
Bull. Aust. Math. Soc. (First published online 2024), page 1 of 6∗

doi:10.1017/S0004972724001138
∗Provisional—final page numbers to be inserted when paper edition is published

A NOTE ON THE LARGE SIEVE INEQUALITY FOR
MODULI GENERATED BY A QUADRATIC

C. C. CORRIGAN

(Received 8 October 2024; accepted 16 October 2024)

Abstract

We develop a generalisation of the square sieve of Heath-Brown and use it to give an alternate proof of one
of the large sieve inequalities in our previous paper [‘A large sieve inequality for characters to quadratic
moduli’, Preprint, https://web.maths.unsw.edu.au/~ccorrigan/preprint6.pdf].
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1. Introduction

Applications in the literature of the large sieve inequality for sparse sets of moduli are
vast, particularly in the cases where the sparse set is well distributed in the residue
classes. In these cases, the set of moduli is usually generated by some function f :
N ↪→ N with certain nice arithmetical properties. The classical large sieve inequality
of Davenport and Halberstam [6] trivially gives
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for any strictly increasing function f : N ↪→ N. Here and in the remainder of this
article, we write e(α) = exp(2πiα) and we suppose that Q, N � 3 are large and that
(zn)n�N is an arbitrary nonzero sequence of complex numbers.

The case of square moduli was first studied by Zhao [9], using techniques from
harmonic analysis. Later, following a combinatorial argument, Baier [1] showed that
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which was further improved by Baier and Zhao [3]. Now, following the arguments of
Baker [4], a bound analogous to (1.2), pertaining to monomials f of degree two, can
easily be established. The general case, however, requires more consideration. In [5],
adapting the combinatorial argument of Baier [1], we showed that
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where f : N ↪→ N is an arbitrary monotonic polynomial of degree two. In [2], Baier
showed that (1.2) can be established using the square sieve of Heath-Brown [7] and
some classical techniques from harmonic analysis. Our objective in this article is to
show that this approach can also be used to establish (1.3). To this end, we first require
a generalisation of the square sieve.

Remark on notation. In the following, we will denote by ω(n) and τ(n) the number
of prime divisors and positive divisors of n, respectively. Additionally, ε will be used
to denote an arbitrarily small positive constant, and may vary in value throughout.

2. Preliminary lemmata

In this section, we shall prove two simple results which will be the main tools
used for our proof of (1.3) in the following section. First, we have the following
generalisation of the square sieve of Heath-Brown [7].

LEMMA 2.1. Suppose that f : N ↪→ N is a strictly increasing polynomial of degree
two, with leading coefficient A and discriminant Δ f . Moreover, suppose that P is a
set of P � 1 primes and that φ : N→ R+ satisfies φ(n) = 0 whenever n is such that
4A f (n) + Δ f > eP. Then, we have the majorisation

∑
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where the implied constant is absolute.

PROOF. Suppose that n is a natural number satisfying 4A f (n) + Δ f � eP. Since
4A f (n) + Δ f = f ′(n)2 for all natural numbers n,

∑
p∈P

(4A f (n) + Δ f

p

)
=

∑
p∈P

p�4A f (n)+Δ f

1 � P − ω(4A f (n) + Δ f ) 	 P,
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by virtue of the fact that ω(q) = o(log q). Hence,
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,

from which the assertion follows immediately. �

Second, we have the following result pertaining to sums of values of the Jacobi
symbol in an arithmetic progression, twisted by additive characters.

LEMMA 2.2. Suppose that M, N � 3 are coprime and let χ be the Jacobi symbol
modulo M. Moreover, suppose that B and C each belong to one of the primitive residue
classes modulo M. Then, for any integer Δ,

∑
r�MN

χ(Br + Δ)e
( Cr
MN

)
= δN |Ce

(−CB̄Δ
MN

)
χ(CBN)τ(χ)N,

where e(BB̄/M) = e(1/M), and τ(χ) denotes the Gauß sum of the character χ.

PROOF. It suffices to consider the case where Δ = 0, for from this, the remaining cases
follow by applying the translation r 
→ r − B̄Δ. So, on noting that

{mN + nM : m � M, n � N}/(MNZ) = {r � MN}/(MNZ)

whenever (M, N) = 1, we see that
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N

)
,

from which the assertion immediately follows. �

Having established our two main preliminaries, we shall now move on to the
demonstration of (1.3). Our approach will closely follow the work of Baier [2], so
we will keep brief our treatment of the lesser details.

3. Demonstration

Similarly to [5], we start by breaking the sum over q � Q in (1.3) into O(log f (Q))
intervals of the form Q f (M) = {q � Q : f (q) ∼ M}, where 1 � M � f (Q). Let A be
the set of Farey fractions with denominator in Q f (M) and, for any real α and any small
δ > 0, define
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Pδ(α) = #{α′ ∈ A : |α − α′| � δ}.

Following the standard procedure laid down by Wolke [8], we see that to establish
(1.3), it suffices to show that the bound

sup
α∈R

Pδ(α) �
ε

f (Q)εM
√
δ (3.1)

holds whenever M−2 � δ � M−1. As in [5], we note here that, in the case where δ is
outside of the aforementioned range, (1.3) is contained in the trivial bound (1.1). Now,
in the following, we may assume that α does not belong to the set

M =
⋃

r�1/(128Mδ)

⋃
b�r

(b,r)=1

B(b/r, 1/(8Mr))

of major arcs, for if α ∈ B(b/r, 1/(8Mr)), then since δ � 1/(128Mr), we must have

Pδ(α) � #{α ∈ A : |b/r − α| � 1/(4Mr)} � #{a/ f (q) ∈ A : |b f (q) − ar| � 1
2 },

which is clearly zero, since r � (1/128)M < f (q). Hence, in the remainder of this
section, we shall assume that α belongs to the set m = [0, 1]\M of minor arcs.

By Dirichlet’s approximation theorem, we see that for all α ∈ [0, 1], there exists a
Farey fraction b/r with r � 128M such that |b/r − α| � 1/(128Mr). If r � 1/(128Mδ),
we must have α ∈ M, so we may assume that this is not the case. Hence, for all α ∈ m,
there exists a Farey fraction b/r such that |b/r − α| < δ, and thus, we must have Pδ(α) �
P2δ(b/r).

We now fix a Farey fraction b/r, and suppose that φ,ψ : R→ R+ are two infinitely
differentiable functions having support on [ 1

2 , 5
2 ] and [− 9

2 , 9
2 ], respectively. Moreover,

we suppose that φ and ψ are bounded below by 1 on the intervals [1, 2] and [−4, 4],
respectively. Then, we have the majorisation

P2δ(b/r) �
∑
q∈Z

∑
a∈Z

φ
( f (q)

M

)
ψ
(ar − b f (q)

Mrδ

)
. (3.2)

Now, supposing that R > f (Q)ε, we note that the set P = {p ∼ R : p � 4rA} has
cardinality P ∼ R/ log R, and thus applying Lemma 2.1 to (3.2) yields

P2δ(b/r) � P−1
∑
q∈Z

∑
a∈Z

φ
( q
M

)
ψ
(ar − bq

Mrδ

)

+ P−2
∑

p,p′∈P
p�p′

∣∣∣∣∣
∑
q∈Z

∑
a∈Z

(4Aq + Δ f

pp′

)
φ
( q
M

)
ψ
(ar − bq

Mrδ

)∣∣∣∣∣. (3.3)

For the sake of brevity, we shall denote by Σ1 and Σ2 the inner double sums of the first
and second terms, respectively, on the right-hand side of (3.3).

To treat the sum Σ1, we first note that if a ∈ Z is such that |ar − bq| � 9
2 Mrδ

for some q ∈ Z satisfying 1
2 M � q � 5

2 M, then |a/q − α| � |b/r − α| + 9δ � 11δ. If,
moreover, (a, q) > 320M2δ, then q/(a, q) < 1/(128Mδ) and thus 11δ < (a, q)/(8Mq).
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In this case, we clearly have α ∈ B(a/q, (a, q)/(8Mq)) ⊂ M, which contradicts our
assumption that α ∈ m. Hence, we see that the a, q in the double sum Σ1 must all
satisfy (a, q) � 320M2δ, and thus

Σ1 �
∑

1
2 M�q� 5

2 M

∑
qb/r− 9

2 Mδ�a�qb/r+ 9
2 Mδ

1 �
∑

m�320M2δ

∑
1
2 M/m�q� 5

2 M/m

∑
qb/r− 9

2 Mδ�a�qb/r+ 9
2 Mδ

(a,q)=1

1.

On noting that |a/q − a′/q′| � 1/(qq′)  m2/M2 for any distinct Farey fractions a/q
and a′/q′ satisfying q, q′  M/m, we derive the bound

Σ1 �
∑

m�320M2δ

(
1 +

M2δ

m2

)
� M2δ, (3.4)

which completes our treatment of Σ1.
To treat the double sum Σ2, we first split the outer sum into subsums over the residue

classes modulo pp′r, and twice apply the Poisson summation formula to obtain the
transformation

Σ2 =
∑

m�pp′r

(4Am + Δ f

pp′

)∑
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a∈Z

φ
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)
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)
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(M(q + bapp′)
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)
ψ̂(Mδa)e
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pp′r

)

=
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)
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(4Am + Δ f
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)
e
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)
.

Hence, by Lemma 2.2 and the standard bound for Gauß sums,

Σ2 �
M2δ
√

pp′

∑
q∈Z

∑
a∈Z

δr|(q−bapp′)φ̂
( Mq

pp′r

)
ψ̂(Mδa), (3.5)

which, when averaged over distinct primes p, p′ ∈P , will suffice for our argument.
So, first, on combining (3.4) and (3.5) with (3.3), we obtain the majorisation

P2δ(b/r) � M2δ

P
+

M2δ

P2R

∑
p,p′∈P

p�p′

∑
q∈Z

∑
a∈Z

r|(q−bapp′)

φ̂
( Mq

pp′r

)
ψ̂(Mδa). (3.6)

Now, since φ and ψ are supported only on singular closed intervals, we see that their
respective Fourier transforms must satisfy the property that φ̂(x) and ψ̂(x) are, for any
C > 0, majorised by (1 + |x|)−C. Consequently, we may truncate the triple sum on the
right-hand side of (3.6) to derive the bound

∑
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p�p′
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1,
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by virtue of the fact that M � f (Q). Hence, on noting that
∑

R2<m�4R2

∑∑
|q|<R2r f (Q)ε/(M)
|a|< f (Q)ε/(Mδ)

r|(q−bam)

1 �
(
R2 +

R4 f (Q)ε

M

)
+
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�
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(
R2 +

R4 f (Q)ε

M
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(
1 +
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M
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1 +
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Mrδ
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�
ε

Rε f (Q)ε
(
R2 +

R4

M2δ
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,

we obtain from (3.6) the majorisation

sup
α∈m

Pδ(α) �
ε

Rε f (Q)ε
(M2δ

R
+ R
)
. (3.7)

Taking R = M
√
δ in (3.7) yields (3.1), and thus the assertion (1.3) follows.
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