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Magnetic reconnection, a fundamental plasma process, is pivotal in understanding
energy conversion and particle acceleration in astrophysical systems. While extensively
studied in two-dimensional (2-D) configurations, the dynamics of reconnection in three-
dimensional (3-D) systems remains under-explored. In this work, we extend the classical
tearing mode instability to three dimensions by introducing a modulation along the oth-
erwise uniform direction in a 2-D equilibrium, given by g(y), mimicking a flux-tube-like
configuration. We perform linear stability analysis (both analytically and numerically)
and direct numerical simulations to investigate the effects of three-dimensionality.
Remarkably, we find that a tearing-like instability arises in three dimensions as well,
even without the presence of guide fields. Further, our findings reveal that the 3-D tearing
instability exhibits reduced growth rates compared with two dimensions by a factor of∫

g(y)1/2dy /
∫

dy, with the dispersion relation maintaining similar scaling characteris-
tics. We show that the modulation introduces spatially varying resistive layer properties,
which influence the reconnection dynamics.
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1. Introduction

Magnetic reconnection is a fundamental plasma process in the contexts of astro-
physical, space and fusion plasmas (Zweibel & Yamada 2009). This process occurs
when oppositely directed magnetic field lines interact in the regions of high current
density to break and reconnect, altering the magnetic topology and allowing for
the rapid conversion of magnetic energy into kinetic and thermal energy. Magnetic
reconnection can drive explosive phenomena such as solar flares, coronal mass ejec-
tions and geomagnetic storms in the Earth’s magnetosphere (Shibata & Magara
2011; Burch & Phan 2016; Ruan, Xia & Keppens 2020). It has played a pivotal
role in regulating the dynamics of high-energy astrophysical environments, from the
solar corona and interstellar medium to distant pulsar magnetospheres and black
hole accretion disks (Cerutti, Philippov & Spitkovsky 2016; Ripperda, Bacchini &
Philippov 2020; Fielding, Ripperda & Philippov 2023; Zhang, Pree & Bellan 2023).
In particular, reconnection is invoked to understand the particle acceleration and
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non-thermal emission in many systems (Cerutti, Uzdensky & Begelman 2012; Sironi
& Spitkovsky 2014; Guo et al. 2015; Brunetti & Lazarian 2016; Werner et al. 2016;
Ghosh & Bhat, 2025). Uncovering the mechanisms of reconnection is essential for
explaining these high-energy events and for improving our understanding of plasma
behavior across the universe.

Reconnection has been largely studied in two dimensions. It is thought to manifest
in different ways: (i) spontaneously as the tearing mode instability, (ii) in steady state
known as the Sweet–Parker (SP) model and (iii) as turbulent reconnection. Tearing
instability was first studied in the context of magnetic confinement in laboratory
plasmas (Furth, Killeen & Rosenbluth 1963; Coppi et al. 1976). Since both tearing
modes and the SP model lead to dimensionless reconnection rates that depend on a
negative power of the Lundquist number (S), they could not explain observed time
scales pertaining to solar flares. However, more recently, the discovery of the plas-
moid instability has been considered to have solved the time scale problem (Loureiro,
Schekochihin & Cowley 2007; Bhattacharjee et al. 2009; Cassak, Shay & Drake
2009; Uzdensky, Loureiro & Schekochihin 2010; Pucci & Velli 2013; Comisso et al.
2016). The plasmoid instability is fundamentally a re-emergence of the tearing insta-
bility in high-S regimes and arises asymptotically beyond S ∼ 104, leading to bursty
reconnection and the formation of small secondary magnetic islands called plasmoids
(Samtaney et al. 2009; Landi et al. 2015). Importantly, in its nonlinear regime, the
plasmoid instability yields reconnection rates that are effectively independent of S
(Bhattacharjee et al. 2009).

Complementary to this, the ideal tearing scenario proposed by Pucci & Velli
(2013) predicts that thin current sheets can become unstable on ideal (Alfvénic)
time scales when their aspect ratio scales as S−1/3, leading to reconnection rates
that are independent of resistivity. This prediction has been confirmed and extended
through simulations and analyses in various geometries and conditions (Landi et al.
2015; Del Zanna et al. 2016; Papini, Landi & Zanna 2019).

Alternatively, there has been work that shows that three-dimensional (3-D) tur-
bulence can also help in leading to fast reconnection (Lazarian et al. 2020). This
turbulent model intrinsically uses the SP model for understanding the local recon-
nections and thus it is unclear if it needs some modification given that the SP model
is ruled out at values of S higher than ∼104.

In this work, rather than focusing on plasmoid instability or turbulent reconnection
models, we aim to extend the study of the tearing mode instability into a fully 3-D
context. This provides a complementary and necessary perspective for understanding
reconnection in more realistic, inherently 3-D systems. This has been approached in
several ways, with two of the simplest being : (i) extending a 2-D initial equilibrium
into the third dimension and introducing 3-D perturbations, (ii) incorporating a
uniform guide field along the third dimension.

Approach (i) has been explored to demonstrate the occurrence of the kink insta-
bility, where the equilibrium current sheet buckles in response to 3-D perturbations
(Landi et al. 2008; Oishi et al. 2015). This buckling leads to nonlinear reconnection
processes that can be faster than their 2-D counterparts. Reconnection set-ups are
sensitive, even during the linear phase, to parameters such as whether the initial equi-
librium is modeled using pressure balance or force-free fields, as well as the inclusion
of a guide field (Landi et al. 2008). In the study by Onofri et al. (2004), which falls
under category (ii), the presence of a guide field was found to stabilize the 3-D insta-
bilities observed by Dahlburg, Antiochos & Zang (1992), resulting in behavior that
is closer to a quasi-2-D dynamics. They also observed that, in the nonlinear regime,
island coalescence leads to faster reconnection compared with the linear regime.
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Faster reconnection in the nonlinear phase appears to be a recurring finding across
3-D tearing set-ups. For instance, Wang, Yokoyama & Isobe (2015) showed that
introducing random perturbations, rather than specific mode perturbations, results
in the formation of multiple tearing layers. These layers interact, leading to faster
reconnection. Ultimately, many of these studies report that extending reconnection
set-ups into three dimensions facilitates the generation of turbulence, which plays a
crucial role in enhancing the reconnection dynamics.

Another approach, taken primarily by solar physicists, is to investigate 3-D field
configurations that either have null points (where the magnetic field strength van-
ishes) or possess layers conducive to reconnection (Parnell et al. 2010). Studies of
magnetic null points have identified distinct topological features, such as spine lines
and fan surfaces (Priest & Démoulin 1995). These structures enable reconnection by
directing magnetic flux along separatrix surfaces, which divide regions of differing
magnetic connectivity (Wyper & Pontin 2014).

However, many reconnection events, particularly in solar and astrophysical plas-
mas, occur in regions lacking null points (Démoulin et al. 1997) In these cases,
quasi-separatrix layers (QSLs) are thought to play a crucial role. The QSLs are
regions where magnetic field lines experience rapid connectivity changes, even with-
out intersecting at null points. It is proposed that reconnection within QSLs can
occur across a distributed region in the presence of intense current layers and, under
certain conditions, exhibit bursty, explosive behavior similar to null-point reconnec-
tion (Aulanier et al. 2006; Baker et al. 2009; Kumar et al. 2021; Mondal et al. 2023).

In this work, we explore the reconnection between anti-parallel, flux-tube-like
fields. This draws inspiration from the configuration used to examine vortex tube
reconnection in Melander & Hussain (1989), where the tubes, with cylindrical
symmetry, are characterized by an axial component of the field with a radial
dependence. We adopt a simplified version of this set-up, which can be consid-
ered a modulation of the classic Harris sheet in the third dimension, described
by Bz(x)= tanh(x)sech2(x)sech2(y). Flux tube reconnection has been studied com-
monly with an intent to mainly explore the effect of twists and writhes in the field
on the ensuing reconnection (Dahlburg & Antiochos 1997; Linton, Dahlburg &
Antiochos 2001; Wilmot-Smith & De Moortel 2007). These configurations involv-
ing significant helicity are often referred to as flux ropes and exhibit a complex
3-D dynamics. In contrast, flux tubes without helicity are simpler, providing an
idealized framework for examining fundamental aspects of magnetic reconnec-
tion. However, non-helical flux-tube reconnection has received less attention in the
literature compared with flux ropes (Linton & Priest 2003).

In both cases – whether with or without helicity – previous studies have primarily
considered flux tube interactions with either finite inclination angles or perpendicular
orientations relative to each other. These interactions typically involve flattening of
the tubes and formation of topologically complex structures during reconnection. In
contrast, our study focuses on the simpler and less explored case of zero inclination
angle, providing new insights into this idealized configuration.

The further structure of the paper is as follows. In § 2, we describe the linear
stability analysis using analytical and numerical approaches to understand the effects
of modulation along the third dimension. Section 3 outlines the set-up of the direct
numerical simulations used to test the theory and obtain the tearing mode growth
rates, and § 4 presents the results from the simulations comparing them with 2-D
cases and discussing the impact of 3-D effects. Finally, § 5 summarizes our findings
and suggests areas for future research.

https://doi.org/10.1017/S0022377825100494 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100494


4 V. Kumar and P. Bhat

2. Linear stability analysis (LSA)

To investigate 3-D effects in the tearing instability, we consider a 3-D base state
that consists of a modulation of the standard 2-D equilibria, given by a magnetic
field configuration of the form B0 = B0 f(x)ẑ, in the third direction. The 3-D initial
configurations are obtained by modulating the corresponding 2-D configurations
along the third direction by a function g(y), such that the 3-D base state is then
given by B0 = B0 f(x)g(y)ẑ. To have a configuration of reversing magnetic fields
along x , f(x) is chosen to be an odd function. Moreover, as we shall show in § 3, a
smoothly varying g(y) with even parity such that g(y)→ 0 as |y| → ∞ produces a
tube-like configuration of magnetic fields. We choose such a g(y).

Since the magnetic field in such a configuration varies only across (and not along)
itself, the associated magnetic tension, B · ∇B = 0. The initial gas pressure distribu-
tion can then be chosen to cancel the magnetic pressure, thus ensuring that this initial
configuration is in equilibrium. Here, we have ignored the dissipation of the mag-
netic field, as is usually done in the tearing mode derivation under the assumption
that the diffusive time scales are much larger than the tearing time scales.

We consider the full incompressible and inviscid magnetohydrodynamic (MHD)
equations

∇ · u = 0, ∇ · B = 0, (2.1)

∂

∂t
∇ × u = −u · ∇ (∇ × u)+ ∇ × [(∇ × B)× B] , (2.2)

∂B
∂t

= ∇ × (u × B)+ η∇2B, (2.3)

which comprise the solenoidality condition for the velocity, u and the magnetic field,
B, and the evolution equations for the vorticity (from the momentum equation) and
the magnetic field (the induction equation), respectively. Here, η is the magnetic
diffusivity, which quantifies the rate at which magnetic field lines diffuse through
the plasma due to finite electrical conductivity. Notice here that we are working in
Alfvén units, that is, units wherein the plasma density, ρ, is such that 4πρ = 1.

The full MHD equations (2.1–2.3) are linearized about the base states,
B0 f(x)g(y)ẑ in terms of the perturbed magnetic fields, b, and the perturbed veloc-
ity, u. We work with vorticity instead of the velocity field to eliminate the pressure
term from the momentum equation, making the analysis simpler – one does not
need to track perturbations in the pressure. The linearized vorticity equation,
component-wise, yields

∂

∂t
(∂yuz − ∂zuy)= B0

[
f(x)g′′(y)by + f ′(x)g′(y)bx + f ′(x)g(y)∂ybx − f(x)g′(y)∂x bx

− f(x)g(y)∂y∂xbx − f(x)g(y)∂y∂yby − f(x)g(y)∂2
z by

]
,

∂

∂t
(∂zux − ∂xuz)= B0

[− f ′(x)g′(y)by − f(x)g′(y)∂xby − f ′′(x)g(y)bx + f ′(x)g(y)∂yby

+ f(x)g(y)∂2
z bx + f(x)g(y)∂x∂xbx + f(x)g(y)∂x∂yby

]
,

∂

∂t
(∂xuy − ∂yux)= B0

[
f ′(x)g(y)∂zby + f(x)g(y)∂z∂xby

− f(x)g′(y)∂zbx − f(x)g(y)∂z∂ybx

]
, (2.4)
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and the linearized induction equation, component-wise, is given by

∂bx

∂t
= B0 f(x)g(y)∂zux + η

(
∂2

x bx + ∂2
y bx + ∂2

z bx

)
,

∂by

∂t
= B0 f(x)g(y)∂zuy + η

(
∂2

x by + ∂2
y by + ∂2

z by

)
,

∂bz

∂t
= B0

[
f(x)g(y)∂zuz − ux f ′(x)g(y)− uy f(x)g′(y)

] + η
(
∂2

x bz + ∂2
y bz + ∂2

z bz

)
.

(2.5)

We assume that any perturbed quantity is of the form

ψ =ψ(x, y)eikz−iωt , (2.6)

where ψ is a placeholder for either the perturbed magnetic field or the perturbed
velocity, and ω and k are the frequency and the wavenumber of the perturbation
along z. Using this ansatz, and the solenoidality conditions for the magnetic field
and the velocity, we obtain

−iω
(
k2uy − ∂x∂yux − ∂2

y uy

) = ik B0

[
f(x)g′′(y)by + f ′(x)g′(y)bx + f ′(x)g(y)∂ybx

− f(x)g′(y)∂xbx − f(x)g(y)∂y∂xbx

− f(x)g(y)∂2
y by + f(x)g(y)k2by

]
, (2.7)

−iω
(
∂2

x ux + ∂x∂yuy − k2ux

) = ik B0

[− f ′(x)g′(y)by − f(x)g′(y)∂xby

− f ′′(x)g(y)bx + f ′(x)g(y)∂yby − f(x)g(y)k2bx

+ f(x)g(y)∂2
x bx + f(x)g(y)∂x∂yby

]
(2.8)

−iωbx = ik B0 f(x)g(y)ux + η
(
∂2

x bx + ∂2
y bx − k2bx

)
, (2.9)

−iωby = ik B0 f(x)g(y)uy + η
(
∂2

x by + ∂2
y by − k2by

)
, (2.10)

where (2.7) and (2.8) are obtained from the linearized vorticity equations and (2.9)
and (2.10) are obtained from the linearized induction equations respectively. Notice
that uz and bz have been eliminated with the help of the solenoidality conditions.

2.1. Analytical approach to LSA
We adopt the approach in Goldston & Rutherford (1995) for further analysis. The

main thing we focus on here is the derivation of the growth rate. The usual tearing
mode analysis involves a boundary value problem. The current sheet is divided into
three regions, the inner, the outer and the overlap regions. Resistive and inertial
effects are negligible in the outer region and become important in the inner region
where the resonant surface of k · B = 0 occurs and f(x)≈ x . All of this follows
for the 3-D case as well. The outer region equations can be used to completely
characterize the instability parameter

�′ =
[
∂ ln bx

∂x

]0+

0−
, where bx = bx(x, y). (2.11)

We will take the �′(y) as a given and proceed to examine the inner region
equations which lead us to the growth rate of the 3-D instability. From (2.16),
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we can obtain an expression for ∂2
x bx

∂2
x bx = −1

η
(iωbx + ik B0xg(y)ux) , (2.12)

where we have applied the standard considerations of ∂2
x � k2 and f(x)≈ x in the

inner region. Further, we have assumed ∂2
x � ∂2

y (see Appendix A.1 for details) and
thus dropped the corresponding term as well. Next we substitute the above into
(2.14) to obtain

−ω
k

(
∂2

x ux + ∂x∂yuy

) =B0

[
−xg(y)

(
iωbx + ik B0xg(y)ux

η

)

− g′(y)by − xg′(y)∂x by + g(y)∂yby + xg(y)∂x∂yby

]
. (2.13)

We make an estimate of the characteristic length and velocity scales in the inner
layer. First we balance first term on the left-hand side with the second one from the
right-hand side of the equation above, as one would have done in the 2-D case as
well. We can obtain the characteristic width of the inner resistive layer

x ∼ δ = (ηγ )1/4

(B0kg(y))1/2
. (2.14)

Here, we have taken γ ≡ −iω for growing modes.
Next, we make the ansatz that bx ∼ const.= b̃x in the inner region. This ansatz is

justified easily in the 2-D case by showing that solutions of the kind bx ∝ xn (where
n � 1) are excluded (see § 20.3 in Goldston & Rutherford 1995); turns out it can
be extended to the 3-D case as well. Balancing the first two terms on the right-hand
side of (2.13), leads to the velocity scale

ũx ∼ iγ b̃x

k B0g(y)δ
. (2.15)

Now, we integrate (2.12) over the inner layer, so that we have

[
∂xbx

]0+
0− = 1

η

∫ (
γ b̃2

x − ik B0xg(y)ux

)
dx . (2.16)

With Equations (2.14) and (2.15), we can transform the variables, X ≡ x/δ,
V ≡ ux/ũx and substitute into (2.16) leading to

1

b̃x

[∂xbx ]x=0 = γ δ(y)

η

∫
(1 + X V ) dX. (2.17)

The integral on the right-hand side reduces to a function that remains dependent
on y which we will denote as I (y). And the left-hand side term is basically the
instability parameter �′ defined previously in (2.11), which for simplicity we assume
to be nearly homogenous along y.

We now substitute (2.14) into (2.17) to obtain

�′ = γ

η

(γ η)1/4

(k B0g(y))1/2
I (y). (2.18)
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where I (y)= ∫
(1 + X V )dX is still a function of y after the integration over x . Next

we re-arrange the expression and identify that γ needs to be independent of y and
thus we integrate over y on both sides to obtain

�′
∫

g(y)1/2dy = γ 5/4

η3/4(k B0)1/2

∫
I (y)dy. (2.19)

Rearranging the equation, we can obtain the following dispersion relation:

γ = �′4/5η3/5 (k B0)
2/5

∫
g(y)1/2dy∫

I (y)dy
. (2.20)

The above is quite similar to the 2-D dispersion relation obtained in the standard
FKR regime (Furth et al. 1963) pertaining to �′δ� 1, except for the integrals over
y. We will see in a later section that, indeed, the 3-D dispersion curves inferred from
direct numerical simulations do have the same behavior as in two dimensions. The
main difference arises from the integrals over y and there is a reduction in the growth
in this 3-D case as compared with the 2-D case by a factor of

∫
g(y)1/2dy/

∫
dy.

Here, we have assumed that effect of modulation is negligible on the I integral (this
would be the case if the eigen function bx almost resembles its 2-D counterpart all
along y; we show this in the next section).

Note that the above derivation hinges on the assumption that the modulation has
a smooth or mild gradient along the third dimension. If this is not true then we
cannot assume that �′ is homogenous along y and effect of I integral is negligible.

In particular, it is interesting to note that the three-dimensionality of the initial
equilibrium magnetic fields is such that the linear growth rate is modified from
two dimensions to three dimensions by mainly a simple additional factor related
to exactly the y dependence (or the third direction dependence) in the initial field.
This is attributed the simple nature (variable separable : f(x)g(y)) of the extension
to three dimensions. The resulting growth rate expression can be understood in the
following manner.

If we were to extend the initial 2-D field into three dimensions with no modulation
in the third direction (g(y)= 1), the 2-D growth rates would be recovered. However,
due to the introduction of a modulation, the strength of the magnetic field becomes
non-uniform, which can affect the current sheet characteristics. In particular, we find
that the characteristic length and time scales associated with the inner resistive layer
are not uniform along y, whose effect precipitates a reduced growth rate. Again in a
later section, we show that direct numerical simulations indeed confirm the growth
rate reduction due to

∫
g(y)1/2dy.

2.2. Numerical approach to LSA
The set of equations (2.7)–(2.10) can be written as a generalized eigenvalue

problem which has the form

γMv =Lv, (2.21)

with M and L are linear operators acting on the eigenfunction v, and γ is the
corresponding eigenvalue. In our case, v comprises ux , uy , bx and by , and we have
substituted γ = −iω in the expectation of an unstable mode with γ > 0.

We solve this generalized eigenvalue problem (EVP) numerically, using a spec-
tral method with Fourier basis, to obtain the growth rate γ as a function of the
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FIGURE 1. Match between the numerically obtained eigenfunction for the 2-D tearing instability
using the EVP solver and the expectation from outer region theory.

wavenumber k, and the corresponding eigenfunction. The full details of the solver
can be found in Appendix A.2.

We choose a modified Harris sheet, as the unmodulated base state, with f(x)=
2.6 tanh(x)sech2(x). The prefactor of 2.6 ensures that the maximum value of the
magnetic field strength is 1, thus setting the Alfvénic velocity, vA = 1, making further
normalizations simpler. Notice that the base state cannot be decomposed into a finite
number of Fourier modes. This can lead to truncation errors, and naively proceeding
with the numerical procedure described above produces oscillatory eigenfunctions,
leading to a lack of convergent solutions. To overcome this, we apply an appropriate
low-pass filter (details in Appendix A.3) in Fourier space to the base state. This, by
construction, gives us a base state suitable for Fourier decomposition.

For sanity check, we first obtained the eigenfunctions for the classical tearing
instability in two dimensions. In this case, we have a 1-D EVP with v = [ux , bx ].
We confirm that our method reproduces the analytically calculated eigenfunctions
and the dispersion relation. This is shown in figure 1, which depicts the numerically
derived eigenfunction along with the predictions of outer region theory.

Further, we have verified that the Fourier filtering of the equilibrium profile does
not alter the dispersion relation. To establish this, we solved the EVP using a finite
differencing algorithm with the unfiltered equilibrium. We did this only for the 2-D
cases since a finite difference algorithm requires a greater spatial resolution owing to
poor convergence and running the EVP solver using the finite differencing algorithm
becomes prohibitively expensive in three dimensions.

We now present the results incorporating the modulation, g(y) into the equilib-
rium configuration. We choose g(y)= sech2(y/λ), thus modifying the equilibrium to

B = f(x)g(y)= 2.6 tanh(x) sech2(x) sech2(y/λ)ẑ. (2.22)

The magnetic field and the current configuration arising from such a profile are
shown in figure 2. The parameter λ controls the width of the modulation. An impor-
tant length scale in the problem is the magnetic shear length a, over which the field
reverses, typically defined as Bz = f (x/a). Since we do not vary a in this work, we
set a = 1 and use it to normalize all lengths throughout the analysis. As we demon-
strate in the next section, this set-up closely mimics a system of reversing magnetic
flux tubes with fields aligned along their axes.

Figure 3 illustrates the eigenfunctions computed for a particular set of parameters,
η= 0.01 and k = 0.7. The spatial domain was taken as (x, y) ∈ [−π, π)× [−π, π)
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FIGURE 2. Equilibrium configuration of the magnetic field given by Equation (2.22) with λ= 1.
The red–blue colors show the z-component of the magnetic field and the region where the asso-
ciated current density is greater than an arbitrary cutoff (|J|> 2) is depicted in white–green
colors. A slice of the unmodulated magnetic field is shown on the floor for comparison with the
usual 2-D tearing case. Notice that the modulation provides a tubular nature to the otherwise
slab-like 2-D configuration.

FIGURE 3. Eigenfunctions obtained from the numerical solution of the generalized EVP with
η= 0.01 and k = 0.7. Since the eigenfunctions can only be calculated up to a scale, these were
rescaled to have a spatial maximum of 1.
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FIGURE 4. Dispersion curves with varying values of the modulation width λ.

and we chose Nx = Ny = 64. The velocity eigenfunctions reveal flow fields converg-
ing at the origin, coinciding with the maximum equilibrium current density. The
x -component of the perturbed magnetic field exhibits a double-humped profile,
reminiscent of the purely 2-D case, while the y-component of the magnetic field
shows a quadrupolar structure.

The full dispersion relation, as calculated using the eigenvalue solver, is shown
in figure 4. Interestingly, the dispersion relations for the 3-D cases (finite λ) bear
close resemblance to the 2-D dispersion curve, as expected from the theoretical
considerations in § 2.1. One must note here that the instability parameter �′ in the
3-D case is calculated using the same formula as in two dimensions. This is done
in order to facilitate a comparison between the 2-D and 3-D cases. The measured
growth rates in the 3-D cases, however, are smaller than their 2-D counterparts.
Although the growth rate in three dimensions is smaller than that in two dimensions
for any given wavenumber, the shape and the asymptotic scaling of the dispersion
relation is similar in both cases.

We validate these findings by performing direct numerical simulations in § 3, and
also highlight the impact of modulation on the reconnection dynamics, including the
scaling of growth rates and changes in the reconnection morphology.

3. Direct numerical simulations (DNS)

We perform simulations in both two and three dimensions to obtain the corre-
sponding dispersion relations. The 2-D simulations are necessary to validate the code
by recovering the well-known tearing dispersion relation, and to have a benchmark
for comparison with the 3-D results.

3.1. Numerical set-up
The initial magnetic field configuration is described by (2.22). Since this config-

uration is free of magnetic tension, we ensure equilibrium by choosing a suitable
profile for the gas pressure, pgas, obtained by setting pgas + pmag = const, where
pmag = B2/2 is the magnetic pressure. The fluid is perfectly stationary to begin with.
The Lundquist number, S can now be defined using a combination of the shear
length, a = 1, the Alfvénic velocity, vA = 1 and the resistivity, η as S = vAa/η. And
the Alfvénic time scale is τA = a/vA.
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To initiate the instability, perturbations of the form bx = sin(k∗z) are introduced
in the x component of the magnetic field. For a given simulation, we introduce
perturbations of only a single wavenumber, k∗, in the z direction. This is done
to estimate growth rates mode by mode, as is required to obtain the dispersion
relation. Introducing perturbations with a multitude of wavenumbers would lead to
the observation of only the fastest-growing mode, and one would not be able to get
the dispersion relation.

We use a pseudo-spectral code, written using the Dedalus framework (Burns et al.
2020), to solve the usual visco-resistive MHD equations. The spectral expansion
is done in Fourier basis which translates to periodic boundary conditions in all
directions for both the 2-D and the 3-D cases. We work with a resolution of Nx =
128, Ny = 128 and Nz = 64, and the box size is Lx = 4π , L y = 4π and Lz = 2π/k∗.
This choice of Lz ensures that the perturbation of wavenumber k∗ fits exactly in
the box. As in § 2.2, a low-pass filter is applied on the initial condition to ensure
periodicity. A 3/2 dealiasing scheme is implemented to avoid aliasing errors, and
time stepping is done using a second-order Runge–Kutta scheme. Convergence tests
were done to ensure that the results are not affected by the resolution.

Because of finite, non-zero resistivity, the base state is not in equilibrium, rather, it
diffuses out, as observed in Landi et al. (2008). This equilibrium diffusion (η∇2B0)
is usually ignored in tearing mode analysis by assuming that the time scales of this
diffusion are larger than the time scales of the tearing instability. This assumption
holds well in the case of very small η as is typical of astrophysical systems. However,
for our modest values of the Lundquist number, we find that the equilibrium diffu-
sion time scale is comparable to the tearing instability time scale. This is especially
true for the 3-D case, where the equilibrium diffusion time scale is even smaller. This
equilibrium diffusion leads to a slow decay of the base state, and so the linear regime
of growth is not sustained for long in our fully nonlinear simulations. To circumvent
this, following Landi et al. (2008), we add a constant term to the induction equa-
tion, −η∇2B0, that rules out the equilibrium diffusion. This ensures that the base
state does not decay and the tearing instability can be studied in the linear regime.

4. Simulation results

The evolution of the magnetic field driven by the 3-D tearing instability is illus-
trated in figure 5. The initially flux-tube-like magnetic fields converge, break and
reconnect to create new flux tubes. The behavior of these flux tubes closely resembles
the dynamics of field lines observed in the 2-D tearing instability.

The growth rate of the instability is measured by tracking the spectral energy in
the x and the y components of the magnetic field for k = k∗. This is given by

Ek∗(b)=
∑
kx ,ky

∣∣∣b̂ (
kx , ky, k∗)∣∣∣2

, (2.23)

where b represents the x or y component of the magnetic field, b̂ is the correspond-
ing Fourier transform and the summation is taken over all wavenumbers in the x
and the y directions. The growth rate is then calculated by taking the local slope of
ln (Ek∗) vs time. This shows a clean linear growth phase, as shown in figure 6, where
the local slope (shown in the insets) is a constant, as is expected in the linear regime
of the tearing instability.

The dispersion relation is obtained by measuring growth rates for differ-
ent wavenumbers. These growth rates are plotted against the tearing instability
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FIGURE 5. Streamlines of the magnetic field. The left figure shows the initial configuration and
the flux-tube-like structure is clearly visible. The structure at a later time is shown on the right.
The color represents the magnitude of the magnetic field.

FIGURE 6. Growth of perturbations in the 2-D case (left) and the 3-D case (right). The plot
shows the linear growth of the energy in the unstable mode, Ek∗ , vs time (given in code units).
The inset shows the evolution of the local slope, depicting a clean linear growth phase where the
slope is a constant in time. The dashed line shows the fitted growth rate in both the plots.

parameter�′a in figure 7. The theoretical growth rate scalings in the FKR (�′δ� 1)
and the Coppi (�′δ ∼ 1) regimes are given in dot-dashed red and dotted blue lines,
respectively. The measured dispersion curves agree well with theoretical scalings.
Figure 7 reaffirms our findings in the previous sections – the growth rates in three
dimensions are smaller but the shape of the dispersion curve and the fastest-growing
mode are independent of the width of the modulation.

As discussed in § 2.1, the growth rates in the 3-D case are affected by the modu-
lation, as given in (2.20). We now plot the effect of the modulation on the growth
rate for a given wavenumber in figure 8. The maroon solid line shows the theo-
retical prediction of γ for varying modulation width λ in g(y) using (2.20). The
3-D growth rates are reduced by a factor of

∫
g(y)1/2dy/

∫
dy from the 2-D case

of λ= ∞, g(y)= 1. We find that there is indeed a good match between the growth
rates obtained from the eigenvalue solver, the simulations and the theory. Further, in
figure 9, we show that the dispersion curves for different λ fall on top of each other –
and the purely 2-D dispersion curve – when the measured growth rate is rescaled by
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FIGURE 7. Dispersion relation in the 3-D case with variation in the width of the modulation, λ.
The dashed lines show the asymptotic theoretical growth rates in the FKR and the Coppi
regimes, and the points are the measured growth rates. The 2-D dispersion relation with λ→ ∞
is shown for reference.

FIGURE 8. Effect of the modulation width λ on the growth rate. The plot shows the ratio of the
growth rate in three dimensions to that in two dimensions (or λ= ∞), γ3D/γ2D vs. the modu-
lation width λ, for a fixed wavenumber k∗ = 0.7. The blue crosses are measurements from the
simulations and the green ones are from the eigenvalue solver. The maroon line is the theoretical
prediction using (2.20).

the prefactor calculated in (2.20). This collapse confirms that the primary effect of
the modulation is to uniformly scale the growth rate across wavenumbers, without
altering the shape of the dispersion relation. It validates our theoretical prediction
that the spatial variation in g(y) simply attenuates the overall instability strength.
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FIGURE 9. Collapse of the measured dispersion relation (from both the DNS and the EVP) on
top of the 2-D dispersion curve when the corresponding growth rates are rescaled by the exact
λ dependent prefactor predicted in (2.20).

FIGURE 10. Comparison of the eigenfunctions obtained from the linear theory and the fully
nonlinear simulations. The eigenfunctions are shown for the same parameters, η= 0.01 and
k = 0.7. The left plot shows the x-component of the perturbed magnetic field, bx , and the plot
on the right shows the y-component of the perturbed magnetic field, by .

The magnetic field eigenfunctions can also be obtained from these fully nonlinear
simulations by taking a constant z slice from the simulation domain. Figure 10 shows
the so obtained eigenfunctions and they are in good agreement with those obtained
from the linear theory in § 2.2.

The Lundquist number scaling of the maximum growth rate in the 3-D case is
also similar to the 2-D case. This was confirmed by performing 3 different suites of
simulations with S = 80, 160 and 320, and obtaining the full dispersion relation in
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FIGURE 11. Scaling of the maximum growth rate with the Lundquist number S. The maximum
growth rate was obtained by interpolating the individual dispersion relations. The solid line,
which shows the S−1/2 scaling, is in good agreement with the data.

FIGURE 12. Growth of perturbations in different y-slices. The plot shows the maximum b2
x

across y-slices vs time. The growth rate is the same as that obtained from the spectral energy,
indicating cross-coupling between the slices.

each case. The maximum growth rate was estimated by interpolating the obtained
dispersion relation on a finer �′ grid and then taking the maxima. The scaling of the
maximum growth rate with the Lundquist number is shown in figure 11.

Given these similarities between the 2-D and the 3-D cases, one must question
if there is any impact of the third direction, or is the 3-D case simply a stack of
different 2-D tearing slices with different Alfvénic time scales, and hence different
growth rates, which conspire to give a net smaller growth rate. To investigate this,
we plot the growth of the perturbations in different y-slices. The maximum b2

x across
y-slices shows the same growth rate as shown in figure 12, and this growth rate is
also the same as that obtained from the spectral energy. This clearly signifies that all
the y-slices have cross-coupling, and hence, the 3-D problem is not simply a stack of
2-D slices.

Next, we show in figure 13 various structures ensuing as a result of the 3-D tearing
instability. The volume rendering in the figure shows the current density, J and an
isocontour corresponding to a high value of J is also shown in brown color. The
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FIGURE 13. Magnetic field streamlines at two different times. Left: initial state. Right: state
at a later time in the linear growth stage. The volume rendering shows the current density and
magnetic field lines are shown in pink (in the y = 0 plane) and in cyan (off center plane, y �= 0).
The magnetic islands away from the y = 0 plane appear bent in the y-direction.
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magnetic field lines in the y = 0 plane are shown in pink, and bear close resemblance
to the purely 2-D tearing instability. The cyan lines show the magnetic field in an
off center plane. While these also have similarities with the 2-D case, there is a clear
3-D structure to these lines, with a finite non-zero y-component of the magnetic field
leading to magnetic islands that are bent in the y-direction.

In the purely 2-D scenario, a region of enhanced current density around an X-point
with oval-shaped contours emerges along with the tearing mode and island for-
mation. Analogously, in three dimensions, the current density contour reveals
an oblong, ellipsoid-like structure as can be seen in the right-hand side plot in
figure 13. Taking the analogy further, in 2-D tearing modes, the X-point draws
magnetic field lines toward itself, facilitating reconnection at the X-point. This idea
can also be extended to three dimensions. The pronounced current density (shown
by the ellipsoid-like structure) is indicative of the magnetic null or the X-point close
to the y = 0 plane responsible for pulling of the plasma containing field lines toward
itself, causing the magnetic islands to be bent in the y-direction, and thereby giving
rise to the observed 3-D structure. Please see Appendix A.4 for further details of
island structures and their corresponding null points, along y.

5. Conclusions and discussions

In this paper, we studied a 3-D extension of the tearing instability. A straightfor-
ward 3-D extension would consist of simply extending the standard 2-D equilibrium
into the third dimension and allowing for 3-D perturbations. However, in such cases,
the fastest-growing modes remain identical to their 2-D counterparts, as per Squire’s
theorem (Squire 1933). A more commonly explored 3-D extension includes a uni-
form magnetic field along the third dimension, often referred to as a guide field. If
the guide field is strong, then we recover the 2-D behavior as seen in reduced MHD.

For our study, we considered a different 3-D extension involving incorporation of
a simple dependence of the field on the third direction, which we refer to as a mod-
ulation i.e. the 2-D field, Bz(x) was multiplied by a function, g(y). In particular, we
employed Bz = tanh(x) sech2(x) sech2(y/λ), which would represent a system with
reversing magnetic flux tubes.

1
This can be considered as a simplified version of the

vortex tube configuration in Melander & Hussain (1989).
Remarkably, we have found that this 3-D equilibrium gives rise to tearing-like

modes even without the presence of guide fields. Further, it turned out that this 3-D
configuration is amenable to tractable linear theory analysis. We derived a testable
prediction: the impact of the modulation on the growth rate. Specifically, the linear
growth rate is reduced by a factor of

∫
g(y)1/2dy/

∫
dy. This reduction is attributed

to the effect of the modulation on the properties of the inner resistive layer which are
not uniform along the third dimension. Essentially, the reconnection retains a topo-
logically 2-D-like nature in such a system, but the three-dimensionality of the initial
equilibrium – manifested through the modulation in the third direction – is reflected
in the growth rate. It has been discussed in Pontin (2011) that reconnections are fun-
damentally different in three dimensions as field lines are not confined to a plane.
However, we find that configurations as in our work allow for reconnections plane
by plane with cutting and rejoining of field lines while maintaining a unified 3-D
character. In the ideal case, from the uncurled induction equation and Faraday’s
law, the electric field E satisfies E + v × B = ∇. According to Pontin (2011), it is

1This differs from flux rope configuration which consists of twisting around a central axis
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possible to derive a smooth velocity field in two dimensions, as long as E · B = 0
and (∇) · B = 0, except at magnetic nulls. Thus, at X-points where the smoothness
of the flow breaks down, we have reconnections. Further, they say that in three
dimensions, it is not possible to have E · B = 0 (due to the complicated geometry of
the magnetic fields) and thus the conditions for flux freezing and magnetic topology
conservation are more sophisticated. However, we find that our simple 3-D recon-
necting field configuration is such that E · B = 0 can still hold true ideally. Thus, we
do observe a plane by plane X-point emergence allowing for 2-D-like reconnections
to occur.

In general, the evolution of a certain reversing magnetic field equilibrium depends
sensitively on parameters such as whether it is in force-free or pressure based equilib-
rium and if there is a guide field or not (Landi et al. 2008). In particular, in our work,
we have used pressure-balance-based initial fields with no guide field. Importantly,
we used mode-based perturbations (restricted to the z-direction) and thus did not
study the most general fastest-growing mode. While we have not carried out a sys-
tematic study of this equilibrium with 3-D random perturbations, we find that if
the system is large enough along the third dimension, then the modulation does not
inhibit the emergence of kink modes.

We find that the scaling of the fastest-growing mode with Lundquist number is
similar to the 2-D case of the tearing instability, γmax ∼ S−1/2. This is noteworthy
as the previous studies suggested that 2-D-like reconnection persists only in the
presence of a strong guide field. However, our results show that this S−1/2 scaling in
three dimensions can occur even without a guide field.

There are other questions that remain. How does the plasmoid instability manifest
in such configurations? What happens if the 3-D fields are helical? How would the
reconnecting sheets be affected by turbulence? How does QSL reconnection fit into
the picture? We plan to pursue some of these in the future.
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Appendix A
A.1. Assumption of ∂2

x � ∂2
y

In § 2, we had made a simplifying assumption that ∂2
x � ∂2

y in (2.8). We believe this
is the case since we have considered an equilibrium that slowly varies in y. We posit
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FIGURE 14. Ratio of the absolute values of the double derivatives (r = ((∂2
x )/(∂

2
y ))) of bx (left

plot) and by (right plot), clipped at r = 4 to avoid extreme dynamical range.

that this behavior should translate to the eigenfunction as well. We show that this
assumption indeed holds using the eigenfunctions obtained from solving the EVP.
Figure 14 shows the ratio of the absolute values of the double derivatives (r = ∂2

x /∂
2
y )

of bx and by. As can be seen, the ratio is significantly greater than 1 in a large part
of the domain, in particular, near the region of high magnetic shear, justifying our
hypothesis.

A.2. Details of the Eigenvalue Solver
The strategy is to express the linear operators, M and L, as matrices acting on a

state vector, v. Given these matrices, their eigenvalues, and the corresponding eigen-
vectors, can be found using publicly available schemes in many Python packages e.g.
SciPy (Virtanen et al. 2020), and PyTorch (Ansel et al. 2024).

We choose a numerical grid with Nx and Ny collocation points in the x and the y
directions, respectively. The eigenfunction now comprises Nx × Ny values for each
of ux , uy , bx and by. We flatten this eigenfunction to get the state vector, v, with
4 × Nx × Ny entries. The derivative operators are constructed by going to Fourier
space, multiplying by appropriate powers of ikx and iky , and taking the inverse
Fourier transform.

We then write a Python function with a dummy state vector as the argument
which splits and reshapes it to give ux , uy , bx and by over the 2-D grid, calculates the
terms on the right-hand sides of equations (2.7)–(2.10), and give these as output after
flattening it back to a 4 × Nx × Ny shape. The same is done for the left-hand sides of
equations (2.7)–(2.10), without the γ factor, which will be the eigenvalue obtained
on solving the EVP. These functions take the state vector as the input and give as
output a vector obtained by operating M and L on the state vector. We now wish
to obtain the matrix equivalent of these functions. This is done by first packaging
the functions as scipy.sparse.linalg.LinearOperator objects, and then
getting the matrix form of these objects by acting these on the identity matrix – thus
giving us the matrix form of M and L, each of size 4Nx Ny × 4Nx Ny.

The eigenvalues and eigenvectors for these matrices can now be calculated using
standard methods. In anticipation of large runtimes due to the large size of the
matrices, we resort to using a GPU-based Python library – pytorch. We use
the torch.linalg.eig package to get the eigenvalues and eigenvectors of the
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FIGURE 15. Magnetic field lines in the full 3-D case. The colors show the y-component of the
magnetic field.

eigensystem comprising the M and L matrices. The numerical implementation of
this full procedure has been made public in a GitHub repository – SPEC-Tear.

A.3. Low-pass filtering and periodicity of the equilibrium
We ensure periodicity of the equilibrium in the following way. The equilibrium is

decomposed into its Fourier modes. Since the equilibrium is not strictly periodic,
the Fourier coefficients for high wavenumbers are not zero, as would be the case for
periodic functions. We now manually set the Fourier coefficients for wavenumbers
above a chosen threshold to zero. The inverse Fourier transform of this gives us a
perfectly periodic equilibrium. It is this process that we refer to as a low-pass filter –
since it gets rid of high wavenumber (frequency) modes, ensuring periodicity of the
equilibrium.

A.4. Magnetic island structure and null points
The structure of the magnetic islands and the array of magnetic null points for the

full 3-D case is depicted by showing the magnetic field lines in figure 15. The colors
indicate that by is indeed non-zero, leading to a bent magnetic island structure. Note
the symmetry of the structures across the y = 0 line. The most important aspect is
that we recover 2-D-like X-point sites which allow the classic ‘cutting and rejoining’
type of reconnections to occur plane by plane. More sophisticated geometries of
magnetic fields may not allow for such simple manifestation of magnetic nulls.
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