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Abstract

LetΩ = Zω1 + Zω2 be a lattice inCwith invariants g2, g3 andσΩ(z) the associated Weierstrassσ-function.
Let η1 and η2 be the quasi-periods associated to ω1 and ω2, respectively. Assuming η2/η1 is a nonzero real
number, we give an upper bound for the number of algebraic points on the graph of σΩ(z) of bounded
degrees and bounded absolute Weil heights in some unbounded region of C in the following three cases:
(i) ω1 and ω2 algebraic; (ii) g2 and g3 algebraic; (iii) the algebraic points are far from the lattice points.
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1. Introduction

In 2011, Masser [6] proved that for any positive integer d, there exists an effective
constant C > 0 such that for all H > ee, there are at most C(log H/log log H)2 algebraic
numbers α ∈ (2, 3), with ζ(α) also algebraic, such that both α, ζ(α) have degrees at
most d and multiplicative heights at most H, where ζ(z) is the Riemann zeta function.
Recall that for an algebraic number α of degree d, its multiplicative height is defined
by H(α) = (M(α))1/d, where M(α) is its Mahler measure. In the same paper, Masser
suggested some possible extensions of his method to other classes of functions. There
have been several results already published based on his suggestions of which a recent
result by Boxall et al. [2] is closely related to our work. To state the main results of [2],
we need to introduce some notation.

Let Ω be a lattice in C. Throughout our discussion, we fix a Z-basis {ω1,ω2} of
Ω such that τ = ω2/ω1 lies in the upper half plane H of C with |τ| ≥ 1 and the real
part of τ lies in the interval

[− 1
2 , 1

2
]
. Such a basis always exists. Let η1 and η2 be

the quasi-periods associated to ω1 and ω2, respectively. For a pair α, β of algebraic
numbers, we put H(α, β) = max{H(α), H( β)}. In [2], the authors proved two results.
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The first [2, Theorem 1.1] is for latticesΩ for whichω1,ω2 are algebraic: if Im(τ) ≤ 1.9
and ω1 and ω2 are both algebraic, where Im(z) is the imaginary part of z, then there
exists a constant C1 = C1(Ω) > 0 such that for all d ≥ e and H ≥ ee, there are at most

C1d6(log d)(log H)2 log log H (1.1)

algebraic numbers z such that [Q(z,σΩ(z)) : Q] ≤ d, H(z,σΩ(z)) ≤ H and z � Ω. Their
second result [2, Theorem 1.2] deals with the case in which the invariants

g2 = 60
∑
ω∈Ω′
ω−4, g3 = 140

∑
ω∈Ω′
ω−6

are both algebraic (ω1,ω2 need not be algebraic) and here also Im(τ) ≤ 1.9, where
Ω′ = Ω \ {0}. In this case, instead of the bound (1.1), they give the bound

C2d20(log d)5(log H)2(log log H)

for the number of algebraic numbers z such that [Q(z,σΩ(z)) : Q] ≤ d, H(z,σΩ(z))≤H.
Here, C2 is a constant depending only on Ω. The importance of the results in [2] is
that they count algebraic points of bounded degrees and heights on the entire graph of
σΩ(z). Earlier, Besson [1] also proved similar results for the number of algebraic points
on the graph of the Weierstrass σ-function, but his results are restricted to bounded
domains. One of the main ingredients in [2] is the lower bound of σΩ(z) in terms
of the exponential function ez and the values of σΩ(z) on the fundamental domain P
enclosed by the parallelogram with vertices 1

2 (±ω1 ± ω2). In this paper, we extend the
main results of [2] to a general τ ∈ H under the assumption that ρ = η2/η1 is a nonzero
real number. With this assumption, we are only able to count the algebraic points of
σΩ(z) in an unbounded subsetAρ of C defined as follows. First, put

Ω+ = {mω1 + nω2 : mn ≥ 0} and Ω− = {mω1 + nω2 : mn ≤ 0},

A+ = {z ∈ C : there exists z0 ∈ P such that z − z0 ∈ Ω+},
and

A− = {z ∈ C : there exists z0 ∈ P such that z − z0 ∈ Ω−}.
Finally, define

Aρ =
⎧⎪⎪⎨⎪⎪⎩
A+ if ρ > 0,
A− if ρ < 0.

Our first result is an analogue of [2, Theorem 1.1].

THEOREM 1.1. Let Ω = Zω1 + Zω2 be a lattice in C such that ω1 and ω2 are both
algebraic. Assume that ρ = η2/η1 is a nonzero real number. Then there exists a
constant C3 = C3(Ω) > 0 such that for all d ≥ e and H ≥ ee, there are at most

C3d6(log d)(log H)2 log log H

algebraic numbers z such that z ∈ Aρ, [Q(z,σΩ(z)) : Q] ≤ d and H(z,σΩ(z)) ≤ H.

Our second result is for g2, g3 algebraic, analogous to [2, Theorem 1.2].
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THEOREM 1.2. Let Ω = Zω1 + Zω2 be a lattice in C such that g2 and g3 are both
algebraic. Assume that ρ = η2/η1 is a nonzero real number. Then there exists a
constant C4 = C4(Ω) > 0 such that for all d ≥ e and H ≥ ee, there are at most

C4d20(log d)5(log H)2 log log H

algebraic numbers z such that z ∈ Aρ, [Q(z,σΩ(z)) : Q] ≤ d and H(z,σΩ(z)) ≤ H.

We also prove the following more general result with no assumptions on the
quantities ω1,ω2, g2 and g3. In this case, we are only able to count the algebraic points
of σΩ(z) which are not close to the lattice points.

THEOREM 1.3. Let Ω = Zω1 + Zω2 be a lattice in C. Assume that ρ = η2/η1 is a
nonzero real number. Let 0 < δ < min{1, |ω1 + ω2|/2, |ω1 − ω2|/2}. Then there exists
a constant C5 = C5(δ,Ω) > 0 such that for all d ≥ e and H ≥ ee, there are at most

C5d4(log d)(log H)2 log log H

algebraic numbers z such that z ∈ Aρ, [Q(z,σΩ(z)) : Q] ≤ d, H(z,σΩ(z)) ≤ H,
dist(z,Ω) ≥ δ, where

dist(z,Ω) = min
w∈Ω
|z − w|.

Like [2], in all our results, we count algebraic points of σΩ(z) on some unbounded
regions of C. Since R is unbounded, by a result of Heins [4, page 114], we deduce that
there are uncountably many lattices Ω with |τ| > 1.9 and η2/η1 ∈ R \ {0}. However,
despite Theorem 1.2, we do not know a single example of a lattice Ω with algebraic
invariants g2, g3 for which there exists a nonzero algebraic number α such that σΩ(α)
is algebraic. It is, in fact, expected that there is no such α. However, the number of
algebraic numbers α with degrees at most d and multiplicative heights at most H is at
most 4dHd, which means that such α are very rare.

We end this section with three results which are needed for the proof of our
theorems.

PROPOSITION 1.4 [1, Théorème 1.2]. Let T ≥ 1 be an integer and R ≥ 2 be a real
number. Consider any nonzero polynomial P(X, Y) ∈ C[X, Y] of degree at most T in
each variable. Then there exists an effective constant C6 > 0 such that the function
P(z,σΩ(z)) has at most

C6T
(
R +
√

T
)2

log(R + T)

zeros in the disk |z| ≤ R.

PROPOSITION 1.5 [6, Proposition 2]. Fix integers d ≥ 1, T ≥
√

8d and positive real
numbers A, Z, M and H with H ≥ 1. Let f1, f2 be two analytic functions on a
neighbourhood of the disk |z| ≤ 2Z. Suppose that | f1(z)| ≤ M, | f2(z)| ≤ M for all
|z| ≤ 2Z. LetZ ⊆ C be finite and such that for all z, z′ ∈ Z:

(1) |z| ≤ Z;
(2) |z − z′| ≤ 1/A;
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(3) [Q( f1(z), f2(z)) : Q] ≤ d;
(4) H( f1(z), f2(z)) ≤ H.

If

(AZ)T > (4T)96d2/T (M + 1)16dH48d2
, (1.2)

then there exists a nonzero polynomial P ∈ Z[X, Y] of total degree at most T such that
P( f1(z), f2(z)) = 0 for all z ∈ Z.

PROPOSITION 1.6 [5, Lemma 7.1]. For any Weierstrass σ-function σΩ(z), there exists
a constant C7 = C7(Ω) such that for any R ≥ 1,

|σΩ(z)| ≤ CR2

7 for all |z| ≤ R.

Our paper is organised as follows. In Section 2, we prove an analogue of [2,
Proposition 2.1] for z ∈ Aρ. Then we prove Theorem 1.1 in Section 3, Theorem 1.2
in Section 4 and Theorem 1.3 in Section 5.

2. Lower bound

Recall that P is the fundamental domain of the lattice Ω = Zω1 + Zω2 enclosed by
the parallelogram with vertices 1

2 (±ω1 ± ω2).

PROPOSITION 2.1. LetΩ = Zω1 + Zω2 be a lattice in C with ρ = η2/η1 a nonzero real
number. Then there exist positive constants r and C depending only on Ω such that for
all z ∈ Aρ with |z| ≥ r, there exists z0 ∈ P with

|σΩ(z)| ≥ |σΩ(z0)|eC|z|2 .

PROOF. As in the proof of [2, Proposition 2.1], we may assume that Ω = Z + Zτ. Let
z ∈ Aρ and z0 ∈ P be such that z = z0 + m + nτ for some integers m and n. Then

σΩ(z0 + m + nτ) = (−1)m+n+mnσΩ(z0)e(mη1+nη2)(z0+m/2+(n/2)τ)

(see [7, page 255]). Hence,

|σΩ(z0 + m + nτ)| = |σΩ(z0)|eR(m,n,z0),

where R(m, n, z0) = Re[(mη1 + nη2)(z0 + m/2 + (n/2)τ)]. Note that

R(m, n, z0) = Re
(
η1

2

)
m2 + Re

(
η1τ + η2

2

)
mn + Re

(
η2τ

2

)
n2 + Re(η1z0)m + Re(η2z0)n.

Further, from Legendre’s relation η1τ − η2 = 2πi, we obtain

Re(η1τ) = Re(η2) and Re
(
η1τ + η2

2

)
= Re(η2).

Moreover,

Re(η2τ) = Re(η1ρτ) = ρRe(η1τ) = ρRe(η2) = ρ2 Re(η1).
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Therefore,

Re
(
η1

2

)
m2 + Re

(
η1τ + η2

2

)
mn + Re

(
η2τ

2

)
n2 = Re(η1)

(m2

2
+ ρmn +

ρ2

2
n2
)

=
1
2

Re(η1)(nρ + m)2.

Hence,

R(m, n, z0) =
1
2

Re(η1)(nρ + m)2 + Re(η1z0)(nρ + m)

= (nρ + m)
[Re(η1)

2
(nρ + m) + Re(η1z0)

]
.

(Recall that by Dirichlet’s theorem, there are infinitely many pairs of integers (m, n)
such that either ρ + m/n = 0 or |ρ + m/n| < 1/n2. For this reason, we need to restrict
the values of m, n.) Also, since η2/η1 = τ − 2πi/η1 and η2/η1 is real, we have
Im(τ − 2πi/η1) = 0. So,

Im(τ) = 2πRe
( 1
η1

)
= 2π

Re(η1)
Re(η1)2 + Im(η1)2 .

Since Im(τ) > 0, we have Re(η1) > 0.

Case 1: ρ > 0. Suppose m > 0, n > 0. Then there exists a positive constant r = r(Ω)
such that whenever |z| > r, we have

R(m, n, z0) ≥ c1(nρ + m)2 ≥ c2 max(|m|, |n|)2

for some positive constants c1, c2 depending only on Ω. However,

|z0 + m + nτ| ≤ c3 max(|m|, |n|)
for some constant c3 = c3(Ω) > 0. Hence,

|σΩ(z0 + m + nτ)| ≥ |σΩ(z0)|ec4 |z0+m+nτ|2 (2.1)

for some constant c4 = c4(Ω) > 0. If m < 0, n < 0, then consider the point
−z0 − m − nτ. Clearly, −z0 ∈ P. Therefore, from (2.1), we obtain

|σΩ(−z0 − m − nτ)| ≥ |σΩ(−z0)|ec4 |−z0−m−nτ|2 = |σΩ(−z0)|ec4 |z0+m+nτ|2 .

However, since σΩ(z) is an odd function,

|σΩ(−z0 − m − nτ)| = |σΩ(z0 + m + nτ)| and |σΩ(−z0) = |σΩ(z0)|,
and the required result follows.

Case 2: ρ < 0. The proof of this case is similar to Case 1 and therefore we omit it. �

3. Proof of Theorem 1.1

Recall that Ω = Zω1 + Zω2 is a lattice in C and ρ = η2/η1 is a nonzero real number.
Throughout this section, let r and C denote the constants from Proposition 2.1. In the
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following, c5, . . . , c17 denote positive constants depending only on Ω (and independent
of d and H). Since

lim
z→0

σΩ(z)
z
= 1,

there exists an ε with 0 < ε < 1/2 such that

|log |σΩ(z)| − log |z|| ≤ 1 (3.1)

whenever |z| < ε. We fix such an ε.

LEMMA 3.1. Let z ∈ Aρ and z0 ∈ P be such that z − z0 ∈ Ω with |z0| ≥ ε. Assume that
|z| ≥ r and both z, σΩ(z) are algebraic with [Q(z,σΩ(z)) : Q] ≤ d and H(z,σΩ(z)) ≤ H
for some d ≥ e and H ≥ e. Then |z| ≤ C8

√
d log H for some constant C8 = C8(Ω) > 0.

PROOF. Let S = {z ∈ P : |z| < ε}. Note that P \ S is compact. Since σΩ(z) is continuous
and nonzero in P \ S, for all z ∈ P \ S, we have |σΩ(z)| ≥ c5. Since |z0| ≥ ε, we have
|σΩ(z0)| ≥ c5. Now from Proposition 2.1,

|σΩ(z)| ≥ |σΩ(z0)|eC|z|2 .

However, since [Q(σΩ(z)) : Q] ≤ d and H(σΩ(z)) ≤ H, we have |σΩ(z)| ≤ Hd. So

C|z|2 ≤ log |σΩ(z)| − log |σΩ(z0)| ≤ d log H − log c5 ≤ c6d log H,

and therefore,

|z| ≤ c7
√

d log H.

This completes the proof of the lemma. �

LEMMA 3.2. Let z ∈ Aρ and z0 ∈ P be such that z − z0 ∈ Ω with |z0| < ε. Assume
that |z| ≥ r and both z, σΩ(z) are algebraic with [Q(z,σΩ(z)) : Q] ≤ d and
H(z,σΩ(z)) ≤ H for some d ≥ e and H ≥ e. For all B > 0 and for all N ≥

√
d log H, if

|z| ≥
√

(2 + B)/CN, then log |z0| ≤ −BN2.

PROOF. Let z ∈ Aρ with |z| ≥ r. Let z0 ∈ P be such that z − z0 ∈ Ω. From
Proposition 2.1,

|σΩ(z)| ≥ |σΩ(z0)|eC|z|2 .

Using |σΩ(z)| ≤ Hd and N ≥
√

d log H, we obtain

C|z|2 + log |σΩ(z0)| ≤ log |σΩ(z)| ≤ d log H ≤ N2. (3.2)

For any B > 0, put

A =

√
2 + B

C
.

https://doi.org/10.1017/S0004972722001575 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001575


[7] The Weierstrass sigma functions 211

If |z| ≥ AN, then from (3.2), we deduce that CA2N2 + log |σΩ(z0)| ≤ N2. So,
log |σΩ(z0)| ≤ (1 − CA2)N2. Since |z0| ≤ ε, applying (3.1), we obtain

log |z0| ≤ log |σΩ(z0)| + 1 ≤ (1 − CA2)N2 + 1 ≤ (2 − CA2)N2 = −BN2.

Thus, the result follows. �

LEMMA 3.3. Assume that ω1 and ω2 are both algebraic. Let z ∈ Aρ be such that
|z| ≥ r and both z,σΩ(z) are algebraic with [Q(z,σΩ(z)) : Q] ≤ d and H(z,σΩ(z)) ≤ H,
where d ≥ e and H ≥ e. Then there exists a constant C9 = C9(Ω) > 0 such that
|z| ≤ C9d

√
log H.

PROOF. Suppose z ∈ Aρ. Choose z0 ∈ P such that z − z0 ∈ Ω. If |z0| ≥ ε, then
by Lemma 3.1, |z| ≤ c8

√
d log H. So we assume that |z0| < ε. Let ω = z − z0. By

[2, Lemma 3.5], if ω = kω1 + lω2, then

max(|k|, |l|) ≤ c9|ω| ≤ c9(|z| + |z0|) ≤ c9(|z| + |ω1| + |ω2|) ≤ c10|z|.

However, since H(z) ≤ H and [Q(z) : Q] ≤ d, we deduce that |z| ≤ Hd. So H(k) = |k| ≤
c10|z| ≤ c10Hd and similarly H(l) ≤ c10Hd. Now, using the inequality

H(z0) ≤ 2H(z)H(ω) ≤ 4H(z)H(k)H(ω1)H(l)H(ω2) ≤ c11H2d+1

together with the bounds

[Q(z0) : Q] = [Q(z − ω) : Q] ≤ [Q(ω1,ω2) : Q]d ≤ c12d

and

M(z0) = M(z−1
0 ) ≥ 1/|z0|,

we deduce that

log |z0| ≥ log(1/M(z0)) = −[Q(z0) : Q] log(H(z0))

≥ −c12d((2d + 1) log H + log c11) ≥ −c13d2 log H,

where M(α) is the Mahler measure of α. Applying Lemma 3.2 with B = c13 and
N = d

√
log H, we deduce that |z| ≤ c14d

√
log H, where c14 =

√
(2 + c13)/C. Taking

C9 = max(c8, c14), we obtain the required result. �

PROOF OF THEOREM 1.1. Define

Z1 = {z ∈ Aρ : [Q(z,σΩ(z)) : Q] ≤ d, H(z,σΩ(z)) ≤ H}.

Put

Z = 4C9d
√

log H, A = 2/Z.

From Lemma 3.3, |z| ≤ C9d
√

log H ≤ Z and |z − z′| ≤ 1/A for all z, z′ ∈ Z1. However,
from Proposition 1.6, there exists a constant c15 ≥ 1 such that for all z ∈ Aρ,

|σΩ(z)| ≤ c|z|
2

15 .
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Put M = cZ2

15 . Then, |z| ≤ M and |σΩ(z)| ≤ M for all |z| ≤ 2Z. With these choices
of A, Z and M, the conditions of Proposition 1.5 are satisfied. If we take
T = c16d3 log H for a sufficiently large c16 > 0, then (1.2) is satisfied. Hence by
Proposition 1.5, there exists a nonzero polynomial P ∈ Z[X, Y] of total degree at
most T such that P(z,σΩ(z)) = 0 for all z ∈ Z1. Finally taking R = C9d

√
log H and

T = c16d3 log H in Proposition 1.4, we deduce that there are at most

c17d6(log d)(log H)2 log log H

zeros of P(z,σΩ(z)) in the region |z| ≤ R. Hence, the number of elements in the setZ1
is at most c17d6(log d)(log H)2 log log H. This completes the proof. �

4. Proof of Theorem 1.2

Throughout this section, let Ω denote a lattice in C with algebraic invariants g2, g3.
In this section, c18, . . . , c27 denote various constants which depend only on Ω. We first
state the following transcendence measure for the nonzero elements ofΩ, due to David
and Hirata-Kohno.

LEMMA 4.1 [3, Theorem 1.6]. Let Ω be a lattice in C. Let d ≥ 1 and H ≥ 3 be real
numbers. Let α be an algebraic number with [Q(α) : Q] ≤ d and H(α) ≤ H. Then there
exists a constant C10 = C10(Ω) > 0 such that

log |α − ω| ≥ −C10d4(log d)2(log H)|ω|2(1 +max{0, log |ω|})3

for all ω ∈ Ω \ {0}.

The following is an analogue of [2, Proposition 4.2].

LEMMA 4.2. Assume that ρ = η2/η1 is a nonzero real number. Let d ≥ 1, H ≥ 3 be
real numbers. There exist positive constants C11, C12 depending only on Ω such that
the following holds. If z, z′ ∈ Aρ with [Q(z,σΩ(z)) : Q] ≤ d, [Q(z′,σΩ(z′)) : Q] ≤ d,
H(z,σΩ(z)) ≤ H and H(z′,σΩ(z′)) ≤ H, then

min{|z|, |z′|} ≤ C11

√
d9(log d)2 log H

or there exists ω,ω′ ∈ Ω such that

max{log |z − ω|, log |z′ − ω′|} ≤ −C12d9(log d)2 log H

with z′/z = ω′/ω ∈ Q.

PROOF. The proof follows the same line of argument as in [2, Proposition 4.2], so we
omit it here. �

LEMMA 4.3. Assume that ρ = η2/η1 is a nonzero real number and g2, g3 are both
algebraic. Let d ≥ 1, H ≥ 3 be real numbers. Let r be from Proposition 2.1 and C11 be
from Lemma 4.2. Consider the set
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S =
{
z ∈ Aρ : [Q(z,σΩ(z)) : Q] ≤ d, H(z,σΩ(z)) ≤ H,

and |z| > max
{
r, C11

√
d9(log d)2 log H

}}
.

Then there exists a positive constant C13 = C13(Ω) such that the number of elements of
S is at most

C13

√
d5(log d)2(log H)(1 + d log H)3.

PROOF. We follow the strategy given in [2]. Suppose z, z′ ∈ S. Then,

min{|z|, |z′|} > C11

√
d9(log d)2 log H.

So by Lemma 4.2, there exist ω,ω′ ∈ Ω such that

max{log |z − ω|, log |z′ − ω′|} ≤ −C12d9(log d)2 log H

with z′/z = ω′/ω ∈ Q. This implies z, z′ are not periods of Ω.
Putω′/ω = q. Letω∗ ∈ Ω \ {0} be of minimum modulus on the line joining 0 andω.

Then ω = mω∗ for some nonzero integer m. Let z∗ = z/m. Note that z∗ ∈ Aρ. Also,
since ω′ and ω lie on the same line, ω′ = m1ω

∗ for some m1 ∈ Z. So qmω∗ = m1ω
∗.

Hence, qm = m1. Now, z′ = qz = qmz∗ = m1z∗. So z′ is an integer multiple of z∗. Thus,
if we show that

n2 ≤ c18d5(log d)2(log H)(1 + d log H)3,

whenever nz∗ ∈ S for some n ∈ Z, we are done. Indeed, just now we have seen that if
z′ ∈ S, then z′ = nz∗ for some n ∈ N. Accordingly, we assume nz∗ ∈ S for some n ∈ Z.
Put nz∗ = z′′. Thus, z′′ ∈ Aρ. Let z0 ∈ P be such that z′′ − z0 = ω

′′ ∈ Ω. Since both z′′

and z belong to S, we have z′′/z = ω′′/ω. Hence, nz∗/mz∗ = ω′′/mω∗, or equivalently
ω′′ = nω∗. Since z′′ ∈ Aρ, from Proposition 2.1, we obtain

log |σΩ(z′′)| ≥ log |σΩ(z0)| + C|z′′|2.

Note that z0 � 0. Therefore, |σΩ(z0)/z0| > ec18 . Hence,

log |σΩ(z′′)| ≥ log |z0| + c19 + C|z′′|2

= log |z′′ − ω′′| + c19 + C|z′′|2

≥ log |nz∗ − nω∗| + c19 + Cn2|z∗|2

≥ log |z∗ − ω∗| + c19 + Cn2|z∗|2.

Write ω = kω1 + lω2 with integers k, l. As we have seen earlier in the proof of
Lemma 3.3, max(|k|, |l|) ≤ c20|z| ≤ c20Hd. Further, since ω = mω∗, we see that m
divides both k, l. We deduce that |m| ≤ c20Hd. So,

log H(z∗) = log H(z/m) ≤ c21d log H.
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Since z∗ = z/m is algebraic, by Lemma 4.1, we deduce that

log |z∗ − ω∗| ≥ − c22d4(log d)2d(log H)|ω∗|2(1 +max{0, log |ω∗|})3

≥ − c23d5(log d)2(log H)|z∗|2(1 +max{0, log |z∗|})3.

So,

−c23d5(log d)2(log H)|z∗|2(1 +max{0, log |z∗|})3 + c19 + Cn2|z∗|2 ≤ log |σΩ(z′′)|
≤ d log H.

In other words,

n2 ≤ c24d5(log d)2(log H)(1 + d log H)3.

This completes the proof of the lemma. �

PROOF OF THEOREM 1.2. To prove Theorem 1.2, by Lemma 4.3, we only need to
count the number of elements in the set

Z2 =

{
z ∈ Aρ : [Q(z,σΩ(z)) : Q] ≤ d, H(z,σΩ(z)) ≤ H,

and |z| ≤ C11

√
d9(log d)2 log H

}
.

Put

Z = 4C11

√
d9(log d)2 log H, A = 2/Z.

Then |z| ≤ Z and |z − z′| ≤ 1/A for all z, z′ ∈ Z2. By Proposition 1.6, for all z ∈ Aρ,

|σΩ(z)| ≤ c|z|
2

25 .

Put M = cZ2

25. Then, |z| ≤ M and |σΩ(z)| ≤ M for all |z| ≤ 2Z. With these choices
of A, Z and M, the conditions of Proposition 1.5 are satisfied. If we take T =
c26d10(log d)2 log H for a sufficiently large c26 > 0, then (1.2) is satisfied. Thus, by
Proposition 1.5, we deduce that there exists a nonzero polynomial P ∈ Z[X, Y] of total
degree at most T such that P(z,σΩ(z)) = 0 for all z ∈ Z2.

Finally taking R = C11
√

d9(log d)2 log H and T = c26d10(log d)2 log H in
Proposition 1.4, we deduce that there are at most

c27d20(log d)5(log H)2 log log H

zeros of P(z,σΩ(z)) in the region |z| ≤ R. Hence, the number of elements in the setZ2
is at most c27d20(log d)5(log H)2 log log H. Since√

c24d5(log d)2(log H)(1 + d log H)3 ≤ c27d20(log d)5(log H)2 log log H,

from Lemma 4.3, there are at most

2c27d20(log d)5(log H)2 log log H
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algebraic numbers z such that z ∈ Aρ, [Q(z,σΩ(z)) : Q] ≤ d and H(z,σΩ(z)) ≤ H. This
completes the proof of the theorem. �

5. Proof of Theorem 1.3

Throughout this section, let δ, r denote the constants from the statements of
Theorem 1.3 and Proposition 2.1.

LEMMA 5.1. Let Ω = Zω1 + Zω2 be a lattice in C with ρ = η2/η1 a nonzero real
number. Let z ∈ Aρ be such that |z| ≥ r and dist(z,Ω) ≥ δ. For any d ≥ e and H ≥ e, if
both z and σΩ(z) are algebraic with [Q(z,σΩ(z)) : Q] ≤ d and H(z,σΩ(z)) ≤ H, then
there exists a constant C14 = C14(δ,Ω) such that |z| ≤ C14

√
d log H.

PROOF. Let z ∈ Aρ and z0 ∈ P be such that z − z0 = m1ω1 + n1ω2 ∈ Ω. Since
dist(z,Ω) ≥ δ, we have |z0| = |z − m1ω1 − n1ω2| ≥ δ. Let ε denote the constant from
Lemma 3.1.

Case 1: δ ≥ ε. Since |z0| ≥ δ, we have |z0| ≥ ε. So by Lemma 3.1, there exists a constant
c28 = c28(Ω) such that |z| ≤ c28

√
d log H. Hence, the lemma is proved.

Case 2: δ < ε. Suppose δ ≤ dist(z,Ω) < ε, so δ ≤ |z0| < ε. Hence,

|z0| ≥ e− log 1/δ ≥ e−d log H log 1/δ = e−BN2
,

where B = log 1/δ and N =
√

d log H. Since |z0| < ε, applying Lemma 3.2, we obtain

|z| ≤
√

2 + log 1/δ
C

√
d log H,

where C is as in Lemma 3.2.
Now suppose dist(z,Ω) ≥ ε, so |z0| ≥ ε. As in Case 1, |z| ≤ c28

√
d log H. Taking

C14 = max
(
c28,
√

(2 + log 1/δ)/C
)
, we get the required result. �

PROOF OF THEOREM 1.3. Define

Z3 = {z ∈ Aρ : dist(z,Ω) ≥ δ, [Q(z,σΩ(z)) : Q] ≤ d and H(z,σΩ(z)) ≤ H}.

Put

Z = 4C14
√

d log H, A = 2/Z.

From Lemma 5.1, |z| ≤ C14
√

d log H ≤ Z and |z − z′| ≤ 1/A for all z, z′ ∈ Z3. By
Proposition 1.6,

|σΩ(z)| ≤ c|z|
2

29 .

Put M = cZ2

29. Then, |z| ≤ M and |σΩ(z)| ≤ M for all |z| ≤ 2Z. With these choices of
A, Z and M, the conditions of Proposition 1.5 are satisfied. If we take T = c30d2 log H
for some sufficiently large constant c30 = c30(δ,Ω), then (1.2) is satisfied. Thus, by
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applying Proposition 1.5, there exists a nonzero polynomial P ∈ Z[X, Y] of total degree
at most T such that P(z,σΩ(z)) = 0 for all z ∈ Z3.

Finally taking R = C14
√

d log H and T = c30d2 log H in Proposition 1.4, we deduce
that there are at most

c31d4(log d)(log H)2 log log H

zeros of P(z,σΩ(z)) in the region |z| ≤ R for some constant c31 = c31(δ,Ω) > 0. Hence,
the number of elements in the set Z3 is at most c31d4(log d)(log H)2 log log H. This
completes the proof of the theorem. �
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