u0(γ ),
when the vibrational acceleration, γ , exceeds the walking threshold, γW . As the vibrational
forcing remains below the Faraday threshold in experiments, γ < γF , it is convenient to
characterise the pilot-wave dynamics in terms of the dimensionless memory parameter
Γ = (γ − γW )/(γF − γW ) (Bush 2015; Oza, Rosales & Bush 2018). Notably, Γ = 0
corresponds to the walking threshold in the absence of an applied force (γ = γW ), while
Γ = 1 corresponds to the Faraday threshold (γ = γF ), and thus infinite path memory. In
addition, Γ is related to the wave decay time, TM , via Γ = 1 − TW /TM , where TW is the
memory time at the walking threshold, γW (Durey et al. 2020b).

For orbital pilot-wave dynamics, a key concept is that of ‘orbital memory’ (Oza et al.
2014a), which determines the extent to which an orbiting droplet interacts with its own
wake, specifically the waves generated on its prior orbit. The longer the orbital memory,
the more pronounced the self-potential. For a droplet moving in a circular orbit at angular
frequency ω, the waves generated along the droplet path decay by a factor e−TO/TM over
the orbital period, TO = 2π/ω. We thus define M O

e = TM/TO as the orbital memory.
When the droplet orbits close to its free-walking speed, u0 ≈ r0ω, the orbital memory,
M O

e ≈ TM u0/(2πr0), increases with vibrational forcing and decreases for larger orbits.
For M O

e � 1, the wave decays quickly relative to the orbital period, so the droplet is largely
unperturbed by its wake (see Appendix A). Conversely, if M O

e � 1, the droplet is strongly
influenced by its past history, with the quasi-monochromatic form of the Faraday wave
field imposing a geometric constraint on the droplet motion. The onset of orbital instability
arises at an intermediate regime, M O

e ≈ 1 (Oza et al. 2014a). The precise dependence of
this critical orbital memory on the orbital radius will be established in § 4.

3.3. Orbital stability diagram
We begin by comparing the dynamics of circular orbits for the cases of a droplet propelling
subject to a Coriolis force or confined by a linear spring force, F = −kxp. By substituting
xp(t) = r0(cos ωt, sin ωt) into (3.2), we deduce the radial and tangential force balances

−mr0ω
2 = F

TF

∫ ∞

0
J1

(
2kFr0 sin

(ωs

2

))
sin
(ωs

2

)
e−s/TM ds + F · n, (3.3a)

Dr0ω = F

TF

∫ ∞

0
J1

(
2kFr0 sin

(ωs

2

))
cos

(ωs

2

)
e−s/TM ds + F · t. (3.3b)
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Notably, the applied tangential force vanishes for droplet motion under the influence of
either a Coriolis or a spring force, namely F · t = 0. Furthermore, F · n = 2mΩr0ω for a
Coriolis force and F · n = −kr0 for the linear spring force. We consider counter-clockwise
orbital motion with ω > 0, so that U = r0ω is the orbital speed. Owing to the droplet’s
tendency to move along circular orbits at speeds close to the free-walking speed, u0 (Bush
et al. 2014), the orbital speed satisfies U ≈ u0 and is bounded above by the maximum
steady walking speed, specifically that arising at the Faraday threshold, c = u0(γF )

(Liu et al. 2023).
In figure 3, we present the stability of circular orbits for a droplet moving in response to

a Coriolis force or a linear spring force (the details of which are outlined in Appendices B
and C). The orbital dynamics is parametrised by the memory parameter, Γ , and the orbital
radius, r0, which together determine the form of the Faraday wave field, or self-potential
(Oza et al. 2014a, 2018). The path memory endows the system with infinitely many
eigenvalues. The stability of each orbit is thus characterised by the eigenvalue with largest
real part (Oza et al. 2014a), denoted s∗, with the perturbation growing when Re(s∗) > 0
and oscillating when Im(s∗) 
= 0. At low memory, all orbits are found to be stable, as
detailed in Appendix A (Oza 2014). As the memory parameter is increased, stable circular
orbits (blue) destabilise progressively via either monotonically growing (red) or wobbling
(green or orange) instability mechanisms. Stable circular orbits are thus quantised in radius
at high memory, corresponding to the blue plateaus in figure 3(a,b). We summarise the
orbital stability for all values of Γ in the stability diagram (figure 3c,d), where instabilities
appear as ‘tongues’ separating intervals of quantised stable radii.

We characterise the dependence of the instability mechanism on the orbital radius in
terms of the wobble number, ξ = S/ω, defined as the ratio of the instability frequency,
S = |Im(s∗)|, to the orbital frequency, ω. The wobble number on the stability boundary
(denoted by the white curve in figure 3c,d) varies significantly with the orbital radius, as
is evident from the grey curves in figure 3(e,f ). Discontinuities in ξ correspond to changes
in the instability mechanism. Specifically, ξ switches between intervals of monotonic
instabilities (ξ = 0) and wobbling instabilities (ξ > 0) as r0 increases over a length scale
comparable to half the Faraday wavelength. As is summarised in table 2, the instability
mechanism alternates between monotonic instabilities and 2-wobbles for a Coriolis force
(Oza et al. 2014a,b). For a linear spring force, monotonic instabilities are subdominant
to wobbling instabilities at frequencies 2ω (green) and ωp = √

2ω (orange; see § 2.2),
corresponding to resonant wave-driven 2-wobbles (Harris & Bush 2014) and non-resonant
potential-driven wobbling, respectively.

Despite the complexity of the orbital stability problem, monotonic instabilities have
a particularly simple form. Specifically, circular orbits have an unstable real eigenvalue
(corresponding to monotonic growth) in the upward-sloping portions of the orbital
solution curves in figure 3(a,b); see Theorem 1 of Oza et al. (2014a) for a proof in the
case of a Coriolis force and Theorem 1 (Appendix B) for a generalised proof applicable
to both Coriolis and central forces. For a Coriolis force, these monotonic instabilities
are responsible for the onset of orbital quantisation. For a linear spring force, however,
monotonic instabilities are subdominant to potential-driven wobbling, which instead drive
the onset of orbital quantisation.

Two further instabilities, common to both the Coriolis force and the linear spring force,
are evident in figure 3. First, we note that the wobble number, ξ , approaches 3 when
r0/λF is just below a half-integer multiple of the Faraday wavelength for small orbits
(see figure 3e,f ). This instability corresponds to the 3-wobbles identified in the numerical
simulations of Oza et al. (2014b) within small portions of parameter space, but they have
proven to be elusive in the laboratory (Harris & Bush 2014). Second, we note that large
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Figure 3. Stability of circular orbits for (a,c,e) a Coriolis force and (b,d,f ) a linear spring force.
(a,b) Relationship between the orbital radius, r0, and (a) the rotation rate, Ω , or (b) the spring constant, k,
for circular orbits with memory parameter Γ = 0.8. Blue portions of the curve denote stable circular orbits,
with red, green and orange indicating unstable orbits, colour-coded by the corresponding wobble number,
ξ = S/ω. (c,d) Orbital stability diagram for a range of Γ , with the yellow dashed line corresponding to the
orbital curve in panels (a,b). The white curve denotes the stability boundary, above which all circular orbits
are unstable. Quantised orbits emerge between the instability tongues. We note the additional orange regions
in panel (d), corresponding to ωp = √

2ω instabilities. (e,f ) Dependence of the wobble number, ξ (grey curve),
along the stability boundary (white curve in panels c,d). Discontinuities in ξ correspond to changes in the
instability mechanism. The dashed lines correspond to ξ = 0, ξ = √

2, ξ = 2 and ξ = 3. Monotonic instabilities
are subdominant to potential-driven instabilities for a linear spring force and so are not evident in panel (f ).

values of the wobble number (ξ � 5) are evident in the black portions of figure 3(c,d),
appearing only at high memory. This instability corresponds to speed oscillations over
a length scale comparable to the Faraday wavelength (Bacot et al. 2019; Hubert et al.
2019; Durey et al. 2020b), for which ξ ≈ r0kF (Liu et al. 2023). For orbits larger than
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sin(2kFr0) > 0 sin(2kFr0) < 0

Coriolis force Monotonic instability 2ω-instability

Linear spring force ωp-instability 2ω-instability
(Monotonic instability)

Table 2. Correspondence between the sign of sin(2kFr0) and the existence of monotonic or wobbling
instabilities (at frequency 2ω or ωp = √

2ω) for orbital motion with radius r0 and frequency ω subjected to
a Coriolis force or a linear spring force. Subdominant instabilities are denoted in parentheses. These results are
deduced from the asymptotic analysis in § 4.

those presented in figure 3 (i.e. for r0/λF > 6), these speed oscillations form the dominant
instability mechanism, in accordance with the instability of rectilinear walkers (Durey
et al. 2020b). Owing to the relative scarcity of both 3-wobbles and speed oscillations in the
laboratory, we henceforth focus our investigation on monotonically growing perturbations
and wave- and potential-driven wobbling.

4. Onset of instability
We proceed to develop asymptotic formulae for the critical memory and frequency of
instability for large circular orbits, which we use to explain the structural differences in the
stability diagram for different external forces. Motivated by the effective radial force fields
inferred for droplet–topography interactions and by the differences in the orbital stability
diagram enumerated in § 3.3, we broaden our analysis to encompass the cases of a Coriolis
force, F = −2mΩ × ẋp, and a power-law central force of the form F = −k|xp|n−1xp,
where k is the spring constant. Notably, the central force may be derived from a power-
law potential of the form V(r) ∝ rn+1 when n > −1, and from a logarithmic potential,
V(r) ∝ ln(r), when n = −1. We pay particular attention to the case of n + 1 being a perfect
square, for which potential-driven wobbling with frequency ωp = ω

√
n + 1 resonates with

the orbital frequency, leading to a stability diagram of more complex structure. As most
circular orbits are found to be unstable with monotonically growing perturbations for
n < −1 (in accordance with ωp being imaginary), we consider n �−1 henceforth. We
also restrict our attention to n � 4 for the sake of brevity.

To investigate the onset of orbital instability, we leverage linear stability analysis to
determine the response of the droplet trajectory when perturbed from a circular orbit
following an impulsive force. The linear stability framework is outlined in Appendices B
and C, and is derived by taking Laplace transforms of the linearised droplet trajectory
equation. The poles of the resultant transfer function correspond to the long-time
asymptotic growth rates, s (Oza et al. 2014a). A key feature of our framework is that
the radial force balance (3.3a) is used to eliminate the applied force as a parameter in
the stability problem. Instead, orbits are parametrised by their radius (Oza 2014; Oza
et al. 2014a; Liu et al. 2023), with the corresponding orbital frequency deduced from
the tangential force balance (3.3b).

4.1. Asymptotic framework
We here develop an asymptotic framework for analysing the stability of large circular
orbits, for which r0kF � 1, building upon the analysis of Liu et al. (2023) for orbiting in a
rotating frame. In so doing, we determine asymptotic formulae for the critical vibrational
acceleration along the stability boundary and the corresponding instability frequency, S.
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Figure 4. Dependence of the wave damping factor over half an orbital period, denoted e−πβ = e−TO /(2TM ), at
the onset of instability on the orbital radius, r0, for a linear central force, F = −kxp (n = 1). The grey curve
is a rescaling of the stability boundary (white curve) presented in figure 3(d). Notably, the envelopes of the
instability tongues satisfy the scaling e−πβ = O(r̂−l

0 ) for l = 2 and l = 3, which are used in the asymptotic
analysis presented in § 4.1. The scaling e−πβ = O(r̂−1

0 ) emerges between pairs of instability tongues, including
for 3-wobbles, but is outside the scope of this investigation.

These formulae may then be used to compare the relative vibrational forcing at which
instabilities occur, as well as the corresponding orbital radii at the tip of each instability
tongue. One key inference made from our analysis is the peculiar switching in the structure
of the stability boundaries as the force power, n, is varied. This switching demonstrates
limitations in prior heuristic arguments for predicting the critical radii of instability
tongues solely in terms of zeros of Bessel functions (Labousse et al. 2016), the wave energy
(Durey 2018) or the structure of the mean wave field (Liu et al. 2023).

Central to our analysis is determining suitable scaling relationships between the
dimensionless radius, r̂0 = kFr0 � 1, the dimensionless orbital speed, Û = U/c, the
wobble number, ξ = S/ω, and the reciprocal orbital memory parameter, β = 1/(ωTM),
which may be equivalently defined as β = 1/(2π M O

e ). We recall that U < c for all
orbits, with U generally quite close to c at high memory, and so assume that Û = O(1).
Furthermore, as we are investigating monotonic and wobbling instabilities, we assume that
ξ = O(1), with the leading-order contribution (and thus wobble number) arising naturally
from our analysis. Furthermore, we observe from figure 4 that the wave damping factor
over half an orbital period, e−πβ = e−TO/2TM , scales algebraically with radius along the
stability boundary for a linear spring force. Specifically, 2ω-instabilities (green line) satisfy
the scaling e−πβ = O(r̂−2

0 ) and ωp-instabilities (orange line) satisfy e−πβ = O(r̂−3
0 ). The

scaling relationship e−πβ = O(r̂−2
0 ) also arises for monotonic and 2ω-instabilities in a

Coriolis force (Liu et al. 2023), and we find that similar scaling relationships emerge for
nonlinear springs. To account for all of these cases, we assume that the dominant balance
β = O(ln r̂0) holds for r̂0 � 1, with the particular scaling power e−πβ = O(r̂−l

0 ) being
deduced as part of the solution process detailed in Appendix D. We summarise the results
of this analysis as follows.

4.2. Walking in a rotating frame
Liu et al. (2023) demonstrated that orbiting in a Coriolis force gives rise to monotonic
and 2ω-instabilities as the vibrational forcing is increased. In terms of the dimensionless
mass, M = mckF/D, and reciprocal orbital memory parameter, β, the leading-order
approximation for the stability boundary corresponding to monotonic instabilities is
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β0 = 1
π

ln

(
8k2

Fr2
0 sin(2kFr0)

1 + 2M

)
+ O

(
ln(kFr0)

kFr0

)
, (4.1a)

which is valid when sin(2kFr0) ≈ 1. Notably, maxima in β correspond to minima in Γ

(where Γ = 1 − √
2ωβ/ckF along stability boundaries), which represent the tips of the

instability tongues in figure 3(c). Similarly, the stability boundary corresponding to 2ω-
instabilities is

β2ω = 1
π

ln

(
−8k2

Fr2
0 sin(2kFr0)

3(1 + 2M)

)
+ O

(
ln(kFr0)

kFr0

)
, (4.1b)

valid when sin(2kFr0) ≈ −1, where the corresponding wobble number along the stability
boundary is

ξ2ω = 2 − 4β2ω

πkFr0
cot(2kFr0) + O

(
1

k2
Fr2

0

)
. (4.1c)

The monotonic and 2-wobble instabilities are thus interlaced, with the corresponding
instability tongues in figure 3(c) alternating over half the Faraday wavelength as the
orbital radius is increased. As the critical radii, which lie at the tip of each instability
tongue, approximately satisfy cos(2kFr0) = 0 for large orbits, the O(1/kFr0) correction
to ξ2ω vanishes at the tip of each instability tongue, giving rise to ξ = 2 + O(1/k2

Fr2
0 ).

We note also that increasing the dimensionless mass, M , increases the critical memory of
instability, corresponding to shortening of the instability tongues in the stability diagram.

4.3. Walking in a power-law central force
For orbital motion in a power-law central force, F = −k|xp|n−1xp, corresponding to
V(r) ∝ rn+1 for n > −1, the onset of instability is more intricate, with a subtle dependence
of the instability mechanism on the force power, n (see Appendix D). We detail the onset
of wave- and potential-driven instabilities as follows.

4.3.1. Wave-driven instabilities
For wave-driven resonant instabilities, the wobble number is ξ ≈ 2N for any integer
N � 0, with N = 0 for monotonic instabilities and N = 1 for 2-wobbles. The
reciprocal orbital memory parameter along the stability boundary (corresponding to
Γ = 1 − √

2ωβ/ckF ) is

β2Nω = 1
π

ln

(
− 8k2

Fr2
0 sin(2kFr0)

(4N 2 − n − 1)(1 + 2M)

)
+ O

(
ln(kFr0)

kFr0

)
, (4.2a)

which is valid provided that | sin(2kFr0)| = O(1) and the argument of the logarithm is
positive. The corresponding wobble number along the stability boundary is

ξ2Nω = 2N + N

πkFr0

(
4M − 1

4N 2 − n − 1
− 4β2Nω cot(2kFr0)

)
+ O

(
1

k2
Fr2

0

)
, (4.2b)

where ξ0 = 0 for monotonic instabilities.
There are two notable similarities in the onset of wave-driven instabilities for the

Coriolis and power-law central forces. First, both systems satisfy the asymptotic scaling
e−πβ = O(r̂−2

0 ). Second, wobbling instabilities with N > 1 are subdominant to monotonic
(N = 0) and 2ω (N = 1) instabilities in both systems for all M > 0, as was shown by
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Force power, n sin(2kFr0) > 0 sin(2kFr0) < 0

−1 < n < 0 Monotonic instability ωp-instability
(2ω-instability)

0 < n < 3 ωp-instability 2ω-instability
(Monotonic instability)

3 < n � 4 2ω-instability ωp-instability
(Monotonic instability)

Table 3. Correspondence between the sign of sin(2kFr0) and the existence of monotonic and wobbling
instabilities (at frequency 2ω or ωp = ω

√
n + 1) for a droplet walking in a power-law central force,

F = −k|xp|n−1xp . These results may be deduced by requiring the argument of the corresponding logarithm in
(4.2a) or (4.4a) to be positive. Subdominant instabilities are indicated in parentheses. We restrict our attention
to −1 < n � 4 and to the parameters accessible in experiments (for which the dimensionless mass satisfies
4M > 1).

Liu et al. (2023) for a Coriolis force. For a central force, this result may be verified by
using (4.2a) to deduce that the leading-order stability envelope is defined as

βenv
2Nω = 1

π
ln

(
8k2

Fr2
0

|4N 2 − n − 1|(1 + 2M)

)
, (4.3)

which is found by substituting | sin(2kFr0)| = 1 into (4.2a). The critical memory of
instability is thus lower for smaller values of |4N 2 − n − 1|, with the two smallest values
achieved for N = 0 and N = 1 for the range of force powers (−1 < n � 4) considered here.

Two important differences in the onset of wave-driven instabilities between the two
systems are also apparent. First, the factor of 4N 2 − n − 1 in (4.2a) changes sign for
larger n, causing 2ω-instabilities to overlap with monotonic instabilities in the stability
diagram for a central force with n > 3 (see table 3 and § 4.3.4). Second, the additional
O(1/kFr0) frequency detuning term in (4.2b) leads to an appreciable departure from an
exact 2-wobble at the onset of instability relative to a Coriolis force (see 4.1c), as was
evident in the simulations of Tambasco et al. (2016, figure 7a) close the stability boundary.

4.3.2. Potential-driven instabilities
The stability boundary corresponding to potential-driven wobbling involves the distinct
scaling of e−πβ = O(r̂−3

0 ) (see Appendix D), with

βωp = 1
π

log

(
−16k3

Fr3
0 sin(2kFr0) sin(πξωp )

ξωp (4M − 1)(2M + 1)

)
(4.4a)

along the stability boundary to leading order. As our analysis is focused on the parameter
regime accessible in the laboratory (Harris & Bush 2014), for which M ≈ 2.27, we
henceforth restrict our attention to the case 4M > 1. Consequently, (4.4a) is valid provided
that (i) | sin(2kFr0)| ≈ 1 and (ii) sin(2kFr0) and sin(πξωp ) are of opposite signs. Finally,

ξωp = √
n + 1 + o(1) (4.4b)

is the leading-order instability frequency, which corresponds precisely to the perturbation
frequency ωp = ω

√
n + 1 deduced in § 2. As we require sin(πξωp ) 
= 0 in (4.4a), our

analysis is valid only when ξωp is not an integer (and so n + 1 cannot be a perfect square),
corresponding to non-resonant potential-driven instabilities.
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For both wave- and potential-driven instabilities, the critical radii (which maximise
β, or minimise Γ , along the stability boundary) satisfy sin(2kFr0) ≈ ±1, with the sign
chosen so that the argument of the corresponding logarithm in (4.2a) or (4.4a) is positive.
We summarise the necessary signs of sin(2kFr0) in table 3 as the central force power,
n > −1, is varied, from which one may rationalise the interlacing and overlapping of the
different instability tongues in the stability diagram. Of particular note are (i) the switching
in the critical radii of instability between 2ω- and ωp-instabilities as n exceeds 3 and
(ii) the subdominance of monotonic instabilities to wobbling for n > 0.

We proceed by outlining the dependence of the stability diagram on the force power, n.
We first use our asymptotic results to explain the differences identified in § 3.3 between the
stability diagrams for a linear spring force and a Coriolis force (§ 4.3.3). Generalising to
consider any convex power-law potential makes clear that one cannot predict the onset of
ωp- and 2ω-instabilities using heuristic arguments based only on the form of the wave field
(§ 4.3.4). In § 4.3.5, we detail a new correspondence between the orbital stability diagrams
for a conical potential and a Coriolis force. Finally, we characterise the preponderance of
monotonic instabilities for concave potentials in § 4.3.6, paying particular attention to the
emergence of anomalous instabilities in a logarithmic potential (Tambasco et al. 2016).

4.3.3. Linear central force
The most notable difference between the stability diagrams for the linear central force
(n = 1) and the Coriolis force (see figure 3) is the presence of the potential-driven
instabilities at frequency ωp = √

2ω in the former setting. As predicted by our asymptotic
analysis, the ωp-wobbles form the initial instability mechanism when sin(2kFr0) > 0 (see
table 3), yet are surpassed by monotonic instabilities as memory is progressively increased
(see figure 3d). A second difference in the two stability diagrams appears in the envelopes
of the monotonic and 2ω-instability tongues: monotonic instabilities emerge at a lower
memory than 2ω instabilities in a Coriolis force (Liu et al. 2023), whereas the two
asymptotic envelopes are identical for a linear spring force (see (4.3) for n = 1). This
coincidence of monotonic and 2ω stability envelopes for a linear spring force is evident in
figure 3 and the stability diagram of Tambasco et al. (2016, figure 5), but is not the case
for that of Labousse et al. (2016, figure 3).

4.3.4. Convex potentials
For convex power-law potentials of the form V(r) ∝ rn+1 with n > 0, of which the linear
spring force (n = 1) is a special case, 2ω- and ωp-wobbling instabilities are prevalent,
as is evident in figure 5 and table 3. The structural reconfiguration in the orbital stability
diagram as n exceeds 3 reflects an interchange in the critical radii of instability for 2ω- and
ωp-wobbles. This interchange cannot be predicted by heuristic arguments based solely on
consideration of the wave field, specifically the wave energy, zeros of Bessel functions
(Labousse et al. 2016) or the mean wave field (Liu et al. 2023). Although the switch in
instability mechanism at n = 3 is predicted to be discrete in our asymptotic analysis (see
table 3), the transition is continuous in the numerical results. Specifically, the instability
tongues merge into a pair at n = 3 (for which ωp = 2ω) with the wobble number, ξ ,
being close to 2 along the stability boundary (see figure 5d–f ). Finally, we note that our
asymptotic theory is not valid for n = 3 as the condition sin(π

√
n + 1) 
= 0 is violated, and

thus a special asymptotic treatment would be required in this case.

4.3.5. Conical potential
For a conical potential of the form V(r) ∝ r (corresponding to n = 0), the attractive radial
force is independent of radial position, namely F · n = −k. This situation is thus similar
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Figure 5. Orbital stability for walkers in convex potentials (n > 0) for the experimental parameters specified in
§ 3. The force power, n, increases with successive rows, assuming values (a)–(c) n = 2, (d)–(f ) n = 3, and (g)–
(i) n = 4. (a,d,g) Orbital stability diagrams, with the stability of circular orbits indicated using the same colour
scheme as in figure 3. (b,e,h) Critical memory of instability. Numerically computed stability boundaries (grey
curves) may be compared with the asymptotic solutions (orange curves) defined in (4.2a) and (4.4a). Green dots
represent the critical radii of instability, for which instabilities arise at lowest memory. (c,f ,i) Dependence of
the wobble number, ξ = S/ω, on the orbital radius along the stability boundary, as predicted by numerics (grey
curves) and asymptotics (orange curves; see (4.2b) and (4.4b)). The black dots, which correspond to the critical
radii of instability (green dots in panels b,e,h), lie close to the wobbling frequencies 2ω and ωp = √

n + 1ω

(dashed horizontal lines). The wobble number (grey curves), increases monotonically with the orbital radius,
r0, then jumps downwards discontinuously at half-integer multiples of the Faraday wavelength.

to that of a Coriolis force, for which F · n = 2mΩr0ω ≈ −2m|Ω|u0 for inertial orbits.
Indeed, the stability boundary for the conical potential is indistinguishable from that of the
Coriolis force for r0/λF � 0.5 (see figure 6), with equivalent asymptotic stability bound-
aries (as may be seen by comparing (4.1a) and (4.1b) respectively to (4.2a) with N = 0 and
N = 1). Nevertheless, there are two main differences. First, small-radius orbits (r0/λF �
0.25) are unstable for a conical potential (see Appendix E), yet are stable for a Coriolis
force (Oza 2014). Second, the O(1/kFr0) detuning from resonant 2-wobbles persists for a
conical potential (see 4.2b), but not for the Coriolis force (see 4.1c). Finally, we note that
potential-driven wobbling with frequency ωp = ω is suppressed in the conical potential.
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Figure 6. Orbital stability for walkers in a conical potential, equivalently a radially uniform central force,
F = −kxp/|xp|, for the experimental parameters specified in § 3. (a) Stability diagram, with the same colour
scheme as in figure 3. The white curve denotes the stability boundary for the Coriolis system (see figure 3c).
The strong agreement between the instability boundaries in the two systems is a consequence of the constancy
of the Coriolis force for constant-speed motion. (b) Comparison between the numerically computed stability
boundary (grey curve) and the asymptotic solutions (orange curves) defined using (4.2a). (c) Numerically
computed (grey) and analytic solutions (orange, see 4.2b) for the wobble number, ξ = S/ω, along the stability
boundary, for ξ < 4. The black dots denote the critical memory of instability, corresponding to the green dots
in (b).
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Figure 7. Orbital stability for walkers in concave potentials (V(r) ∝ rn+1 for −1 < n < 0 or V(r) ∝ ln r for
n = −1) for the experimental parameters specified in § 3, with the same colour scheme as in figure 3.
(a) Stability diagram for n = −0.5. The potential-driven instability (light red) arises at a lower memory than
the 2ω-wobbles (green); see table 3. (b) Stability diagram for a logarithmic potential. Monotonic instabilities
represent the dominant instability mechanism, as the potential-driven instability occurs at a frequency ωp =√

n + 1ω = 0 for n = −1. (c) Dependence of the orbital radius on the central force constant, k, for n = −1,
with Γ = 0.2 and Γ = 0.4 corresponding to the dashed lines in panel (b). We note that portions of the orbital
solution curve with positive slope are unstable with monotonically growing perturbations, in accordance with
Theorem 1.

4.3.6. Concave potentials
For concave potentials with power-law form V(r) ∝ rn+1 for −1 < n < 0, perturbations
either grow monotonically or are ωp-wobbles (see figure 7a), in agreement with our
asymptotic predictions (see table 3). However, for the logarithmic potential, V(r) ∝ ln(r)

(corresponding to n = −1), there is a qualitative change in the structure of the stability
diagram in figure 7(b). Specifically, monotonic instabilities dominate (in accordance
with ωp = 0), plateaus in the stability boundary emerge at Γ ≈ 0.35 and Γ ≈ 0.65
(associated with changes in slope of the orbital solution curve; see figure 7c), and the
monotonic instability tongues resemble tear drops, which widen and merge at larger radius,
resulting in islands of stability at high memory. As memory is further increased, these
stability islands are terminated by an oscillatory instability, whose frequency is neither
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commensurate with the orbital frequency nor equal to the potential-driven instability
frequency, ωp = 0 (Tambasco et al. 2016). As these anomalous features violate the scaling
of β = O(ln r̂0) leveraged in Appendix D, a new asymptotic framework to capture them
will be left for future work. In particular, the tear-drop-shaped instability boundaries
cannot be uniquely defined in terms of the orbital radius, thus precluding the development
of explicit formulae for the critical memory.

5. Discussion
Orbital pilot-wave dynamics has provided one of the central paradigms for the emergence
of quantisation and quantum-like statistics from classical pilot-wave dynamics (Bush &
Oza 2020). The particle is able to access only a discrete number of orbitals owing to
the dynamic constraint imposed on it by its quasi-monochromatic pilot-wave field (Fort
et al. 2010). At high memory, the droplet switches intermittently between unstable periodic
orbits (Harris & Bush 2014; Perrard et al. 2014a,b; Oza et al. 2014b). This physical picture
suggests that the superposition of statistical states in quantum systems may be rooted
in an underlying, but currently unresolved, chaotic pilot-wave dynamics, a perspective
forwarded by Gutzwiller in his periodic orbit theory (Müller et al. 2005). Our analysis
of orbital stability provides a step towards assessing the relative propensity of different
orbital states in chaotic pilot-wave dynamics.

For droplets executing inertial orbits in a rotating frame, the onset of instability arises
from a resonance between the orbital frequency, ω, and the destabilisation frequency, S,
and is characterised by either monotonically growing perturbations (S = 0) or 2-wobbles
(S = 2ω). For droplets executing circular orbits under the influence of an axisymmetric
potential, we have demonstrated that the natural frequency of radial oscillation is ωp
(see (2.5)), resulting in potential-driven instabilities at frequency S = ωp, in addition to
monotonic and 2ω-instabilities. The difference between ωp and its analogue in classical
orbital mechanics (ωc, see (2.3)) arises because the system acts to conserve orbital
speed rather than angular momentum. Equation (2.5) indicates that in radial potentials,
V(r) ∝ rq , for which ωp = √

qω, stable circular orbits can arise in our system only if
q > 0. In this case, the near-critical oscillatory modes of frequency ωp are resonant if and
only if q is a perfect square.

To characterise the emergence of wave-driven and potential-driven instabilities in
different settings, we generalised our analysis to consider the confinement of a walking
droplet by a power-law central force of the form F = −k|xp|n−1xp with n �−1, for
which ωp = ω

√
n + 1. When the central force increases with radial distance (n > 0), as

is the case for a harmonic potential (n = 1), wave-driven and potential-driven wobbling
instabilities are prevalent. The instability tongues in the stability diagram alternate between
2ω-wobbles and ωp-wobbles every half wavelength with increasing orbital radius. Of
particular interest is the case n = 3, for which the potential-driven instabilities are resonant
with ωp = 2ω, leading to merging pairs of 2ω and ωp instability tongues. In this case,
numerical simulations reveal that 2-wobbles are prevalent in the weakly unstable regime.
When the spring force is radially uniform (n = 0), the stability diagram is similar in
structure to that of the Coriolis force, consisting of alternating monotonic and 2ω-wobble
instability tongues. Indeed, the asymptotic stability boundaries are precisely equal for the
two systems. Finally, when the spring force decreases with radial distance (−1 � n < 0),
monotonic instabilities are prevalent, particularly in the case of a logarithmic potential
(n = −1), for which ωp = 0.

Our study also highlights the limitations of rationalising the onset of instability in terms
of simple heuristic arguments (Labousse et al. 2016; Liu et al. 2023). Specifically, our
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asymptotic and numerical investigations in § 4 demonstrated that the critical radii of the
2ω and ωp instability tongues can alternate between being close to sin(2kFr0) = 1 or
sin(2kFr0) = −1, depending on the power-law force, n (see table 3). As such, one cannot
simply rationalise the critical radii at the onset of 2-wobbles in terms of the zeros of Bessel
functions (Labousse et al. 2016), the minima of the wave energy (Liu et al. 2023), or the
curvature of the mean wave field (Liu et al. 2023), all of which are independent of the
confining force. Likewise, these heuristic arguments can neither distinguish between 2ω

and ωp wobbling instabilities, nor assess their relative likelihood as a function of memory.
Instead, we find that the relative ordering of the 2ω and ωp instability tongues is related
to the observation that the wobble number, ξ = S/ω, increases monotonically across pairs
of wobbling instability tongues, with downward jumps arising when the orbital radius is
close to a half-integer multiple of the Faraday wavelength (see figure 5). Rationalising this
observation remains the subject of ongoing investigation.

As part of our analysis, we have developed Theorem 1 (see Appendix B), which provides
a simple diagnostic for the onset of monotonic instabilities in a central or Coriolis force in
terms of the slope of the orbital solution curve (see figure 3a,b and figure 7c). Specifically,
if the confining potential decays too rapidly in space to rein in outward perturbations,
then the perturbations grow monotonically in time and the circular orbit destabilises.
Consequently, monotonic instabilities are more prevalent in concave potentials than convex
potentials (see § 4). We have also used this result to justify the instability of small circular
orbits for sub-linear central forces (see Appendix E). We note that this result is an extension
of Theorem 1 of Oza et al. (2014a) for orbital pilot-wave dynamics in a Coriolis force.
However, our proof does not rely explicitly on the particular properties of the stroboscopic
pilot-wave system, and so may be applied more generally, to any classical particle orbiting
in an axisymmetric potential or a Coriolis force field.

It is also worth considering the stability of walkers in an oscillatory potential of
the form V(r) ∝ J0(kFr), as was explored experimentally and numerically by Tambasco
& Bush (2018). By using Bessel’s equation to evaluate V ′′(r0) in (2.5), we compute
ωp = ω

√
r0kF J0(kFr0)/J1(kFr0), which corresponds to potential-driven wobbling when

the argument of the square root is positive, and monotonic growth otherwise. When the
orbital radius is such that J0(kFr0) and J1(kFr0) are of the same sign, radial perturbations
oscillate in time, with the oscillation frequency increasing with proximity to the zeros of
J1(kFr0). However, when the signs of J0(kFr0) and J1(kFr0) differ, radial perturbations
grow exponentially in time, giving rise to instability. Our theoretical treatment of walkers
as constant-speed particles (see § 2.2) thus predicts that circular orbits are stable only
within narrow radial intervals separated approximately by half the Faraday wavelength, in
accordance with the experimental observations of Tambasco & Bush (2018). Such a case
is particularly interesting given that the mean pilot wave of a droplet executing a circular
orbit takes a comparable form in the high-memory limit (Tambasco & Bush 2018), so one
can then consider the stability of an orbiting droplet in its self-potential.

Finally, our analysis has considered a single point in parameter space in the generalised
pilot-wave framework (Durey & Bush 2021), corresponding to the experimental
parameters used by Harris & Bush (2014). For example, in § 4.3, we have assumed that
the dimensionless mass number satisfies 4M > 1, as is the case in the laboratory. Our
theoretical formalism allows for a broader exploration of orbital pilot-wave dynamics at
a much wider range of parameter values, which will be the subject of future work. Of
particular interest will be the small M , long-memory limit, where quantum effects are
known to be most prevalent (Oza et al. 2018). In this long-memory limit, the instantaneous
pilot-wave form converges to the mean (Durey, Milewski & Bush 2018), so one expects
the self-potential associated with the mean pilot-wave form to play a role equivalent to
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the applied potential in the orbital stability. This physical picture, which evokes the role
of the quantum potential in Bohmian mechanics (Holland 1995), will be explored in an
upcoming manuscript.
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Appendix A. Orbital stability at low orbital memory
The regime of low orbital memory, M O

e � 1, in which the droplet’s horizontal velocity
evolves slowly relative to the memory time, TM , emerges for relatively large orbits or weak
vibrational forcing. In this weak-acceleration limit, one may substitute the approximation
xp(t) − xp(s) ≈ (t − s)ẋp(t) − (1/2)(t − s)2 ẍp(t) into the wave force integral term in
(3.2) and evaluate the resulting integrals (Bush et al. 2014). The droplet’s trajectory
equation may thus be approximated by the local form

d p
dt

+ Dw(|ẋp|)ẋp = F, (A1a)

where p = mγB(|ẋp|)ẋp is the droplet’s effective momentum, expressed in terms of the
wave-induced added mass, or ‘hydrodynamic boost factor’,

γB(|ẋp|) = 1 + g Ak2
F T 3

M

2TF
(
1 + (kF TM |ẋp|)2

)3/2 . (A1b)

The wave force also gives rise to a speed-dependent drag coefficient,

Dw(|ẋp|) = D

⎡
⎣1 − c2

|ẋp|2

⎛
⎝1 − 1√

1 + (kF TM |ẋp|)2

⎞
⎠
⎤
⎦ , (A1c)

that drives the droplet towards the steady walking speed, u0 (Bush et al. 2014). Specifically,
the walking speed satisfies Dw(u0) = 0, with Dw > 0 if |ẋp| > u0 and Dw < 0 otherwise.

Following the analysis of Bush et al. (2014) for steady circular orbits with radius r0
and frequency ω > 0, the orbital speed, U = r0ω, is equal to the free-walking speed, u0.
The orbital radius satisfies r0V ′(r0) = p(u0)u0 for orbiting in a potential with force F =
−∇V (|xp|), and is defined as r0 = p(u0)/(2m|Ω|) for orbiting in response to a Coriolis
force, F = −2mΩ × ẋp, where p(u) = mγB(u)u. The orbital stability may be determined
by defining the droplet’s position and velocity as

xp(t) = r(t)(cos θ(t), sin θ(t)) and ẋp(t) = u(t)(− sin φ(t), cos φ(t)), (A2)

respectively. For small perturbations, we express the radius and speed as r(t) = r0 + εr1(t)
and u(t) = u0 + εu1(t), where 0 < ε � 1, and likewise perturb the polar angles θ and φ.
We then substitute this perturbation ansatz into (A1a) and use Taylor expansions to
derive linear equations for the perturbed variables. Eliminating the perturbed polar angles
yields a pair of coupled evolution equations for the perturbed radius and speed, as
summarised as follows.
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A.1. Walking in a rotating frame
When the droplet motion is subjected to a Coriolis force, the radial and speed perturbations
evolve according to

r̈1 + ω2r1 = ω

(
u0 p′(u0)

p(u0)

)
u1 and p′(u0)u̇1 + u0 D′

w(u0)u1 = 0. (A3)

The eigenvalues s± = ±iω reflect the translational invariance of the orbit and s0 =
−u0 D′

w(u0)/p′(u0) corresponds to decaying speed perturbations when p′(u0) > 0.
Circular orbits in a rotating frame are thus stable at low orbital memory.

A.2. Walking in a central force
For a droplet confined to an axisymmetric potential, perturbations evolve according to

r̈1 + ω2
pr1 = ω

(
1 + u0 p′(u0)

p(u0)

)
u1 and p′(u0)u̇1 + u0 D′

w(u0)u1 = − p(u0)

r0
ṙ1,

(A4)
where the natural frequency of radial perturbation, ωp = ω

√
1 + r0V ′′(r0)/V ′(r0), is

identical to the potential-driven wobbling frequency derived in § 2.2 for constant-speed
particles. In the large-radius limit, the eigenvalues of (A4) are s0 = −u0 D′

w(u0)/p′(u0) +
O(r−2

0 ) and

s± = ±iωp − u0
(

p(u0) + u0 p′(u0)
)

2r2
0
(
u2

0 D′
w(u0)2 + ω2

p p′(u0)2
) (u0 D′

w(u0) ± iωp p′(u0)
)+ O

(
r−4

0
)
,

(A5)

where s0 is related to the decay of speed perturbations (as in the case of a Coriolis force)
and s± reflect the natural frequency of radial oscillations. As p(u0) + u0 p′(u0) > 0 in
the regime that walking droplets may be observed in the laboratory (Turton 2020), we
conclude that the real part of s± is negative, albeit close to zero. Consequently, we deduce
that s± form a pair of near-critical stable eigenvalues in the weak-acceleration limit.
Finally, we note that as ωp does not depend explicitly on the wave-induced added mass, γB ,
for a fixed orbital radius, our analysis incorporates the Rayleigh oscillator model (Labousse
& Perrard 2014) as a special case, for which γB = 1 and Dw(u) = D0(u2/u2

0 − 1).

Appendix B. Orbital stability framework
To investigate the stability of circular orbits in the hydrodynamic pilot-wave system, we
recast the trajectory equation (3.2) into polar coordinates, namely

xp(t) = r(t)(cos θ(t), sin θ(t)), (B1)

and perturb the droplet motion from a circular orbit at time t = 0 (Oza et al. 2014a). The
radial (l = r ) and tangential (l = θ ) force balances thus take the form

fl(r, ṙ , r̈ , θ̇ , θ̈ ) + ζ fext,l(r, ṙ , θ̇ ) +
∫ t

−∞
wl(r(t), r(s), θ(t) − θ(s), t − s) ds = εClδ(t),

(B2)

where

fr (r, ṙ , r̈ , θ̇ , θ̈ ) = m(r̈ − r θ̇2) + Dṙ and fθ (r, ṙ , r̈ , θ̇ , θ̈ ) = m(2ṙ θ̇ + r θ̈ ) + Dr θ̇

(B3)
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represent the sum of the inertial and drag forces. Furthermore,

wl(rt , rs, ϕ, τ ) = − F

TF

J1

(√
r2

t + r2
s − 2rtrs cos ϕ

)
√

r2
t + r2

s − 2rtrs cos ϕ

Wl(rt , rs, ϕ)e−τ/TM for l ∈ {r, θ}

(B4)

are the radial and tangential components of the memory kernel, defined in terms
of the current, rt = r(t), and prior, rs = r(s), radial position, the change in polar
angle, ϕ = θ(t) − θ(s), and the change in time, τ = t − s, where Wr = rt − rs cos ϕ

and Wθ = rs sin ϕ. Finally, the magnitude of the perturbation is governed by the small
parameter 0 < ε � 1, with Cr = cr and Cθ = r0cθ appearing in (B2) being arbitrary
constants.

The droplet also evolves in response to the radial and tangential components on the
external force field. For a Coriolis force, F = −2mΩ × ẋp, the external force parameter, ζ ,
in (B2) is equal to the rotation rate, Ω , and the radial and tangential force components are

fext,r (r, ṙ , θ̇ ) = −2mr θ̇ and fext,θ (r, ṙ , θ̇ ) = 2mṙ . (B5)

For an attractive central force of the form F = −k F(|xp|)xp with F(r) > 0, we set ζ

equal to the spring constant, k. The radial and tangential force components are thus

fext,r (r, ṙ , θ̇ ) = F(r)r and fext,θ (r, ṙ , θ̇ ) = 0. (B6)

Notably, the tangential component of the external force, fext,θ , vanishes for steady orbital
motion in the presence of either a Coriolis force or a central force, which we leverage in
our analysis below. Recasting the radial and tangential force balances in the form (B2)
allows us to streamline algebra and highlight the key features of the stability framework.
Our analysis encompasses the results of Oza et al. (2014a) and Labousse et al. (2016) for
a droplet orbiting in response to a Coriolis or central force, respectively.

B.1. Linear stability analysis
To analyse the linear stability of circular orbits, we assume that the droplet executes a
circular orbit of radius r0 and angular frequency ω for all t < 0. Following Oza (2014)
and Liu et al. (2023), we parametrise steady circular orbits in terms of their orbital radius.
We express the corresponding angular frequency as ω = ω0(r0), and the force coefficient
required to sustain the circular orbit as ζ = ζ0(r0). It follows that ω0(r0) and ζ0(r0) satisfy
the force balance equations Fr (r0, ω0(r0), ζ0(r0)) = 0 and Fθ (r0, ω0(r0)) = 0 (see 3.3),
where

Fr (r0, ω, ζ ) = fr (r0, 0, 0, ω, 0) + ζ fext,r (r0, 0, ω) +
∫ ∞

0
wr (r0, r0, ωt, t) dt, (B7a)

Fθ (r0, ω) = fθ (r0, 0, 0, ω, 0) +
∫ ∞

0
wθ(r0, r0, ωt, t) dt. (B7b)

We note that the independence of Fθ on the force parameter, ζ , is a direct consequence of
a vanishing tangential force, fext,θ (r0, 0, ω) = 0, for steady orbital motion in the presence
of a Coriolis or central force. In addition, the first two arguments of wr and wθ are both
evaluated at r0 to reflect the fact that the past trajectory is the circular orbit.

To account for the influence of the infinitesimal forcing at t = 0 on the droplet motion
for t > 0, we substitute the ansatz r(t) = r0 + εH(t)r1(t) and θ(t) = ωt + εH(t)θ1(t)
into (B2), where r1 and θ1 are the perturbed radius and polar angle, and H(t) denotes
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the Heaviside function. As the droplet position is continuous for all time, we conclude
that r1(0) = θ1(0) = 0; however, the acceleration impulse gives rise to a jump in droplet
velocity, yielding (∂ fr/∂ r̈)ṙ1(0+) = cr and (∂ fθ /∂θ̈)θ̇1(0+) = r0cθ (Oza et al. 2014a; Liu
et al. 2023), where

∂ fr

∂ r̈
= m and

∂ fθ
∂θ̈

= mr0 (B8)

for steady orbital motion with radius r0.
By denoting the Laplace transforms of r1(t) and θ1(t) as R(s) = L [r1](s) and

Θ(s) = L [θ1](s), respectively, the Laplace transforms of the linearised evolution
equations yield (

A (s) −B(s)
C (s) D(s)

)(
R(s)

r0Θ(s)

)
=
(

cr
r0cθ

)
. (B9)

The functions in (B9) are defined in terms of fr = fr + ζ fext,r and fθ = fθ + ζ fext,θ by

A (s) =
[
∂fr

∂r
+ s

∂fr

∂ ṙ
+ s2 ∂fr

∂ r̈

]
O

+
∫ ∞

0

∂wr

∂rt
(r0, r0, ωt, t) dt + L

[
∂wr

∂rs
(r0, r0, ωt, t)

]
,

(B10a)

− r0B(s) =
[

s
∂fr

∂θ̇
+ s2 ∂fr

∂θ̈

]
O

+
∫ ∞

0

∂wr

∂ϕ
(r0, r0, ωt, t) dt − L

[
∂wr

∂ϕ
(r0, r0, ωt, t)

]
,

(B10b)

where C and D are defined the same as A and −B, respectively, but with fr replaced
by fθ and wr replaced by wθ . In (B10), the notation [F]O means that the function
F is evaluated for a steady circular orbit, so [ fr ]O = fr (r0, 0, 0, ω, 0), for example.
The stability coefficients in (B11) are equivalent to those detailed in (C1). Finally, the
asymptotic growth rates, s, governing the perturbation evolution are the poles of (B9) and
thus satisfy F (s) = 0, where

F (s) = A (s)D(s) + B(s)C (s). (B11)

B.2. Properties of the stability function
We proceed to establish the behaviour of F (s) for small s, which we will use to prove
Theorem 1. In particular, rotational invariance of the pilot-wave system renders B(0) =
D(0) = 0 and, hence, F (0) = 0. We thus conclude that

F (s) = F ′(0)s + O(s2) (B12)

for sufficiently small s, where F ′(0) = A (0)D ′(0) + B′(0)C (0). In fact, the stability
coefficients in this case are very closely related to the equilibrium force balances (B7),
with

A (0) =
[
∂fr

∂r

]
O

+
∫ ∞

0

[
∂wr

∂rt
(r0, r0, ωt, t) + ∂wr

∂rs
(r0, r0, ωt, t)

]
dt = ∂ Fr

∂r0
,

(B13a)

−r0B
′(0) =

[
∂fr

∂θ̇

]
O

+
∫ ∞

0
t
∂wr

∂ϕ
(r0, r0, ωt, t) dt = ∂ Fr

∂ω
, (B13b)

and likewise

C (0) = ∂ Fθ

∂r0
and r0D

′(0) = ∂ Fθ

∂ω
. (B13c)
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We may thus equivalently write

r0F
′(0) = ∂ Fr

∂r0

∂ Fθ

∂ω
− ∂ Fr

∂ω

∂ Fθ

∂r0
, (B14)

where all derivatives are understood to be evaluated for (r0, ω, ζ ).
The relationship (B13) can be simplified further so as to deduce a more explicit

expression for F ′(0). To do so, we differentiate the force balance equations
Fr (r0, ω0(r0), ζ0(r0)) = 0 and Fθ (r0, ω0(r0)) = 0 (see B7) with respect to r0, giving
(Oza et al. 2014a)

∂ Fr

∂r0
+ ∂ Fr

∂ω

dω0

dr0
+ fext,r

dζ0

dr0
= 0,

∂ Fθ

∂r0
+ ∂ Fθ

∂ω

dω0

dr0
= 0. (B15a)

By eliminating dω0/dr0 from (B15), we find that{
∂ Fr

∂r0

∂ Fθ

∂ω
− ∂ Fr

∂ω

∂ Fθ

∂r0

}
+ fext,r

dζ0

dr0

∂ Fθ

∂ω
= 0, (B16)

where upon applying (B14) to the term in curly brackets immediately yields the
relationship

r0F
′(0) + fext,r

dζ0

dr0

∂ Fθ

∂ω
= 0. (B17)

Finally, we simplify the triple product by noting that the third term may be replaced by
r0D ′(0) using (B13c), giving

F ′(0) = − fext,r (r0, 0, ω)
dζ0

dr0
D ′(0). (B18)

This algebraic form generalises a similar result obtained by Oza et al. (2014a), and will be
leveraged in the proof of Theorem 1.

THEOREM 1. Consider orbital solutions satisfying Fr (r0, ω0(r0), ζ0(r0)) = 0 and
Fθ (r0, ω0(r0)) = 0 (as defined in B7), where the angular frequency, ω = ω0(r0), and force
coefficient, ζ = ζ0(r0), are parametrised by the orbital radius, r0. The orbital solution
is unstable with a real and positive root of F (s) (as defined in B11) in each of the
following cases: (i) ω dΩ0/dr0 < 0 for a Coriolis force, F = −2mΩ × ẋp, where the force
coefficient is the bath rotation rate, ζ = Ω; (ii) dk0/dr0 > 0 for an attractive central force,
F = −k F(|xp|)xp with F(r) > 0, where the force coefficient is the spring stiffness, ζ = k.

Proof. The proof uses the intermediate value theorem to establish a sufficient condition
for there to exist a real and positive root of the stability function F (s), which we then apply
for the cases of Coriolis or central forces. As all Laplace transforms in (B10) decay to zero
as s → ∞, we first note that

F (s) ∼ c∞s4 as s → ∞, where c∞ = 1
r0

[
∂ fr

∂ r̈

∂ fθ
∂θ̈

− ∂ fr

∂θ̈

∂ fθ
∂ r̈

]
O

= m2 > 0,

(B19)

as may be evaluated using (B8) and ∂ fr/∂θ̈ = ∂ fθ /∂ r̈ = 0 (see B3). There thus exists
a real and positive root of F (s) if F ′(0) < 0 (see B12). From (B18), this condition is
equivalent to

fext,r (r0, 0, ω)
dζ0

dr0
> 0, (B20)
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where we have used that D ′(0) > 0 for the stroboscopic model (see the proof in
Appendix F). We proceed by evaluating fext,r (r0, 0, ω) for Coriolis and central forces
to establish sufficient conditions on the sign of dζ0/dr0, as follows.

For a Coriolis force, we recall that ζ0 = Ω0 and that fext,r (r0, 0, ω) = −2mr0ω
(see B5), the sign of which depends on ω. We thus deduce from (B20) that there exists a
real and positive root of F (s) when ω dΩ0/dr0 < 0, which proves case (i).

For a central force, we recall that ζ0 = k0 and that fext,r (r0, 0, ω) = r0 F(r0) > 0
(see B6). We thus deduce from (B20) that there exists a real and positive root of F (s)
when dk0/dr0 > 0, which proves case (ii).

Theorem 1 determines the onset of monotonically growing orbital instabilities without
needing to consider the fully stability problem (B11). For a Coriolis force, the theorem
statement is identical to Theorem 1 of Oza et al. (2014a), except we prove explicitly
the bound D ′(0) > 0 in Appendix F, a result that had previously been only verified
numerically (Oza 2014). Furthermore, Theorem 1 extends the work of Oza et al. (2014a)
to orbiting in attractive central forces, sidestepping the details of the pilot-wave system.
This relative generality suggests that Theorem 1 is a fundamental property of orbital
stability across a wide class of Coriolis and central force systems. Our proof also applies
to non-Bessel wave kernels (with the proviso that D ′(0) > 0), as are needed to model the
exponential far-field decay of the bouncer wave field (Damiano et al. 2016; Tadrist et al.
2018; Turton et al. 2018).

The physical interpretation of Theorem 1 for a central force is as follows, with
the interpretation for inertial orbits in a Coriolis force being similar. Specifically, we
rationalise the onset of monotonic instabilities through consideration of a perturbation
from a circular orbit of radius r0 with fixed spring constant k∗ = k0(r0). The perturbation
is assumed to grow slowly, with the perturbed trajectory remaining nearly circular for all
time; thus, the force balance equations (3.3) may be used to characterise the perturbed
orbit. In the following argument, we denote the droplet’s instantaneous radial position by
r(t) and assume that dk0/dr0 > 0. For outward perturbations, the spring constant k∗ will be
less than that needed for steady orbital motion at radius r(t), as k∗ < k0(r) when r(t) > r0.
Likewise, the spring constant, k∗, will exceed that needed for steady orbital motion
at radius r(t) for inward perturbations, since k∗ > k0(r) when r(t) < r0. Consequently,
outward perturbations lead to a net outward radial force and inward perturbations result
in a net inward force, causing the droplet’s radial position to increase or decrease
monotonically in time upon perturbation.

Appendix C. Orbital stability for pilot-wave hydrodynamics
As outlined in Appendix B, the asymptotic growth rates, s, associated with a perturbation
from a circular orbit of radius r0 and angular frequency ω are precisely the roots of
the stability function F (s) = A (s)D(s) + B(s)C (s), which is defined in terms of the
coefficients

A (s) = m(s2 + (n − 1)ω2) + D

(
s + 1

TM

)

+ FkF

[
C0(s) + I1(s) − n + 1

k2
Fr0

∂I0(0)

∂r0
− 2I0(0)

]
, (C1a)

B(s) = (2 − Δ)mωs + FkF

[(
s� − 1

TM

)
1

k2
Fr0ω

∂I0(0)

∂r0
− S0(s)

]
, (C1b)
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C (s) = (2 − Δ)mωs + 2Dω + FkF

[(
s� + 1

TM

)
1

k2
Fr0ω

∂I0(0)

∂r0
− S0(s)

]
, (C1c)

D(s) = ms2 + D

(
s − 1

TM

)
+ FkF [C0(s) − I1(s)] . (C1d)

The indicator Δ ∈ {0, 1} determines the type of applied force, with Δ = 0 for a
power-law central force of the form F = −k|xp|n−1xp and Δ = 1 for a Coriolis force,
F = −2mΩ × ẋp. For a Coriolis force, we additionally set n = 1 in (C1). The stability
coefficients are defined in terms of the following integrals (for all integers m � 0 and
TM Re(s) > −1):

Im(s) = 1
2TF

∫ ∞

0
J2m

(
2kFr0 sin

(
ωt

2

))
e
−
(

1
TM

+s
)

t
dt, (C2a)

Cm(s) = 1
2TF

∫ ∞

0
J2m

(
2kFr0 sin

(
ωt

2

))
cos(ωt)e

−
(

1
TM

+s
)

t
dt (C2b)

and Sm(s) = 1
2TF

∫ ∞

0
J2m

(
2kFr0 sin

(
ωt

2

))
sin(ωt)e

−
(

1
TM

+s
)

t
dt. (C2c)

These integrals encode the effects of path memory on the response of the walking droplet
to perturbations from a circular orbit. Finally, we use integration by parts to recast the
tangential force balance (3.3b) (with F · t = 0) in terms of the stability integral I0, giving

2TF

TM
I0(0) = 1 − r2

0ω2

c2 , (C3)

where c = √
F/DTF kF is the maximum steady orbital speed (Liu et al. 2023).

In summary, the orbital stability problem requires solving F (s) = 0 and (C3) for s and
ω, respectively, for a given orbital radius, r0 (Oza 2014; Oza et al. 2014a), and is defined in
terms of the stability coefficients (C1) and integrals (C2). The stability coefficients depend
explicitly on the form of the applied force, as indicated by Δ ∈ {0, 1} in (C1). The stability
integrals (C2) may be evaluated analytically (Liu et al. 2023, Appendix B), either in terms
of Bessel functions of complex order,

Im(s) = π

2ωTF
Jm+iη(kFr0)Jm−iη(kFr0)csch(πη), (C4a)

or in terms of infinite sums,

Im(s) = η

2ωTF

∞∑
n=−∞

(−1)nJm+n(kFr0)Jm−n(kFr0)

η2 + n2 , (C4b)

with

Cm(s) = 1
2

(Im(s + iω) + Im(s − iω)) , Sm(s) = 1
2i

(Im(s − iω) − Im(s + iω))

(C4c)
and η = (s + T −1

M )/ω. Finally, we note that the various combinations of stability integrals
appearing in (C1) may be reduced to a more concise form (Liu et al. 2023, Appendix B).

The orbital solution is unstable if there are any roots, s, of F satisfying Re(s) > 0.
By denoting s∗ as the unstable root with largest real part, the instability is monotonic if
Im(s∗) = 0 and oscillatory otherwise. The stability function, F , has a trivial eigenvalue
at 0, corresponding to rotational invariance of the orbital motion. In the case of the
Coriolis force, F has additional trivial eigenvalues at ±iω due to translational invariance
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(Oza et al. 2014a). It follows that the non-trivial roots of the stability problem satisfy
G (s) = 0, where

GCor.(s) = A (s)D(s) + B(s)C (s)

s(s2 + ω2)
and Gspr.(s) = A (s)D(s) + B(s)C (s)

s
. (C5)

We apply the method of Delves & Lyness (1967) to find the roots of G in the domain over
which G is analytic, i.e. Re(s)TM > −1. To ascertain whether a particular orbital state is
stable or unstable, we typically use a rectangular integration contour spanning the domain
Re(s) ∈ [0, 20] and Im(s) ∈ [0, 5], which we find to be sufficient for identifying all roots
with a positive real part across the parameter regime outlined in § 3, and 0 � Γ � 0.999.

Appendix D. The onset of orbital instability
To analyse the instability tongues, we recast the stability functions by evaluating
all integrals analytically (Liu et al. 2023) and converting to dimensionless variables.
Specifically, we take T = 1/(ckF ) to be the unit of time, where c = √

F/DTF kF is the
maximum steady orbital speed. Then, by defining ˆA (ŝ) = A (s)T/D (and likewise B̂,
Ĉ and D̂) and introducing the dimensionless parameters M = m/DT and ζ = T/TM , we
obtain the tangential force balance

1 − r̂2
0 ω̂2 = β f00(β, r̂0), (D1a)

where r̂0 = kFr0, ω̂ = ωT and

fab(η, r̂0) = πcsch(πη)
da

dr̂ a
0
(J−iη(r̂0))

db

dr̂ b
0
(Jiη(r̂0)) for a, b ∈ {0, 1}. (D1b)

Furthermore, we define the stability function F̂ (ŝ) = ˆA (ŝ)D̂(ŝ) + B̂(ŝ)Ĉ (ŝ), where

ˆA (ŝ) = M(ŝ2 + ω̂2(n − 1)) + (n + 1)

r̂0ω̂

(
i

r̂0
− f01(β, r̂0)

)

+ 1
ω̂

[
f11(η, r̂0) − f00(β, r̂0)

(
1 + βη

r̂2
0

)]
, (D1c)

B̂(ŝ) = (2 − Δ)Mω̂ŝ − iŝ(Δ + 1)

r̂2
0 ω̂2

+ 1
r̂0ω̂

[(
ŝ�

ω̂
− β

)
f01(β, r̂0) + η f01(η, r̂0)

]
,

(D1d)

Ĉ (ŝ) = (2 − Δ)Mω̂ŝ + 2ω̂ + iŝ(Δ − 1) − 2iω̂β

r̂2
0 ω̂2

+ 1
r̂0ω̂

[(
ŝ�

ω̂
+ β

)
f01(β, r̂0) + η f01(η, r̂0)

]
, (D1e)

D̂(ŝ) = Mŝ2 + 2ŝ + η

r̂2
0 ω̂

[
β f00(β, r̂0) − η f00(η, r̂0)

]
, (D1f )

ŝ = sT represents the dimensionless complex growth rate, η = ŝ/ω̂ + β and β = ζ/ω̂.
Notably, ζ has been eliminated from the stability coefficients by using the tangential force
balance (D1a). We aim to determine the critical value of the reciprocal orbital memory
parameter, β, at which the growth rate, ŝ, has vanishing real part, writing ŝ = iξω̂ for real
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ξ = O(1). We recall that the Coriolis force corresponds to Δ = 1 and n = 1; the central
force corresponds to Δ = 0 with n being the force power.

Our analysis hinges on applying asymptotic approximations to the functions fab(β, r̂0).
The argument of the Bessel function is r̂0 and the complex order is either ±iη, where
η = β + iξ along the stability boundary, or ±iβ. Based on the assumed dominant balances
β = O(ln r̂0) �√

r̂0 and ξ = O(1), we conclude that the order of the Bessel function
is much less than the argument, and thus apply large-argument expansions of Bessel
functions (Abramowitz & Stegun 1948) to the stability problem (D1). The key difference
to the Coriolis force problem (Liu et al. 2023) is that D̂(iξω̂) = iξ Ĉ (iξω̂) + i(Δ −
1)Mω̂2ξ + O(r̂−3

0 ), and so terms that vanish for a Coriolis force (Δ = 1) are significant
for a central force (Δ = 0). We thus require more terms in the expansion of the stability
function for a central force. Upon using the tangential equation (D1a) to eliminate ω̂

and approximating csch(πβ) = 2e−πβ + O(e−2πβ) for large β, we find that the stability
function takes the asymptotic form

(r̂0ω̂)2F̂ (iξω̂)

iξ
= T1 + T3 + T4 + O

(
e−πβ

r̂2
0

)
+ O

(
1
r̂5

0

)
, (D2)

where the successive terms, Tj , in the series expansion are

T1 = e−πβ

r̂0
[−16(1 + e−iπξ ) sin(2r̂0)], T3 = −4(1 + 2M)(−1 + Δ − n + ξ2)

r̂3
0

,

T4 = i(−6iβ(1+4M)(−1+Δ − n+ξ2)+ξ(−3+Δ(2−4M−16M2)+Δ2(1+4M+4M2)))

r̂4
0

− 4iM2(3 + n − ξ2) + 2(M + 1)(ξ2 − n)

r̂4
0

. (D3)

Equation (D2) forms the foundation of our analysis of wave- and potential-driven
instabilities, where it remains to find asymptotic solutions to β and ξ satisfying
F̂ (iξω̂) = 0 for r̂0 � 1.

To proceed, we identify dominant balances between e−πβ and powers of r̂0, for which
there are two possibilities. If −1 + Δ − n + ξ2 
= 0, then T3 
= 0 and the dominant balance
is between terms T1 and T3. Otherwise, T3 = 0 and so the dominant balance is between
terms T1 and T4. In the presence of a Coriolis force, for which Δ = n = 1, we note that T3 =
0 only if ξ2 = 1, which is a trivial eigenvalue corresponding to translational invariance.
Thus, for non-trivial eigenvalues, the dominant balance for the Coriolis force system is
only ever between terms T1 and T3, leading to resonant wave-driven instabilities (Liu et al.
2023). In contrast, both forms of dominant balance are possible for a central force (Δ = 0),
leading to both wave-driven (T3 
= 0) and potential-driven (T3 = 0) instabilities.

When T3 
= 0, the dominant balance between T1 and T3 takes the form

−16e−πβ(1 + e−iπξ ) sin(2r̂0)

r̂0
− 4(1 + 2M)(−1+ Δ − n + ξ2)

r̂3
0

= O

(
e−πβ

r̂2
0

)
+O

(
1
r̂4

0

)
,

(D4)

which we solve for β and ξ to leading order. Balancing the imaginary parts requires ξ

to be an integer (to leading order), corresponding to resonant wave-driven instabilities.
Balancing the real parts requires that integer to be even. The resulting asymptotic solutions
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for β and ξ are detailed in (4.1) for a Coriolis force (Δ = n = 1) and (4.2) for a central force
(Δ = 0).

Potential-driven wobbling instabilities emerge in a central force (Δ = 0) when T3 = 0,
corresponding to the leading-order condition n = ξ2 − 1, or ξ = √

n + 1. In this case, the
dominant balance between terms T1 and T4 leads to

−16e−πβ(1 + e−iπξ ) sin(2r̂0)

r̂0
+ iξ(4M − 1)(2M + 1)

r̂4
0

= O

(
e−πβ

r̂2
0

)
+ O

(
1
r̂5

0

)
. (D5)

Provided that ξ = √
n + 1 is not an integer, we may use the dominant balance of the

imaginary parts to solve for β to leading order, which gives rise to the potential-
driven wobbling instability boundary detailed in (4.4). When ξ = √

n + 1 is an integer,
potential-driven instabilities are resonant and a more sophisticated asymptotic treatment is
necessary.

Appendix E. Instability of small orbits in a sub-linear central force
We proceed to show that dk0/dr0 > 0 for small-radius orbital solutions when n < 1.
We then use Theorem 1 to conclude that these orbits are unstable to monotonically
growing perturbations. For kFr0 � 1, the radial and tangential force balances (3.3)
simplify to

−mr0ω
2 = FkFr0ω

2TM

2TF (ω2 + T −2
M )

− krn
0 + O(r3

0 ), D = FkF

2TF (ω2 + T −2
M )

+ O(r2
0 ), (E1)

respectively. Along the orbital solution curve, ω = ω0(r0) and k = k0(r0) are thus

k0(r0) = r1−n
0 ω2

0(r0)(m + DTM) and ω2
0(r0) = c2k2

F

2
− 1

T 2
M

, (E2)

where c = √
F/DTF kF is the maximum orbital speed. Notably, the orbital frequency,

ω0(r0), for small circular orbits is the same as for a rotating frame (Oza et al. 2014a), and
is valid provided that TM > TW , where TW = √

2/ckF is the memory time at the walking
threshold (Durey et al. 2020b). As ω0(r0) is independent of r0 to leading order, we deduce
that

dk0

dr0
= (1 − n)r−n

0 (m + DTM)

(
c2k2

F

2
− 1

T 2
M

)
for kFr0 � 1. (E3)

We thus conclude that dk0/dr0 > 0 for sufficiently small orbital radii when n < 1 (with
TM > TW ), with orbits destabilising via monotonically growing perturbations.

Appendix F. Proof that DDD ′(0) > 0 for the stroboscopic model
To prove that D ′(0) > 0 for the stroboscopic pilot-wave model, with D(s) defined in
(C1d), we first convert to dimensionless variables. As outlined in Appendix D, we define
D̂(ŝ) = D(s)T/D, where ŝ = sT and T = 1/(ckF ) is the unit of time. From (D1e), it thus
remains to prove that D̂ ′(0) > 0, where

D̂ ′(0) = 2 − πβ

r̂2
0 ω̂2

d
dβ

(
βcsch(πβ)J−iβ(r̂0)Jiβ(r̂0)

)
. (F1)
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To proceed, we express the product in parentheses in (F1) in terms of an infinite sum,
which is achieved by combining (C4a) and (C4b) with m = 0 to give

πβcsch(πβ)J−iβ(r̂0)Jiβ(r̂0) =
∞∑

n=−∞

β2J2
n(r̂0)

n2 + β2 . (F2)

Substituting (F2) into (F1) and differentiating the sum term by term yields

r̂2
0 ω̂2

2
D̂ ′(0) = r̂2

0 ω̂2 −
∞∑

n=−∞

n2β2J2
n(r̂0)

(β2 + n2)2 . (F3)

We now recognise that the left-hand side of (F2) is the same as the right-hand side of
the tangential force balance (D1a). We may thus express the tangential force balance in
terms of the infinite sum in (F2) and then eliminate r̂2

0 ω̂2 from the right-hand side of (F3).
A short calculation gives rise to the expression

r̂2
0 ω̂2

2
D̂ ′(0) = 1 −

∞∑
n=−∞

J2
n(r̂0)β

2

(β2 + n2)

(
1 + n2

β2 + n2

)
=

∞∑
n=−∞

n4J2
n(r̂0)

(β2 + n2)2 , (F4)

where the right-hand side has been simplified using the identity
∑∞

n=−∞ J2
n(r̂0) = 1. As

all terms in the final sum in (F4) are either zero or positive, we conclude that D̂ ′(0) > 0,
and thus D ′(0) > 0 for the stroboscopic pilot-wave model.
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