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ABSTRACT 
 

Fast glacier motion is facilitated by slip at the ice-bed interface. For slip over rigid beds, 

areas of ice-bed separation (cavities) can exert significant control on slip dynamics. Analytic 

models of these systems assume that cavities instantaneously adjust to changes in slip and 

effective pressure forcings, but recent studies indicate transient forcings violate this—and 

other—underlying assumptions. To assess these incongruities, we conducted novel 

experiments emulating hard-bedded slip with ice-bed separation under periodic effective 

pressure transients. We slid an ice-ring over a sinusoidal bed while varying the applied 

overburden stress to emulate subglacial effective pressure cycles observed in nature and 

continuously recorded mechanical and geometric system responses. We observed 

characteristic lags and nonlinearities in system responses that were sensitive to forcing 

periodicity and trajectory. This gave rise to hysteresis not predicted in analytic theory, which we 

ascribed to a combination of geometric, thermal, and rheologic processes. 
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corroborates other studies of transient glacier slip and we used it to place new constraints on 

transient phenomena observed in the field. Despite these divergences, average system 

responses converged towards model predictions, suggesting that analytic theory remains 

applicable for modeling longer-term behaviors of transiently forced slip with ice-bed 

separation. 

 

1. INTRODUCTION 

Glacier slip speed is regulated by the balance between gravitational driving stresses and 

subglacial processes that supply resisting stresses. These processes are sensitive to, among 

other factors, subglacial hydrology (Iken and Bindschadler, 1986; Harper and others, 2005; 

Bartholomaus and others, 2008; Andrews and others, 2014). For hard-bedded glaciers, 

subglacial water storage and routing are primarily facilitated by a combination of linked cavity 

networks and channels, which adapt to changes in water flux on timescales of days to weeks 

(Fountain and Walder, 1998; Gulley and others, 2009; Andrews and others, 2014; Nanni and 

others, 2020). For glaciers with connected surface and subglacial drainage systems, diurnal 

surface melting cycles and supraglacial lake drainage events can route water volumes to the 

bed that are beyond the capacity of the existing subglacial drainage system. This causes the 

basal drainage network to enter a transient period, evolving towards a new steady-state 

capable of handling larger inputs. Comparable transient adjustments also occur in response to 

rapid reductions in water flow through the subglacial drainage system (e.g., Bartholomaus and 

others, 2008; Rada Giacamman and Schoof, 2023). The dynamic interplay of hydrologic 

throughput, drainage system architecture, and the scale of drainage system elements during a 
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transient period drives changes in basal water pressure distribution and magnitude. These 

factors are not always clearly related to those of steady-state configurations (Murray and 

Clarke, 1995; Nienow and others, 2017; Nanni and others, 2021; Rada Giacaman and Schoof, 

2023; Stevens and others, 2024). 

Fast-flowing glaciers primarily move via slip at their beds and account for the majority of 

ice mass flux from continental glaciers into the world’s oceans (e.g., Ritz and others, 2015). 

Therefore, understanding the mechanics governing slip is necessary to accurately model ice-

sheet dynamics. Most large-scale models of glacier dynamics do not consider transient 

subglacial states, assuming instead that the subglacial environment instantaneously responds 

to changing hydrologic forcings along a continuum of steady-state configurations (e.g., 

Lliboutry, 1979; Helanow and others, 2021), however, field observations and experiment-

informed numerical modeling suggest that transient states diverge from the steady-state 

continuum assumption (Andrews and others, 2014; Zoet and others, 2022). This discrepancy 

raises questions about the applicability of “steady-state models” (Zoet and Iverson, 2015; 2016; 

Helanow and others, 2021, Woodard and others, 2023) to transiently forced subglacial slip 

processes and the drag they provide (Iverson and Petersen, 2011; de Diego and others, 2022; 

Zoet and others, 2022; Tsai and others, 2022; Stevens and others, 2024). 

Subglacial cavities form in the lee of bedrock obstacles in response to modest slip 

velocities (on the order of 10 m a-1; Lliboutry, 1968; Woodard and others, 2023). Cavity size is 

modulated by variations in basal slip velocities (  ) and effective pressures (  = ice overburden 

minus water pressure), where increasing    and decreasing   each favor cavity dilation. The 

ability of cavities to form without hydrologic forcing makes them pervasive features in hard-
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bedded subglacial environments, and their ability to change under    or   forcings makes their 

mechanical behavior complex in some settings (MacGregor and others, 2005; Stevens and 

others, 2024). Depending on   ,  , and the scale and local distribution of bedrock obstacles, 

cavities can form hydrologically connected networks, producing spatially heterogeneous 

patterns of ice-bed separation that influence the distribution and magnitude of basal shear 

stresses ( ) provided by the bed. In steady-state theory,   is modulated by the area of ice-bed 

contacts, the slope of ice-bed contacts, and   for that representative area (Kamb and 

LaChapelle, 1964; Lliboutry, 1968; Iken, 1981; MacGregor and others, 2005; Flowers, 2015; Zoet 

and Iverson, 2015; Helanow and others, 2020; Zoet and others, 2022). Due to their ubiquity in 

hard-bedded glacier settings, cavities and their dynamics can exert significant control on the 

overall slip dynamics of glaciers (Hoffman and others, 2016; Helanow and others, 2020; 2021). 

 Steady-state models that include cavities (e.g., Iken, 1981; Zoet and Iverson, 2015; 2016; 

Helanow and others, 2021) likely hold for small or protracted changes in    and   forcings 

(Cohen and others, 2006; Andrews and others, 2014; Zoet and others, 2022). However, large 

and sudden changes in driving conditions could cause cavity dynamics, and their mechanical 

response, to deviate from steady-state predictions, as shown in Zoet and others (2022). These 

departures from the continuum of steady-state predictions are hypothesized to arise from 

time-dependent evolution of cavity geometries and mechanical properties of the ice.  

Observation, experimentation, and process-oriented modeling indicate that cavities 

cyclically forced by changes in   or    at periods shorter than their equilibration timescales can 

produce cavity geometries that oscillate out of phase with the forcings (Andrews and others, 

2014; de Diego and others, 2022; Zoet and others, 2022; Tsai and others, 2022; Stevens and 
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others, 2024). Such forcings are common for mountain glaciers and ice-sheet margins where 

surface and subglacial hydrologic systems are connected or where tidal back-stresses influence 

subglacial water pressures and driving stresses (Zwally and others, 2002; Davis and others, 

2014; Nienow and others, 2017; Stevens, and others, 2022; Stevens, and others, 2023). Despite 

the importance of these processes, numerical treatments of transient subglacial dynamics have 

only recently been advanced (Tsai and others, 2021; de Diego and others, 2022), they lack 

substantial empirical validation (Zoet and others, 2022; Skarbek and others, 2022), and the 

impact of transient behaviors on long-term glacier dynamics is unknown (e.g., Stevens and 

others, 2023; Armstrong and others, 2022; and references therein).  

Here, we present the first laboratory study emulating glacier slip with cavities subjected 

to oscillating effective pressures. Using a cryogenic ring-shear device with a rigid, sinusoidal 

bed, we conducted two oscillatory loading experiments with fixed periods—24 hours and 6 

hours—to investigate the effects of forcing periodicity on cavity geometries and mechanics. 

During one experiment we directly observed the dynamic evolution of cavity geometries to 

validate use of representative geometric parameters and proxies featured in many hard-

bedded sliding rules. We then used our observations from both experiments to assess the 

validity of several aspects of analytic theory for transiently forced systems.  

2. MATERIALS AND METHODS  

2.1. Experimental apparatus 

We simulated glacier slip using the University of Wisconsin–Madison Cryogenic Ring-

Shear Device (UW–CRSD) – a large-diameter ring-shear device. Zoet and others (2023) provide a 

comprehensive description of the UW-CRSD and its operation, so here we focus on aspects of 
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its structure and operation relevant to our experiments: bed geometry, ice-ring construction, 

cavity geometry monitoring, and loading profile design and execution. Figure 1 provides an 

overview of key components of the UW–CRSD referenced in this study. Note that the 

experimental chamber refers to the entire acrylic/metal housing shown in Figure 1b, whereas 

the sample chamber is the vessel within the experimental chamber (Fig. 1c) that houses the ice-

ring and bed (Fig. 1a). 

Figure 1 near here 
 

2.1.1 Rigid bed 

We installed a rigid, sinusoidal bed in the UW–CRSD sample chamber (Fig. 1a) that 

follows design principles from prior CRSD experiments (Iverson and Petersen, 2011; Zoet and 

Iverson, 2015; 2016) that allow direct comparison of experimental observations with modeled 

values from analytic sliding theory (Lliboutry, 1968; 1979; Kamb, 1987). Thus, we can compare 

our observations of transiently forced behaviors to those from theory and steady-state 

experiments for this particular bed geometry (Zoet and Iverson, 2015). The bed used in our 

experiments is made of milled Delrin®: a polymer with a low thermal conductivity and a low 

friction coefficient that suppress regelation and frictional shear stress, respectively. These 

properties help isolate the effects of viscous deformation on system mechanics that control slip 

behaviors for field-scale obstacles, supporting scalability of physics constrained in the lab to 

models of real glacier systems (e.g., Cuffey and Patterson, 2010; Iversen and Petersen, 2011; 

Zoet and Iverson, 2015). We used a bed comprised of four sinusoidal obstacles, the geometry of 

which is summarized in Table 1.  

Table 1 near here 
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Unlike beds in prior studies, the bed used in this study had open sockets for installing 

mounting bolts near the crests and valleys of each obstacle. Sockets on obstacle crests were 

within ice-bed contact areas and provided an additional source of resisting stress. To account 

for the effect of these sockets, we constrained a new correction factor for measured shear 

stresses not included in established CRSD protocols (see section 3.2). 

2.1.2. Ice-ring 

After installing the sinusoidal bed, we constructed an ice-ring with an average height of 

25 cm in a series of 5 cm layers. Layers consisted of crushed, deionized water-ice that were 

flooded with near-freezing deionized water and allowed to freeze in place at the ambient 

laboratory temperature (approximately -10 oC). Prior to making the final ice layer, we installed 

strain markers (beads) near the outer wall of the sample chamber and froze these in place with 

additional deionized water (see Figs. 1b–c). Immediately after flooding the final layer, we 

lowered the platen into contact with the ice-ring, sealing the sample chamber and allowing the 

Delrin® teeth of the upper platen to freeze into the top of the ice-ring (Fig. 1b). Like the bed, 

the use of Delrin® for the platen teeth provides better coupling between the ice-ring and the 

rotating platen that drove radial shearing at a specified angular velocity ( ) throughout the 

study. 

2.1.3. Operation and data acquisition 

 We applied vertical pressures to the contents of the sample chamber using a computer 

controlled ISCO pump connected to a hydraulic ram (Fig. 1b). The ram adjusted the vertical 

position of the experimental chamber, and a pressure transducer in the ram assembly 

measured the vertical force applied by the ram. Control systems continuously monitored data 
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from the pressure transducer and adjusted the vertical position of the ram and experimental 

chamber to maintain a prescribed vertical force on the contents of the sample chamber. Prior 

CRSD studies maintained a constant vertical force for the entirety of each experiment. In our 

experiments, we imposed oscillatory loading profiles to emulate cycles in subglacial effective 

pressure ( ), calculating the vertical pressure (  ) as the applied force divided by the cross-

sectional area of the sample chamber and subtracting measured water pressure (  ) in the 

sample chamber (    –  ). We corrected vertical force measurements for the mass of the 

experimental chamber and its contents prior to calculating   . As the ice-ring melted, water 

was passively evacuated at near-atmospheric pressures via drainage ports in the bottom and 

sides of the sample chamber. Evacuated water was retained in buckets attached to the outside 

of the experimental chamber, maintaining the cumulative mass supported by the ram 

throughout the study. Water pressures in the sample chamber were monitored with two water 

pressure transducers (Fig. 1c), and we used the average of these data to calculate  . 

As the platen rotated the ice-ring at a uniform angular velocity, resisting forces 

generated through slip processes were measured using a custom torque transducer fixed to the 

base of the experimental chamber (Fig. 1b). Torques were initially corrected for resisting forces 

provided by the gasket that seals the sample chamber at the platen (after Zoet and Iverson, 

2015; Zoet and others, 2023) and converted to a shear stress. We subsequently estimated 

corrections for resistance provided by the mounting sockets using   observations and modeled 

values during geometrically confirmed steady-state periods. We then calculated drag from 

calibrated measurements of   and   (       ). 
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Changes in cavity geometry can produce changes in vertical separation of a glacier and 

its bed (e.g., Andrews and others, 2014; Zoet and others, 2022). To continuously monitor 

changes in ice-bed separation during our experiments, we used a linear vector displacement 

transducer (LVDT) attached to the exterior of the experimental chamber (Fig. 1b). During our 

experiments, the LVDT was occasionally re-set to keep the sensor within its dynamic range. 

These adjustments were manually corrected in the data to produce a continuous time-series of 

the relative vertical position of the experimental chamber throughout this study. Additionally, 

time-lapse cameras were deployed around the UW-CRSD to directly observe changes in cavity 

geometries (Figs. 1b–c). 

 Transducer measurements for vertical forces, torques, and water pressures were 

recorded every 15 seconds, and photos were taken by all cameras every minute (Figs. 1b–c). 

We filtered out occasional, short-duration spikes (lasting less than four samples) in time-series 

associated with episodic delays in loading ram response. All but one of these spikes occurred 

outside the timing of our loading experiments, apart from a spike at the start of the 24-hour 

oscillation experiment (see supplementary Figure S1 and text). 

2.2. Experiment design 

2.2.1. Steady-state theory 
 
 The steady-state experimental observations presented in Zoet and Iverson (2015) 

demonstrated a “double-valued” drag relationship for glacier slip over sinusoidal bedforms 

consistent with analytic theory for a range of slip velocities (Lliboutry, 1969; Kamb, 1987). This 

experimentally constrained double-valued drag law states that as cavities nucleate and dilate in 

response to rising   , drag ( ) provided by the system increases and therefore   increases 
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without a change in  . Past a certain threshold dictated by the relative geometry of cavities and 

bed obstacles—parameterized as the ice-bed contact length fraction  —further cavity dilation 

from subsequent increases in    result in decreasing  . Thus,   decreases without a change in N 

as    continues to rise past this geometrically defined inflection point. Comparable decreases 

in    allow viscous contraction of cavities, which the double-valued drag theory indicates 

should result in a reciprocal evolution of   and   along the same path. This is an expression of 

the underlying assumption in analytic theory that at any point in the system’s evolution, the 

cavity geometry is in a steady-state configuration relative to the current   .  

Whereas cavities can also nucleate and dilate in response to decreasing  , analytic 

theory suggests that a double-valued drag relationship should also apply for   modulated 

systems (i.e., water pressure modulation). Using the system of equations from Zoet and Iverson 

(2015) (recapitulated in Appendix A), the geometry of the UW-CRSD sample chamber and bed 

(Table 1), and rheologic parameters for temperate ice constrained in Zoet and Iverson (2015) 

we modeled the parameter space for  ,   ,  ,  , and   shown in Figure 3. Using these modeled 

values, we identified a region of parameter space that avoids the inflection point between 

increasing and decreasing  , encompasses a range of   values consistent with borehole 

observations near the Greenland Ice-Sheet margin (Andrews and others, 2014), and falls within 

the operational limits of the UW-CRSD (grayed-out areas in Fig. 3; summarized in Table 2). 

Subsequent references to modeled values are denoted with a “calc” superscript (e.g.,      ) 

throughout this report. All parameters appearing in this study (and sub-/super-scripted versions 

thereof) are summarized in Appendix B. 

Figure 2 near here 
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2.2.2. Loading profile design 

We targeted an average vertical pressure (  ) of 350 kPa for all our experiments and a 

pressure oscillation amplitude (  ) of 140 kPa. These parameters approximate conditions at the 

bed of a 400-meter-thick glacier at 90% flotation pressure (hydrologic head height of 330 m) 

experiencing a 15.5 m head oscillation amplitude—roughly twice the amplitude observed by 

Andrews and others (2014) in boreholes accessing cavity networks and five times smaller than 

their observations in boreholes in nearby moulins. Correcting for observed   , imposed 

effective pressure cycles were measured as 

(1)   ( )          (
  

 
 ) –   , 

with oscillation period   and observation times  . Observed    values rarely exceeded 3 kPa 

(1% of   ), with one notable excursion reaching 18 kPa associated with the    spike at the start 

of the 24-hour cycling experiment (supplement, Fig. S1). To assess a broader range of cavity 

geometries during this experiment—  [       ]—we prescribed a centerline slip velocity (  ) 

of 15 m a-1 (angular velocity of 75 rad a-1) instead of a    value observed at the Greenland Ice-

Sheet margin (60–160 m a-1; Andrews and others, 2014). This still permitted all expected  ( ) 

values to fall into a domain where   and   covary (Fig. 3; orange bar). Following a spin-up 

period, our first experiment used    = 24 hours (Exp. T24) to simulate the dominant forcing 

period for surface-melting forced glacier systems. Our second experiment used    = 6 hours 

(Exp. T06) to investigate the effect of shorter forcing periods on slip mechanics and cavity 

geometries. We attempted a third experiment with   = 96 hours starting 24 hours after the end 

of Exp. T06, but it was incomplete due to operational issues (i.e., loss of power/pressure in the 

ram) (see Fig. S1). As such, we focus on results from experiments T24 and T06 in this study. Raw 
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data from experiment T96 are included in the repository (see Data & Code Availability) and 

interested readers are directed to Stevens (2022) for further information on this third 

experiment (Exp. T96). 

 

Table 2 near here 

Ice dynamics modeling by Law and others (2023) suggests most slip occurs with ice at 

pressure melting temperatures (i.e., temperate ice). To emulate these conditions in the lab, the 

UW-CRSD is housed in a walk-in freezer that maintains temperatures to within 1  C of target 

values and the sample chamber is enveloped in a temperature regulation system that maintains 

temperatures to within 0.01  C of target values. The temperature regulation system comprises 

a circulating water-glycol bath that fills the outer volume of the experimental chamber and uses 

computer-controlled heat exchangers and glass bead thermistors imbedded in the sample 

chamber walls to monitor and regulate the sample chamber’s temperature (Fig. 1c). The 

pressure melting temperature (    ) is calculated as 

(2)   PMT(N)   𝑡𝑝 − 𝛾(N −  𝑡𝑝), 

with the triple-point temperature ( 𝑡𝑝 = 273.15 K) and pressure ( 𝑡𝑝 = 611.73 Pa) for pure 

water and the Clausius-Clapeyron parameter (𝛾 = 9.8 x 10-8 K Pa-1; e.g., Hooke, 2005) for pure, 

air-saturated water. Before initiating slip in the experiment, we raised the temperature in the 

sample chamber to -0.034 oC (     for   = 350 kPa) and maintained this temperature within 

control system tolerances for the remainder of the experiment. 
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2.2.3 Experiment spin-up and execution 

We initialized our experiment with a “spin-up” period to develop large, steady-state 

cavities (     ) under a low applied pressure (     180 kPa) to expedite cavity growth and 

allow longer experiment run-time before the ice-ring melted to an inoperable thickness. We 

increased    to 350 kPa and drove the system to steady-state according to established 

methods, defined by sustained   values that do not vary by more than 1% for at least 6-hours 

(Zoet and Iverson 2015; 2016; Zoet and others, 2022; 2023). We refer to this as a “mechanically 

inferred steady-state”. Exp. T24 started without a target number of oscillations, rather we 

continued oscillations until we observed nearly identical   responses for two successive 

oscillations: cycles 4 and 5. After Exp. T24, we held    at 350 kPa for 24 hours while maintaining 

the slip rate to allow the system to return to steady-state conditions and then initiated Exp. 

T06, which we ran for five cycles. Observed   values during both experiments and hold periods 

are shown in Figure 3 and imposed    and observed    values are included in the supplement 

(Fig. S1). We also reproduce    and   time-series in Figures 5 and 6 for the time periods of Exp. 

T24 and T06, respectively. 

Figure 3 near here 
 

2.3. Cavity geometry monitoring 

 Ice-bed contact geometry plays a central role in hard-bedded sliding theory, with the 

size and slope of ice-bed contact areas modulating the resisting stresses provided by a rigid 

obstacle (Lliboutry, 1968; 1979; Kamb, 1987; Zoet and Iverson, 2015; Helanow and others, 

2021). Direct observation of cavity and ice-bed contact area geometries is exceedingly difficult 

in subglacial environments, so changes in ice-bed separation (the change in cavity 
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height/volume) are typically used as a proxy for changes in ice-bed contact size (Iken and 

Bindschadler, 1986; Andrews and others, 2014; Zoet and Iverson, 2015; 2016; Zoet and others, 

2022). To generalize system geometries across scales, analytic theory normalizes contact areas 

by a characteristic length of bed obstacles ( , here), yielding a non-dimensionalized contact 

length parameter ( ).   is a function of the lateral positions of where the cavity lifts off the bed 

(the detachment point, Fig. 1c) and where it rejoins the bed (the reattachment point, Fig. 1c). 

In analytic theory,   is related to ice-bed separation by the geometry of a cavity’s roof 

and the geometry of the bed (Appendix A; Zoet and Iverson, 2015). Measurements from the 

LVDT contain a record of changes in average ice-bed separation due to changes in cavity 

volume, so taking the average elevation from modeled cavity roof geometries should emulate 

LVDT measurements arising from changes in cavity geometry. Numerical analysis showed that 

the arithmetic mean of a modeled cavity roof profile was equivalent to average elevation of the 

modeled detachment and reattachment points. As such, we used the horizontal and vertical 

positions of the detachment and reattachment points to define   and a comparable, non-

dimensionalized parameter for cavity height ( ). We define   as the average cavity height 

normalized by the characteristic height of bed obstacles (twice the bed amplitude,  , in Table 

1). By using detachment and reattachment points to parameterize cavity geometries, we can 

also use point measurements from time-lapse photos to directly compare observed cavity 

geometries, LVDT-derived geometries, and modeled geometries.  

We derived   and   from time-lapse images by manually picking the positions of cavity 

detachment points ({     }), reattachment points ({     }), obstacle crests ({          }), 

and static reference points (e.g., drainage ports; Fig. 1c). The full sequence of time lapse images 
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for Exp. T24 are provided in Movies S1 through S3 (supplement), but due to the labor-intensive 

nature of manually picking point data in raw images, we chose to analyze 50 frames from 

cameras #2 and #4 (Figs. 1b–c) that coincided with extremum in stresses, drag, and LVDT cycles 

throughout Exp. T24. In addition, we analyzed images from the hold periods before and after 

Exp. T24 to constrain a reference, steady-state geometry. We then used the reference points 

and known geometry of the bed to reproject raw images and picked points into a flattened 

reference frame using a linear transformation algorithm provided with the QGIS GeoReferencer 

plugin (QGIS Association, 2024). Finally, we applied small, translational (less than 1 mm) and 

rotational (less than 2o) adjustments on picked data to align reference points across images and 

cameras. Photo-derived estimates of scaled geometric parameters ( 𝑝  𝑡  and  𝑝  𝑡 ) as  

(3.a)   𝑝  𝑡  
     

    
, 

(3.b)   𝑝  𝑡  
  –  

   
, 

using the amplitude and wavelength of the bed along the outer wall of the sample chamber 

(    and    , respectively; Table 1).  

Measurements from the LVDT record the summation of ice-ring melting and changes in 

the average height of cavities. We corrected LVDT measurements (     ) at times ( ) for the 

average melting rate of the ice-ring during each experiment ( ) and calibrated them to a 

photo-derived reference geometry ( 𝑝  𝑡 ) at the time of a steady-state cavity configuration 

(  ).       is therefore calculated as 

(4)        ( )  
     (𝑡)– (𝑡–𝑡 )–     (𝑡 )

    
  𝑝  𝑡 (  ), 
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with the average (centerline) bed obstacle amplitude (            ). We then approximated a 

function relating   and   using analytic theory to estimate a calibrated, fractional contact area 

from LVDT observations (     ). Modeled values for   and   were calculated using the system 

of equations in Appendix A. Values of        were calculated using Eqn. A8 and centerline 

geometries (Table 1), and        values were calculated as the mean roof elevation 

(5)        
    ( ( ))

    
       [  

       
    ], 

with  ( ) from Eqn. A2 for positions   that lie at or above the modeled bed (Eqn. A1).  

As indicated by Eqn. 2, the melting temperature (and thus melting rate) at ice-bed 

contacts should vary linearly with   during oscillatory loading experiments. Whereas we 

applied symmetric, periodic   cycles in both experiments, the average slope of the LVDT data 

across multiple loading cycles should reflect the average melting rate across those cycles. To 

estimate the long-term-average   for our experiments, we only used data from complete 

cycles that exhibited highly similar   cycles to estimate   (cycles 4–5 in Exp. T24 and 2–5 in Exp. 

T06). This assumes that the highly similar   cycles arise from highly similar cycles in 

cavity/contact geometry. Within cycles, times with relatively higher   should favor enhanced 

melting at ice-bed contacts and vice versa. Therefore, the amplitudes of       corrected with 

the average melting rate may over-estimate the range of cavity heights due to modulation of 

     within cycles not accounted for by this melt correction method.       inversely varies 

with      , so unaccounted for melting-rate modulation within cycles would lead to       

under-estimating the true range of ice-bed contact lengths during our experiments. 

 Through direct observation, we can also assess a key assumption present in analytic 

theory: that ice-bed contact areas on the stoss (up-flow) side of bed obstacles provide resisting 
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stresses, and therefore changes in stoss contact area explain all observed changes in drag and 

resisting stresses provided by ice-bed contacts. As a corollary, analytic theory indicates lee 

contact areas remain small and do not contribute appreciably to the mechanical response of 

the system. To inspect these features, we define stoss- and lee-side contact areas derived from 

photos as 

(6.a)   𝑡   
𝑝  𝑡 

 
  –  

   
, 

(6.b)     
𝑝  𝑡 

 
  –  

   
, 

and similarly, scaled cavity heights at reattachment (stoss) and detachment (lee) points are 

given as 

(7.a)   𝑡   
𝑝  𝑡 

 
  –  

    
, 

(7.b)     
𝑝  𝑡 

 
  –  

    
. 

Modeled equivalents are calculated using the same equations, substituting outer wall 

amplitudes and wavelengths for centerline values (Table 1). We lacked sufficient information to 

independently estimate LVDT derived measures of stoss and lee cavity heights and contact 

lengths. A diagram of   and   and their geometric relationship to bed obstacle and cavity 

geometries is provided in Figure 4a, including component measurements on lee and stoss sides 

of an obstacle. 
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3. RESULTS 

3.1. Cavity geometries 

 Our photo-derived observations of cavity geometries during Exp. T24 are shown in 

Figure 4 and compared to LVDT- and model-derived estimates. Figure 4a shows the spatial 

distribution of photo-derived cavity detachment and reattachment points overlain on the range 

of cavity and contact area geometries predicted by analytic theory. We found that observed 

detachment points ranged over a much wider section of the lee side of the obstacle than 

predicted by modeling. Similarly, observed reattachment points raged over a much narrower 

section of the stoss side of the obstacle relative to model predictions. As Exp. T24 progressed, 

both the detachment and reattachment points migrated towards an average position generally 

consistent with model predictions for average   (and   ) in this experiment (marker colors 

progressing from dark to light in Fig. 4a). 

Figure 4b shows the temporal evolution of   estimates from photos, LVDT 

measurements, and modeling, and includes component estimates of   (lee and stoss) from 

photos and modeling.  𝑝  𝑡  and       tracked closely with one another indicating that our 

correction factors applied to LVDT data reasonably approximated the true, average height of 

cavities (Eqn. 4). Both  𝑝  𝑡  and       oscillated in a narrower range of values compared to 

      and have long-term, increasing trends over cycles 1–3 and steady mean values during 

cycles 4 and 5. This inter-cycle trend supports our interpretation of stabilizing mean cavity 

geometries during these later cycles provides further support for our melt correction method 

(Eqn. 4 and text). Oscillations in  𝑝  𝑡  had relatively even contributions from variations in 
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𝑝  𝑡 

 and   𝑡   
𝑝  𝑡 

 reflecting a general observation that the entire cavity roof raised and 

lowered during   cycles (see movies in supplement; Mov. S1–S3). 

Figure 4 near here 
 

 Figure 4c shows the temporal evolution of   estimates from photos, LVDT data, and 

modeling, and component estimates. We found that  𝑝  𝑡  and       tracked together well for 

cycles 3–5, with       under-estimating  𝑝  𝑡  during cycles 1 and 2. Contrary to model 

predictions, we observed that     
𝑝  𝑡 

 accounted for most of the variability in  𝑝  𝑡  within 

cycles, whereas   𝑡   
     accounted for most of the variability in      .   𝑡   

𝑝  𝑡 
 remained relatively 

stable within cycles, instead displaying two distinct long-term trends: a linear increase across 

cycles 1–3, and a steady configuration across cycles 4 and 5. Our observations call the 

assumption of minimally important lee contact area dynamics into question.  

In summary, we found the following differences between observed cavity geometries 

and model predictions: 

1) Observed cavity shapes oscillate in a narrower range compared to steady-state model 

predictions. 

2) Observed cavity geometry changes lagged model predictions by four hours. 

3) Observed contact-area oscillations primarily arose from changes in the size of the lee 

contact area within cycles and from stoss contact areas across cycles. 

Despite these differences, analytic theory closely matches cavity geometries observed at the 

end of Exp. T24 suggesting that the system oscillated about a steady-state configuration close 

to model predictions. Additionally, we found that LVDT-derived estimates of cavity geometries 

were a reasonable approximation for photo-derived values, supporting the use of LVDT 
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measurements as a proxy for ice-bed contact size with appropriate correction factors. The 

selection of these correction factors is presented in the next section alongside our 

measurements of the system’s mechanical response to transient forcing. 

3.2. Empirical correction factors 

Photo-derived cavity geometry measurements closely matched modeled equivalents 

from analytic theory at the end of Exp. T24 (Figs. 4a–c), which we interpret as a geometrically 

constrained steady-state (labeled in Fig. 3). As such, we used geometric and mechanical 

measurements from the hold period following Exp. T24 to calibrate LVDT measurements and 

estimate a correction factor for added resisting stresses arising from mounting bolt sockets. 

These correction factors are summarized in Table 3 and described below. 

Table 3 near here 

We used the last  𝑝  𝑡  measurement in Figure 4b to calibrate LVDT estimates of   and 

  (Eqn. 4), and geometric and mechanical measurements from averaged   and    values 

observed in the 24-hour hold period between Exp. T24 and Exp. T06 to model predicted shear 

stress for this cavity geometry (     ; Eqn. A5). Modeled values used the same flow-law 

exponent (  = 3) and effective viscosity (  = 63 MPa a-1/3) as Figs. 3 and 4 and analyses in Zoet 

and Iverson (2015). We then attributed the difference between       and observed shear 

stresses corrected for resistance from the platen gasket (  ) to the additional resistance arising 

from the mounting bolt sockets in the bed, yielding a correction factor    = 84.3 kPa. Changing 

cavity geometries throughout both experiments and hold periods did not expose or envelop 

additional sockets, so we hypothesized that the enveloped sockets provided a relatively 

uniform shear stress enhancement throughout our experiments. To test this hypothesis, we 
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repeated this analysis with data from the 24-hour hold after the end of Exp. T06 and found a 

nearly identical value:    = 84.9 kPa. Thus, we applied a uniform correction of    = 84.6 kPa to 

all shear stress measurements, yielding the observed shear stresses (       −    ) in Figs. 5b 

and 6b. We then calculated observed drag as:                (Figs. 5c and 6c). The estimate 

for   in Exp. T06 used LVDT data from cycles 2–5, where      cycles are highly similar. We 

found   = 0.966 mm d-1, which is still within the range of correction factors estimated across 

experiments reported in Zoet and Iverson (2015) despite its threefold difference relative to   

from Exp. T24 (Table 3). 

3.3. System evolution 
 

3.3.1. Experiment T24 
 
 The mechanical response of this system to 24-hour   cycles shown in Figure 5 displayed 

a rich variety of features that diverge from analytic theory predictions, but also shows long-

term trends that agree with analytic theory. Effective pressures closely tracked with applied 

vertical pressures (Fig. 5a), with a small deviation during cycle 1 associated with a spike in    

and   . This spike did not appreciably impact the form of the forcing during Exp. T24 or the 

recorded system responses.  We found that      oscillated in a narrower range relative to      , 

but      remained within the predicted range of       values throughout the experiment (Fig. 

5b).      exhibited systematic asymmetry within cycles characterized by protracted peaks and 

narrowed troughs, with peak      aligning with peaks in      , rather than peaks in   (Figs. 5a, 

5b, and 5d). To inspect the inter-cycle average system response, we calculated the 48-hour 

rolling average of observed and modeled time-series (dotted lines in Fig. 5).      (dotted black 

line in Fig. 5b) rose across cycles 1–3 and converged with the comparable rolling average of 
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      during cycles 4 and 5, indicating that the resisting stresses provided by the system 

converged with predicted values on inter-cycle timescales, with      oscillating about this 

quasi-steady-state mean within each cycle.  Observed drag (    ) oscillated with a complex 

pattern in a narrower range compared to predicted drag (     ) and systematically lagged       

cycles by 12 hours (Fig. 5c). Unlike     , the 48-hour rolling average of     was higher than the 

rolling average of       by 7.7%.       showed similar lags and enhancements compared to 

      (Fig. 5d), with       oscillations lagging       by 4 hours and an enhancement of the 

rolling average       of 17.0% relative to the rolling average of      . These lags are consistent 

with relationships reported in Zoet and others (2022) for a comparable system forced by    

transients with a dominant period of 24 hours. 

Figure 5 near here 
 

3.3.2. Experiment T06 
 

The responses of this sliding system to 6-hour cycles in   (Exp. T06) shown in Figure 6 

share many features with observations from Exp. T24 (Fig. 5). The   forcing is essentially 

identical to the applied    profile (Fig. 6a) indicating water pressure effects on   were 

negligible during this experiment.       cycles in Exp. T06 show asymmetry like those in Exp. 

T24 (Figs. 5b and 6b), but to a lesser degree, resulting in the timing of maximum and minimum 

     to correlate with the timing of peaks and troughs in model predictions (Fig. 6b). We used 

the 12-hour rolling average to inspect long-term average system responses for Exp. T06 (dotted 

lines in Fig. 6). Average      tracked closely with average       starting in cycle 2 and continuing 

to the end of the experiment (Fig. 6b).      (Fig. 6c) displays a similarly complex asymmetry as 

observed in Exp. T24 (Fig. 5c) and lags       cycles by roughly 3 hours (Fig. 6c). Unlike Exp. T24, 
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there is no indication of an enhancement in average      in Exp. T06 relative to      . Like     , 

      oscillated within a narrower range compared to       throughout Exp. T06 and       

cycles lagged       cycles by approximately 1 hour (Fig. 6d). The average       is slightly 

elevated relative to average       values, but this may also result from small divergences in 

correction factors used to derive these measurements (Eqn. 4; Table 3).  

Observed system responses in Exp. T06 tend to diverge less from analytic theory 

compared to observations from Exp. T24. However, the lags in      and       relative to their 

modeled counterparts hint at linear scaling relationship between effective pressure oscillation 

period and systematic lags in cavity geometry (   ) and drag (   ) for the range of   values 

assessed in this study. The systematic lags and higher-order features observed in the 

mechanical response of this periodically forced sliding system give rise to hysteresis not 

predicted by steady-state theory that we examine further in the next section. 

 

Figure 6 near here 

 

3.4. System hysteresis 

Analytic theory for sinusoidal beds with cavities states that changes in system forcings 

precipitate instantaneous changes in cavity geometries and mechanical response of the system. 

As such, the diverse set of lags between the system’s forcing, geometry, and mechanical 

responses observed here are not consistent with steady-state theory. These varied lags give rise 

to hysteresis in both experiments as displayed in cross plots in Figures 7 and 8. Figure 7 focuses 

on identifying influences from the forcing function and system geometry on drag evolution, 
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whereas Figure 8 focuses on identifying their effects on shear stress evolution. In every case, 

parameter cross plots display hysteresis not predicted by analytic theory (red lines). We also 

observe that hysteresis is more pronounced (i.e., wider loops) in Exp. T24 compared to Exp. 

T24, but the general form of hysteresis for each parameter combination remains the same 

between experiments (e.g., variably flattened ellipses for   and       for Figs. 7a and 7b). 

These general observations suggest that the same processes underlie hysteresis observed in 

both experiments but their relative importance is influenced by the dominant period of the 

transients applied. 

We observed the simplest hysteresis patterns between   and       (Figs. 7a–b) 

indicating that cavity geometries oscillate with a simple phase lag relative to  . In both 

experiments,      and   oscillated in anti-phase relative to expectations from analytic theory 

(Figs. 7c–d) and exhibited a roughly linear relationship when   rose, and experienced a relative, 

nonlinear enhancement as   fell. Changes in contact area also exhibit a nonlinear relationship 

with drag (Figs. 7e–f). During times when effective pressures are lower than average (about 

    ; Fig. 7e)      and       generally agree with analytic theory, suggesting contact size has a 

strong influence on drag evolution under these conditions. As   rose above average values 

drag decreased while contact areas grew, and as   fell from peak values (    ; Fig. 7e) drag 

rebounded with little change in contact area. These nonlinear responses are inconsistent with a 

strictly contact-area-modulated process framework (i.e., analytic theory) and may arise from 

changes in the physical properties of ice-bed contacts related to elevated effective pressures 

(e.g., Goldsby and Kohlstedt, 2001; Skarbek and others, 2022).  

Figure 7 near here 
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 Shear stresses and effective pressures (Figs. 8a–b) cycled in a similar manner as      and 

  (Figs. 7c–d), which is to be expected because of the dependence of      on  . This evolution 

of linear relationships between      and   when   was rising and relative, nonlinear 

enhancement of      for comparable values of   as   fell similarly points to a process 

evolution wherein falling effective pressures enhance resisting stresses in a nonlinear manner. 

Unlike the     –  relationship (Figs. 7c–d), the     –  relationship (Figs. 8a–b) oscillated 

along the trend of model predictions. The relationships between shear stress and contact 

length (Figs. 8c–d) also show a functional form similar to      –   (Figs. 7c–d) and      –   

(Figs. 8a–b), however, the conditions under which      and       vary (non)linearly are flipped. 

In these cases, shear stresses provided by contact areas of the same size are enhanced 

nonlinearly during times when   was rising relative to a linear relationship between       and 

      when   fell (Figs., 8c–d). In summary, our observations indicate: 

1) lags in cavity geometry changes can be explained by viscous deformation processes 

(Figs. 7a–b). 

2) the trajectory of effective pressure transients plays an appreciable role in the evolution 

of nonlinear enhancements of system responses within forcing cycles (Figs. 7c–e; 8a–d).  

3) the period of effective pressure oscillations influences the intensity of nonlinear 

behaviors (Figs. 7c–e; 8a–d). 

4) the scale of effective pressure transients relative to background conditions appears to 

be more important for drag evolution than in the rest of our observations (Figs. 7e–f). 

 
Figure 8 near here 
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4. DISCUSSION 
 

4.1. Comparison to analytic theory 
 

4.1.1. Geometric and mechanical responses 
 
 Our experimental observations significantly diverge from analytic theory on timescales 

of individual forcing cycles but generally conform to modeling predictions on longer timescales 

(Figs. 4–6). Observed cavity geometries and mechanical responses oscillated in narrower ranges 

compared to model predictions, but all observed values fell within the range of model 

predictions for the range of   applied to the system (Figs. 4–6). On multi-cycle timescales, 

observed average system responses tracked closely with model predictions (Figs 5 and 6) with 

some deviations observed during Exp. T24 (Figs. 5c and 5d). We found that long-term evolution 

of this system’s mechanical responses could still be contributed to changes in the geometry of 

ice-bed contacts on the stoss side of bed obstacles (Fig. 4a), but within forcing cycles, this 

relationship broke down, with changes in lee contact areas correlating with transient shear 

stress and drag responses (Figs. 4 and 5). These observations call into question the assumption 

that resisting forces are modulated through (stoss) contact area alone within transient forcing 

cycles. Additionally, the enhancement of drag and average contact area size towards the end of 

Exp. T24 may indicate a drag-enhancing feedback that arises from transient forcing (Figs. 5c–d). 

Due to their late emergence in Exp. T24, it is unclear whether these enhancements are 

characteristic responses of the sliding system to the applied forcing, or an effect of extenuating 

circumstances such as the disequilibrium starting point of this experiment. 
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Both geometric and mechanical measurements indicate that Exp. T24 was initiated 

before the system reached steady-state, despite meeting the mechanical criteria used in earlier 

studies (Figs. 4 and 5). This premature start provided a useful insight that a hard-bedded sliding 

system in disequilibrium can still converge to an average, near-steady-state configuration even 

when subjected to periodic transient forcing. Furthermore, our observations indicate that 

periodic transients tend to result in system responses that oscillate about a near-steady-state 

configuration and support the use of analytic theory to model system dynamics at time periods 

longer than the dominant period of relevant forcings. As such, our experiments suggest that 

analytic theory can still be used to model the average shear stress provided by hard beds 

experiencing periodic forcing for timescales longer than the dominant period of the forcing. 

However, modeling the average drag or cavity geometries using steady-state theory on these 

timescales may require adjustment. 

4.1.2. Interchangeability of transient    and   forcings? 

Our observations of characteristic lags in observed cavity geometries and drag relative 

to modeled values (Figs. 5 and 6) match observations and modeling of comparable systems 

subjected to periodic    forcing (Andrews and others, 2014; Zoet and others, 2022; de Diego 

and others, 2022). This commonality suggests that periodic    and   transients may be able to 

produce identical system responses, like steady-state theory. Fundamentally, this 

interchangeability arises in steady-state models because    and   modulate cavity geometries, 

which in turn modulate drag and resisting stresses. Our observations indicate that contact 

geometry alone does not fully explain observed drag and shear stress behaviors within forcing 

cycles (Figs. 7e–f and 8c–d). As such, direct application of the physical processes underlying the 
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steady-state equivalency of    and   forcings is not appropriate. However, ice-on-rock sliding 

experiments subjected to oscillatory forcing (Skarbek and others, 2022; McCarthy and others, 

2022) may provide missing elements that support an interchangeability of periodic    and   

transients for this system. Their experiments forced sliding with comparatively short period    

oscillations (10 to 100 s) and found that the oscillatory forcing shifted the system from velocity 

strengthening drag to velocity weakening drag. This is equivalent to the  /2 lag in our drag 

observations and those modeled in Zoet and others (2022). They attribute this change to 

modulation of the stiffness of the ice-bed interface, which may also occur in our experiments 

and could provide additional support for the proposed interchangeability of transient    and   

forcings for our modeled system.  

Steady-state theory indicates that perturbations to    or   can produce the same 

geometric and mechanical responses for cavity modulated sliding systems, and theoretical 

treatments of these systems often generalize the functional form of shear stress or drag with 

respect to     . We display our observations from both experiments for this parameterization 

(with    = 15 m a-1) in Figure 9. If the interchangeability of    and   forcings featured in 

steady-state theory holds true for transiently forced systems, periodic    forcings might 

produce similar functional forms as our  -forced observations in Figure 9. Although drag (Fig. 

9a) cycles in a manner largely inconsistent with steady-state theory, shear stresses cycle 

roughly parallel with model predictions (Fig. 9b) and exhibits the least amount of hysteresis of 

all our observations (compare to Figs. 7 and 8). Data-model misfits in Figure 9b might be 

reduced with modest changes in the rheologic parameters (  and  ) selected for the steady-

state model, and modulation of these parameters within cycles could further explain our 
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observations. We explore the potential process linkages relevant to this system in the next 

section. 

Figure 9 near here 
 

4.2. Process interpretation 
 

We propose that the drag and resisting stress responses observed in our sliding system 

arise from a combination of changes in system geometry and physical properties at ice-bed 

contacts. The variety of hysteresis patterns observed in our experiments arose from mutual lags 

between system forcing, geometry, and mechanical parameters that are not predicted by 

analytic theory (Figs. 7 and 8). Common features in these patterns give insights as to the 

phenomena important to the evolution of drag and shear stresses in different portions of 

forcing cycles. The elliptic relationship between   and       (Figs. 7a–b) can be explained by a 

simple lead-lag relationship that operates on timescales consistent with characteristic 

relaxation times of viscous deformation processes. This indicates that under our experimental 

conditions, cavity/contact-area geometry changes can be explained by viscous deformation of 

the ice-ring. 

Relationships between  ,     ,     , and       exhibit a combination of linear and 

nonlinear elements that trade off depending on the trajectory of effective pressures (Figs. 7c–d, 

and 8a–d). Our observations show that falling   favors nonlinear enhancements of      and 

     (Figs. 7c–d and 8a–b) relative to comparable conditions while   is rising. In contrast, we 

found that contact areas of comparable size corresponded to nonlinear enhancement of shear 

stresses when effective pressures were rising (Figs. 8c–d). More complex still,      evolution 

relative to contact size depended more on contact size when   was lower than average and 
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became highly nonlinear when   was higher than average (Figs. 7e–f). These behaviors 

demonstrate that shear stresses and drag do not evolve strictly as a function of contact 

geometry, as proposed by steady-state models. Instead, they appear to vary as a function of 

both contact geometry and stress-state dependent processes.  

Experimental measurements and numerical simulations of glacier slip commonly use the 

area-averaged estimate of stresses at the ice-bed interface, as calculated above, because it 

provides the same estimate of   as contact-area based estimates. Explicit calculations for ice-

bed contact stresses (also referred to as local stresses,     ) demonstrate that      can be much 

higher than   for cavity-dominated sliding systems and can influence ice flow around bed 

obstacles (Zoet and Iverson, 2015). We calculated local stresses as      =         for both 

experiments (Figure 10).      estimates range between 1.1–2.5 MPa in both experiments, 

values nearly five times larger than synchronous values of  . This range of contact stresses 

straddles the transition stresses between low (  = 1.8) and high (  = 4) flow law exponents 

reported in Goldsby and Kohlstead (2001; their Figure 7), with higher      favoring   = 4, which 

enhances viscous deformation rates and “softens” the ice-bed interface. Skarbek and others 

(2022) attribute their experimental observations to this phenomena and note that this effect 

becomes more pronounced for ice near its pressure melting point. Changes in   during periods 

of rising   may help explain the nonlinear evolution of      relative to contact area (Figs. 8c–d), 

where      initially increases with little change in       (a “firm contact” low-  response) 

followed by diminishing enhancement of      with enlargement of       (a “soft contact” high-

  response). Similarly, the transition to a higher-  rheology relative to background conditions 

should diminish drag, as observed in both experiments (Figs. 7c–d). 
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Figure 10 near here 
 

As   falls, the system should transition back to a lower-  rheology, but our experiments 

show that this retrograde evolution is not identical to the prograde (rising  ) evolution. Falling 

effective pressures lower the pressure melting point at the ice-bed interface (Eqn. 2), resulting 

in less melt production on ice-bed interfaces. This reduced lubrication elevates drag and vice 

versa. This lubrication-modulation process and its effects on drag are consistent with our 

findings in Figs. 7c–d, particularly when   is higher than average. No single physical process—

geometric, rheologic, or thermodynamic—fully explains patterns observed in our experiments. 

Instead, we propose that the observed evolution of our transiently forced system arises from 

the interplay of these processes, with the relative importance of each process changing within 

transient cycles. The precise structure of this framework is under-constrained by our 

observations and likely requires targeted experimental work to isolate the contributions of 

individual processes.  

4.3 Application to field observations 

Our experimental observations provide new constraints on transient, subglacial 

processes inferred from field observations. The four hour lag between system forcings and 

cavity geometry responses observed in our experiments and in the field (Andrews and others, 

2014) is used to help explain the timing and intensity of subglacial seismicity observed at hard-

bedded alpine glaciers (e.g., Walter and others, 2008; Stevens and others, 2024) and along the 

Greenland Ice-Sheet margin (Roeoesli and others, 2016). Stevens and others (2024) observed 

abundant seismicity along the margins of a subglacial conduit and proposed that cavity-

modulated ice-bed contacts hosted this seismicity. These cavities were subjected to large 
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diurnal effective pressure cycles, and seismicity was most abundant in the hours after forcing 

peaked (following     ). They attribute this observation to a concentration of      arising from 

lagged cavity dilation, consistent with our observations in Exp. T24. Our experiments show that 

clean ice sliding under these conditions favor increasing shear stresses (Fig. 8c) and a moderate 

reduction in drag (Fig. 7e), which can explain the slip deceleration observed by Stevens and 

others (2024), but also provide unfavorable conditions for seismogenesis (e.g., Zoet and others, 

2013; 2020; Lipovsky and Dunham, 2016; Lipovsky and others, 2019; Skarbeck and others, 

2022; and references therein). Their study proposes that basal debris is a key element needed 

to reconcile these contrasting observations, citing experimental and theoretical studies (Zoet 

and others, 2013; 2020; Lipovsky and Dunham, 2016; Lipovsky and others, 2019). Our 

experiments provide new support for this process framework, corroborating the aspects of 

transient cavity geometry and resisting stresses responses to effective pressure cycles. By 

extension, our observations also reinforce the importance of basal debris for slip-generated 

seismicity and highlight the need for additional experimental constraints on transient slip 

behaviors with basal debris. 

4.4 Glaciologic implications 

Our experimental observations indicate that analytic theory remains relevant for 

modeling hard bedded glacier slip on timescales longer than a few days, even in the presence of 

oscillatory effective pressures. On timescales of individual oscillations, our experiments indicate 

that the geometric and mechanical responses of cavity systems are largely inconsistent with 

predictions from analytic theory, which could make interpreting field data collected on these 

short timescales difficult. Additionally, enhanced long-term-average drag observed during Exp. 
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T24 may indicate a mechanism by which subglacial drag can be enhanced by transient forcing, 

but this would require additional experimentation to confirm. 

Our observations corroborate recent studies that inspect cavity-modulated slip 

responses to oscillatory transients (Zoet and others, 2022; de Diego and others, 2022; Skarbek 

and others, 2022; McCarthy and others 2022). In combination, these findings suggest that 

transiently forced cavities respond in a similar manner to transient oscillations of   or   , 

which would provide a convenient extension of analytic theory for deriving a unified, transient 

slip rule for hard glacier beds. Similarly, our observations hint at diminishing importance of 

oscillatory loading effects on system responses for short period fluctuations, as illustrated by 

the reduced complexity in hysteresis patterns for Exp. T06 compared to Exp. T24. However, 

findings in Skarbek and others (2022) suggest that some of the phenomena that we invoke 

remain sensitive to oscillatory loading and important for overall slip mechanics at very short 

periods. We lack constraints on the effect of oscillatory loading with multi-day periods, but we 

hypothesize that system responses become identical to steady-state theory predictions at 

sufficiently long periods. Forcing periods of roughly 24 hours may produce particularly strong 

transient behaviors in sliding systems modulated by cavities, and if this is the case, the 

mechanics investigated here are particularly relevant for modeling glacier systems subjected to 

diurnal forcing (i.e., tides and meltwater cycles), particularly on timescales comparable to—or 

shorter than—dominant forcing periods. 

4.5 Experimental limitations 
 

Our experiments are not intended to replicate all the complexities of the natural world. 

Instead, they are intended to examine the response of a simplified system of temperate ice 
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slipping over an idealized bed geometry when vertical pressures are systematically oscillated. 

Experimental limitations include the initial conditions selected (Fig. 2), the form of the forcing 

function (Fig. 3), the forcing parameters selected (Eqn. 1), and the use of only vertical pressure 

modulation to drive effective pressure changes. Due to the limited number of transient sliding 

studies for rigid beds (i.e., Zoet and others, 2022; de Diego and others, 2022), there is relatively 

little constraint on the impacts of the initial conditions on transient system evolution. We can 

borrow insights from steady-state theory, but as discussed in section 4.1, there are numerous 

behaviors not included in these frameworks.  

Our observations show that shear stresses in both experiments converged to average 

values comparable to steady-state model predictions (Figs. 5b and 6b), but average drag and 

contact sizes may experience enhancement relative to steady-state theory predictions as 

observed in Exp. T24 (Figs. 5c–d). We lack adequate constraints on how these average cavity 

geometries and mechanical responses relate to initial conditions or the form of our forcing 

function. This makes it difficult to determine if these observations are an intrinsic features of 

diurnal forcings, or if they arose from some combination of experimental design choices. 

Similarly, we observed period-dependent behaviors that begin to illuminate a relationship 

between forcing oscillation periods and system responses but lack experimental constraints on 

forcing amplitude dependent behaviors. Numerical experiments in de Diego and others (2022) 

suggest that changes in forcing amplitude produces system responses that differ from the 

effects of modulating the forcing period. 

Our use of vertical pressure variation to modulate effective pressures contrasts some 

natural systems where water pressures modulate effective pressures. Although 
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interchangeable in theory, vertical pressure modulation may produce heterogeneous stress 

distributions along cavity roofs and ice-bed contact areas that do not arise in water pressure 

modulated systems (e.g., Fig. 10). Despite these limitations, our initial transect of relevant 

parameter spaces provides useful insights on the response of cavity-modulated slip effective 

pressure transients and under what circumstances analytic theory may still be useful in 

modeling these systems. Further experimental work is necessary to better constrain transient 

system dynamics and provide a physical basis for modeling of these systems. 

5. CONCLUSIONS 

We conducted the first-ever experimental study of temperate glacier sliding with ice-

bed separation subjected to periodic effective pressure transients using newly developed 

control systems at the University of Wisconsin-Madison CRSD (Fig. 1). Two experiments with 

24-hour and 6-hour oscillation periods (Fig. 3) revealed time-dependent mechanical behaviors 

that likely arose from a combination of geometric, rheologic, and thermodynamic processes 

operating at ice-bed contact areas. We found that the long-term-average resisting stresses 

provided by our experimental system were consistent with steady-state theory (Figs. 5b and 

6b), and that average cavity geometries and drag generally conformed to model predictions 

(Figs. 4, 5c–d, and 6c–d). On transient timescales, the system oscillated in a variety of ways 

inconsistent with analytic theory. The diverse lags and cycling patterns in system responses 

gave rise to hysteresis not predicted by analytic theory, which also provided insights as to the 

processes governing transient system responses.  

We directly observed cavity growth and contraction and used this to validate standard 

proxies for cavity geometries used in the laboratory and field (Fig. 4). Our observations 
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indicated that cavity geometries (Figs. 4, 5d, and 6d) and drag (Figs. 5c and 6c) systematically 

lagged imposed forcings. Although lags in cavity/contact geometry could be explained by 

viscous deformation of the ice-ring in response to effective pressure cycles, drag exhibited 

highly nonlinear responses requiring additional processes such as modulation of melt 

production or ice viscosity at ice-bed contacts. Similarly, shear stresses did not strictly vary with 

imposed effective pressures or ice-bed contact size (Figs. 5–8), requiring consideration of these 

perturbed thermodynamic and rheologic properties to explain our observations in addition to 

the contact-geometry modulation featured in comparable steady-state theory. This framework, 

and our observations, are consistent with previous experimental and numerical studies that 

explicitly address oscillatory forcings on subglacial dynamics (Zoet and others, 2022; Tsai and 

others, 2021; de Diego and others, 2022; Skarbek and others, 2022; McCarthy and others, 

2022). Although our experiments provide new insights the processes governing transient slip 

and applicability of established and emerging sliding rules, there remains a wide swathe of 

parameters relevant to natural glacier systems that remain untested and warrant future 

numerical and experimental investigation. 
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APPENDIX A – STEADY-STATE SLIDING THEORY 

The double-valued, steady-state sliding theory from Zoet and Iverson (2015) is based on 

Lliboutry (1968, 1979) and Kamb (1987) and models slip dynamics over a rigid, sinusoidal bed 

with bump elevations,  ( ), calculated as: 

(A1)   ( )   (cos(𝑘 )   ), 

with amplitude,  , and wavenumber 𝑘 (=  𝜋  , with wavelength  ). The roof geometry of the 

cavity,  ( ) (presented as 𝑔( ) in Zoet and Iverson, 2015)—assuming there is no subsequent 

bump—is modeled as (equation 4 in Kamb, 1987) 
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(A2)  ( )   (
1

 
−

1

𝜋
sin−1 (

  − 

 
) −

 (  −1)√ ( − )

𝜋 2
), 

where the length-scale of the cavity in the absence of subsequent bumps,  , is approximated for 

a nonlinear-viscous ice rheology as (equation A2 in Zoet & Iverson, 2015) ⁠: 

(A3)   √8𝑈𝑏 

𝜋
(

𝐵

𝑁
)
 

, 

with the sliding velocity,   , viscosity parameter,  , stress exponent,  , and effective pressure 

at the bed,  . We adopted values of   = 6.3 x 107 Pa s1/n and   = 3 from Zoet and Iverson (2015) 

for our calculations. The effective pressure is the overburden pressure from the glacier minus 

subglacial water pressure,   , given as 

(A4)   𝜌𝑔𝐻 −   , 

with ice density 𝜌, gravitational acceleration 𝑔, and ice thickness 𝐻. The shear stress (τ) 

provided by the bed with the geometry of equation A1 and cavity roof geometry specified by 

equations A2 and A3 is calculated as 

(A5)    
 𝑘

 
 Φ, 

Note that equation A5 has a ½ factor ⁠ compared to the initial formulation provided in Lliboutry 

(1968; 1979) ⁠, which arises from later re-analysis by Lliboutry (Zoet and Iverson, 2015). The bed 

geometry parameter Φ in equation A5 is defined as 

(A6) Φ  
[𝜋𝑆−

1

2
sin( 𝜋𝑆)]sin(𝜋𝑆−𝑘x′)

sin(𝜋𝑆)−𝜋 cos(𝜋𝑆)
, 

with ice-bed contact fraction   and critical length   , which is estimated as 

(A7) x  
1

𝑘
cot−1 (

  (1−𝑆) sin(   𝑆)

sin(  𝑆)−  cos(  𝑆)
). 
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For the domain of a given cavity, the contact fraction is typically calculated as 

(A8)     −
  –  

λ
, 

with the cavity reattachment point  ≪  d  <    and cavity detachment point  ≤   ≪   , 

rather than the obstacle-crest centric reference frame used in this report. 

 

APPENDIX B – PARAMETER SUMMARY 

Table B1 near here 
 

Fig. 1. UW-CRSD anatomy overview. (a) Scale diagram of the sample chamber contents: bed 
surface (gray), ice-ring (blue), and spin direction. Mean elevation of the bed is marked with a 
black ring.  (b) Major structural components and sensors. (c) Detailed view of the experimental 
chamber structure, sensors, and features of the bed/cavity sliding system (see text). Note: 
camera numbering based on serial port indices, port #3 was unused. 
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Fig. 2. Predicted parameter space for sliding over the UW–CRSD sinusoidal bed (Table 1) using 
the analytic sliding rule detailed in Zoet and Iverson, (2015) and Appendix A. Figure axes show 
linear slip velocities (  ) and effective pressures ( ). Solid black contours show predicted shear 
stresses ( ), dotted white contours show predicted ice-bed contact fractions ( ), and blue 
shading shows predicted drag ( ; color bar). The gray shaded region shows sliding velocities 
below the operational limits of the UW-CRSD and the red-dashed line shows the maximum shear 
stress the UW-CRSD’s load frame can safely support (after Table 2). The parameter space 
relevant to our experiments is shown as an orange line with the average state marked as an 
orange diamond. 
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Fig. 3. Observed effective pressures ( ) for Exp. T24, Exp.T06, and intervening hold periods. 
Cycle numbers within experiments are labeled and the nature of hold periods’ steady-state are 
annotated (see text). Hold period and experiment start/stop times are marked with vertical 
dotted lines. 
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Fig. 4. Cavity geometry evolution during Exp. T24. (a) Spatial distribution of photo-derived 
detachment and reattachment points overlain on a bed obstacle (black). The range of cavity 
geometries predicted from modeling are shown in blue and annotated, and the range of contact 
surfaces are shown in red. The minimum contact surface is shown as a solid red line, whereas 
regions over which model predictions oscillate on the stoss and lee are shown as dotted lines. 
(b–c) Time-series of photo-derived, LVDT-derived, and model estimates of (b) average cavity 
height ( ) and (c) ice-bed contact length ( ). Measurements of   and   from photos are 
illustrated and annotated in (a) and correspond to the time shown as a magenta line in (b–c). 
Photo-derived measurements are color-coordinated in all subplots to convey their timing. 
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Fig. 5. Time-series of observed (black lines) and modeled/applied (red lines) mechanical 
parameters for Experiment T24. (a) Effective stress ( ) and applied vertical stress (  ), (b) shear 
stress ( ), (c), drag ( ), and (d) ice-bed contact fraction ( ). Dotted lines are the 48-hour moving 
averages of observed (black) and modeled (red) values. Cycle numbers are noted in (a).  
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Fig. 6. Time-series of observed (black lines) and modeled/applied (red lines) mechanical 
parameters for Experiment T06. (a) Effective stress ( ) and applied vertical stress (  ), (b) shear 
stress ( ), (c), drag ( ), and (d) ice-bed contact fraction ( ). Dotted lines are 12-hour moving 
averages of observed (black) and modeled (red) values. Cycle numbers are noted in (a). The gap 
in each figure arose from a logging gap for the pressure and torque transducers. 
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Fig. 7. Cross plots for effective pressures ( ), drag ( ), and contact lengths ( ) during Exp. T24 
(left) and Exp. T06 (right). (a–b) contact size as a function of effective pressure, (c–d) drag as a 
function of effective pressure, and (e–f) drag as a function of contact size. Line color denotes the 
relative time of data within forcing cycles (color bar; also Figs. 3, 5, and 6). Steady-state model 
predictions are shown for reference (red lines, same values as in Figs. 5 and 6). Trajectories of 
effective pressure changes and the general position of effective pressure extremum are 
annotated to support descriptions and interpretations in the text. 
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Fig. 8. Cross plots for effective pressure ( ), shear stress ( ), and contact lengths ( ) during Exp. 
T24 (left) and T06 (right). (a–b) Shear stress as a function of effective pressure, (c–d) shear 
stress as a function of contact fraction. Modeled values shown in red, observed values are 
colored by cycle number and relative time within each cycle (color bar; see description of 
formatting in Fig. 7). 
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Fig. 9. Comparison of (a) drag and (b) shear stress responses as a function of effective pressure 
normalized slip velocity (    ) for steady-state model predictions (red) and observed values 
from Exp. T24 (black) and Exp. T06 (blue) during cycles with stable mean cavity geometries 
(cycle numbers in key; also see Figs. 3 and 5–8). All estimates shown use    = 15 m a-1. 
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Fig. 10. Comparison of area-averaged vertical pressure (N; black) and local contact pressures 
(       ; blue) for (a) Exp. T24 and (b) Exp. T06. Note the change in pressure units to MPa. 
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Table 1. UW–CRSD bed and sample chamber geometric parameters along the inner wall, 
centerline, and outer wall of the sample chamber. The centerline measurements are identical to 
radially averaged values of wavelength and amplitude. 

Parameter Inner Wall Centerline Outer Wall 

Sample Chamber Radius 0.1 m 0.2 m 0.3 m 

Sample Chamber Circumference 0.628 m 1.257 m 1.885 m 

Bed Wavelength (λ) 0.157 m 0.314 m 0.471 m 

Bed Amplitude (a) 11.6 mm 25.3 mm 39 mm 

 

Table 2. Operational limits of relevant UW–CRSD control systems and superstructure. 

Parameter System Limit Symbol 

Vertical pressure ISCO pump (ram) Max 900 kPa        

Shear stress Load frame  Max 275 kPa      

Angular velocity 
(Centerline linear velocity) 

Motor (gear box)  Min 20 rad a-1 
(4 m a-1) 

     
(      ) 

 

Table 3. Individual empirical correction factors for LVDT measurements relevant to Eqn. 4. 

 Experiment T24 Experiment T06 

Average melt rate ( ) 0.3004 mm d-1 0.966 mm d-1 

Shear stress correction (  ) 84.3 kPa 84.9 kPa 

Steady-state   𝑝  𝑡  0.8606 — 

 

Table B1. Summary of variable symbols, names, and standard units used in this study. 

Symbol Parameter Name SI unit(s) 

  Bed obstacle amplitude m 

      at the sample chamber centerline, also bed-
average   

m 

      at the sample chamber inner wall m 

      at the sample chamber outer wall m 

  Effective viscosity Pa s1/n 

  Experimental chamber circumference m 
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𝑔 Gravitational acceleration m s-1 

  Bed obstacle height m 

𝑘 Bed obstacle wavenumber m-1 

  Cavity length scale m 

  Melting rate m s-1 

  Ice flow-law exponent dimensionless 

  Effective pressure evaluated for the cross-sectional 
area of the sample chamber 

Pa 

  Pressure Pa 

    Air saturated water triple point pressure Pa 

   Vertical (applied) pressure Pa 

   Water pressure Pa 

  Cavity roof height element m 

  Cavity height fraction dimensionless 

      Modeled R dimensionless 

    
     Modeled   at the cavity detachment point dimensionless 

  𝑡   
     Modeled R at the cavity reattachment point dimensionless 

 𝑝  𝑡  Photo-derived R dimensionless 

    
𝑝  𝑡 

 Photo-derived R at the cavity detachment point dimensionless 

  𝑡   
𝑝  𝑡 

 Photo-derived R at the cavity reattachment point dimensionless 

      LVDT-derived R dimensionless 

  Ice-bed contact length fraction dimensionless 

      Modeled   dimensionless 

    
     Modeled   at the cavity detachment point dimensionless 

  𝑡   
     Modeled   at the cavity reattachment point dimensionless 

 𝑝  𝑡  Photo-derived   dimensionless 

    
𝑝  𝑡 

 Photo-derived   at the cavity detachment point dimensionless 

  𝑡   
𝑝  𝑡 

 Photo-derived   at the cavity reattachment point dimensionless 

      LVDT-derived   dimensionless 

  Sample time s 

   Reference time, for steady-state conditions s 

  Oscillation period s 

   Slip velocity, linear m s-1 

  Horizontal position m 

   Bed crest horizontal position m 

   Detachment point horizontal position m 

   Reattachment point horizontal position m 

   Critical cavity length m 

  Vertical position m 

   Bed crest vertical position m 

   Detachment point vertical position m 

   Reattachment point vertical position m 
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  Clausius-Clapeyron parameter K Pa-1 

  Temperature K 

     Pressure melting temperature K 

    Air saturated water triple point temperature K 

  Bed obstacle wavelength m 

      at the bed centerline, also average   m 

      at the sample chamber inner wall m 

      at the sample chamber outer wall m 

  Drag (coefficient of friction) dimensionless 

      Modeled drag dimensionless 

     Observed drag dimensionless 

  pi, mathematical constant dimensionless 

  Ice density kg m-3 

     Effective pressure evaluated on ice-bed contact 
areas 

Pa 

  Shear stress (evaluated for the cross-sectional area 
of the sample chamber) 

Pa 

      Modeled shear stress Pa 

     Fully corrected, observed   Pa 

   Gasket drag corrected   Pa 

     correction for resisting stresses from mounting 
bolt sockets 

Pa 

Φ Geometric parameter dimensionless 

  Slip velocity, angular rad s-1 
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