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Characterizations of Outer Generalized
Inverses

Long Wang, Nieves Castro-Gonzalez, and Jianlong Chen

Abstract. Let Rbearingand b, ¢ € R. In this paper, we give some characterizations of the (b, c¢)-in-
verse in terms of the direct sum decomposition, the annihilator, and the invertible elements. More-
over, elements with equal (b, ¢)-idempotents related to their (b, c)-inverses are characterized, and
the reverse order rule for the (b, ¢)-inverse is considered.

1 Introduction

Moore-Penrose inverses, Drazin inverses, and group inverse, as well as classical gen-
eralized inverses, are special types of outer inverses. In [7], Drazin introduced a new
class of outer inverse in a semigroup and called it (b, c)-inverse.

Definition 1.1  Let R be an associative ring and let b,c € R. An element a € R is
(b, ¢)-invertible if there exists y € R such that

y€(bRy)n(yRc), yab=b, cay=c.
If such y exists, it is unique and is denoted by al(®><),

From [7], we know that the Moore-Penrose inverse of a, with respect to an involu-
tion * of R, is the (a*, a*)-inverse of a, the Drazin inverse of a is the (a’, a’)-inverse
of a for some j € N, in particular, the group inverse of a is the (a, a)-inverse of a.

Given two idempotents e and f, Drazin introduced the Bott-Duffin (e, f)-inverse
in [7], which can be considered as a particular cases of the (b, ¢)-inverse. In 2014,
Kantin-Montiel introduced the image-kernel (p, g)-inverse for two idempotents p
and g, and pointed out that an element a is image-kernel (p, g)-invertible if and only if
it is Bott-Duffin ( p, 1—q)-invertible [10, Proposition 3.4]. In [12], elements with equal
idempotents related to their image-kernel (p, q)-inverses are characterized in terms
of classical invertibility. The topics of research on the image-kernel (p, q)-inverse and
the Bott-Duffin (e, f)-inverse attract wide interest (see [2-4,6,7,9,10,12]).

This article is motivated by the papers [7,12]. In [7], as a generalization of (b, ¢)-in-
verse, hybrid (b, c¢)-inverse, and annihilator (b, ¢)-inverse were introduced. In Sec-
tion 3, it is shown that if the (b, ¢)-inverse of a exists, then both b and ¢ are regular.
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Further, under the natural hypothesis of both b and ¢ regular, some characterizations
of the (b, ¢)-inverse are obtained in terms of the direct sum decomposition, the an-
nihilator, and the invertible elements. In particular, we will prove that (b, ¢)-inverse,
hybrid (b, ¢)-inverse, and annihilator (b, ¢)-inverse are coincident when cab is reg-
ular. Some results of the image-kernel (p, q)-inverse in [12] are generalized.

If a hasa (b, c)-inverse, then both al(®¢) g and aal(®>) are idempotents. These will
be referred as to the (b, ¢)-idempotents associated with a. In [5], Castro-Gonzalez,
Koliha, and Wei characterized matrices with the same spectral idempotents corre-
sponding to the Drazin inverses of these matrices. Koliha and Patricio [11] extend
the results to the ring case. A similar question for the Moore-Penrose inverse was
considered in [13]. In [12], Mosi¢ gave some characterizations of elements that have
the same idempotents related to their image-kernel (p, q)-inverses. It is of interest to
know whether two elements in the ring have equal (b, ¢)-idempotents. In Section 4,
some characterizations of those elements with equal (b, ¢)-idempotents are given.
Moreover, the reverse order rule for the (b, ¢)-inverse is considered.

2 Preliminaries

Let R be an associative ring with unit 1. Let a € R. Recall that a is a regular element
if there exists x € R such that a = axa. In this case, the element x is called an inner
inverse for a, and we will denote it by a™. If the equation x = xax is satisfied, then
we say that a is outer generalized invertible, and x is called an outer inverse for a. An
element x that is both inner and outer inverse of a and commutes with a, when it
exist, must be unique and is called the group inverse of a, denoted by a*. From now
on, E(R) and R stand for the set of all idempotents and the set of all group invertible
elements in R. For the sake of convenience, we introduce some necessary notation.
For an element a € R and X C R, we define

aR:={ax:xeR}, Ra:={xa:xeR};
I(X):={yeR:yx=0foranyx e X}, r(X):={yeR:xy=0foranyxeX}.
In particular,

I(a):={yeR:ya=0}, r(a):={yeR:ay=0},
rli(a)={y:xy=0,xel(a)}, Ir(a)={y:yx=0,xer(a)}.

Let p,q € E(R). An element a € R has an image-kernel (p, q)-inverse [10,12] if
there exists an element ¢ € R satisfying

cac=c¢, caR=pR, (1-ac)R=qR.

The image-kernel (p, g)-inverse is unique if it exists, and it will be denoted by a*. A
generalization of the original Bott-Duffin inverse [1] was given in [7]: lete, f € E(R),
an element a € R is Bott-Duffin (e, f)-invertible if there exist y € R such that y =
ey = yf, yae = e, and fay = f. When e = f, the element y, if any, is given by
y =e(ae+1-e)7}, as for the original Bott-Duffin inverse.

The above-mentioned generalized inverses are particular cases of the (b, ¢)-in-
verse, where b and ¢ are both idempotents. Hence, the research of (b, ¢)-inverses has
great significance in the development of generalized inverse theory.
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For future reference we state two known results.

Lemma 2.1 ([7, Theorem 2.2]) Foranygiven a,b, c € R, there exists the (b, c)-inverse
y of aif and only if Rb = Rt and cR = tR, where t = cab.

Lemma 2.2 ([7, Proposition 6.1]) For any given a, b, c € R, y is the (b, ¢)-inverse of
aifand only if yay = y, yR = bR, and Ry = Rc.

3 Some Characterizations of the Existence of (b, c)-inverses
First, we will give some lemmas that will be used in the sequel.

Lemma 3.1 Let a, y € R such that y is an outer inverse of a. Then

(i) r(a)nyR={0}
(ii)) I(a)nRy={0};
(iii) Ray = Ry;
(iv) yaR = yR.

Proof (i) Let x € r(a) n yR. Then ax = 0 and there exists g € R such that x = yg.
This gives that ayg = 0 and, thus, yayg = yg = 0. Therefore, x = 0.

(ii) Let x € I(a) N Ry. Then xa = 0 and there exists h € R such that x = hy. It leads
to hya = 0. Then hyay = hy = 0 and, thus, x = 0.

(iii) and (iv) From yay = y it follows that yaR = yR and Ry = Ray. ]

Lemma 3.2 Let a € R be regular and b € R. Then

(i) b isregular in case Ra = Rb;
(ii) rl(a)=aRandlr(a) = Ra.

Proof (i) Since Ra = Rb, there exist some g,h € R such that a = gb and b = ha.
Hence, using that a is regular, one can see b = (ha)a~a = ba~a = ba~gb, which
means that b is regular.

(ii) It is easy to check that aR < rl(a). Note that [(a) = [(aa”) = R(1-aa™). For
any x € rl(a), one can get R(1 - aa™)x = I(a)x = 0. This gives x = aa"x € aR and
rl(a) = aR. Similar considerations apply to prove that Ir(a) = Ra. [ |

Proposition 3.3 Ifa has a (b, c)-inverse, then b, ¢, and t = cab are all regular.

Proof Let ybethe (b, c)-inverse of a. In view of Definition 1.1, one can see b = yab ¢
(bRy)ab c bRb. This gives that b is regular. In the same manner one can obtain that
¢ is regular. Now, on account of Lemma 2.1, we have Rb = Rt and cR = ¢R since the
(b, ¢)-inverse of a exists. From Lemma 3.2, we conclude that ¢ is regular. ]

In what follows, we will give necessary and sufficient conditions for the existence
of the (b, ¢)-inverse when t = cab is regular.

Theorem 3.4 Leta,b,c € R. Ift = cab is regular, then the following statements are
equivalent:
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(i) ahasa (b, c)-inverse.

(ii) r(a)nbR={0}andR = abR & r(c).
(iii) r(¢t) =r(b) and tR = cR.

(iv) I(t) =1(c) and Rt = Rb.

(v) I(t) =1(c)andr(t)=r(D).

Proof (i)=-(ii) Suppose that y is the (b, ¢)-inverse of a. By Lemma 2.2, yay = y,
¥R = bR, and Ry = Rc. By Lemma 3.1(i), one can see that r(a) n yR = {0}; it follows
that r(a) nbR = {0}. Since ay € E(R), we have the decomposition R = ayR @ r(ay).
From yR = bR we obtain ayR = abR. By Lemma 3.1(iii) and Ry = Rc, then Ray = Rc
and hence r(ay) = r(c). Consequently, we have R = abR & r(c).

(ii)=(iii) It is clear that #(b) < r(t). For any x € r(t), we have tx = cabx = 0.
This means that abx € r(c). Using that r(c) n abR = {0}, we conclude that abx = 0.
Then bx € r(a) n bR = {0}. This implies that bx = 0 and, thus, x € r(b). Therefore,
r(t) =r(b).

Itis clear that tR C cR. Since R = abR@r(c), we can write 1 = abg + h where g € R
and h € r(c). Premultiplying by ¢ gives ¢ = cabg € tR, ensuring that cR = tR.

(iii)=(iv) Since tR = cR, we have I(c) = I(t). Itis clear the Rt € Rb. Using that ¢ is
regular and r(¢) = r(b), we obtain that b(1 - ¢t ¢) = 0. Then b = bt~ t. Consequently,
Rt = Rb.

(iv)=(v) It is clear.

(v)=(i) Since r(t) = r(b) and t is regular, we can prove that Rt = Rb as in the
proof of (iii)= (iv). Similarly, from I(¢) = I(c) and the fact that ¢ is regular, we get
R = cR. On account of Lemma 2.1 we conclude that a has a (b, ¢)-inverse. ]

In Theorem 3.4, the implications (i)=>(ii) and (ii)=>(iii) are valid even if ¢ is not
regular. However, we will give a counterexample to show that (iii) does not imply (iv)
in general when ¢ is not regular.

Example 3.5 SetR=7Z,a=>b=1,and c =2. Clearly, t{R = cR and r(¢) = r(b), but
Rb # Rt.

When we replace the hypothesis that ¢ is regular in Theorems 3.4 by the condition
that both b and c are regular, we obtain the following result.

Theorem 3.6 Leta,b,c € R. If both b and c are regular, then the statements (i)-(iv)
in Theorem 3.4 are equivalent.

Proof We note that in item (iii) condition tR = cR, together with ¢ being regular,
implies that ¢ is regular; in item (iv) Rt = Rb, together with b being regular, implies
that ¢ is regular. ]

Remark 3.7 The statements (v)=-(i) in Theorem 3.4 is not true, when b and c are
regular. For example, set R = Z, b = ¢ = 1, and a = 2. Then b and c are regular. It is
easy to check that I(¢) = I(c) and r(¢) = r(b), but ¢ = 2 is not regular. Then a is not
(b, ¢)-invertible by Proposition 3.3.
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As generalizations of (b, ¢)-inverses, hybrid (b, ¢)-inverses and annihilator (b, ¢)-
inverses were introduced in [7].

Definition 3.8 Leta,b,c,y € R. We say that y is a hybrid (b, ¢)-inverse of a if
yay =y, yR=0bR, r(y)=r(c).

Definition 3.9 Leta,b,c,y € R. We say that y is an annihilator (b, c¢)-inverse of a
if

yay =y, 1(y)=1b), r(y)=r(c).
In [7], Drazin pointed out that for any given a, b, c € R,
(b, ¢)-invertible = hybrid(b, ¢)-invertible = annihilator(b, ¢)-invertible.

In what follows, we will prove that the three generalized inverses are coincident when-
ever t = cab is regular.

Theorem 3.10 Let a,b,c,y € R. If t is regular, then the following conditions are
equivalent:

(i) yisthe (b, c)-inverse of a.

(i) y is the hybrid (b, c)-inverse of a.

(iii) y is the annihilator (b, ¢)-inverse of a.

Proof (i)=(ii)=(iii) These implications are clear.

(iii)=-(i) By Definition 3.9, we have 1 —ay € r(y) = r(c) and 1- ya € I(y) = I(b).
This implies that ¢ = cay and b = yab. Next, we will prove that r(¢) = r(b) and
I1(t) = I(c). Combining with Theorem 3.4(v), we can find that

a is annihilator (b, ¢)-invertible = a is (b, ¢)-invertible.
It is clear that r(b) < r(¢t). Let w € r(t). Then cabw = 0 and hence abw € r(c) =
r(y). This implies that yabw = 0. Then bw = 0, since yab = b. This shows r(t) ¢
r(b). Therefore, r(t) = r(b). Similarly, we can prove that I(c) = I(¢). Since a has a
(b, ¢)-inverse z, a has the annihilator (b, ¢)-inverse z, and by the uniqueness we have
z=y. u

Theorem 3.11 Let a,b,c € R. If both b and c are regular, then the statements (i)-(iii)
in Theorem 3.10 are equivalent.

Proof We only need to prove that (iii)=-(i). If y is the annihilator (b, c)-inverse
of a, then I(y) = 1(b); this gives that rI(y) = rI(b). Since b and y are regular, we
have rl(b) = bR and rl(y) = yR by Lemma 3.2(ii). This implies that yR = bR.
Similarly, we can obtain that Ry = Rc. Thus, it follows that y is the (b, ¢)-inverse of a
by Lemma 2.2. ]

The following lemma it is well known.

Lemma 3.12 ([8,14]) Leta € R and e € E(R). Then the following conditions are
equivalent:
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(i) ee€eaeRnReae.
(ii) eae+1- eisinvertible (or ae +1— e is invertible).

Theorem 3.13 Let a,b,c,d € R such that the (b, ¢)-inverse of a exists. Let e = bb~
where b~ are fixed, but arbitrary inner inverses of b. Then the following statements are
equivalent:

(i) dhasa (b,c)-inverse.
(i) eceal®)deRn Real®)de.
(i) al®de +1- e is invertible.

In this case,

(3.1) dl®) = (gl ge 41— ) 1glb:e),

Proof First, as al (") exists, we have al(*>¥) € bR n Rc by Lemma 2.2. Therefore,
(3.2) al B9 _ pp=gll(Bse) _ b)) -~

From Definition 1.1 we have that b = al(®9) gp. Combining with (3.2), we can write
(3.3) b=eal®)ccab.

(i)=(ii) Suppose that dl ) exists. By Definition 1.1, we also have ¢ = cddl (),
Substituting this into (3.3) yields

b= ea”(h’c)c_(cddu(b’c))ab = eal®9) gql ) gy

Multiplying on the right by b~, we obtain e = eal(®?)ddl(-)ge. Since d!(®¢) =
ed!(®), which follows by interchanging a!(®¢) and d!(*) in (3.2), we get e =
eal®) dedl(®:) ge. This implies that e € eal®¢)deR. Similarly, we can prove that
e € Real(®)de,

(ii)=(iii) See Lemma 3.12.

(iii)=>(i) First, we note that eal(®-¢) = l(&:¢) by (3.2). Set x = eal®de+1-e. It
is clear that ex = xe and ex™ = x'e. Write y = x"'al(®:¢) Next, we verify that y is
the (b, ¢)-inverse of d.

Step 1 ydy = y. Indeed, using al(®¢) = ¢al(t:¢) we get
ydy = x7al ) gx1gIB0) _ 1ol (00) g1 gl 00)
= x Y eal®Vde +1-e)extal®O

— xleql®e) — (~1,0(b0) _ ¥.

Step 2 bR = yR. On account of al(®:9) = ¢al(®:¢) and (1- ¢)b = 0, one can get
b=x"(eal®Vde+1-e)b=x"leal ®Vdeb = x1al®Vdeb = ydeb € yR.

Meanwhile, y = x7'al(®:¢) = x7leql(b:¢) = ex1gl(5:) ¢ pR. This guarantees bR =
yR.

Step 3 Rc = Ry.
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From Definition 1.1, we have ¢ = caal(®9). This leads to ¢ = caxx'al(®9) =
caxy € Ry. On the other hand, from (3.2) we conclude that

y = x1l®0) = 1000 = ¢ Re.

This means that Rc = Ry. u

Similarly, we can state the analogue of Theorem 3.13.

Theorem 3.14 Leta,b,c,d € R such that the (b, c)-inverse of a exists. Let f = ¢"¢
where ¢ are fixed, but arbitrary inner inverses of c. Then the following statements are
equivalent:

(i) dhasa (b, c)-inverse.
(i) fefdal®)fRARfdal®)f.
(iii) fda”(b’c) +1— f is invertible.

In this case,

(3.4) dlee) — gl (rqqalee) g )1,

Remark 3.15 In case where both al(®9) and dl(?©) exist, from Theorems 3.13
and 3.14, it can be concluded that

(3.5) (al®9de+1-e) 1 =dlge 11—,
(fdal®® +1- ) = fadl @O 17,

Indeed, since d1(®9) = (al(®9)de+1-¢)1al(®9) we have (al(®de+1-¢)dl () =
al®9) Hence,

(al®9de+1-e)(d!®Vge+1-e) = al®Vge+1-e=1,

where the last identity is due to the fact that al(®>)ge = e, because b = al(®)ab.
Interchanging the roles of a and d in Theorem 3.13, it follows that

(d®Vge+1-e)(al®Vde+1-¢) =1,

and, in consequence, the first identity in (3.5) holds. The second identity in (3.5) can
be proved in the same manner.

For any two idempotents p and g, we replace b and ¢ by p and 1 — q respectively in
Theorems 3.13 and 3.14, and we obtain the following corollary.

Corollary 3.16 ([12, Theorem 3.3]) Let p,q € E(R) and let a € R be such that a*
exists. Then for d € R the following statements are equivalent:

(i) d* exists.

(ii) 1-p+a*dp isinvertible.

(ii) g+ (1-gq)da™ is invertible.
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4 Characterizations of Elements with Equal (b, ¢)-idempotents

Let al(®:) exist. Since al(®>¢) is an outer inverse of a when it exists, both al(®) g and
aal(®9) are idempotents. These will be referred to as the (b, ¢)-idempotents associ-
ated with a. We are interested in finding characterizations of those elements in the
ring with equal (b, ¢)-idempotents.

In what follows, we will give necessary and sufficient conditions for aal(®¢) =
ddll(®-€) We first establish an auxiliary result.

Lemma 4.1 Let a,b,c,d € R such that al®) and dI(®©) exist. Let e = bb™ and
f =c"c, where b~ and c” are fixed, but arbitrary inner inverses of b and c, respectively.
Then

Q) dl®o) = gl gglhe) = gl be) g gl(be),

(i) al®o) = gl®e)gglb.e) = glb.e) ggl(b.c),

(iii) e = ed|(®) gl ge = eql(8:0) ge = gl (4:) g,

(iv) f :fdal\(bw)adl\(bw)f :fddH(b,C)f :faal\(b,C)f.

Proof (i) In view of (3.1) and (3.4), with the notation e = bb™ and f = ¢ ¢, we have

10 = (a0 g 11— ¢) 1 lB) = gl(B:0) gl (0e)
= GO (fdal B L1 ) 2 gl50) gl ()

(i) We get these equalities by interchanging the roles of al(*>¢) and d(®¢) in pre-
vious results.

(iii) By Definition 1.1, we have b = d!(**¥) db. Multiplying on the right by b~ gives
e = dl®®de. Similarly, e = eal®¢) ge. Multiplying (i) on the right by de leads to
e = edl(:0) gl (8:0) g

(iv) By Definition 1.1, we have ¢ = cad!(®¢) and, multiplying on the left by ¢, we
get f = fdd!(®9)_ Similarly, faal(®) f. Multiplying (ii) on the left by fd, one can
see that f = fdal(®-<)adl(®:e) £, [ |

Theorem 4.2 Let a,b,c,d € R such that al(®¢) and dI(%-<) exist. Then the following
statements are equivalent:

(i) aall®¢) = g4ll(b.c).

(i) aal®9)ggl®e) = gglb.c)ggle.c),

(i) adl®9)dal®0) = gal(b:0) gl (h),

(iv) adl®) ¢ R* and (adl(®9))* = dql(b:0),
v) dal®) ¢ R* and (dal®9))?* = qgl(b:0),

Proof (i)<>(ii)<>(iii) From Lemma 4.1 we obtain

a0 Z 4100 gl (©.0) 4 g1(5:0) g4l (.0),
4dl ) = gg1B:0) 4l (50) _ g 1(B0) gl(bie)
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This leads to

aal®9) = gglee) o 441b:0) g41(be) _ g4l(B.c) 5 411(Bse)
< adl®:0) gale.e) _ g,l1(b.0) 5 4ll(bie)
(iil)<>(iv) Set x = dal®), We will prove that x is the group inverse of adl(®-0),
Combining (iii) with Lemma 4.1, we get
xadl®9) = gl ®:0) g 41Ee) _ 5 71b:0) g4l (B) _ 5 gl (0) 5
ad @) xqdl(#6) = 5( g1 ggl(#:)y g gl Bse) = (gl (B:0) g glBsc)y = 5 gli(Be)]
ad 9 x = 3ad! B0 gl (B0 = 402l (B:0) = g0 41 (B0) _ o
This implies that adl(®>¢) ¢ R* and (ad!(®>9))* = dal(®-<), Conversely, if the latter

holds, then dall(®:€) gdl(8:¢) = 4ll(¥:€) g 4l(8:€)
(iii)«<>(v) The proof is similar to the previous equivalence. ]

We state the result in terms of the other (b, ¢)-idempotent.

Theorem 4.3 Let a,b,c,d € R such that al(®¢) and dI(®-) exist. Then the following
statements are equivalent:

G al®g=gltog

(i) dl®gal®e) g = gl ggle.e) g

(i) al®ggl®o) g = gl.0) gqlec) g

(iv) al®)deR* and (al(®9)d)* = dlb:c) g,

) dl®9geR? and (dI(09)a)* = a0 g,

Next, we consider conditions under which the reverse order rule for the (b, ¢)-in-
verse of the product ad, (ad)(¢) = gl(8:6) gll(b:¢) holds,

Theorem 4.4 Let a,b,c,d € R such that al %) and dI(®-°) exist. Then the following
statements are equivalent:

(i) ad has a (b, c)-inverse of the form (ad)(¥>€) = gll(#:€) gll(8:€),
() dl®0) = g1 4ggl(0:0) gl(h:c) = GI(5:0) gl (1) g g 11 (0.0),
(i) al ) = gl (00 g g gl (00 g1 0:0) Z g0 gI(5,0) ()

Proof (i)<>(ii) We first assume that ad has a (b, ¢)-inverse given by (ad)l(®-<) =
dl ) gl(6:¢) Then Lemma 4.1is true for (ad)!(*>¢) in place of al(®¢). It follows that

dl®:e) = gl g d(ad) ) = (ad)1(:e) g d gl (o),
Substituting (ad)1(?¢) = d1(5:9) gl(0:€) yields

d1B0) Z g150) g q g1 (50 gl (Be) = g1(B:0) l(bsc) 5 g g (B)
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Conversely, if the latter identities hold then y = d1(®€) gl (#:¢) s the (b, ¢)-inverse of
ad. Indeed, since d!("9)db = b and ¢ = cdd!(>9), we have

yady = dl (9 gl (49 g4 1(5:0) g1 (B:e) — gll(B:0) gl (B:e)

yadb = dl2:0) gl:0) g ap = g1®:0) gI(0:0) g 3 41(8:0) g, = gI(8:0) gy — .

cady = cadd!(®9) gl () = g g1(6:0) g gl () gl (o) _ g gll(Be) — ¢
(ii)=(iii) By Lemma 4.1 we have al ) = gl(B.0) ggl(b.c) = glb:0) ggll(bic) By (ii),
one can see

al®9) = gl®:0) g(gl®:) g g gl(h:e) gl (Be)y = (gl (B:0) 5l (Bs6) g g gll(B)y g gl (hic)

Hence, it is easy to get al(?:9) = gl(2:€) g gl (6:€) gll(bsc) — gl (b:) gl (b:) g g g1 (b:)
(iii)=>(i1) The proof is similar to (ii)=>(iii). [ |

Theorem 4.5 Let a,b,c,d € R such that al(®¢) and dI(*-) exist. Then the following
statements are equivalent:

G  al®o)g = gql®o,

(i) al®ggl®o) g = ggql®:e) g4l0:0),

(i) dl®gal®0) g = ggl®:0) ggl0:0),

(v) al®9) = gql®:e) glb.0) gug gle.e) = glb.0) gli(bse) g

v)  al®o)ggqle.e) = gl.0) gl (6:0) g g gll(®:0) gglibe) = ggllb:e) gl(bse),

If any of the previous statements is valid, then (ad)|(?¢) = gll(b:¢) gl (b:e),

Proof (i)« (ii)<>(iii) From Lemma 4.1 we obtain

all®:0) g = gl(8:0) g4l () 5 gl (B0) gl (Bre)
ddl®e) — g41(8:e) 5 I (Be) _ g ,1(Bc) 5 gl (Bic)
Hence, it gives that
al®e) g = gglese) o fl(bse) g4l ) 5 — gl (B€) 4 1(Bye)
o g6 g418se) 5 — g 1(B0) 5 gl (Bie)

(i)« (iv) The necessary condition is immediate. Next, we assume that al®e) =
dd(®:0) gl(:c) 3nq 4l ®-c) = g1(8:0) 51(5:6) 5 Then we have al (#:9) g = dd1(8:0) gl (B:0) 4
and dd|(®9) = 44l gl(4.c) g g0 gl(8:0) g = Gql(8:€) a5 desired.

(v)<=>(i) The proof is similar to the above.

Finally, we show that dd(®<) = gl(%:9) g implies that (ad)I(®-<) = gl(#:€) gl(b:¢),
Since dl (&) = gl(®:0) gll(:6) 5 wwe have dl(?-6) = gl(8:0) gl (B:0) 5 441 (8-0) - Moreover,
since d1(?) = d1(:9) g gl (0:©) by Lemma 4.1, using dd|(®©) = al(®:©) g, it follows that

dl.e) = gli.c) I (be) — 1(bse) 5 4l1(Bse) 5 o 1(0se) = gll(Bic) 5 g 41l (Bic) 4l (Bre)
By Theorem 4.4 our assertion is proved. |
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