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ABSTRACT. We use a two-dimensional flowline model to study the flow of the Gregoriev ice cap, Tien
Shan, central Asia. The model takes into account the transverse change of glacier width, data on the
measured thickness of the glacier, the surface velocity at the glacier front, and mass-balance
measurements in 1987 and 1988. The calculated ice velocity varies from 0 to 3ma–1 along the glacier
flowline. The velocity maximum is shifted from the lowest part towards the middle part of the ice cap for
the time interval considered (1980–2050) in the study. The derived changes of the glacier show the
degradation and decrease of glacier extent on the south slope of Terskey Ala Tau, Tien Shan. Seasonal
variations of temperature in the subsurface layer result in oscillations of stresses and velocities that are
due to seasonal changes of viscosity. The consequent stresses can exceed the compressive/tensile
strength that would produce crevasses.

1. INTRODUCTION
Flat-top glaciers are widespread in central Asia. They
contain important paleoclimatic information that can be
extracted from ice cores. Therefore, features of flow of such
glaciers have to be studied for proper interpretation of the
information preserved therein. Moreover, these glaciers are
important sources of fresh water in the central Asian region,
so prediction of the evolution of such glaciers is of special
interest.

The Gregoriev ice cap is representative of flat-top glaciers
located on the south slope of Terskey Ala Tau, Tien Shan
(Fig. 1). Its average ice thickness is 100–110m, while its
maximum length and width are 3.7 and 3 km, respectively. It
is a cold glacier without bottom sliding. Taking into account
the measured data and using a flow model, which takes into
account the transverse change of glacier width, we derive an
evolution of the glacier shape, velocities and stresses in the
ice, and predict the thermodynamic state from 2000 for the
next 50 years.

The ice in a flat-top glacier flows mainly in the direction
of principal slope, and ends at a steep glacier front. The
transverse cross-section increases along slope and corres-
ponds to a path through points P1–P13. For example, the
width of the Gregoriev ice cap increases from 1.4 to 3 km
(Fig. 1). Due to the complex geometry of the glacier,
analytical models of ice flow are not valid (Hutter, 1983;
Huybrechts and Oerlemans, 1988). To describe the ice flow
we used a two-dimensional plane model that takes into
account the transverse expansion in glacier width (Pattyn,
2000). By applying this model we determine the evolution of
the thermodynamic state of the Gregoriev ice cap for
50 years and seasonal changes in the subsurface layers.

2. MATHEMATICAL STATEMENT
The glacier flow can be described by the mass-balance and
equilibrium equations (Pattyn, 2000):
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where x and z are horizontal and vertical coordinates in the
plane of the ice divide, 0 < x < L0, hbðxÞ < z < hsðxÞ,
u and w are horizontal and vertical velocity components,
respectively, �ik is the stress tensor, � is the density of ice, g is
the acceleration due to gravity, hsðxÞ and hbðxÞ are the upper
and bottom surfaces of the glacier, and b is the glacier width.

Integration over z and differentiation by x of Equation (1b)
and the equation �xx � �zz ¼ 2�0xx þ �0

yy allows us to obtain
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where �0
ik is the stress deviator; i, k � x, y, zð Þ. This equa-

tion differs from the similar equation of Pattyn (2000) by the
last term on the left side of Equation (2). This term is
important for steep slopes.

The stress deviator is connected with the strain-rate tensor
by Glen’s law (Paterson, 1994):

�0ik ¼ 2� _"ik , ð3Þ
where � is viscosity (Paterson, 1994):

� ¼ 1
2
AðT Þ�1

n _"
1�n
n : ð4Þ

The coefficient AðT Þ was chosen according to Paterson
(1994), and n ¼ 3. There is a tuning parameter m in AðT Þ
(Hooke, 1981) which was determined by comparing calcu-
lated and measured velocities at the glacier front. Its value is
found to be m ¼ 0:15 for the Gregoriev ice cap.

The boundary conditions at the surface and the bottom of
the glacier are: at the upper surface �ik nk ¼ 0, where nk is
the component normal to the surface at z ¼ hsðxÞ, and the
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c velocity ~v � u, wf g ¼ 0 at z ¼ hbðxÞ. They allow us to
formulate the problem in terms of the stress deviators, and to
find �zz at the surface for Equation (2):
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� 2�0xx þ �0
yy

� �
, � ¼

dhs
dx

1� dhs
dx

� �2
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At the summit, where x ¼ 0, we used the boundary
conditions at the ice divide (Corcuera and others, 2001):
horizontal velocity u ¼ 0, �0

xz ¼ 0. The boundary x ¼ L0 is
located in the glacier. This boundary is close to the glacier
front, and we used the following equation as the boundary
condition at x ¼ L0: the derivative of horizontal velocity
ð@u=@xÞðL0, zÞ ¼ 0.

After substitution of Equation (3) into Equation (2), and
taking into account Equation (5), the following system of

integral–differential equations for the velocities in the glacier
can be written instead of Equation (1):
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The two last terms on the lefthand side come from the extra
term in Equation (2) that does not appear in Pattyn’s analysis.
This system does not explicitly contain a time variable, and
it is diagnostic (D.R. MacAyeal, unpublished information).
Its solution describes a steady-state flow corresponding to
the upper and bottom surfaces of the glacier. The prognostic
equation which determines an evolution of the shape of the
glacier is based on the mass-balance equation:
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where �u is the average horizontal velocity in the ice, H is the
thickness of the glacier and a0 determines the mass balance
at the surface.

The viscosity of ice depends on temperature which obeys
the following equations:
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where � is the thermal diffusivity (1:12 � 10�6 m2 s�1), C is
the heat capacity, �ðx, tÞ is air temperature, �ðtÞ is the
effective energy-exchange coefficient (Paterson and Clarke,
1978), qeffðtÞ is the heat flux released due to meltwater
refreezing, Tb is temperature at the glacier bottom and T0 is

Fig. 2. Precipitation at the Tien Shan station.

Fig. 1.Map (a) and longitudinal profiles (b) of the Gregoriev ice cap.
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the initial temperature in the ice. (We use the conventional
summation notation for tensors.)

At x ¼ 0 and x ¼ L0 the boundary temperatures T1ðz, tÞ
and T2ðz, tÞ were taken from solution of the following
auxiliary problems:
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Tiðz, 0Þ ¼ T0ðzÞ:

3. METHOD
Calculation of velocities is based on the diagnostic system
(Equation (6)) at each time-step using temperatures calcu-
lated using the set of Equations (8). The new location of the
surface, hs, is calculated from the mass-balance equation
(7), and then temperatures are calculated at each new time-
step.

The solution of the non-linear system of equations is
determined by an iteration procedure in variables
� ¼ ðhs � zÞ=H and x (Pattyn, 2000). It allows us to

transform the complex cross-section occupied by the glacier
in a rectangular region � ¼ 0 � x � L0, 0 � � � 1f g. In
these variables the diagnostic system is
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Fig. 3. Surface mass balance on the Gregoriev ice cap.

Fig. 4. Monthly average air temperature at the Tien Shan station.

Fig. 5. Horizontal velocity in the Gregoriev ice cap: (a) in 1980; and (b) forecast for 2050.
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We have developed the finite-difference code GregFlow
of these equations with first-order approximation in bound-
ary nodes, and the second-order approximation in the
internal nodes (Fletcher, 1991). A similar approach is used
for the heat problem (Equation (8)).

4. APPROXIMATION OF THE BOUNDARY
CONDITION AT THE SURFACE
The boundary condition at the free surface was combined
with Equation (2) to be consistent in the neighboring nodes.
Computer tests show that it allows the number of iterations
and the number of nodes in the vertical direction to achieve
the needed accuracy to be reduced.

5. THE INPUT DATA
The term a0 in Equation (7) is the difference between
precipitation a1 and ablation rate a2, that is, the amount of
meltwater runoff in summer months. Precipitation and
ablation were approximated by linear functions of

elevation, hsðxÞ:
a1ðx, tÞ ¼ 1þ ð1:5=500ÞðhsðxÞ � 4100Þ½ �aðtÞ,
a2ðx, tÞ ¼ 1:15� ð1:15=550ÞðhsðxÞ � 4100Þ½ �

� exp �ðt � n � 0:64Þ2=0:005
h i

=I, ð9Þ
where n is a current year, t is time in years, I ¼R 1
0 exp �ðt � 0:64Þ2=0:005

h i
dt, and aðtÞ is precipitation at

4100m elevation, equal to that at the Tien Shan meteoro-
logical station (Fig. 2).

The coefficients in Equations (9) are determined by
comparison of the balance a0 ¼ a1 � a2 to the average
value measured in 1987 and 1988 (Mikhalenko, 1989;
Djurgerov and others, 1995) (Fig. 3).

Air temperatures �ðx, tÞ are based on data at the Tien
Shan meteorological station (Arkhipov and others, 2004)
(Fig. 4). The change of temperature with elevation for this
region is 0.2338C by 100m (Makarevich and others, 1969):

� ðx, tÞ ¼ T ðtÞ � 0:00233ðhsðxÞ � h0Þ,
where h0 is the elevation of the Tien Shan meteorological
station (3615ma.s.l.).

6. RESULTS
6.1. Evolution of the Gregoriev ice cap
The calculations show that the velocity in ice varies from 0
to 3ma–1 along the glacier flowline. The maximum velocity
is shifted from the lowest part towards the middle part of the
Gregoriev ice cap for the studied period 1980–2050. The
flow velocity near the front of the glacier is decreased for
two reasons. The first is negative mass balance that results in
thinning of the glacier tongue. The second is connected with
deeper penetration of cold temperatures from the surface to
the bed because of thinning of the glacier in its lower part.
As a result, the internal heating becomes smaller in this part
of the glacier and moderates the flow.

The changes of shape of the surface are mainly deter-
mined by the mass balance at the surface. At the surface at
elevations h > 4400m the mass balance is positive, which
corresponds to observations (Mikhalenko, 1989). At
h < 4400m, negative mass balance at the surface occurs.
Near the glacier front, there is strong thinning and decrease

Fig. 6. Observed and calculated temperature profiles in the
Gregoriev ice cap.

Fig. 7. Calculated temperature profiles at x � 0:18 km from the
summit.

Fig. 8. Viscosity profiles at x � 0:18 km from the summit.
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in glacier length at a rate of � 0:5 ma–1, which increases
with time. Figure 5 compares the cross-section of the
Gregoriev ice cap in 1980 (Fig. 5a) with that forecast for
2050 (Fig. 5b) assuming that air-temperature and precipi-
tation trends will remain the same in the future as they were
in 1930–2000.

6.2. Seasonal changes of temperature, stresses and
velocities in subsurface layer of Gregoriev glacier
The borehole temperatures at hs � 4600 m were measured
in the borehole in 2003 and calculated for the same time
(Fig. 6). The calculations were done with a time-step of
1month. The calculated temperatures for each month in
2003 are shown in Figure 7.

The heat source qeffðtÞ results in intense heating of the
subsurface of the glacier in July and August (Fig. 7). The zero
temperature front propagates down to 8m depth. Seasonal
changes of temperature induce variation of the viscosity in
the subsurface layers (Fig. 8). A decrease of ice temperature
from 08C to –208C causes variation of the coefficient AðT Þ in
a range from 6:8� 10�15 to 1:7� 10�16 s–1 kPa–3. The
viscosity � increases 3.5 times. Outside the layer of seasonal
temperature changes (z � 15m), there is practically no
change in viscosity (Fig. 8).

Seasonal oscillations of the stress deviator follow the
changes of viscosity (Fig. 9a). In winter months, changes of

the stress deviator �0
xx can exceed the strength of ice

(�102 kPa), which can result in crack formation in the
subsurface layers (Figs 9b and 10).

The flow velocity changes in accordance with changes in
the glacier slope. At 0 < x < 2:2 km, the slope increases
with time, and the velocity increases also. At x > 2:5 km, the
slope, ice velocity and ice thickness decrease (Fig. 11).

The influence of the term ðd=dxÞ �zz jz¼hs

� �
in Equation (2)

on the solution increases with the slope of the glacier. For
the Gregoriev ice cap, accounting for this term results in 5%
difference of the numerical solution that is compared with
input of the other integral term in Equation (2).

7. CONCLUSION
The thermodynamic state of the Gregoriev ice cap was
studied by mathematical modeling. The observed data on
the mass balance of the glacier, its surface shape and
meteorological data (precipitation and air temperatures)
were used as input to the model. For the time interval
considered in this study, 1980–2050, the maximum velocity
shifts from the lowest part toward the middle part of the
Gregoriev ice cap. The ice velocity varies from 0 to 3 ma–1

Fig. 9. Longitudinal stress deviator profiles (�0
xx ) (a) and the longitudinal stress deviator at different depths (b) at x � 0:18 km from the

summit.

Fig. 10. Longitudinal stress deviator �0
xx at the surface. Fig. 11. Ice-thickness changes at some distances from the summit.
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along the glacier flowline, and the flow velocity near the
front of the glacier is decreased. Seasonal variations of
temperature result in changes of viscosity of ice, and, as a
consequence, significant additional longitudinal deviatoric
stress arises in places where the surface slope has large
gradients. The resulting stresses can exceed the strength of
the ice and result in crack formation. The derived changes of
the glacier shape show the degradation and decrease of
glacier extent on the south slope of Terskey Ala Tau.
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