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Awell-known person fit statistic in the item response theory (IRT) literature is the lz statistic (Drasgow
et al. in Br J Math Stat Psychol 38(1):67-86, 1985). Snijders (Psychometrika 66(3):331-342, 2001) derived
l∗z , which is the asymptotically correct version of lz when the ability parameter is estimated. However,
both statistics and other extensions later developed concern either only the unidimensional IRT models or
multidimensionalmodels that require a joint estimate of latent traits across all the dimensions. Considering a
marginalizedmaximum likelihood ability estimator, this paper proposes lzt and l∗zt , which are extensions of
lz and l∗z , respectively, for the Rasch testlet model. The computation of l∗zt relies on several extensions of the
Lord-Wingersky algorithm (1984) that are additional contributions of this paper. Simulation results show
that l∗zt has close-to-nominal Type I error rates and satisfactory power for detecting aberrant responses. For
unidimensional models, lzt and l∗zt reduce to lz and l∗z , respectively, and therefore allows for the evaluation
of person fit with a wider range of IRTmodels. A real data application is presented to show the utility of the
proposed statistics for a test with an underlying structure that consists of both the traditional unidimensional
component and the Rasch testlet component.
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Item response theory (IRT) is ubiquitously used as the underlying statistical model for cal-
ibrating items and scoring examinee responses. Establishing that the IRT model adequately fits
the data is an important aspect of establishing validity for the intended use of test scores resulting
from the assessment. Item statistics, including item fit, are taken into account during the item
review process and could indicate that the item should be modified or rejected altogether. Even
when all items fit the model, it is possible that the model does not fit for a particular examinee.
For example, a person answering all easy items incorrectly but all other items correctly is an
unexpected or aberrant response pattern for a given set of item parameters. Aberrant responses
refer to a series of answers examinees provided that are unlikely to arise given their true ability
and the chosen psychometric model. In other words, there is a lack of fit between response patterns
and the model used for scoring. Many test-taking behaviors such as cheating, lack of motivation
and random response can cause aberrant responses and lead to a poor person fit.

Various indices have been proposed to capture the degree of person fit (seeMeijer and Sijtsma,
2001, orKarabatsos, 2003, for a survey of personfit statistics in the earlier literature.More recently,
fit statistics were proposed by, among others, von Davier and Molenaar 2003; Glas and Dagohoy
2007; de la Torre and Deng and Deng, 2008; Sinharay 2015; 2016; Xia and Zheng, 2018. A
relatively recent review can be found in Rupp, 2013). Among these statistics, one of the most
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well-known is the standardized loglikelihood statistic of a response pattern, denoted as lz , first
developed by (Drasgow et al., 1985) . The statistic provides a measure of the degree to which the
response pattern is aberrant, given a known value of the true ability (θ). lz asymptotically follows
a standard normal distribution (Drasgow et al., 1985; Snijders, 2001) .

In practice however, the true ability is not known but estimated from the same data on which
lz is computed. Even though Drasgow et al. (1985) indicated that the effects from the estimated
ability (θ̂) were fairly small given the fact that standardization of the response loglikelihood has
reduced its dependency on the estimated ability, other researchers have found scenarios where
lz deviates from standard normal. Molenaar and Hoijtink (1990) found that in Rasch model for
dichotomous items, even when assuming θ̂ = θ given a raw score, the deviation from normality
of lz was particularly evident when θ̂ was far from the mean of the item difficulties, and when
the test was short. Negative skewness and heavy tails were observed in the example cases they
showed. Several other studies have found that the variance of lz can be considerably smaller than
1 when the true ability θ is replaced by the estimated ability (θ̂) (e.g., Nering, 1995; Reise, 1995;
Seo & Weiss, 2013). Molenaar and Hoijtink (1990) proposed a modified version of the person
fit index, by using the result that the sum of the raw scores is a sufficient statistic for θ̂ for the
Rasch model. The first few central moments of the proposed statistic were computed and used
in deriving a chi-squared distribution-based approximation that accounts for the skewness of the
loglikelihood person fit index. Bedrick (1997) used a different approximation that involves the
use of Edgeworth expansion for skewness correction. von Davier and Molenaar (2003) extended
the work of Molenaar and Hoijtink (1990) to latent class models and mixture distribution IRT
models for both dichotomous and polytomous data. They also compared the performance of the
two aforementioned approaches to reduce the skewness of the person-fit index. Liou and Chang
(1992), on the other hand, used a so-called network algorithm to obtain the exact significance of
the loglikelihood person fit index when conditioning on either the maximum likelihood ability
estimates or the sum score in Rasch model. Meanwhile, Snijders (2001) derived a framework of
asymptotically normal person fit statistics for dichotomous itemswhen the θ̂ is used, amongwhich
is the modified version of lz now commonly referred to as the l∗z statistic. When θ̂ is the maximum
likelihood estimate, the essence of l∗z lies in correcting the loglikelihood variance estimate in the
original of lz . It was shown in Snijders (2001) that l∗z produced type I error rates close to the
nominal rate. Sinharay (2016) derived l∗z for mixed format test, where polytomous items can also
be handled along with dichotomous items.

An important limitation of lz and l∗z , and the other previously mentioned person fit indices in
the literature, is that they only address the person fit assessment with a unidimensional latent trait.
More recently, there have been some efforts to extend lz and l∗z for their useswithmultidimensional
constructs. Albers et al. (2016) proposed lzm and l∗zm , which are used for dichotomous items and
multiple subscales. Hong et al. (2121) provided more rigorous derivations of these statistics,
extensions to mixed item types, and more extensive simulation studies. It should be noted that an
implicit requirement to use lzm or l∗zm is that person estimates are obtained across all dimensions.
In practice, however, one of the important use cases of introducing additional latent variables is to
address the local dependencies among items that share a common stimulus or belong to the same
testlet. Some popular models developed to this end are the testlet models (Bradlow et al., 1999)
and particularly the widely used Rasch testlet model (Wang & Wilson, 2005) . In such cases,
usually the overarching latent trait is of primary interest, while the other traits are incorporated
as so-called “nuisance” dimensions to account for the testlet effects. When examining the person
fit with these models, lzm or l∗zm cannot be applied unless θ estimates for all the dimensions are
obtained, counter to the idea of introducing testlet effects as nuisance dimensions. On the other
hand, a direct application of lz and l∗z ignoring the testlet effects is also not a good solution. Chen
(2013) investigated the utility of lz on detecting aberrant responses for the testlet model and found
that the detection rate was worse when there were more testlet items or the testlet variance was
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larger. In sum, there is a need to develop a feasible approach of person fit evaluation that works
for testlet models.

This paper proposes two new statistics, lzt and l∗zt , which extend lz and l∗z , respectively for
the Rasch testlet model when the marginalized maximum likelihood estimation (MMLE) is used
for θ estimation (i.e., the nuisance dimensions are integrated out. More details about MMLE are
provided in a later section of this paper). Moreover, with the advances in technology enhanced
items and test delivery system, test developers nowadays create novel tests with an underlying
latent structure that incorporates both items organized in testlets and unidimensional standalone
items (e.g., New Hampshire Department of Education, 2019). It will be shown that lzt and l∗zt
reduce to lz and l∗z , respectively, with unidimensional MLE estimation of θ , and therefore can be
considered as a generalized approach to evaluate person fit when the underlying structure includes
both a testlet component and observed variables that do not belong to any testlet.

The rest of this paper is organized in the following way. First, we provide some theoretically
background on lz and l∗z , as well as some technical details about the MMLE method for the
estimation of the overall θ under the Rasch testlet model. We then extend the original lz statistics
to its form in the Rasch testlet model and illustrate how the variance of the loglikelihood can be
corrected when MMLE is used to obtain the new statistics we call l∗zt . A simulation study follows
to evaluate the performance of l∗zt , including the Type I error rate and power under the Rasch testlet
model. We then demonstrate an application of l∗zt on a real dataset from a large-scale standardized
assessment, to show that l∗zt is flexible such that it can be applied to a wider range of models which
allow for both the testlet model for some item sets and a traditional unidimensional model for
other items. Finally, we discuss practical considerations and future direction of these statistics.

1. Review of the lz and l∗z Statistics for Unidimensional Models

Because the extension of lz and l∗z this paper presents mainly concerns the Rasch testlet
model for dichotomous item responses, we offer a review of lz and l∗z for dichotomous items here
to achieve a better connection to the method to be proposed. A didactic presentation of l∗z was
offered by Magis, Raîche, and Béland (2012). A presentation of lz and l∗z for mixed format tests
is available from Sinharay (2016) where l∗z for dichotomous items was shown as a special case.

Consider an examinee with true ability θ who responds to a test consists of n items modeled
by a unidimensional IRTmodel (for example, the one-, two-, and three-parameter logistic model).
Throughout the paper, item parameters of the IRT models are assumed to be known. Let Y j be the
binary response provided by the examinee to item j , p j (θ) = P(Y j = 1|θ) be the probability of
correct response to item j , and q j (θ) = 1 − p j (θ). As defined by Snijders (2001), one class of
the person fit statistics Wj for dichotomous items can be expressed in a centered form as

W (θ) =
n∑

j=1

(
Y j − p j (θ)

)
w j (θ),

where w j (θ) is a suitable weight function. The random variance W (θ) has expected value

E (W (θ)) = 0

and variance

Var (W (θ)) = nσ 2
n (θ) =

n∑

j

w j (θ) p j (θ) q j (θ).
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Under regularity conditions, the standardized version of W (θ) which takes the form

W (θ)

Var (W (θ))

asymptotically follows a standard normal distribution by the Lindeberg-Feller central limit theo-
rem for independent but non-identically distributed random variables. The lz statistics (Drasgow
et al., 1985) is defined as

lz (θ) = l (θ) − E (l (θ))

Var (l (θ))
. (1)

For dichotomous items,

l (θ) =
n∑

j

Y j log p j (θ) + (
1 − Y j

)
log q j (θ),

which is the log-likelihood of the examinee’s item scores. The expected value of l (θ) is

E (l (θ)) =
n∑

j

p j (θ) log p j (θ) + q j (θ) log q j (θ),

and the variance of l (θ) is

Var (l (θ)) = p j (θ) q j (θ)

(
log

p j (θ)

q j (θ)

)2

.

lz (θ) is a special case of the standardized version of W (θ) when

w j (θ) = log
p j (θ)

q j (θ)
.

Note thatW (θ) (or lz (θ)) is defined in terms of true ability θ . However, when applied to real data,
θ is unknown and must be replaced by the estimated value θ̂ . Several research studies have shown

that lz
(
θ̂
)
differs from a standard normal distribution when θ̂ is used and therefore provides

an inaccurate assessment of person fit (Molenaar & Hoijtink 1990; Nering, 1995; Reise 1995;
Snijders, 2001; van Krimpen-Stoop & Meijer, 1999). Snijders (2001) provided a remedy to this
problem. First, using the Taylor expansion on W (θ), he showed

1√
n
W
(
θ̂
)

≈ 1√
n
W (θ) + √

n
(
θ̂ − θ

)
⎡

⎣1

n

n∑

j=1

(
Y j − p j (θ)

)
w

′
j (θ) − 1

n

n∑

j=1

p
′
j (θ)w j (θ)

⎤

⎦ ,

where w
′
j (θ) and p

′
j (θ) are the first derivative of w j (θ) and p j (θ), respectively. The term

√
n
(
θ̂ − θ

)
is bounded assuming it has a non-degenerate distribution when n → ∞. While the

first term in the bracket tends to 0 since it is an average of a random variable with expected value
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of 0, the second term in the bracket does not. Snijders suggested to replace w j (θ) with a w̃ j (θ)

such that
∑n

j=1 p
′
j (θ) w̃ j (θ) = 0. To be specific, if a θ̂ satisfies the condition that

r0
(
θ̂
)

+
n∑

j=1

(
Y j − p j

(
θ̂
))

r j
(
θ̂
)

= 0.

The modified weight w̃ j (θ) can be defined as

w̃ j (θ) = w j (θ) − cn (θ) r j (θ) , (2)

where

cn (θ) =
∑n

j=1 p
′
j (θ)w j (θ)

∑n
j=1 p

′
j (θ) r j (θ)

.

Then, the new variable

W ∗ (θ̂
)

=
W
(
θ̂
)

+ cn
(
θ̂
)
r0
(
θ̂
)

Var
(
W ∗

(
θ̂
))

asymptotically follows a standard normal distribution, where

Var
(
W ∗ (θ̂

))
= nτ

n

(
θ̂
)

=
n∑

j=1

w̃2
j

(
θ̂
)
p j

(
θ̂
)
q j

(
θ̂
)

. (3)

For an MLE, r0
(
θ̂
)

= 0; For a maximum a posteriori (MAP) estimator, r0
(
θ̂
)

=
dlog

(
f
(
θ̂
))

/d(θ̂ ), where f
(
θ̂
)
is a prior distribution of ability; For a weighted likelihood

estimator (WLE), r0
(
θ̂
)

= J
(
θ̂
)

/2
(
I
(
θ̂
))

, where J
(
θ̂
)

= ∑n
j=1

p
′
j

(
θ̂
)
p

′′
j

(
θ̂
)

p j

(
θ̂
)
q j

(
θ̂
) , I

(
θ̂
)

=

∑n
j=1

p
′
j

(
θ̂
)2

p j

(
θ̂
)
q j

(
θ̂
) and p

′′
j (θ) is the second derivative of p j (θ). r j

(
θ̂
)
is given in general by

r j
(
θ̂
)

=
p

′
j

(
θ̂
)

p j

(
θ̂
)
q j

(
θ̂
)

Consequently,

l∗z
(
θ̂
)

=
l
(
θ̂
)

− E
(
l
(
θ̂
))

+ cn
(
θ̂
)
r0
(
θ̂
)

Var
(
l∗z
(
θ̂
)) . (4)
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Comparing Eq. (1) with Eq. (4), we see that l∗z
(
θ̂
)
is obtained using the equation of lz

(
θ̂
)
by

adjusting the mean with cn
(
θ̂
)
r0
(
θ̂
)
and adjusting the variance by replacing Var

(
lz
(
θ̂
))

with

Var
(
l∗z
(
θ̂
))

. Particularly for an MLE, since r0
(
θ̂
)

= 0, only the variance needs to be adjusted,

and the above formula reduces to

l∗z
(
θ̂
)

=
l
(
θ̂
)

− E
(
l
(
θ̂
))

Var
(
l∗z
(
θ̂
)) . (5)

As we will show later in the Method section, this adjustment of the variance under MLE is a
general strategy on which we relied when adjusting the extended version of lz for the Rasch
testlet model under MMLE. To provide a better connection, we shall now take a closer look at

Var
(
l∗z
(
θ̂
))

to see what information is needed to compute it. Omitting θ̂ for simplicity, based

on Eqs. (2) and (3), we have

Var
(
l∗z
) =

n∑

j=1

(
w j − cnr j

)2
p jq j ,

where cn =
∑n

j=1 p
′
jw j

∑n
j=1 p

′
j r j

, r j = p
′
j

p j q j
and w j = log

p j
q j
. Therefore

Var
(
l∗z
) =

n∑

j=1

⎛

⎜⎜⎝log
p j

q j
−

⎛

⎜⎜⎝

∑n
j=1 p

′
j log

p j
q j

∑n
j=1

p
′
j
2

p j q j

⎞

⎟⎟⎠
p

′
j

p j q j

⎞

⎟⎟⎠

2

p jq j

=
n∑

j=1

p jq j

(
log

p j

q j

)2

− 2

⎛

⎝
n∑

j=1

p
′
j log

p j

q j

⎞

⎠ ∗
∑n

j=1 p
′
j log

p j
q j

∑n
j=1

p
′
j
2

p j q j

+
(∑n

j=1 p
′
j log

p j
q j

)2

∑n
j=1

p
′
j
2

p j q j

=
n∑

j=1

p jq j

(
log

p j

q j

)2

−
(∑n

j=1 p
′
j log

p j
q j

)2

∑n
j=1

p
′
j
2

p j q j

.

We should now examine the terms of the final form of Var
(
l∗z
)
above. The first term is exactly

the original definition of Var (lz). For the numerator of the second term, if we define h
(
θ̂
)

=
l
(
θ̂
)

− E
(
l
(
θ̂
))

(note that this is the numerator of l∗z ), we find it amounts to
(
h

′ (
θ̂
))2

for

an MLE θ̂ , where h
′ (

θ̂
)

= −∑n
j=1

(
p

′
j log

p j
q j

)
is the first derivative of h

(
θ̂
)
. Finally, the

denominator of the second term can be recognized as test information at θ = θ̂ (let’s denote it as

I
(
θ̂
)
). Therefore, we can rewrite the above definition of Var

(
l∗z
)
as

Var
(
l∗z
(
θ̂
))

= Var
(
lz
(
θ̂
))

−
(
h

′ (
θ̂
))2

I
(
θ̂
) .
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This alternative definition of Var
(
l∗z
)
, as we shall see in the later section of this paper, holds true

when l∗z is extended for the Rasch testlet model.

2. Rasch Testlet Model and MMLE θ Estimation

Before we describe our extended method, we provide some basic information about the
Rasch testlet model and the utility of MMLE estimation of θ . While unidimensional models have
been working well with tests that consist of traditional items, it is arguably not the best choice
when a test consists of testlets. A testlet, sometime called an item cluster or an item bundle, is a
set of items that share a common stimulus. Because of such bundling, an examinee’s responses
to items within a testlet are usually interdependent even when conditioned on the examinee
ability. That is, the usual local independence assumption does not hold within testlets. Ignoring
such dependencies would result in biased item parameter estimates and underestimation of the
standard error of measurement (e.g., Sireci et al., 1991; Wainer & Lukhele, 1997; Wainer &
Thissen, 1996; Wainer &Wang, 2000; Yen, 1993). A common approach to account for the testlet
effect is to include additional dimensions corresponding to the bundling of the items in the IRT
model. These additional dimensions incorporated are usually considered “nuisance” dimensions
as the true values of examinees’ latent traits on these dimensions are often not of primary interest.
One popular example of adopting this approach is the Rasch testlet model. For binary data, the
Rasch testlet model is defined as

p jk (θ |uk) = P
(
Y jk = 1|θ, uk

) = exp
(
θ + uk − b j

)

1 + exp
(
θ + uk − b j

) , (6)

where Y jk is the response to item j from testlet k and can be either 0 or 1, θ is the examinee’s
overall ability, uk is the latent trait related to testlet k, and b j is the difficulty parameter of item j .

To understand how lz and l∗z can be extended for the Rasch testlet model, there is a need to
review the methods for the estimation of latent traits in multidimensional IRT (MIRT) models.
Two commonly used estimators for the latent traits in MIRT models are the maximum likelihood
estimator (MLE) and the expected a posteriori (EAP) estimator. Let y be a vector collecting the
observed item scores for all items in all testlets, and u be a vector collecting the latent traits pertain
to the nuisance dimensions. The MLE is obtained by maximizing the likelihood of the observed
items scores jointly for θ and u. That is,

(
θ̂ , û

)

MLE
= argmaxθ,ul (θ,u|y) ,

where l (θ,u|y) is the log-likelihood of the observed item scores. The EAP estimator is the
posterior mean vector of the latent traits, defined as

(
θ̂ , û

)

E AP
=
∫ ∞

−∞
(θ,u) p (θ,u|y) d (θ,u) ,

where p (θ,u|y) is the joint posterior distribution of θ and u, given the observed item score vector.
Both estimators aremultivariate, i.e., they jointly obtain the estimate of the overall ability θ and the
estimates of the latent traits regarding the testlet effects (u). Therefore, when these two methods
are used, the log-likelihood involved in obtaining lz and the corresponding correction involved to
obtain l∗z can be considerably more difficult to disentangle than those in a unidimensional model.
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However, the purpose of introducing the nuisance dimensions u is solely to account for the
item clustering or testlet effect; Most of the time, only the overall θ is of primary interest. In
this vein, Rijmen et al. (2018) proposed to use the marginalized maximum likelihood estimator
(MMLE) for the overall θ estimation. The MMLE can be obtained in two steps. First, the nui-
sance dimensions u are integrated out in the observed data likelihood to obtain the marginalized
likelihood function of θ ,

L (θ |y) =
∫ ∞

−∞
p (y|θ,u) p (u) du.

Second, θ̂ is found by maximizing the resulting marginal (log-)likelihood function,

(
θ̂
)

MMLE
= argmaxθ lmarginal (θ |y) ,

where lmarginal = Log (L (θ |y)). In a simulation study, Rijmen et al. (2018) found that theMMLE
provided a better recovery of the overall ability parameter than theMLE and EAP estimators in the
presence of substantial testlet effects, and that only theMMLEaccurately took into account the loss
of information due the dependencies between items from the same stimulus. The mathematical
simplicity of MMLE relative to the other joint estimators offers an opportunity to develop a
suitable person fit measure on the basis of lz . The next section shows that the original lz statistics
can be extended to work for the Rasch testlet model, and an asymptotically corrected version can
be derived to produce a new person fit z-statistic when the MMLE θ̂ is used.

3. Method

3.1. Extension of lz for the Rasch testlet model

Consider a test that consists of K testlets where each item within a testlet is scored either 0
or 1. The probability of getting a score of y jk for item j in testlet k based on the Rasch testlet
model is defined as

py jk = P
(
Y jk = y jk |θ, uk

) = (
p jk (θ |uk)

)y jk (q jk (θ |uk)
)1−y jk ,

where p jk (θ |uk) is as defined in Eq. (6), and q jk (θ |uk) = 1 − p jk (θ |uk) .

The likelihood of the overall ability θ for an MMLE is defined as

L (θ |y) =
K∏

k=1

∫ n∏

j=1k

P
(
Y jk = y jk |θ, uk

)
g
(
uk | 0, σ 2

uk

)
duk,

where nk is the number of items in testlet k, g
(
uk | 0, σ 2

uk

)
is the assumed prior distribution of uk

with a mean of 0 and a variance of σ 2
uk . The log-likelihood statistics is therefore
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l (θ |y) =
K∑

k=1

log

⎡

⎣
∫

Exp

⎛

⎝
nk∑

j=1

(
y jk log

(
p jk (θ |uk)

)

+ (1 − y jk
)
log

(
q jk (θ |uk)

))
⎞

⎠ g
(
uk |0, σ 2

uk

)
duk

⎤

⎦ .

Analogous to what it is in a unidimensional model, the standardized log-likelihood statistics is
defined as

lzt (θ) = l (θ |y) − E (l (θ |y))√
Var (l (θ |y)) .

Under regularity conditions, lzt (θ) follows a standard normal distribution and can be used for
person fit evaluations. The obstacle here is to compute E (l (θ |y)) and Var (l (θ |y)). As a model
from the Rasch family, a merit of the Rasch testlet model is that a sufficient statistic for θ exists
in a relatively simple form. Similar to the unidimensional Rasch model where the sum of the
items score of the entire test is a sufficient statistic for θ , Appendix A shows that the vector
{r1, r2, · · · , rk, rk+1, · · · , rK } is the sufficient statistic for θ , where rk is the sum of the item
scores of testlet k and K is the total number of the testlets. Therefore,

E (l (θ |y)) =
K∑

k=1

[E (l (θ | rk))] .

In the equation above,

E (l (θ |rk)) =
∫ ⎛

⎝
nk∑

j=1

p jk (θ |uk)
(
θ−b jk

)
⎞

⎠ g
(
uk | 0, σ 2

uk

)
duk

+
∑nk

rk=0

⎧
⎨

⎩log

⎡

⎣
∫

Exp

⎛

⎝rkuk+
nk∑

j=1

log
(
q jk (θ |uk)

)
⎞

⎠ g
(
uk | 0, σ 2

uk

)
duk

⎤

⎦

⎫
⎬

⎭

p (rk |θ) (7)

under theRasch testletmodelwith binarydata,where p (rk |θ) = ∫
p (rk |θ, uk) g

(
uk | 0, σ 2

uk

)

duk is the probability of getting a sum score of rk from testlet k after marginalizing out the nui-
sance dimension. The calculation of p (rk |θ, uk) is described later in this section, where it was
carried out by using the Lord-Wingersky algorithm (Lord & Wingersky, 1984) .

On the other hand, the variance of the loglikelihood can also be computed for each testlet
and summed up as follows:

Var (l (θ |y)) =
K∑

k=1

[Var (l (θ | rk))]=
K∑

k=1

[
E
(
l2 (θ | rk)

)
− (E (l (θ | rk)))2

]
.

Let yk denote the vector of item scores for testlet k, and yrk denote the set of score patterns that
leads to a sum score of rk . In the equation above
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E
(
l2 (θ | rk)

)
=

nk∑

rk=0

∑

yk∈yrk

p
(
yk |θ

)
⎧
⎨

⎩

(∑nk

j=1
y jk

(
θ−b jk

)

+log

⎡

⎣
∫

Exp

⎛

⎝ukrk+
nk∑

j=1

log
(
q jk (θ |uk)

)
⎞

⎠ g
(
uk | 0, σ 2

uk

)
duk

⎤

⎦

⎞

⎠
2
⎫
⎪⎬

⎪⎭
,

(8)

where p
(
yk |θ

)
is the probability of getting a score pattern yk after marginalizing out the nuisance

dimension. The computational burden of the above formula is driven by the number of possible
score pattern (2nk ) and can become substantial when nk is large. Therefore, we offer a workaround
which is based on the Lord-Wingersky algorithm.

Setting

Lrk = log

⎡

⎣
∫

Exp

⎛

⎝ukrk+
nk∑

j=1

log
(
q jk (θ |uk)

)
⎞

⎠ g
(
uk | 0, σ 2

uk

)
duk

⎤

⎦ ,

we can rewrite (5) as follows:

E
(
l2 (θ | rk)

)
=
∫ nk∑

rk=0

∑

yk∈yrk

⎛

⎝
nk∏

j=1

py jk

⎞

⎠

⎛

⎝
nk∑

j=1

y jk
(
θ−b jk

)+Lrk

⎞

⎠
2

g
(
uk | 0, σ 2

uk

)
duk .

Rewrite

∑

yk∈yrk

⎛

⎝
nk∏

j=1

py jk

⎞

⎠

⎛

⎝
nk∑

j=1

y jk
(
θ−b jk

)+Lrk

⎞

⎠
2

=
∑

yk∈yrk

⎛

⎝
nk∏

j=1

py jk

⎞

⎠

⎛

⎜⎝

⎛

⎝
nk∑

j=1

y jk
(
θ−b jk

)
⎞

⎠
2

+ 2

⎛

⎝
nk∑

j=1

y jk
(
θ−b jk

)
⎞

⎠ Lrk+L2
rk

⎞

⎟⎠

=
∑

yk∈yrk

⎛

⎝
nk∏

j=1

py jk

⎞

⎠

⎛

⎝
nk∑

j=1

y jk
(
θ−b jk

)
⎞

⎠
2

+ 2Lrk

∑

yk∈yrk

⎛

⎝
nk∏

j=1

py j

⎞

⎠

⎛

⎝
nk∑

j=1

y jk
(
θ−b jk

)
⎞

⎠

+ L2
rk p (rk |θ) ,

and define

Wm (nk, rk) =
∑

yk∈yrk

⎛

⎝
nk∏

j=1

py jk

⎞

⎠
(∑nk

j=1
y jk

(
θ−b jk

))m
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if 0 ≤ rk ≤ nk and otherwise, we now have

E
(
l2 (θ | rk)

)
=
∫ nk∑

rk=0

(
W2 (nk, rk) + 2LrkW1 (nk, rk) + L2

rkW0(nk, rk)
)
g
(
uk | 0, σ 2

uk

)
duk .

(9)
For m = 0, W0 (nk, rk) is the probability of obtaining a sum score of rk for a testlet with nk
items and can be computed recursively using the Lord-Wingersky algorithm. For simplicity, let
p jk = p jk (θ |uk) and q jk = q jk (θ |uk).

For nk = 1,

W0 (1, 1) = p jk,

W0 (1, 0) = q jk .

For nk = 2, 3, 4, · · ·

W0 (nk, rk) = qnkkW0 (nk − 1, rk) + pnkkW0 (nk − 1, rk − 1) .

Similarly, we can extend the Lord-Wingersky algorithm to compute W1 (nk, rk) and W2 (nk, rk)
recursively. For testlet k, let y

′
k denote the vector of the first nk − 1 item scores, and y

′
rk denote

the set of score patterns for the first nk − 1 items that lead to a sum score of rk . Then

W1(nk, rk) = qnk
∑

y
′
k∈y′

rk

⎛

⎝
nk−1∏

j=1

py jk

⎞

⎠

⎛

⎝
nk−1∑

j=1

y jk
(
θ−b jk

)
⎞

⎠

+ pnk
∑

y
′
k∈y

′
rk−1

⎛

⎝
nk−1∏

j=1

py jk

⎞

⎠

⎛

⎝(θ−bnkk
)+

nk−1∑

j=1

y jk
(
θ−b jk

)
⎞

⎠

= qnkW1 (nk − 1, rk) + (
θ−bnkk

)
pnkW0 (nk − 1, rk − 1) + pnkW1 (nk − 1, rk − 1) .

W2(nk, rk) =
∑

y
′
k∈y′

rk

⎛

⎝
nk∏

j=1

py jk

⎞

⎠

⎛

⎝ynkk
(
θ−bnkk

)2 + 2ynkk
(
θ−bnkk

) nk−1∑

j=1

y jk
(
θ−b jk

)

+
⎛

⎝
nk−1∑

j=1

y jk
(
θ−b jk

)
⎞

⎠
2
⎞

⎟⎠

= qnk
∑

y
′
k∈y′

rk

⎛

⎝
nk−1∏

j=1

py jk

⎞

⎠

⎛

⎝
nk−1∑

j=1

y jk
(
θ−b jk

)
⎞

⎠
2

+ pnk
∑

y
′
k∈y

′
rk−1

⎛

⎝
nk−1∏

j=1

py jk

⎞

⎠

⎛

⎝(θ−bnkk
)2 + 2

(
θ−bnkk

) nk−1∑

j=1

y jk
(
θ−b jk

)

+
⎛

⎝
nk−1∑

j=1

y jk
(
θ−b jk

)
⎞

⎠
2
⎞

⎟⎠
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= qnkW2 (nk − 1, rk) + (
θ−bnkk

)2
pnkW0 (nk − 1, rk − 1)

+ 2
(
θ−bnkk

)
pnkW1 (nk − 1, rk − 1)

+ pnkW2 (nk − 1, rk − 1) .

This extended version of the Lord-Wingersky algorithm significantly reduced the computa-

tional burden E
(
l2 (θ | rk)

)
. Also, note that W0 (nk, rk) = ∑

yk∈yrk

(
nk∏
j=1

py jk

)
= p (rk |θ, uk).

By marginalizing out uk as follows,

p (rk |θ) =
∫

p (rk |θ, uk) g
(
uk | 0, σ 2

uk

)
duk,

we obtain p
(
rk |θ̂

)
. This is the marginal probability of summed score needed in the computation

of Eq. (7). To this point, all the components for computing lzt (θ) have been derived.

3.2. Variance Correction of lzt

Define the numerator of lzt as h (θ |y). When MMLE θ̂ is used,

h
(
θ̂ |y
)

= l
(
θ̂ |y
)

− E
(
l
(
θ̂ |y
))

.

Based on the Taylor series expansion for θ̂ around θ ,

h
(
θ̂ |y
)

= h (θ |y) + h
′
(θ |y)

(
θ̂ − θ

)
+ r

(
θ̂
)

,

where r
(
θ̂
)
is the remainder. InAppendixB,we prove that this remainder is negligible. Therefore,

asymptotically

1√
K
h
(
θ̂ |y
)

= 1√
K
h (θ |y) + 1√

K
h

′
(θ |y)

(
θ̂ − θ

)

or

1√
K
h (θ |y) = 1√

K
h
(
θ̂ |y
)

− 1√
K
h

′
(θ |y)

(
θ̂ − θ

)
,

when K → ∞. 1√
K
h (θ |y) is asymptotically normal with mean of 0 and variance given by

Var

(
1√
K
h
(
θ̂ |y
))

+ 1

K
h

′
(θ |y)2Var

(
θ̂ − θ

)
+ 1

K
h

′
(θ |y) ∗ Cov

(
h
(
θ̂ |y
)

,
(
θ̂ − θ

))
.

A side product of the simulation studies presented in the next section is an investigation of the
magnitude of the covariance term above. In a nutshell, at each true θ values of {-2, -1, 0, 1, 2},

10000 test cases were simulated and the correlations between h
(
θ̂ |y
) (

θ̂ − θ
)
were computed
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for the Rasch testlet model as well as the unidimensional Rasch model. The results, which are
presented inAppendix C, indicated that the covariance term is generally very close to 0. Therefore,
by omitting the covariance term, we have that the sampling variation of 1√

K
h (θ |y) is bigger

than the sampling variation of 1√
K
h
(
θ̂ |y
)
by the term of 1

K h
′
(θ |y)2Var

(
θ̂ − θ

)
, or in other

words, 1√
K
h
(
θ̂ |y
)
is asymptotically normal with mean 0 and variance Var

(
1√
K
h (θ |y)

)
−

1
K h

′
(θ |y)2Var

(
θ̂ − θ

)
. The denominator used for normalization of 1√

K
h
(
θ̂ |y
)
is estimated by

the point estimate of the variance, which has the same value asymptotically when replacing θ by θ̂ .

That is, the variance of 1√
K
h
(
θ̂ |y
)
is estimated byVar

(
1√
K
h
(
θ̂ |y
))

− 1
K h

′ (
θ̂ |y
)2

Var
(
θ̂ − θ

)
.

So eventually

1√
K
h
(
θ̂ |y
)

√
Var

(
1√
K
h
(
θ̂ |y
))

− 1
K h ′

(
θ̂ |y
)2

Var
(
θ̂ − θ

)

is asymptotically standard normal. Note that Var
(
θ̂ − θ

)
is in fact the inverse of the expected

Fisher information provided by all the items in the test, or in another term, the inverse of the test
information. Thus, we can consequently define the new person fit z-statistics as

l∗zt
(
θ̂
)

=
h
(
θ̂ |y
)

√√√√Var
(
l
(
θ̂ |y
))

−
(
h′(

θ̂ |y
))2

I
(
θ̂
)

. (10)

where I
(
θ̂
)
is the test information at θ = θ̂ , defined as

I
(
θ̂
)

=
∑K

k=1

⎧
⎪⎨

⎪⎩

∑nk
rk=0

⎡

⎢⎣

⎛

⎝
∫
Exp

(
rkuk+

∑nk
j=1 log

(
q jk

(
θ̂ |uk

))) (
rk−

∑nk
j p jk

(
θ̂ |uk

))
g
(
uk | 0, σ2

uk

)
duk

∫
Exp

(
rkuk+

∑nk
j=1 log

(
q jk

(
θ̂ |uk

)))
g
(
uk | 0, σ2

uk

)
duk

⎞

⎠
2

p
(
rk |θ̂

)
⎤

⎥⎦

⎫
⎪⎬

⎪⎭
.

Appendix D shows how I
(
θ̂
)
was derived. It can now be recognized that the variance correction

applied here for the Rasch testlet model with anMMLE ability estimate has the same form as what
was shown earlier (in the review of lz and l∗z section) for the unidimensional model when MLE is
used. Naturally, lzt and l∗zt reduce to lz and l∗z , respectively when no cluster effect is present. To

compute h
′ (

θ̂ |y
)
in Eq. (10), note that with MMLE

h
′ (

θ̂ |y
)

= 0 −
dE

(
l
(
θ̂ |y
))

d θ̂
= −

K∑

k=1

dE
(
l
(
θ̂ |rk

))

d θ̂
. (11)

Based on Eq. (7),
dE
(
l
(
θ̂ |rk

))

d θ̂
is computed as

dE
(
l
(
θ̂ |rk

))

d θ̂
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=
∫ ⎛

⎝
nk∑

j=1

(
p

′
jk

(
θ̂ |uk

) (
θ̂−b jk

)
+ p jk

(
θ̂ |uk

))
⎞

⎠ N
(
uk | 0, σ 2

uk

)
duk

+
∑Rk

rk=0

⎧
⎨

⎩log

⎡

⎣
∫

Exp

⎛

⎝rkuk+
nk∑

j=1

log
(
q jk

(
θ̂ |uk

))
⎞

⎠ N
(
uk | 0, σ 2

uk

)
duk

⎤

⎦

⎫
⎬

⎭ p
′ (
rk |θ̂

)

+
∑Rk

rk=0

∫
Exp

(
rkuk+∑nk

j=1 log
(
q jk

(
θ̂ |uk

)))(∑nk
j=1

q
′
jk

(
θ̂ |uk

)

q jk

(
θ̂ |uk

)

)
N
(
uk | 0, σ 2

uk

)
duk

∫
Exp

(
rkuk+∑nk

j=1 log
(
q jk

(
θ̂ |uk

)))
N
(
uk | 0, σ 2

uk

)
duk

p
(
rk |θ̂

)
.

The only unknown in the above equation is p
′ (
rk |θ̂

)
, i.e., the derivative of p

(
rk |θ̂

)
with respect to

θ̂ . While p
(
rk |θ̂

)
is computed recursively by our extended Lord-Wingersky algorithm, p

′ (
rk |θ̂

)

can also be computed recursively as follows by applying the product rule to W0 (nk, rk):
for nk = 1,

W
′
0 (1, 1) = p

′
jk ,

W
′
0 (1, 0) = q

′
jk ,

and for nk = 2, 3, 4, · · ·

W
′
0 (nk, rk) = q

′
nkkW0 (nk − 1, rk) + qnkkW

′
0 (nk − 1, rk) + p

′
nkkW0 (nk − 1, rk − 1)

+ pnkkW
′
0 (nk − 1, rk − 1) .

Therefore,

p
′ (
rk |θ̂

)
=
∫

p
′ (
rk |θ̂ , uk

)
N
(
uk | 0, σ 2

uk

)
duk =

∫
W

′
0 (nk, rk) N

(
uk | 0, σ 2

uk

)
duk .

To this point, all components to compute l∗zt
(
θ̂
)
have been derived.

4. Simulation Study

4.1. Type I Error Rates

This section presents the results of a simulation study conducted to investigate the empirical
type I error rate of lzt (i.e., before correction) and l∗zt (i.e., after correction). Items used in the
studies were sampled from an operational item bank of a K-12 standardized assessment in the
United States. The test length varied at 6 testlets and 12 testlets. Table 1 presents the summary of
items.

All items have been previously calibrated, and their parameters were taken as fixed values.
For each test length condition, true θ values from -2 to 2 with a step of 1 were selected, and
10,000 simulated test datasets were generated at each θ value. θ̂s were then estimated by the
MMLE in each test and used for the calculation of person fit statistics. Critical values were
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Table 1.
Summary of Items Used in the Simulations.

Number of testlets 6 12

Total number of items 43 96
b parameter range [−1.96, 1.93] [−1.96, 2.00]
b parameter mean 0.07 −0.22
b parameter standard deviation 0.99 0.80
σ 2
u range [0.003, 0.629] [0.157, 1.253]

σ 2
u mean 0.28 0.55

σ 2
u standard deviation 0.22 0.37

chosen corresponding to nominal error rates of α = .05 and .01 to identify aberrant responses.
Occasionally, there were cases where all items were answered correctly or incorrectly. Since these
cases do not provide information on how the IRTmodel fit to the data as the MMLE is not defined
(i.e., θ̂ is ∞ or −∞), they were discarded when summarizing the simulation results. The highest
value of the discard rate at any given θ was 0.001 with the 6-testlet test when θ = −2. In addition,
to provide a baseline for comparison, instead of using θ̂ , lzt was also computed for the simulated
responses by plugging in the true θ .

Figure 1 shows the kernel density of lzt and l∗zt (both computed with θ̂ ) overlaid with the
standard normal distribution for each condition. When θ = 0, both lzt and l∗zt were close to a
standard normal distribution. However, as θ became more extreme, the variance of lzt diminished
and the distribution of lzt deviated from standard normal, whereas l∗zt remained close to standard
normal. Consequently, as shown in Table 2, Type I error rates of lzt computed with θ̂ were
reasonably close to the nominal rate at θ = 0, but were much smaller when θ became more
extreme. On the contrary, the values of l∗zt were always close to the nominal rates and were often
substantially better than those of lzt . It was also found that the baseline Type I error rates of lzt
computed with θ (rows denoted with “true θ” in the table) were somewhat higher than the nominal
rates, especially when θ became more extreme. l∗zt , which was computed with θ̂ , provided Type I
error rates that are closer to the nominal rate even when compared to baseline rates provided by
lzt computed with θ . Finally, the asymptotic approximation of l∗zt became better when test-length
increased as one would expect.

4.2. Power

To investigate the power of l∗zt , the data used in the investigation of the Type I error rate
were manipulated to reflect aberrant responses. A spuriously-high-score scenario was created
where 10% (or 30%) of the most difficult items among the test were assigned responses of 1,
and a spuriously-low-score scenario was created where 10% (or 30%) of the easiest items were
assigned responses of 0. Similar to what was done in the Type I error rate analysis, cases where
the MMLE was not defined were discarded. The highest value of the discard rate at any given
θ was 0.069 with the 6-testlet test when θ = −2 and the data has 30% aberrantly low scores.
The overall discard rate across all conditions was 0.003. Tables 3 and 4 indicate that at θ values
where aberrant responses are more likely to arise (i.e., low θ values for the spuriously-high-score
scenario and high θ values for the spuriously-low-score scenario), l∗zt offered sufficiently large
power of detection. Although lzt also offered more power at those θ values than other values,
the power of l∗zt was always higher than that of lzt . For a relatively short test with relatively less
aberrant responses, lzt lacked its power even at θ values where aberrant responses are more likely
to arise, whereas l∗zt offered decent power. As expected, the power increased as test length and
the percentage of aberrant responses increased.
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Table 2.
Type I Error Rate from Simulation.

θ −2 −1 0 1 2

6 Testlets
lzt (α = 0.05, true θ) 0.082 0.069 0.062 0.071 0.087
lzt (α = 0.05) 0.002 0.021 0.048 0.027 0.004
l∗zt (α = 0.05) 0.057 0.057 0.060 0.059 0.057
lzt (α = 0.01, true θ) 0.027 0.021 0.016 0.021 0.031
lzt (α = 0.01) 0.000 0.004 0.013 0.005 0.000
l∗zt (α = 0.01) 0.015 0.016 0.016 0.016 0.015
12 Testlets
lzt (α = 0.05, true θ) 0.073 .060 0.051 .067 0.075
lzt (α = 0.05) 0.001 0.021 0.041 0.007 0.000
l∗zt (α = 0.05) 0.053 0.057 0.054 0.058 0.053
lzt (α = 0.01, true θ) 0.023 0.013 0.011 0.016 0.022
lzt (α = 0.01) 0.000 0.002 0.009 0.000 0.000
l∗zt (α = 0.01) 0.012 0.013 0.013 0.014 0.013

Table 3.
Power Under Spuriously-high-score Scenario.

Aberrant response rate 10% 30%
θ −2 −1 0 1 2 −2 −1 0 1 2

6 Testlets
lzt (α = 0.05) 0.88 0.83 0.66 0.23 0.02 1.00 1.00 0.90 0.38 0.04
l∗zt (α = 0.05) 0.97 0.88 0.72 0.50 0.30 1.00 1.00 1.00 0.93 0.64
lzt (α = 0.01) 0.50 0.55 0.39 0.07 0.00 1.00 0.99 0.71 0.12 0.00
l∗zt (α = 0.01) 0.99 0.89 0.69 0.46 0.24 1.00 1.00 0.98 0.75 0.35
12 Testlets
lzt (α = .05) 1.00 1.00 0.85 0.22 0.01 1.00 1.00 0.96 0.37 0.01
l∗zt (α = 0.05) 1.00 1.00 0.96 0.81 0.51 1.00 1.00 1.00 0.99 0.84
lzt (α = 0.01) 0.96 0.96 0.58 0.04 0.00 1.00 1.00 0.76 0.07 0.00
l∗zt (α = 0.01) 1.00 0.98 0.85 0.53 0.23 1.00 1.00 1.00 0.94 0.58

Table 4.
Power Under Spuriously-low-score Scenario.

Aberrant response rate 10% 30%
θ −2 −1 0 1 2 −2 −1 0 1 2

6 Testlets
lzt (α = 0.05) 0.01 0.15 0.61 0.87 0.90 0.03 0.34 0.90 1.00 1.00
l∗zt (α = 0.05) 0.24 0.43 0.71 0.90 0.98 0.69 0.95 1.00 1.00 1.00
lzt (α = 0.01) 0.00 0.03 0.33 0.60 0.53 0.00 0.10 0.69 0.99 1.00
l∗zt (α = .01) 0.08 0.18 0.42 0.71 0.91 0.37 0.77 0.98 1.00 1.00
12 Testlets
lzt (α = 0.05) 0.01 0.28 0.84 0.96 0.98 0.02 0.48 0.98 1.00 1.00
l∗zt (α = 0.05) 0.41 0.66 0.89 0.98 1.00 0.81 0.98 1.00 1.00 1.00
lzt (α = 0.01) 0.00 0.08 0.62 0.76 0.63 0.00 0.16 0.89 1.00 1.00
l∗zt (α = 0.01) 0.17 0.39 0.70 0.92 0.99 0.58 0.91 1.00 1.00 1.00
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5. Application to Real Data

An advantage of l∗zt is that it allows person fit evaluation for not only tests consist of items
modeled by either unidimensional models or the Rasch testlet model, but also for novel tests that
are modeled by a mixture of these two types of components. This section demonstrates such an
application of l∗zt to a U.S. statewide test assessing the Next Generation of Science Standards
(NGSS). The test is mainly comprised of item clusters. An item cluster represents a series of
interrelated examinee interactions directed toward describing, explaining and predicting scientific
phenomena. Within each item cluster, a set of explicit assertions were made about examinee’s
knowledge or skills according to specific features they’ve demonstrated through their interactions
with the item cluster. In this setting, an assertion is analogous to a traditional item, and it was
scored as 1 if it was asserted and 0 if it is not asserted. An item cluster is an item bundle (testlet)
consists of multiple assertions. To account for the conditional dependency amount assertions
within an item cluster, the part of the latent structure that describes the item clusters is the same
as the Rasch testlet model. That is, an overall science dimension as well as additional “nuisance”
dimensions corresponding to the bundling of the items. On the other hand, the model also allows a
subset of assertions to depend only on the overall science dimension. These so-called stand-alone
assertions typically pertain to shorter items (typically less than 4 assertions within an item) and
were assumed independent given the overall dimension. This part of the latent structure is the
same as the unidimensional Rasch model. Figure 2 shows the model graphically.

The item pool of the assessment consisted of 27 item clusters and 24 stand-alone items. The
test was administered online using a linear-on-the-fly test design (LOFT) such that each examinee
received 6 item clusters and 12 stand-alone items at random that meets the test blueprint. A total
of 12,026 examinees who completed all 18 items were included in the analysis. All the items have
been previously calibrated. Table 5 presents a summary of the 18 test items an individual would
typically receive.

MMLE was used to estimate examinee abilities. Since no examinee answered all items
correctly or all items incorrectly, no MMLE estimate was undefined. l∗zt values were computed
for every examinee. Specifically, using the general definition of l∗zt in Eq. (10), each component
involved in the computation can be calculated separately for the item clusters and for the stand-
alone assertions, and then simply combined (added) to produce the statistics. Examinees were
flagged if their l∗zt values were below the critical value of the nominal error rates at α =.05, and
further flagged if below the critical value at α =.01. Three examinee groups were then created
based on the flags: No Flag/ Flagged at .05/ Flagged at .01. Within each subset, a “person-total”
correlation is computed for each examinee. Analogous to the item-total correlation, the person-
total correlation is essentially the correlation between an examinee’s item scores and the average
scores of the same items by all examinees. One would expect an examinee to be more likely
to fit if his/her item scores agree better with the item scores of other examinees, and therefore
less likely to be flagged. The person-total correlation was computed at both item level and the
assertion level, where at the assertion level the assertion scores were used, and at the item level the
average assertion scores within an itemwere used. For both levels, the person-total correlationwas
averaged within each examinee subsets. In addition, the l∗z statistics were computed for the same
examinees with MLE ability while ignoring the cluster effect. The same procedure of flagging
and person-total correlation computation described above were applied. Table 6 presents results
for both l∗zt and l∗z . Both methods yielded similar correlations for the group without flag. However,
as expected for l∗zt , the group with no flag has correlations much higher than the flagged groups
at both the item and assertion levels, and the lowest correlations were observed with the group
flagged at .01. On the other hand, for l∗z , both flagged groups have relative high correlations that
are close to the ones found in the group with no flag.
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Table 5.
Summary of Items Parameters for an 18-item Test, averaged over all examinees.

Item type 12 Stand-alones 6 Clusters All 18 items

b parameter range [−1.57, 2.57] [−2.78, 2.89] [−2.81, 2.95]
b parameter mean −0.06 0.17 0.12
b parameter standard deviation 0.97 1.08 1.06
σ 2
u range NA [0.17, 1.85] NA

σ 2
u mean NA 0.63 NA

σ 2
u standard deviation NA 0.56 NA

Table 6.
Average Person-total Correlation among Examinee Subsets.

Examinee subset Average person-total correlation

Assertion level Item level
l∗zt No Flag 0.41 0.41

Flagged at 0.05 0.17 0.15
Flagged at 0.01 0.12 0.10

l∗z No Flag 0.43 0.44
Flagged at 0.05 0.34 0.33
Flagged at 0.01 0.33 0.32

l∗z is computed when cluster effects were ignored

For each examinee within a subset, a few more detail can be depicted to examine the agree-
ment among the p-value of l∗zt , person-total correlation, and the pattern of item scores. First,
the assertions an examinee received were grouped. The 6 item clusters, together with all the
stand-alone assertions naturally formed a total of 7 groups. These groups of assertions were then
arranged in a descending order by the average assertion difficulty. The average assertion scores of
each group were calculate for the examinee and plotted against the grouping. Figure 3 shows the
plots for four examinees. The title of a panel shows the person-total correlation and the p-value
of l∗zt , respectively for an examinee. The examinee on the top-left panel is from the subset with no
flags. In general, this examinee’s average item group scores increased as the difficulty of the item
group decreased (except for one obvious outlier) and therefore had a moderately high person-
total correlation of 0.29. This examinee was not classified as a misfit with a p-value of 0.579. The
examinee on the top-right panel is also from the subset with no flags. A strong increasing pattern
was observed. This examinee had a correlation of 0.77 and was not classified as misfit with a
higher p-value of 0.967 than the examinee on top-left. On the contrary, examinees in the bottom
panels are from the flagged subsets. The examinee on the bottom-left had a p-value of 0.028, and
a low correlation of 0.1. The pattern of the average item group scores against average item group
difficulty seemed to be random. Finally, the examinee on the bottom-right had a p-value of 0.002.
A decreasing pattern and a slightly negative person total correlation of−0.07 was observed. These
figures suggested the flagging of the l∗zt agreed with other sources of evidence when assessing the
fit for the same person.
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6. Conclusion and Discussion

IRT testlet models have been frequently put into practice where the latent trait corresponding
to the overall dimensional is usually of primary interest while other dimensions are incorporated as
nuisance dimensions only to address the local dependencies between items within clusters. More-
over, unlike a traditional test which usually assumes either a unidimensional or multidimensional
latent structure for every item in the test, novel tests (and models) may incorporate both compo-
nents in their latent structure. Just like it is with unidimensional models, person fit evaluation with
these models is an important part of the model-data fit evaluation that facilitates the delivery of
reliable and valid test results. However, research on person fit statistics beyond unidimensional
model is relatively scarce. The current study embarks on an effort to fill this gap by offering a
person fit z-statistics appropriate for the Rasch testlet model, traditional unidimensional models,
as well as models that have both components. Under the Rasch testlet model, the proposed person
fit indices, lzt and its corrected version l∗zt , are extensions of the well-known existing indices lz
and l∗z for unidimensional models. In the simulation study, the Type I error rate and power of the
new statistics under the Rasch testlet model were investigated and found to be consistent with
the results of their counterparts under unidimensional models in the literature (Sinharay, 2016;
Snijders, 2001) . l∗zt provided close to nominal Type I error rate and good power to detect aberrant
response. Furthermore, this method of extension entailed a generalized approach to correct the
variance of the loglikelihood when maximum likelihood estimation was used to estimate ability
parameters. Under traditional unidimensional model, lzt and l∗zt reduce to lz and l∗z , respectively.
This generalization keeps person fit evaluationwith both the unidimensionalmodels and theRasch
testlet model under the same framework and allows for person fit evaluation with models that have
both components in their latent structure. The real data analysis example shows the utility of l∗zt
under such a circumstance, which is otherwise not possible with l∗z without violating the original
model assumption.

While developing lzt and l∗zt for their use with Rach testlet model, the Lord-Wingersky
algorithm was extended in a few ways to achieve efficient computation. These extensions are
considered another important contribution of this article. In a nutshell, three kinds of extensions
of the algorithm were presented. First, realizing the fact that the expected value of the entire
data loglikelihood under Rasch testlet model can be accumulated testlet by testlet using within
testlet sum score loglikelihoods, the Lord-Wingersky algorithm was extended. Note that this
straightforward extension is the same as what was described by Cai (2015) in his Equation 16
or 20, which took advantage of the assumed bifactor structure (or more generally, the two-tier
structure). Second, the Lord-Wingersky algorithm is further extended for computing components
in the variance of the loglikelihood. An implication of this extension is that not only can one use the
algorithm to compute the probabilities of sum scores (e.g., W0(nk, rk)), but one can also define
other related quantities (e.g., W1 (nk, rk) and W2 (nk, rk)) to make use of the recursive nature
of the algorithm as needed. The third extension of the Lord-Wingersky algorithm was applied

when computing
dE
(
l
(
θ̂ |rk

))

d θ̂
, where the derivative of the sum score within a testlet was needed.

Although the extension was again a straightforward application of the product rule from basic

calculus, it avoided doing numerical integration directly on
dE
(
l
(
θ̂ |rk

))

d θ̂
, and therefore increased

the accuracy of the results as well as the speed of computations.

Like most of the person fit statistics in the literature, l∗zt is a statistic pertaining to one indi-
vidual. A statistically significant l∗zt does not necessarily mean an examinee had abnormal testing
behaviors. Further investigation of the flagged examinees must be conducted, especially when
drawing high-stake conclusions such aswhether an examinee cheated during the test. Nonetheless,
it can serve as a screening mechanism to find individuals with potential testing behavior related
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issues. How liberal/rigid the screening criteria is would depend on resource available. When an
aggregated unit of examinees is of concern, person fit statistics like l∗zt can also be useful by either
simply checking the percentage of examinees flagged within the aggregated unit or constructing
t statistics to flag units statistically.

One limitation of l∗zt is that the current extension only concerns the Rasch testlet model when
θ is estimated by MMLE. The relatively straightforward derivation of l∗zt relied on the fact that
a sufficient statistic exists for a given testlet, as well as the fact that the nuisance dimension is
marginalized out in MMLE. There could be scenarios where people prefer to use a more complex
model such as a bifactor model not belonging to the Rasch family or other multidimensional IRT
models where latent trait on multiple dimensions are of interest. There could also be scenarios
where EAP, MLE, or MAP (maximum-a-posteriori) estimators are preferred. Under those sce-
narios, the derivation of lzt and l∗zt could become more challenging. In addition, there has also
been a recent study that corrects the standardized person-fit statistics regarding both the use of
an estimated ability and the use of a finite number of items Gorney et al. (2024). Further study is
needed to explore these topics regarding the lzt and l∗zt statistics.

Finally, as concluded by Sinharay (2016), among others, the l∗z statistics is appropriate when
an investigator wants to test against an unspecified general and may not be the most appropriate
person-fit statistic for a particular problem, such as for a computer adaptive test. Also, when item
parameters are not treated as fixed but need to be estimated, any aberrant response in the data
would have impact on the item parameter estimation and in turn affects the person fit statistics.
As an extension of l∗z , l∗zt shares these same limitations. More research on these topics, as well as
the performance of l∗zt against other person fit statistics, would be helpful to practitioners.
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Appendix A: Sufficient Statistic for MMLE θ under the Rasch Testlet Model

For a test consists of K testlets, the likelihood of the MMLE overall ability θ is defined as

L (θ |y) =
K∏

k=1

∫ nk∏

j=1

(
p jk (θ |uk)

)y jk (q jk (θ |uk)
)1−y jk g

(
uk | 0, σ 2

uk

)
duk

=
K∏

k=1

∫ ⎡

⎣
nk∏

j=1

(
q jk (θ |uk)

)
⎤

⎦

⎡

⎣Exp

⎛

⎝(θ + uk)
nk∑

j=1

y jk

⎞

⎠

⎤

⎦

⎡

⎣Exp

⎛

⎝−
nk∑

j=1

b jk y jk

⎞

⎠

⎤

⎦

g
(
uk | 0, σ 2

uk

)
duk

=
K∏

k=1

⎡

⎣Exp

⎛

⎝−
nk∑

j=1

b jk y jk

⎞

⎠

⎤

⎦

×
K∏

k=1

∫ ⎡

⎣
nk∏

j=1

(
q jk (θ |uk)

)
⎤

⎦

⎡

⎣Exp

⎛

⎝(θ + uk)
nk∑

j=1

y jk

⎞

⎠

⎤

⎦ g
(
uk | 0, σ 2

uk

)
duk
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Define rk = ∑nk
j=1 y jk , we can see the that the likelihood function of θ was factored into a

product of
∏K

k=1

[
Exp

(
−∑nk

j=1 b jk y jk

)]
which does not depend on θ and the rest of the terms

which does depend on θ but only through rk . Therefore, based on the Fisher–Neyman factorization
theorem, we can conclude that vector {r1, r2, · · · , rK } is the sufficient statistic for θ . That is, all
the information about θ available in a response pattern y is given by {r1, r2, · · · , rK }.

Appendix B: Proof of the Taylor Expansion Remainder Term Being Negligible

Recall that we defined

h
(
θ̂ |y
)

= h (θ |y) + h
′
(θ |y)

(
θ̂ − θ

)
+ r

(
θ̂
)

By rearranging the above equation,

r
(
θ̂
)

= h
(
θ̂ |y
)

− h (θ |y) − h
′
(θ |y)

(
θ̂ − θ

)
.

Taking derivative of r
(
θ̂
)
with respect to θ̂ gives

r
′ (

θ̂
)

= h
′ (

θ̂ |y
)

− h
′
(θ |y) .

According to the mean value theorem, there exists a point θ̃ such that

h
′′ (

θ̃ |y
)

=
h

′ (
θ̂ |y
)

− h
′
(θ |y)

(
θ̂ − θ

) .

Therefore,

r
′ (

θ̂
)

= h
′ (

θ̂ |y
)

− h
′
(θ |y) = h

′′ (
θ̃ |y
) (

θ̂ − θ
)

.

Taking the antiderivative of r
′ (

θ̂
)
and because r (θ) = 0, we obtain

r
(
θ̂
)

= 1

2
h

′′ (
θ̃ |y
) (

θ̂ − θ
)2

.

We now provide some property regarding the function h.

1. h
′
(θ |y)
K is bounded for any θ
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Proof. The loglikelihood function of a testlet k is defined as

lk (θ |y) = log

⎡

⎣
∫ ∞

−∞
Exp

⎛

⎝
nk∑

j=1

(
y jk log

(
p jk (θ |uk)

)+ (
1 − y jk

)
log

(
q jk (θ |uk)

))
⎞

⎠ g
(
uk | 0, σ 2

uk

)
duk

⎤

⎦ .

Let tk = G
(
uk | 0, σ 2

uk

)
be the CDF, we then have

lk (θ |y) = log

⎡

⎣
∫ ∞

−∞
Exp

⎛

⎝
nk∑

j=1

(
y jk log

(
p jk (θ |uk)

)+ (
1 − y jk

)
log

(
q jk (θ |uk)

))
⎞

⎠ dtk

⎤

⎦ .

And since uk = G−1
(
tk | 0, σ 2

uk

)
, we have

lk (θ |y) =

log

⎡

⎣
∫ 1

0
Exp

⎛

⎝
nk∑

j=1

(
y jk log

(
p jk

(
θ |G−1 (tk | 0, σ 2

uk

)))+ (
1 − y jk

)
log

(
q jk

(
θ |G−1 (tk | 0, σ 2

uk

))))
⎞

⎠ dtk

⎤

⎦

Let

f (tk ) = Exp

⎛

⎝
nk∑

j=1

(
y jk log

(
p jk

(
θ |G−1

(
tk | 0, σ 2

uk

)))
+ (

1 − y jk
)
log

(
q jk

(
θ |G−1

(
tk | 0, σ 2

uk

))))
⎞

⎠ .

Since f (tk) → 0 when both tk → 0 and tk → 1, we can define f (0) = 0 and f (1) = 0, so that
f (tk) is considered continuous in [0,1]. By applying the mean value theorem for integral, there
exists a value ck ∈ (0, 1) and at which

lk (θ |y) = log [ f (ck)]

=
nk∑

j=1

(
y jk log

(
p jk

(
θ |G−1 (ck | 0, σ 2

uk

)))+ (
1 − y jk

)
log

(
q jk

(
θ |G−1 (ck | 0, σ 2

uk

))))

Using the above equation, we see

l
′
k (θ |y) = −

nk∑

j=1

(
y jkq jk

(
θ |G−1

(
ck | 0, σ 2

uk

))
− (

1 − y jk
)
p jk

(
θ |G−1

(
ck | 0, σ 2

uk

)))
,

which can be bonded by nk .
As for the derivatives of the expected loglikelihood, we have

E (lk (θ |y)) = E
(∑nk

j=1

(
y jk log

(
p jk (θ |dk)

)+ (
1 − y jk

)
log

(
q jk (θ |dk)

)))

=
nk∑

j=1

E
(
y jk log

(
p jk (θ |dk)

)+ (
1 − y jk

)
log

(
q jk (θ |dk)

))
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=
nk∑

j=1

(
E
(
y jk
)
log

(
p jk (θ |dk)

)+ (
1 − E

(
y jk
))
log

(
q jk (θ |dk)

))

Since E
(
y jk
) = ∫ exp(θ+uk−b j)

1+exp(θ+uk−b j)
g
(
uk | 0, σ 2

uk

)
duk , using similar argument, we know there

exists d jk that E
(
y jk
) = exp(θ+d jk−b j)

1+exp(θ+d jk−b j)
, hence

E (lk (θ |y)) =
nk∑

j=1

(
p jk

(
θ |d jk

)
log

(
p jk (θ |dk)

)+ (
1 − p jk

(
θ |d jk

))
log

(
q jk (θ |dk)

))

and

dE (lk (θ |y))
dθ

=
nk∑

j=1

[
p jk

(
θ |d jk

)
q jk

(
θ |d jk

)
log

(
p jk (θ |dk)

)− p jk
(
θ |d jk

)
q jk

(
θ |d jk

)
log

(
q jk (θ |dk)

)]

Let s1 stands for all the terms within the summation operator above. s1 is bounded because both
addends approach to 0 as θ goes to ±∞. Suppose the absolute value, |s1|, is less than some real

number μ1, then
∣∣∣ dE(lk (θ |y))

dθ

∣∣∣ < u1nk . Therefore,

∣∣∣∣∣∣

h
′ (

θ̃ |y
)

K

∣∣∣∣∣∣
< (u1 + 1)max {n1, n2, · · · , nK } .

This proves that
h

′(
θ̃
)

K is bounded for any θ .

2. h
′′
(θ |y)
K is bounded for any θ

Proof. Using the earlier results from proof 1, we can find that

l
′′
k (θ |y) = −

nk∑

j=1

(
p jk (θ |dk) q jk (θ |dk)

)
.

Here p jk (θ |dk) q jk (θ |dk) is bounded by 1/4 for any value of θ , hence l
′′
k (θ |y) is bounded by nk

4 .
We also have

d2E (lk (θ |y))
dθ2

=
nk∑

j=1

[(
q jk

(
θ |d jk

)− p jk
(
θ |d jk

))
p jk

(
θ |d jk

)
q jk

(
θ |d jk

)
log

(
p jk (θ |dk)

)

+ (p jk
(
θ |d jk

)− q jk
(
θ |d jk

))
p jk

(
θ |d jk

)
q jk

(
θ |d jk

)
log

(
q jk (θ |dk)

)

+p jk
(
θ |d jk

)
q jk

(
θ |d jk

)]
.
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Let s2 stands for all the terms within the summation operator above. s2 is bounded because all
addends approach to 0 as θ goes to ±∞. Suppose the absolute value, |s2|, is less than some real

number μ2, then
∣∣∣ d

2E(lk(θ |y))
dθ2

∣∣∣ < u2nk .

Using the above results, we show that
∣∣∣l ′′k (θ |y) − d2E(lk (θ |y))

dθ2

∣∣∣ ≤ (
u2 + 1

4

)
nk . Therefore,

∣∣∣∣∣
h

′′
(θ)

K

∣∣∣∣∣ =
∣∣∣
∑K

k=1

(
l
′′
k (θ |y) − d2E(lk (θ |y))

dθ2

)∣∣∣
K

≤ K
(
u2 + 1

4

)
max {n1, n2, · · · , nK }

K

=
(
u2 + 1

4

)
max {n1, n2, · · · , nK } .

This proves that
h

′′(
θ̃
)

K is bounded for any θ .
Now recall that the remainder of the Taylor expansion is

r
(
θ̂
)

= 1

2
h

′′ (
θ̃ |y
) (

θ̂ − θ
)2

For h
′′ (

θ̃ |y
) (

θ̂ − θ
)2
, we have

1√
K
h

′′ (
θ̃ |y
) (

θ̂ − θ
)2 = √

K
(
θ̂ − θ

) (
θ̂ − θ

) h
′′ (

θ̃ |y
)

K
.

Here,
√
K
(
θ̂ − θ

)
is asymptotical normal,

(
θ̂ − θ

)
converges to 0 in probability, and

h
′′(

θ̃ |y
)

K is

bounded. Therefore, 1√
K
h

′′ (
θ̃ |y
) (

θ̂ − θ
)2

converges to 0 in probability. This indicates that the

remainder is negligible.

Appendix C: Simulation Results of the Correlation Between h
(
θ̂ |y
)
and

(
θ̂−θ

)

True θ Correlation between h
(
θ̂ |y

)
and

(
θ̂ − θ

)

Rasch Testlet Model Unidimensional Rasch Model*
6 Testlets 12 Testlets 43 items 96 items

−2 0.0276 0.0281 0.0022 0.0073
−1 0.0091 0.0100 −0.0089 0.0012
−0 0.0168 −0.0074 −0.0074 −0.0051
−1 0.0005 −0.0213 0.0033 0.0026
−2 0.0046 −0.0327 −0.0019 −0.0126

*Note. For the unidimensional Rasch model, item difficulty parameter values used in the simulation
for the 43-items and 96-items conditions are the same as the ones used in the 6-tetlets and 12-testlets
conditions, respectively
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Appendix D: Expected Fisher Information Computation

For a testlet k consists of j items, the expected Fisher information is

Ik (θ) = Eyk

[
−d2l

(
θ |yk

)

dθ2

]
= −

∑

yk

(
d2l

(
θ |yk

)

dθ2
p
(
yk |θ

)
)

,

where p
(
yk |θ̂

)
is the marginal probability of score pattern yk after marginalizing out the nuisance

dimension, and l
(
θ |yk

)
is the log-likelihood of yk . The right-hand side of the above equation can

be written as

−
∑

yk

(
d2l

(
θ |yk

)

dθ2
p
(
yk |θ

)
)

= −
nk∑

rk=0

∑

yk∈yrk

d2l
(
θ |yk

)

dθ2
p
(
yk |θ

)
,

where nk is the number of items in the testlet, and yrk is the set of score patterns that leads to
a sum score of rk . Using the property that the sufficient statistic for θ is the raw score, we have
d2l(θ |yk)

dθ2
= d2l(θ |rk )

dθ2
when yk ∈ yrk . Hence

−
nk∑

rk=0

∑

yk∈yrk

d2l
(
θ |yk

)

dθ2
p
(
yk |θ

) = −
nk∑

rk=0

⎡

⎣d2l (θ |rk)
dθ2

∑

yk∈yrk

(
p
(
yk |θ

))
⎤

⎦

= −
nk∑

rk=0

[
d2l (θ |rk)

dθ2
p (rk |θ)

]
.

The computation of p (rk |θ) is shown in the main body using the Lord-Wingersky algorithm. For
d2l(θ |rk )

dθ2
,

d2l (θ |rk)
dθ2

=
∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk
)) (

rk −∑nk
j=1 p jk

)2
g
(
uk | 0, σ 2

uk

)
duk

∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk
))

g
(
uk | 0, σ 2

uk

)
duk

A

−
∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk
)) (∑nk

j=1 p jkq jk

)
g
(
uk | 0, σ 2

uk

)
duk

∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk
))

g
(
uk | 0, σ 2

uk

)
duk

B

−
⎛

⎝
∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk
)) (

rk −∑nk
j=1 p jk

)
g
(
uk | 0, σ 2

uk

)
duk

∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk
))

g
(
uk | 0, σ 2

uk

)
duk

⎞

⎠
2

C

Define p (uk | θ, rk) = Exp
(
rkuk+∑nk

j=1 log(q jk)
)
f
(
uk | 0, σ 2

uk

)

∫
Exp

(
rkuk+∑nk

j=1 log(q jk)
)
f
(
uk | 0, σ 2

uk

)
duk

, then term A above is (omitting

cluster index k)

n∑

r=0

⎧
⎪⎨

⎪⎩

∫
p (u | θ, r)

⎛

⎝r −
n∑

j=1

p j

⎞

⎠
2

du

⎫
⎪⎬

⎪⎭
p (r) =

∫
⎧
⎪⎨

⎪⎩

n∑

r=0

p (u | θ, r) p (r)

⎛

⎝r −
n∑

j=1

p j

⎞

⎠
2
⎫
⎪⎬

⎪⎭
du
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=
∫
⎧
⎪⎨

⎪⎩

n∑

r=0

p (r, u|θ)

⎛

⎝r −
n∑

j=1

p j

⎞

⎠
2
⎫
⎪⎬

⎪⎭
du

=
∫
⎧
⎪⎨

⎪⎩

n∑

r=0

p (r | θ, u) p (u)

⎛

⎝r −
n∑

j=1

p j

⎞

⎠
2
⎫
⎪⎬

⎪⎭
du

=
∫

p (u)

{∑n

r=0
p (r | θ, u)

(
r −

∑n

j=1
p j

)2}
du

=
∫

p (u) Er |u
(
r −

∑n

j=1
p j

)2
du.

Since Er |u
(
r −∑n

j=1 p j

)2 = ∑n
j=1 p jq j , term A becomes

∫
p (u)

⎛

⎝
n∑

j=1

p jq j

⎞

⎠ du .

Similarly, term B is,

−
n∑

r=0

⎧
⎨

⎩

∫
p (u | θ, r)

⎛

⎝
n∑

j=1

p jq j

⎞

⎠ du

⎫
⎬

⎭ p (r)

= −
∫ ⎧
⎨

⎩

n∑

r=0

p (u | θ, r) p (r)

⎛

⎝
n∑

j=1

p jq j

⎞

⎠

⎫
⎬

⎭ du

= −
∫ ⎧
⎨

⎩

n∑

r=0

p (r, u|θ)

n∑

j=1

p jq j

⎫
⎬

⎭ du = −
∫ ⎧
⎨

⎩

n∑

r=0

p (r |θ, u) p (u)

n∑

j=1

p jq j

⎫
⎬

⎭ du

= −
∫

p (u)

⎛

⎝
n∑

j=1

p jq j

⎞

⎠
(∑n

r=0
p (r |θ, u)

)
du = −

∫
p (u)

⎛

⎝
n∑

j=1

p jq j

⎞

⎠ du.

Therefore, term A and term B canceled out, and d2l(θ |rk )
dθ2

is simply provided by term C. Hence,

Ik (θ) =
nk∑

rk=0

⎡

⎢⎣

⎛

⎝
∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk

)) (
rk −∑nk

j=1 p jk
)
g
(
uk | 0, σ 2

uk

)
duk

∫
Exp

(
rkuk +∑nk

j=1 log
(
q jk

))
g
(
uk | 0, σ 2

uk

)
duk

⎞

⎠
2

p (rk |θ)

⎤

⎥⎦ .

It follows that the test information at θ = θ̂ for a test with K testlets is

I
(
θ̂
)

=
∑K

k=1
Ik
(
θ̂
)
.
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