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Abstract

Glycine-rich proteins (GRPs) are arbitrarily defined as those containing 20% or more glycine
residues and constitute a superfamily divided into subfamilies based on their structure and/or
function. GRPs have been identified in a diverse array of organisms and have been shown to
possess a number of distinctive biological characteristics, including nucleic acid binding, adhe-
sive glue-like properties, antimicrobial activity, involvement in the stress response and in the
formation of cuticle components. In ticks, their expression has been described and studied
mainly in the salivary glands, and their primary function is usually associated with cement
formation and/or structure. Conversely, several GRPs are present in all tick developmental
stages, and the expression of many GRP genes is modulated by physiological processes and
immune challenges, such as feeding and pathogen infection. Considering that some tick
GRPs appear to play essential roles in the tick life cycle, they have been evaluated as immune
targets, with a focus on their potential application in vaccine development. This review high-
lights the roles that tick GRPs may perform beyond the formation and maintenance of the
cement scaffold, including structural characterization, locations and functional relevance,
hypothetical functions, and their potential use in anti-tick vaccine development.

Introduction

Glycine-rich proteins (GRPs) comprise many biomolecules, usually arbitrarily defined as pro-
teins containing at least 20% glycine (Gly) in their composition. Typically, Gly amino acid resi-
dues are distributed in a glycine-rich domain that can be arranged randomly or in repeating
patterns. Accordingly, GRPs are categorised into subtypes based on the pattern motifs they
exhibit, which influence the protein structure and can allow for secondary structures such
as alpha-helix, glycine loops or β-sheets. This affects the stability of proteins and may influence
protein interactions and functions. Additionally, they facilitate the binding of other molecules,
such as nucleotides (Bossemeyer, 1994; Sachetto-Martins et al., 2000; López-Llano et al., 2006;
Dong et al., 2012). The functions of plant GRPs have been extensively studied, influencing
plant development, physiology, and defence against abiotic and biotic stresses (Mangeon
et al., 2010; Ma et al., 2021). In spiders and silkworms, GRPs are components of silk fibers,
conferring flexibility with elastomericity and strength (Parkhe et al., 1997; Asakura et al.,
2002; Dicko et al., 2008; Malay et al., 2016, 2017). In hemipteran insects, they exhibit anti-
microbial and RNA binding activities (Futahashi et al., 2013; Meraj et al., 2024), while in spi-
der mites and mosquitoes, GRPs have been implicated in feeding functions (Jariyapan et al.,
2006; Sun et al., 2023). As a common structural component, GRPs are also found in insect
cuticles (Zhong et al., 2006) and molluscan shells (Zhang and Zhang, 2006).

Ticks are hematophagous ectoparasites that are widely distributed across the globe and have
evolved to thrive in a range of biotic and abiotic conditions (Ogden et al., 2021). They have a
detrimental impact on both veterinary and human health, as they can transmit more patho-
gens than any other arthropod, including mosquitoes (Jongejan and Uilenberg, 2004).
Moreover, the phenomenon of climate change has been suggested as the main cause for the
spread of tick species to wider areas (Gilbert, 2021). Currently, tick control remains heavily
reliant on the use of chemicals, an approach that has become increasingly unfavourable due
to the emergence of resistant populations, environmental contamination, and rising costs
(Obaid et al., 2022). Vaccines have been considered the most desirable alternative for tick con-
trol, and, although commercial vaccines were already occasionally successfully used, their
development are still challenging (De La Fuente and Ghosh, 2024). In fact, anti-tick vaccine
strategies must deal with caveats such as genetic diversity, immunodominant regions among
protective antigens, development of long-lasting immunity and redundancy of functions
among different molecules that can be recognized by the immune system (Leal and
Ferreira, 2021; De La Fuente and Ghosh, 2024). Therefore, a cocktail of molecules may be
more likely to achieve significant anti-tick protection (Ndawula Jr and Tabor, 2020), and
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some GRPs exhibit properties compatible with such desired mul-
ticomponent immunogens (Trimnell et al., 2002, 2005; Leal et al.,
2018). The modulatory interplay between ticks and their hosts is
likely to be the primary factor contributing to the parasite’s suc-
cess. A multitude of salivary proteins compose the biochemical
dialogue between the two species, which undergoes changes
over time, rendering tick saliva probably the most complex animal
saliva (Ribeiro and Mans, 2020).

Ticks possess a wide variety of GRPs and their presence has
been identified primarily in saliva and salivary glands (SGs),
although their functions are not totally understood. Tick GRPs
have been described as being involved in the formation of the
cement, a hard glue structure secreted to attach to the host skin
and hypothesized to help in the evasion of the host immune
response, influencing pathogen transmission (Kemp et al., 1982;
Havlíková et al., 2009; Hart et al., 2020). Ticks are ectoparasites
that can be divided into longirostrate (long) and brevirostrate
(short) according to the size of their mouthparts, which influ-
ences the amount of cement needed at the attachment site.
Furthermore, the strategy employed by ticks to survive while feed-
ing on a host can also vary according to the type of host, the num-
ber of hosts within the life cycle, or the duration of feeding on the
host. In this context, the quantity and variability of GRPs appear
to be influenced by the strategies of each tick species and develop-
mental stage, in addition to the size of the tick mouthparts
(Anderson et al., 2008; Maruyama et al., 2010). This review
focuses on the structural aspects and dynamics of GRP produc-
tion in ticks as well as discusses the possible roles these proteins
may play in response to certain stimuli, such as feeding, infection
and stress.

GRP structural characteristics

The content of Gly in the composition of GRPs varies between
proteins, and Gly-rich motifs can be arranged in specific patterns
or not. Glycine-rich regions can form loops, giving the region a
flexible characteristic (Steinert et al., 1991; Högel et al., 2018).
Gly residues themselves can also be displaced randomly or in pat-
terns. Among ticks, the most common patterns described are tri-
peptides, such as GXG, GXX and GGX, but Gly-rich repeats can
also be found in longer arrangements and in varying patterns, as
shown in Fig. 1 (Bishop et al., 2002; Francischetti et al., 2009;
Maruyama et al., 2010; Leal et al., 2018). For instance, the
glycine-rich region of P29 of Haemaphysalis longicornis is present
in the middle of the sequence and has been described as a
collagen-like domain, as the GXX repeat that predominates
resembles those present in vertebrate collagen proteins
(Mulenga et al., 1999). The classification of GRPs within ticks
has been primarily based on motif similarity, although it also
been categorized by function, such as the cement GRPs, or by
orthology, such as some Rhipicephalus GRPs, which are further
categorized into distinct subclasses (GYG, expansion of large
GYG, and superlarge GYG) (Francischetti et al., 2009; Ribeiro
et al., 2011; Ribeiro and Mans, 2020).

As previously described, Gly residues are involved in the hel-
ical conformation of proteins, influencing the helix-helix packing,
and, for instance, conferring greater stability to tertiary structures
in transmembrane domains (Dong et al., 2012). Furthermore, the
flexibility of proteins may be influenced by the position of Gly
residues. Gly can lead to more flexible termini or rigid centres,
which in turn alters the hydration and H-bonding of the helix
(Högel et al., 2018).

At least three Metastriate ticks present GRPs containing GGY
or GGY-related motifs, which, interestingly, present similarities
with silk sequences of spiders (Mulenga et al., 2007; Maruyama
et al., 2010). In dragline spider silks, these motifs are associated

with mechanical characteristics, such as fibre strength, despite
the glycine-rich region usually corresponds to a non-elastic
domain (Brooks et al., 2008; Malay et al., 2016 and, 2017). In
the insects Bombyx mori and Antheraea pernyi, the GGY
sequence appears to be associated with cuticle hardening and
plays a fundamental role in humidity-induced behaviour of silks
(Suzuki et al., 2002; Futahashi et al., 2008; Wang et al., 2020).

The intrinsically disordered nature of many GRPs seems to
facilitate liquid-liquid phase separation (LLPS) in the process of
forming adhesive structures. In a salivary GRP from Ixodes rici-
nus, the N-terminal portion is more negatively charged, while
the C-terminal portion has more aromatic residues regularly
spaced by glycine-rich regions, which allows for extensive
cation-π interactions and therefore the accumulation of particles
around the GRP, leading to coacervation. Furthermore, it was
demonstrated that the mature GRP (without the signal peptide),
referred to as Tick-GRP77, undergoes LLPS and forms viscoelas-
tic solid structures, as a transition to adhesive forms, what corro-
borates with a cement formation function (Ganar et al., 2023).

Tissue and ontogenetic distribution in ticks

GRPs have been frequently identified in the tick cement, and their
tissue localization has been studied in several tick species (Kemp
et al., 1982). The components of cement are secreted in saliva, and
the host species, feeding, and mouthparts morphology influence
its composition (Tabor et al., 2017). Furthermore, GRPs presence
is also modulated by biotic and abiotic factors (see Table 1). The
following subsections present, compare, and discuss data on when
and where these proteins are found and expressed in ticks, as well
as the known conditions that may affect them.

Ontogenetic distribution

The GRPs RmGRP and Rm39 of Rhipicephalus microplus and
Hq15 of Haemaphysalis qinghaiensis were detected in all stages
of development (Maruyama et al., 2010; Jiang et al., 2014; Leal
et al., 2018). Also, a substantial number of transcripts encoding
cuticle-like GRPs were identified in R. microplus nymphs and
females during feeding. These transcripts showed considerable
heterogeneity, including the presence of GGY family transcripts
exclusively in nymphs (Garcia et al., 2020). Shahein et al.
(2013) identified open reading frames (ORFs) for three putative
salivary GRPs in Rhipicephalus annulatus (RaSal1, RaSal2 and
RaSal3). RaSal1 and RaSal3 were present in eggs after 12 days
of oviposition, while RaSal2 was weakly recognized after 6 days
(Shahein et al., 2013). In Haemaphysalis longicornis, anti-sera
against the GRP P29 reacted with larval and adult extracts, indi-
cating its presence (or of immune-related proteins) in immature
and mature ticks, while HLMLP (H. longicornis muscle LIM pro-
tein) was present in all developmental stages (Mulenga et al.,
1999; Luo et al., 2020). Expressed sequence tags (ESTs) of
GRPs have been identified in nymphs and adults of Ixodes scapu-
laris, exhibiting considerable similarity to the Ixodes pacificus pro-
file (Ribeiro et al., 2006). In Amblyomma americanum, five
profiles of GRPs were detected in larvae and nymphs, with upre-
gulation observed following ecdysis (Hollmann et al., 2018).

The profile of the GRP sialotranscriptome in ticks differs
between males and females. This can be explained by the distinct-
ive characteristics of attachment presented by each biological sex
and presuming a higher necessity for variability and abundance of
these proteins in females (Díaz-Martín et al., 2013; Tan et al.,
2015). This assumption is corroborated by the findings that
Hyalomma dromedarii (Bensaoud et al., 2018, 2019) and
Ornithodoros moubata (Díaz-Martín et al., 2013) present a greater
number of GRPs in females than males. In R. microplus, females
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exhibit a greater abundance of cuticle-like GRP transcripts,
whereas two subtypes of GRPs were found almost exclusively in
males (elastin-like and glue-like) (Garcia et al., 2020). On the
other hand, this does not seem to be a universal fact. The tran-
scriptome of Rhipicephalus pulchellus males shows almost three-
fold more transcripts of GRPs, while females exhibit greater
variability in sex-exclusive GRPs (Tan et al., 2015).
Additionally, Rhipicephalus appendiculatus males also presented
twice the number of GRPs transcripts than females, suggesting
that these proteins play roles beyond the cement formation, as
males typically exhibit a shorter period of attachment to the
same host point (de Castro et al., 2016).

Distribution within ticks

GRPs may be present in many tissues and organs of ticks. GRPs
were identified in the ovaries, fat body, synganglia, and midgut of
R. microplus (Lew-Tabor et al., 2010; Leal et al., 2018) and I. sca-
pularis (Lees et al., 2010). In H. longicornis, Hlim2 was present in
all organs investigated, except for the midgut. In contrast, Hlim3
was identified in the SG, synganglia, and carcass (Harnnoi et al.,
2006). Therefore, GRPs have a highly heterogeneous distribution,
with some GRPs being present or uniquely associated with the SG
(see Table 1) and the cement (Lees et al., 2010; Leal et al., 2018;
Ribeiro et al., 2023).

The SG transcriptome of different tick species (Dermacentor
andersoni, R. appendiculatus, R. microplus, Amblyomma variega-
tum, Amblyomma tuberculatum and Antricola delacruzi) and
the proteome of A. americanum saliva reveal that GRPs tran-
scripts and putative GRP proteins are abundantly present
(Alarcon-Chaidez et al., 2007; Karim et al., 2011; Ribeiro et al.,
2011, 2012; de Castro et al., 2016; Kim et al., 2020). The transcrip-
tome of Amblyomma maculatum SG also encodes 12 types of
GRPs (Ribeiro et al., 2023). However, Ixodes holocyclus presents
less than 20% of their SGs transcripts for putative secreted pro-
teins and therefore also shows a lower abundance of GRPs com-
pared to other ticks (Ong et al., 2016).

Influence of feeding

The feeding process induces ticks to alter the composition of pro-
teins secreted in saliva (Radulović et al., 2014; Tirloni et al., 2017).
In this sense, GRPs of A. americanum are more abundant in the
SG of partially fed females than in unfed females (Jaworski et al.,

1990). During the feeding period, nine GRP genes of adult
A. americanum ticks showed differential expression that varied
according to the time since the onset of feeding. Among them,
the gene of the GRP AamerSigP-41539 was almost exclusively
expressed in unfed and 24 h post-feeding ticks. However, the
genes of Aam-36909 and Aam-41235 reached their maximal
expression after 48 h of feeding, whereas Aam-41540 and
Aam-3099 did so after 72 h and 120 h, respectively (Bullard
et al., 2016a). Kim et al. (2020) detected a highly cumulative rela-
tive abundance of GRPs in the saliva of A. americanum during
the feeding process. Most of the GRP genes (90%) were shown
to be upregulated after 48 h of feeding, with a maximum peak
at 72 h. In R. appendiculatus, GRP 64P gene transcripts were
not detected in unfed ticks, whereas in fed females, the maximum
expression was observed after 24 h, with a subsequent decrease in
expression levels following detachment. In males, by contrast, the
expression reached maximum levels seven days after the begin-
ning of feeding (Havlíková et al., 2009).

In a proteome analysis of Haemaphysalis flava, the GRPs iden-
tified were shared between partially and fully engorged females
(Liu et al., 2023). Conversely, 17 GRP transcripts were detected
in the SG transcriptome of Amblyomma sculptum. Of these,
nine were up-regulated and two down-regulated after 24 h of feed-
ing, while only three GRPs were identified in the saliva proteome,
with only one present at higher levels in fed ticks (Esteves et al.,
2017). In the saliva of R. microplus females, the proteome of saliva
showed a higher abundance of secreted GRPs in partially than in
fully engorged females (Tirloni et al., 2014). However, Leal et al.
(2018) identified higher transcript levels of RmGRP in the SG of
fully engorged females. In unfed larvae of R. microplus, ORFs of
different putative GRPs were also identified (Untalan et al.,
2005). The presence of different levels and diversity of GRPs
pre-, during and post-feeding may imply additional roles for
these proteins beyond cement formation.

Bullard et al. (2019) demonstrated that the silencing of the GRP
AamerSigP-41539 gene resulted in a 20-fold increase in the bacter-
ial load during the feeding of A. americanum. Also, after 5 and 8
days of feeding, the bacterial load was two-fold higher when the
GRPs AamerSigP-41539 and Aam-40766 were depleted, respect-
ively, suggesting that, within the SG, GRPs are involved in main-
taining microbiota homeostasis (Bullard et al., 2019).

The type of host also affects the expression of GRPs. R. micro-
plus fed on susceptible bovine hosts presented a higher secretion
of GRPs, including more variability in GRPs (Maruyama et al.,

Figure 1. Gly-repeat patterns in tick GRP sequences. Each repeat is represented with a different color, and pattern variations within sequences are highlighted with
the respective color. Sequences presented are: 64P of Haemaphysalis longicornis (AAM09648.1), RmGRP of Rhipicephalus microplus (AQX36208.1), Sal 1 of
Rhipicephalus annulatus (AGR45924.1), NPL-2 of Ixodes scapularis (EEC15723.1), Ctenidin-1-like of Ixodes scapularis (XP_029830867.1), and Aam-3099 of
Amblyomma americanum (JAG92486.1).
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Table 1. Distribution of glycine rich proteins in different tissues and developmental stages of ticks, and their response to feeding

Tick Species Location
Developmental

Stages GRP levels and/or gene expression Reference

Ixodidae

Amblyomma
americanum

Cement, salivary
glands, midgut and
saliva

Adult Female Variable depending on feeding time Bullard et al. (2016a), Radulović
et al. (2014), Karim and Ribeiro
(2015), Tirloni et al. (2017),
Kim et al. (2020)

Amblyomma
cajennense

Salivary glands Adult Female Up regulated during feeding Maruyama et al. (2010), Garcia
et al. (2014)

Amblyomma
maculatum

Cement and salivary
glands

Adult Female Karim et al. (2011); Ribeiro et al.
(2023)

Amblyomma
parvum

Salivary glands Adult Female Up regulated during feeding Garcia et al. (2014)

Amblyomma
sculptum

Salivary gland and
saliva

Adult Female Up and downregulated during feeding Esteves et al. (2017)

Amblyomma triste Salivary glands Nymphs and
Adult Female

Up regulated during feeding Garcia et al. (2014)

Amblyomma
tuberculatum

Salivary glands Adult Female Karim et al. (2021)

Amblyomma
variegatum

Cement and salivary
glands

Adult Female Díaz-Martín et al. (2013), Nene
et al. (2002), Ribeiro et al. (2011)

Dermacentor
andersoni

Salivary glands Adult Female Alarcon-Chaidez et al. (2007)

Dermacentor
variabilis

Cement, salivary
glands and midgut

Macaluso et al. (2006), Anderson
et al. (2008)

Haemaphysalis
flava

Cement and saliva Adult Female Present during feeding Xu et al. (2016), Liu et al. (2023)

Haemaphysalis
longicornis

Salivary glands,
midgut, ovaries,
synganglion,
integument and
carcasses

All Stages Harnnoi et al. (2006)

Haemaphysalis
qinghaiensis

Salivary glands and
carcasses

All Stages Jiang et al. (2014)

Hyalomma
dromedarii

Salivary glands Adult Male and
Female

Higher levels in females Bensaoud et al. (2018)

Hyalomma
marginatum

Cement and salivary
glands

Adult Male and
Female

Francischetti et al. (2011)

Ixodes holocyclus Salivary glands Adult Female Ong et al. (2016)

Ixodes pacificus Salivary glands Adult Female Francischetti et al. (2009)

Ixodes ricinus Cement and salivary
glands

Nymphs and
Adults

Perner et al. (2016)

Ixodes scapularis Cement, salivary
glands and saliva

Nymphs and
adult female

Valenzuela et al. (2002), Ribeiro
et al. (2006), Tirloni et al. (2017)

Riphicephalus
annulatus

Salivary glands Eggs and adult
female

Shahein et al. (2013)

Riphicephalus
appendiculatus

Cement and salivary
glands

Adult Male and
Female

Upregulated during feeding and at
higher levels in males

Bishop et al. (2002), De Castro et al.
(2016)

Riphicephalus
bursa

Salivary glands Female Induced expression or upregulation of
some GRP genes after host attachment
or during feeding . Downregulation of
two GRP genes after tick attachment.

Antunes et al. (2018)

Riphicephalus
microplus

Cement, salivary
glands, synganglion,
gut, fat body, ovaries
and saliva

All Stages Variable depending on feeding time.
Usually described as higher level in
females, however has higher levels in
males feed in resistent host.

Untalan et al. (2005), Lew-Tabor
et al. (2010), Maruyama et al.
(2010), Tirloni et al. (2014), Leal
et al. (2018), Garcia et al. (2020)

Riphicephalus
pulchellus

Salivary glands Adult Male and
Female

Higher levels in males Tan et al. (2015)

Riphicephalus
sanguineus

Salivary glands,
synganglion and saliva

Adult Male and
Female

Anatriello et al. (2010), Lees et al.
(2010), Maruyama et al. (2010)

(Continued )
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2010; Garcia et al., 2020). A. americanum showed a higher pres-
ence of GRPs in the saliva when fed on rabbits compared to
humans or dogs (Tirloni et al., 2017). In I. holocyclus, GRPs con-
tigs were detected at lower levels in ticks feeding on domestic ani-
mals than when feeding on bandicoots (wild marsupials) (Ong
et al., 2016). Furthermore, artificial feeding has been shown to
alter the levels of GRPs in the midgut of I. ricinus and the cement
of A. americanum (Bullard et al., 2016b; Perner et al., 2016).

Maruyama et al. (2010) identified more transcripts of GRPs in
R. microplus and R. sanguineus (brevirostrata) than in A. cajen-
nense (longirostrata), and the monoxenic tick, R. microplus,
presented more GRPs contigs than heteroxenous ticks (R. sangui-
neus and A. cajennense). Also, de Castro et al. (2016) compared
GRP transcripts of R. appendiculatus, R. punchellus and
Amblyomma spp., where Rhipicephalus spp. presented GRPs in
greater abundance than Amblyomma spp. (de Castro et al.,
2016). Therefore, biological aspects of ticks influence the saliva
protein diversity, including GRPs. It was suggested that breviros-
trata ticks, which possess smaller mouthparts than longirostrata,
secrete a greater amount of cement in order to remain attached
to the host, and ticks of a single host (monoxenic) must produce
a more diverse repertoire of GRPs than ticks that change hosts
during their life cycle (Maruyama et al., 2010).

Microbial interactions

Ticks are well-known vectors for the transmission of animal and
human diseases, and the presence of pathogens such as Theileria
spp. and Babesia spp. changes the sialotranscriptome and sialo-
proteome of ticks (Paulino et al., 2021; Schäfer et al., 2022). In
this context, the tick immune system has been shown to respond
to the presence of pathogens, including salivary proteins pro-
duced by ticks, the expression of which can be stimulated by
the pathogen itself and may aid in its transmission (Kurokawa
et al., 2020).

With regard to GRPs, the infection of Dermacentor variabilis
with Rickettsia montanensis resulted in a reduction in
Oi814-GRP gene expression in the ovaries, midgut, and SG,
with a 52% decrease compared to uninfected ticks (Macaluso
et al., 2003). In contrast, GRP upregulation was detected in the
ovaries of Rickettsia-infected D. variabilis (Macaluso et al.,
2006). Infection by Theileria parva of R. appendiculatus resulted
in a nearly twofold increase in the expression of three GRPs
(Nene et al., 2004), and R. bursa infected with Babesia ovis
showed a GRP associated with the cellular matrix that was also
upregulated (Antunes et al., 2018). A flagelliform silk protein
(100Silk) was found to be reduced in R. microplus infected with
Anaplasma marginale, and, when the respective gene was
silenced, the level of tick infection decreased (Zivkovic et al.,
2010). Accordingly, R. microplus infected with Babesia presented
a downregulation of one GRP in ovaries (Rachinsky et al., 2007).

These data provide evidence that tick protein production is
modulated by various components of their microbiome, including
pathogens (Kurokawa et al., 2020). However, the overall inter-
action of GRPs with tick pathogens remains unclear. As possible
immune proteins, GRPs would be expected to be upregulated as
part of a tick response to infection, although GRP transcription
could be inhibited by the pathogen. Some GRPs may also poten-
tially be upregulated by the pathogen, which could be explained as
facilitating transmission to a new host.

Possible roles of GRPs in ticks

As described in the previous sections, tick GRPs may present
multiple functions. In a similar manner, four classes of GRPs
and more than 12 functions for GRPs in plants have already
been described (Mangeon et al., 2010). Tick GRPs are often asso-
ciated with cement formation, especially those expressed in the
SG. However, in other tissues they seem to perform alternative
and/or unknown functions (Maruyama et al., 2010). The differ-
ences described for GRP variability and abundance between
adult males and females also suggest additional roles, as males
are expected to attach and detach more times than females during
feeding and reproduction. In fact, R. appendiculatus and R. micro-
plus showed more total GRP transcripts in males, suggesting
potential involvement in other physiological processes (de
Castro et al., 2016; Bensaoud et al., 2019; Garcia et al., 2020).

The cement cone of R. microplus was previously described as
presenting a high content of glycine (Kemp et al., 1982).
Thereafter, GRPs in the cement were suggested to promote the
hardening of the adhesion structure (Bullard et al., 2016b). As
shown above, this is strongly corroborated by the property of cer-
tain GRPs to form a gel-solid structure after LLPS (Ganar et al.,
2023).

Another important function that may be performed by tick
GRPs is the modulation of the host immune response. The simi-
larity of some GXX/GGX repeats in tick GRPs compared to the
Gly-rich motifs of vertebrate GRPs indicates a probable function
on evasion of host defence/haemostasis by mimicking host skin
components (Mulenga et al., 1999; Bishop et al., 2002). This
hypothesis is endorsed by the increased inflammation at tick
attachment sites in GRP-silenced ticks, which also shows
increased haemorrhaging at the tick bite site (Hollmann et al.,
2018). Additionally, Gly can be recognized by receptors and
when Gly binds to anion channel receptors, the chloride conduct-
ance increases, leading to chloride influx, which causes the hyper-
polarization of platelets, thereby inhibiting platelet aggregation
(Schemmer et al., 2013). Indeed, Ribeiro et al. (2006) identified
one GRP as a probable inhibitor of platelet aggregation.

GRPs are also described to bind nucleic acids and
RNA-binding GRPs are associated with the development of
embryos in a range of organisms, as well as in the ecdysis of

Table 1. (Continued.)

Tick Species Location
Developmental

Stages GRP levels and/or gene expression Reference

Argasidae

Antricola
delacruzi

Salivary Glands Adult Female Ribeiro et al. (2012)

Ornithodoros
coriaceus

Salivary Glands Adult Male and
Female

Francischetti et al. (2009)

Ornithodoros
moubata

Saliva Adult Male and
Female

Higher levels in females Díaz-Martín et al. (2013)
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insects (Zhong et al., 2006; Ciuzan et al., 2015). In zebrafish,
GRPs are also involved in spinal cord regeneration (Ma et al.,
2021). In ticks, the presence of GRPs in eggs was reported in
H. qinghaiensis, H. longicornis, and R. microplus. Furthermore,
silencing GRP genes has been shown to reduce hatchability and
weight of larvae (Jiang et al., 2014; Leal et al., 2018; Luo et al.,
2020). These data indicate that GRPs are important players in
tick development and that further studies can elucidate the spe-
cific roles that GRPs play in these processes.

In response to stress, insect GRPs in the cuticle protect against
temperature changes, allowing them to adapt to new environmen-
tal conditions (Zhang et al., 2008). Response to environmental
stress mediated by A. americanum GRPs has also been suggested,
as temperature changes (cold and heat), oxidative stress, and
injury positively or negatively modulate the expression of GRP
genes. Interestingly, gene expression of the GRP Aam-40766
decreased in the SG but increased when the entire tick was ana-
lysed. On the other hand, the expression of the GRP
Aam-36909 gene was downregulated in the whole tick when
exposed to cold or injury stresses, but upregulated in the SG,
which was suggested as a physiological adaptation (Bullard
et al., 2019). In eggs of H. longicornis, one GRP is also upregulated
in response to temperature stress (25°C) (Luo et al., 2020).

Antimicrobial activity is a known function of GRPs and
glycine-rich antimicrobial peptides (GR-AMPs), including silk
GRPs from spiders, scorpions, and insects. GR-AMPs are mole-
cules of the innate immune response that act against a wide
range of pathogens. In general, GR-AMP sequences contain a sig-
nal peptide, a pro-peptide and a glycine-rich region, which usu-
ally present domains with repeats containing Gly residues (Yi
et al., 2014; Wang and Wang, 2016), similar to what can be
found in tick GRPs. Attacins, ctenidins, gloverins, diptericins, ser-
rulins, acanthoscurrins, hyastatin, and prolixins are some
GR-AMPs that have already been described and characterized
(Yi et al., 2014; Wang and Wang, 2016; Meraj et al., 2024).
Most of assays employing GR-AMPs indicated activity against
gram-negative bacteria, although effects against gram-positive
bacteria, fungi, protozoa (Meraj et al., 2024) and virus are also
reported (Yi et al., 2014; Wang and Wang, 2016). For example,
serrulin from the scorpion Tityus serrulatus inhibits the growth
of E. coli, Pseudomonas aeruginosa (gram-negative bacteria),
Micrococcus luteus (gram-positive bacteria), Aspergillus niger
(filamentous fungus) and Candida albicans (yeast) at low concen-
trations and its sequence presented similarity to acanthoscurrins
(Acantho 1 and 2) from the spider Acanthoscurria gomesiana,
which present a reported antimicrobial activity (Lorenzini et al.,
2003; de Jesus Oliveira et al., 2019). Interestingly, serrulin is
also similar to a secreted GRP from the tick I. scapularis
(de Jesus Oliveira et al., 2019), suggesting a possible antimicrobial
role for this tick GRP.

GRPs/Gly-rich motifs may also present different activities not
directly responsible for cellular killing. One such example is the
GRP hyastatin of Hyas Araneus, which presents three domains:
an N-terminal region containing Gly residues, a Pro/Arg-rich
region and a C-terminal region containing six cysteine residues.
Native hyastatin exhibits antimicrobial activity against bacteria
(E. coli and Corynebacterium glutamicum) and yeast (S. cerevisiae
and C. albicans), whereas the recombinant N-terminal region
does not present the same effect, although both proteins are
able to bind chitin. Therefore, it is suggested that the Gly-rich
region may be primarily involved in pathogen attachment rather
than in cell disruption (Sperstad et al., 2009). Insect attacins,
the most extensively studied GR-AMPs, were first identified in
the giant silk moth Hyalophora cecropia and are probably the
most promising antimicrobials among the GRPs (Yi et al., 2014;
Wang and Wang, 2016). Attacins may increase outer membrane

permeability, bind LPS, and inhibit the synthesis of specific pro-
teins, such as the OMPs, without reaching the internal membrane
or cytoplasm (Carlsson et al., 1998). In terms of mechanism of
action, attacins can be compared to polymyxin. The polymyxin-
resistant strain of P. mirabilis EH193 was found to be sensitive
to an attacin at a concentration 100-fold lower than polymyxin
(Carlsson et al., 1998; Yi et al., 2014). Additionally, a peptide
with 50% identity to Bactrocera dorsalis attacin B showed anti-
microbial activity against methicillin-resistant Staphylococcus aur-
eus (MRSA) (Shin and Park, 2019). Although the antimicrobial
activity of tick GRPs was not directly tested for tick GRPs, it
has been previously suggested that members of the GGY GRP
family may possess this activity (Ribeiro et al., 2006; Mulenga
et al., 2007; Francischetti et al., 2009). If tick GRPs do have anti-
microbial properties, then modulation of GRP levels by pathogens
may represent another component of the arms race in the
host-parasite-vector relationship.

Vaccine potential

Tick infestations and tick-borne diseases are emerging global
health concerns for both livestock and humans. Conventionally,
acaricides are employed to control these ectoparasites, but resist-
ant ticks and the worrisome effects of chemicals emphasizes the
need for the development of alternative strategies, such as vac-
cines (Schetters et al., 2016). In this context, tick GRPs have
already been identified as protective antigens, and the outcomes
of immunization protocols can be seen summarized in Table 2
(Trimnell et al., 2005; Shahein et al., 2013; Antunes et al., 2018;
Couto et al., 2021).

P29, a GRP of H. longicornis, was used for immunization of
rabbits, reducing the feeding time and increasing the mortality
of larvae and nymphs (Mulenga et al., 1999). A recent study
used HLMLP, a cysteine-glycine-rich protein, to immunize rab-
bits, affecting engorgement (Luo et al., 2020). Two other H. long-
icornis GRPs were used to immunize mice. Hlim2 reduced the
weight of engorged females, while Hlim3 reduced tick attachment
and duration of feeding time (Harnnoi et al., 2006).

Another potential antigen candidate is RH50 from
Rhipicephalus haemaphysaloides. In ticks fed to RH50-immunized
rabbits, the attachment of nymphs and adults decreased, and
nymphal mortality increased (Zhou et al., 2006). Vaccination of
Holstein calves with Rm39, a GRP of R. microplus, resulted in
weak immune recognition, and significant anti-Rm39 IgG levels
were only obtained at the end of the challenge. However, egg
weight and hatch rate were reduced in vaccinated calves, while
fed adult ticks were capable of full engorgement, albeit with a
pale colour (Maruyama et al., 2017).

Mice immunized with the R. appendiculatus salivary protein
64TRP reduced the transmission of tick-borne encephalitis virus
(TBEV) when transmission occurred from infected mice to
nymphs and infected ticks to mice. Also, secreted cement proteins
demonstrated an anamnestic response after 64TRP vaccination
(Labuda et al., 2006). In guinea pigs, the immunization with
64TRP reduced the attachment rate of R. sanguineus, and the vac-
cination with three different recombinant protein versions of
truncated 64TRP fragments (64TRP2, 64TRP3 and 64TRP5)
reduced the attachment of R. appendiculatus. I. ricinus fed in rab-
bits immunized with 64TRP2 reduced engorged weight and egg
mass weight, and increased mortality, whereas immunization
with 64TRP2/6 increased mortality of nymphs fed on guinea
pigs. The feasibility of a broad-spectrum 64TRP-based vaccine
against four ticks (R. appendiculatus, I. ricinus, A. variegatum
and R. microplus) has been suggested based on the presence of
cross-reactive conserved protective epitopes (Trimnell et al.,
2002, 2005).
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Other GRPs have been identified as potential vaccine candi-
dates, but further studies are needed to assess their antigenic
and immunogenic effects in the host and tick (de la Fuente and
Contreras, 2022). Proteins present in tick saliva are interesting tar-
gets, as they must interact directly with the host immune system.
Moreover, an increase in tick-borne disease transmission and tick
territorial dispersal, both of which are influenced by climatic
changes, highlights the potential health risks that ticks may
pose to the animal food chain and public health
(Madison-Antenucci et al., 2020; Tardy et al., 2022). This rein-
forces the necessity for the development of anti-tick vaccines,
particularly those of broad-spectrum.

Conclusions

GRPs are a very diverse group of proteins that have been reported
to be important cement proteins in ticks, but the amount of data
accumulated on them has shown that their roles must be much
broader, especially when compared to what has been described
in other organisms. This review focused on the features that
may make these proteins a hallmark of the tick-host relationship.
GRPs can be found with specific domains and repetitions of
amino acid residues, often showing similarity to host proteins
such as collagen, configuring probable modulators of the haemo-
static and immune systems. The intrinsically disordered nature of
some GRPs may be essential for LLPS, which seems to be mech-
anistically involved in the scaffolding of the tick adhesive structure
with flexibility plus rigidity. The large variation in the presence of
the different GRPs when evaluated ontogenetically, in different
sexes, in the localisation of different tissues/organs of the tick,
during feeding, and even when comparing genetically closely
related species, suggests possible roles in additional physiological
processes. The regulation of GRPs in response to injury, infection,
oxidative stress and temperature changes also suggests an involve-
ment in adaptation to different conditions or environments.
Furthermore, it seems probable that tick GRPs are involved in
nucleic acid binding and antimicrobial activities. In light of the

aforementioned context, it seems unlikely that GRPs are involved
in more than one type of physiological process in ticks. Indeed, it
seems reasonable to suggest that many GRPs may be multifunc-
tional proteins. It can therefore be concluded that GRPs are
promising candidates for the composition of anti-tick vaccines.
Although anti-GRP responses do not appear to increase the mor-
tality of adult ticks, they significantly reduce the number of pro-
geny. In order to improve the design of vaccination approaches
and ultimately achieve more effective protective outcomes, it
would be beneficial to gain a more comprehensive understanding
of the roles and mechanisms of action of GRPs, as well as their
dynamics within hosts and pathogens.
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